
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
6
0
1
3
9
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
2
.
1
1
.
2
0
2
1

cells

Article

Effect of Perioperative Lipid Status on Clinical Outcomes after
Cardiac Surgery

Maks Mihalj 1,2,† , Paul Philipp Heinisch 1,3,4,†, Markus Huber 3 , Joerg C. Schefold 2 , Alexander Hartmann 5,
Michael Walter 5 , Elisabeth Steinhagen-Thiessen 5,6, Juerg Schmidli 1 , Frank Stüber 3, Lorenz Räber 7

and Markus M. Luedi 3,*

����������
�������

Citation: Mihalj, M.; Heinisch, P.P.;

Huber, M.; Schefold, J.C.;

Hartmann, A.; Walter, M.;

Steinhagen-Thiessen, E.; Schmidli, J.;

Stüber, F.; Räber, L.; et al. Effect of

Perioperative Lipid Status on Clinical

Outcomes after Cardiac Surgery. Cells

2021, 10, 2717. https://doi.org/

10.3390/cells10102717

Academic Editors: Tania Garfias-Veitl

and Stephan von Haehling

Received: 20 August 2021

Accepted: 9 October 2021

Published: 11 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland;
maks.mihalj@insel.ch (M.M.); paulphilipp.heinisch@extern.insel.ch (P.P.H.); juerg.schmidli@insel.ch (J.S.)

2 Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern,
3010 Bern, Switzerland; joerg.schefold@insel.ch

3 Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern,
3010 Bern, Switzerland; markus.huber@insel.ch (M.H.); frank.stueber@insel.ch (F.S.)

4 Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technische Universität
München, 80636 Munich, Germany

5 Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsmedizin Rostock,
18057 Rostock, Germany; alexander.hartmann2@med.uni-rostock.de (A.H.);
michael.walter@med.uni-rostock.de (M.W.)

6 Department of Endocrinology and Metabolic Medicine, Division of Lipid Metabolism,
Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany;
elisabeth.steinhagen-thiessen@med.uni-rostock.de

7 Department of Cardiology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland;
lorenz.raeber@insel.ch

* Correspondence: markus.luedi2@insel.ch
† Equally contributing first authors.

Abstract: Patients undergoing cardiac surgery are at increased cardiovascular risk, which includes
altered lipid status. However, data on the effect of cardiac surgery and cardiopulmonary bypass
(CPB) on plasma levels of key lipids are scarce. We investigated potential effects of CPB on plasma
lipid levels and associations with early postoperative clinical outcomes. This is a prospective bio-bank
study of patients undergoing elective cardiac surgery at our center January to December 2019. The
follow-up period was 1 year after surgery. Blood sampling was performed before induction of
general anesthesia, upon weaning from cardiopulmonary bypass (CPB), and on the first day after
surgery. Clinical end points included the incidence of postoperative stroke, myocardial infarction,
and death of any cause at 30 days after surgery as well as 1-year all-cause mortality. A total of
192 cardiac surgery patients (75% male, median age 67.0 years (interquartile range 60.0–73.0), median
BMI 26.1 kg/m2 (23.7–30.4)) were included. A significant intraoperative decrease in plasma levels
compared with preoperative levels (all p < 0.0001) was observed for total cholesterol (TC) (Cliff’s
delta d: 0.75 (0.68–0.82; 95% CI)), LDL-Cholesterol (LDL-C) (d: 0.66 (0.57–0.73)) and HDL-Cholesterol
(HDL-C) (d: 0.72 (0.64–0.79)). At 24h after surgery, the plasma levels of LDL-C (d: 0.73 (0.650.79))
and TC (d: 0.77 (0.69–0.82)) continued to decrease compared to preoperative levels, while the plasma
levels of HDL-C (d: 0.46 (0.36–0.55)) and TG (d: 0.40 (0.29–0.50)) rebounded, but all remained below
the preoperative levels (p < 0.001). Mortality at 30 days was 1.0% (N = 2/192), and 1-year mortality
was 3.8% (N = 7/186). Postoperative myocardial infarction occurred in 3.1% of patients (N = 6/192)
and postoperative stroke in 5.8% (N = 11/190). Adjusting for age, sex, BMI, and statin therapy, we
noted a protective effect of postoperative occurrence of stroke for pre-to-post-operative changes in
TC (adjusted odds ratio (OR) 0.29 (0.07–0.90), p = 0.047), in LDL-C (aOR 0.19 (0.03–0.88), p = 0.045),
and in HDL-C (aOR 0.01 (0.00–0.78), p = 0.039). No associations were observed between lipid
levels and 1-year mortality. In conclusion, cardiac surgery induces a significant sudden drop in
levels of key plasma lipids. This effect was pronounced during the operation, and levels remained
significantly lowered at 24 h after surgery. The intraoperative drops in LDL-C, TC, and HDL-C were
associated with a protective effect against occurrence of postoperative stroke in adjusted models. We

Cells 2021, 10, 2717. https://doi.org/10.3390/cells10102717 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-6298-7985
https://orcid.org/0000-0001-8081-0684
https://orcid.org/0000-0001-9162-5724
https://orcid.org/0000-0003-4758-9716
https://orcid.org/0000-0001-6881-0956
https://orcid.org/0000-0002-9049-2584
https://doi.org/10.3390/cells10102717
https://doi.org/10.3390/cells10102717
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10102717
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10102717?type=check_update&version=2


Cells 2021, 10, 2717 2 of 16

demonstrate that the changes in key plasma lipid levels during surgery are strongly correlated, which
makes attributing the impact of each lipid to the clinical end points, such as postoperative stroke, a
challenging task. Large-scale analyses should investigate additional clinical outcome measures.

Keywords: lipid; LDL; HDL; triglycerides; cholesterol; cardiac surgery; cardiopulmonary bypass

1. Introduction

Dyslipidemia is a known risk factor for cardiovascular events, including stroke, my-
ocardial infarction (MI), kidney disease, and calcifying vascular disease, to name only a
few. Elevated levels of total cholesterol (TC), low-density lipoprotein (LDL), cholesterol,
triglycerides (TG), and low levels of high-density lipoprotein (HDL) cholesterol are com-
monly associated with an elevated risk of atherosclerotic plaque formation and thus with
development and progression of cardiovascular disease [1–4]. Medical therapy aimed at
lowering plasma levels of TC, LDL-Cholesterol (LDL-C), and TG represents one of the
main therapeutic strategies used for patients with cardiovascular disease [1,4–7]. The value
of statin use in patients undergoing cardiac surgery is disputed, and some studies suggest
statin is associated with increased occurrence of postoperative acute kidney failure and
hemorrhagic stroke [4,5,8,9]. Specifically in cardiac surgery patients, dyslipidemia is known
to influence graft patency after coronary artery bypass grafting surgery (CABG) [10–12]
or after percutaneous coronary intervention (PCI), [1,3,4] and has been associated with
calcifying aortic stenosis [4]. Patients undergoing cardiac surgery often have an extensive
portfolio of risks for cardiovascular diseases, including altered lipid status, for which they
often receive lipid-lowering therapy [8]. Lipoprotein (a) levels are significantly reduced
during cardiopulmonary bypass (CPB), but little is known about the effects of cardiac
surgery and cardiopulmonary bypass (CPB) on the plasma level alterations in other key
lipids. In this prospective biobank study, we investigated the effect of cardiac surgery
on key plasma lipid levels and how these are associated with early postoperative clinical
outcomes and complications.

2. Materials and Methods
2.1. Cohort Description

We performed an observational cohort study with a prospective sample of 192 adult
patients from the Bern Perioperative Biobank (ClinicalTrials.gov NCT04767685) who under-
went cardiac surgery at the Bern University Hospital between January 2019 and December
2019. Patients were included if they were scheduled for elective cardiac surgery and pro-
vided written informed consent. Cardiac surgical procedures included CABG; replacement
or repair of aortic (AVR), mitral (MVR), and tricuspid valves (TVR); as well as surgery
of the ascending aorta or aortic arch. All patients received median sternotomy and car-
diopulmonary bypass, either with conventional extracorporeal circulation circuits (CECC)
or minimally invasive extracorporeal circulation circuits (MIECC). Patients undergoing
emergent surgeries and women with suspected or confirmed pregnancy were excluded.

2.2. Collection and Analysis of Blood Samples

Blood samples (whole blood and plasma) were collected at 24 h preoperatively (base-
line), 30 min after induction of anesthesia (pre-operative), upon weaning from CPB (intra-
operative), and 24 h after surgery (post-operative) and were stored at the Bern Liquid
Biobank. Biochemical markers were analyzed at the institutional laboratory of the In-
stitute of Clinical Chemistry and Laboratory Medicine, University Medical Center Ro-
stock, Rostock, Germany. An automated DxC 700 AU chemistry analyzer (Beckman-
Coulter, Brea, CA, USA), wielding Beckman–Coulter reagents, was used to measure the
concentrations of relevant indicators, which included LDL-C (REF: OSR6187), TC (REF:
OSR6116), TG (REF: OSR60118), and HDL-Cholesterol (HDL-C) (REF: OSR6187). Clinical
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data were collected from internal hospital records (Dendrite Clinical Systems Ltd., Henley
on Thames, UK) and updated for inclusion in the standardized database using the Research
Electronic Data Capture (REDCap) system. Patients were followed up until postoperative
day 30, and all-cause mortality was evaluated at one year after surgery. We investigated the
change in plasma lipid levels (TC, LDL-C, HDL-C, and TG) before, during, and after cardiac
surgery, including how this change was associated with clinical endpoints of postoperative
stroke, myocardial infarction, and death of any cause at 30 days after surgery, as well as
overall survival one year after surgery. As a subgroup analysis, we compared patients
with ongoing statin therapy to those not receiving statin therapy. Local ethics committee
approval was obtained for sample collection (KEK Nr. 2018-01272) and data analysis (KEK
Nr. 2019–2000). Written informed consent was obtained from all patients. The study was
performed in adherence to the Declaration of Helsinki.

2.3. Statistical Analysis

Continuous variables were examined with the Shapiro–Wilks test and are presented
as mean with standard deviation (SD) in case of normally distributed variables and median
with interquartile range (IQR) otherwise. Categorical variables are presented with counts
and percentages. Group comparisons were based on a regular chi-square test for categorical
variables and on a permutation chi-square test (with 2000 samples) when the expected
counts in some cells were lower than 5. For continuous variables, group comparisons were
based on Student’s t-test for normally distributed variables and on the Wilcoxon rank-sum
test otherwise.

Lipid values at different time points are presented with medians and IQR. Pairwise
post-hoc comparisons of lipid levels are illustrated using Cliff’s delta (d) as effect size and
with the Wilcoxon signed-rank test with a Bonferroni adjustment for multiple comparisons
as a test of significance. The strength of the pairwise correlations for the change in lipid
levels from preoperative to intraoperative and from preoperative to postoperative levels is
illustrated as scatterplots alongside the model fit of a linear regression. Pearson correlation
coefficients and associated p-values are shown for each pairwise correlation. Bivariate
associations of the change in lipid levels from pre-operative to post-operative values
for each surgical characteristic (i.e., CPB time) are illustrated using box plots (in case
of categorical variables) and with locally estimated scatterplot smoothing (LOESS) for
continuous variables.

The binary clinical end points were incidence of postoperative stroke, myocardial
infarction, death of any cause at 30 days after surgery, as well as overall survival one year
after surgery. These are presented with counts and percentages as well as the inferred
95% Clopper–Pearson intervals. The association of preoperative lipid values and their
change during the operation (postoperative minus preoperative) with the two end points,
postoperative stroke and survival after one year, are computed with (i) univariable logistic
regression; (ii) univariable logistic regression adjusting for confounders age, sex, BMI,
and statin therapy; (iii) multivariable elastic net regression of all lipid variables; and
(iv) multivariable elastic net regression of all lipid variables adjusted including for CPB
time as a potential confounder (note that there are no formal 95% confidence intervals
associated with the regression coefficients of an elastic net model; thus, only the estimates
of the odds ratios are shown). The elastic net approach [13] performs a penalized regression
with the ability to handle correlated predictors in a more balanced way than traditional
regression approaches such as logistic regression, and its optimal parameter values are
found by minimizing the cross-validation error. A p-value < 0.05 was considered statistically
significant. All computations were performed using the R software environment (R version
4.0.2; R Core Team (2020)).

3. Results

A total of 192 patients were included in the study. Patient demographics are presented
in Table 1. Most patients were male (75.5%), and median age was 67.0 years (interquartile



Cells 2021, 10, 2717 4 of 16

range 60.0–73.0), with a median BMI of 26.1 kg/m2 (23.7–30.4). Most patients had a low
risk of perioperative mortality, with median EuroSCORE II scores of 1.73% (0.90–2.93).
The most common cardiovascular risk factors included arterial hypertension (68.4%),
dyslipidemia (58.1%), smoking (47.4%), obesity (27.1%), chronic kidney disease (22.4%),
and diabetes mellitus (18.2%). A history of previous MI was reported in 10.5%, and
significant carotid disease was present in 7.3%. The most commonly used preoperative
medications were statins (54.7%), followed by acetylsalicylic acid (ASA; 47.9%), beta
blockers (44.8%), angiotensin-converting enzyme inhibitors (ACEI; 41.1%), and angiotensin
receptor blockers (ARB; 24.5%. Median left-ventricular ejection fraction (EF) was 60.0%
(55.0–65.0). Preoperative median lipid plasma levels were above the target recommended
by the current European Society of Cardiology (ESC) guidelines [4] (Tables 1 and 2). The
most common procedures included AVR (44.8%) and CABG (40.1%), followed by MVR
(23.4%) and ascending aortic replacement (19.8%), with a median CPB time of 104 min
(80.0–132). A minimally invasive extracorporeal circulation (MiECC circuit) was used in
isolated CABG cases only (22.4%).

Table 1. Baseline patient demographics and perioperative characteristics.

Demographics and Perioperative Characteristics All Patients (N = 192)

Demographics

Age (y) 67.0 (60.0; 73.0)

Height (cm) 173 (8.71)

Weight (kg) 80.4 (70.0; 90.1)

BMI (kg/m2) 26.1 (23.7; 30.4)

Sex (Male) 145 (75.5%)

Comorbidities

Diabetes (Yes) 35 (18.2%)

Diabetes on insulin

No 24 (68.6%)

Yes 11 (31.4%)

Hypertension † (Yes) 130 (68.4%)

Dyslipidemia † (Yes) 111 (58.1%)

Nicotine †

Former smoker 49 (26.1%)

Non-smoker 97 (51.6%)

Smoker 42 (22.3%)

Obesity (Yes) 52 (27.1%)

Preoperative renal disease (Yes) 43 (22.4%)

Peripheral vascular disease †

No 167 (93.8%)

Stage 1 4 (2.25%)

Stage 2 4 (2.25%)

Stage 3 1 (0.56%)

Stage 4 2 (1.12%)

Carotid disease †

<50% 1 (0.58%)

>90% 3 (1.75%)

50–69%, 9 (5.26%)

70–89% 2 (1.17%)

no 156 (91.2%)
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Table 1. Cont.

Demographics and Perioperative Characteristics All Patients (N = 192)

Myocardial infarction †

No MI 171 (89.5%)

MI 0–7 days before operation 3 (1.57%)

MI 8–90 days before operation 8 (4.19%)

MI > 90 days before operation 9 (4.71%)

COPD † (Yes) 23 (12.1%)

NYHA †

1 60 (31.4%)

2 90 (47.1%)

3 38 (19.9%)

4 3 (1.57%)

CCS †

0 118 (62.4%)

1 34 (18.0%)

2 25 (13.2%)

3 9 (4.76%)

4 3 (1.59%)

Ejection fraction † 60.0 (55.0; 65.0)

EuroSCORE2 † 1.73 (0.90; 2.93)

Baseline lipid plasma levels

Cholesterol (mmol/L) 4.42 (1.13)

HDL-C (mmol/L) 1.13 (0.92; 1.35)

LDL-C (mmol/L) 2.68 (2.14; 3.40)

Triglycerides (mmol/L) 1.33 (0.97; 1.88)

Perioperative characteristics

Aortic valve surgery (Yes) 86 (44.8%)

Mitral valve surgery (Yes) 45 (23.4%)

Tricuspid valve surgery (Yes) 17 (8.85%)

Coronary artery bypass surgery (Yes) 77 (40.1%)

Ascending aortic surgery (Yes) 38 (19.8%)

Aortic arch surgery (Yes) 11 (5.73%)

ECC or MiECC

ECC 149 (77.6%)

MiECC 43 (22.4%)

Bypass time (min) 104 (80.0; 132)

Aortic cross clamping (min) 68.5 (52.0; 91.8)

Lowest body temperature (deg C) 33.2 (32.1; 33.8)

Deep hypothermic cardiac arrest † (Yes) 19 (9.95%)

Operation duration (min) 234 (195; 276)
† Missing values.
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Table 2. Descriptive statistics of cholesterol, HDL-C, LDL-C, and triglycerides at the different time
points. Means and interquartile ranges are shown, and p-values indicate if the lipid values differ at
the four time points. Post-hoc comparisons of pairwise differences in lipid levels are illustrated with
Cliff’s delta (d) as effect size.

Time Point Cholesterol
(mmol/L)

HDL-C
(mmol/L)

LDL-C
(mmol/L)

Triglycerides
(mmol/L)

Baseline 4.1 (3.5–5.1) 1.2 (1.01.6) 2.2 (1.7–2.9) 1.3 (1.0–2.0)
Pre-operative 4.3 (3.7–5.0) 1.1 (0.9–1.4) 2.7 (2.1–3.4) 1.3 (1.0–1.9)

Intra-operative 2.8 (2.33.4) 0.7 (0.6–0.9) 1.7 (1.3–2.2) 0.5 (0.4–0.7)
Post-operative 2.6 (2.2–3.3) 0.9 (0.8–1.1) 1.5 (1.1–2.0) 1.0 (0.7–1.3)

P ‡ <0.0001 <0.0001 <0.0001 <0.0001
Post-hoc comparisons (d *)

Baseline vs.
Pre-operative

−0.08
(−0.20, 0.03) †

0.24
(0.12, 0.35) †

−0.33
(−0.44, −0.22) †

0.01
(−0.10, 0.13) †

Baseline vs.
Intra-operative

0.73
(0.65, 0.79) †

0.82
(0.75, 0.87) †

0.33
(0.22, 0.44) †

0.86
(0.80, 0.90)

Baseline vs.
Post-operative

0.74
(0.66, 0.80) †

0.63
(0.53, 0.70) †

0.45
(0.35, 0.55) †

0.41
(0.30, 0.50) †

Intra-operative vs.
Post-operative

0.08
(−0.04, 0.19)

−0.39
(−0.49, −0.28) †

0.17
(0.05, 0.28) †

−0.66
(−0.74, −0.58) †

Pre-operative vs.
Intra-operative

0.75
(0.68, 0.82) †

0.72
(0.64, 0.79) †

0.66
(0.57, 0.73) †

0.86
(0.81, 0.90) †

Pre-operative vs.
Post-operative

0.77
(0.69, 0.82) †

0.46
(0.36, 0.55) †

0.73
(0.65, 0.79) †

0.40
(0.29, 0.50) †

‡ Friedman Test; * Mean and 95% confidence intervals are shown (note that d is positive when the lipid levels of the
first time point of the comparison are greater than the levels of the second time point and vice versa; † Statistically
significant (all p < 0.0001) after Wilcoxon signed-rank test with a Bonferroni adjustment for multiple comparisons.

3.1. Subgroup Analysis of Statin Therapy

For the subgroup analysis, patients were grouped into those receiving lipid-lowering
statin therapy (N = 105; 54.7%) and those without statin therapy (N = 87; 45.3%), respectively.
Although groups were comparable in size, fewer patients on statin therapy were female
(15.2% vs. 35.6%, p = 0.002) and had a higher comorbidity profile, including higher rates
of diabetes mellitus (26.7% vs. 8.05%, p = 0.002), arterial hypertension (79.8% vs. 54.7%,
p < 0.001), dyslipidemia (79.8% vs. 32.2%, p < 0.001), and prior myocardial infarction
(17.1% vs. 2.3%, p = 0.04). Significantly more patients under statin therapy had chest
pain equivalent to Canadian Cardiovascular Society angina score ≥ 2 (28.6% vs. 8.0%,
p < 0.001), and accordingly, they underwent CABG or AVR surgery more often (63.6%
vs. 36.4%, p < 0.001). However, patients without statin therapy had a higher risk of
perioperative mortality (logistic EUROSCORE 5.13% (3.62–8.81) vs. 3.86% (1.78–7.62),
p = 0.01) and more often received combined valve or aortic procedures (59.1% vs. 40.9%,
p < 0.001), using CECC in 97.7% of cases (compared to 61.0% in the statin group, p < 0.001).
Patients under statin therapy had significantly lower levels of TC (3.92 mmol/L ± 0.94
vs. 5.03 mmol/L ± 1.04, p < 0.001), LDL-C (2.34 mmol/L (1.98–2.70) vs. 3.25 mmol/L
(2.74–3.85), p < 0.001), and HDL-C (1.08 mmol/L (0.88–1.31) vs. 1.20 mmol/L (1.00–1.42),
p = 0.012). No significance in TG was observed between groups (p = 0.323). Further patient
characteristics, procedural data, and outcomes are shown in Supplementary Table S1.

3.2. Perioperative Alterations in Lipid Levels

During cardiac surgery, a significant intraoperative decrease in plasma levels from
preoperative levels (all p < 0.0001) was observed for TC (Cliff’s delta d: 0.75 (0.68–0.82; 95%
CI)), LDL-C (d: 0.66 (0.57–0.73)), and HDL-C (d: 0.72 (0.64–0.79)). At 24 h after surgery,
the plasma levels of LDL-C (d: 0.73 (0.65–0.79)) and TC (d: 0.77 (0.69–0.82)) continued
to decrease compared to preoperative levels, while the plasma levels of HDL-C (d: 0.46
(0.36–0.55)) and TG (d: 0.40 (0.29–0.50)) rebounded, but all remained below the preoperative
levels (p < 0.001). When analyzing the difference between preoperative and postoperative
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plasma lipid levels, a significant decrease in all measured lipids was observed (p < 0.001).
Further results are presented in Table 2 and Figure 1.
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pre-operative, intra-operative, and post-operative time points. Shown are medians and interquartile
ranges at the different time points (black dots and black lines) and time series of individual patients
(grey lines).

When analyzing for correlations between individual lipids, we calculated the differ-
ence in plasma levels between preoperative and intraoperative values as well as between
preoperative and postoperative values (Figure 2), respectively. The strongest positive
linear correlation was observed between changes in LDL-C and TC (Pearson correlation
coefficient r = 0.85 and r = 0.83, p < 0.001; Figure 2b), followed by strong positive linear
correlation between TC and HDL-C (r = 0.62 and r = 0.53, p < 0.001; Figure 2a) and medium
positive linear correlation between changes in LDL-C and HDL-C (r = 0.49 and r = 0.42,
p < 0.001; Figure 2d). A weak negative linear correlation was observed between changes in
TG and HDL-C (r = −0.25 and r = −0.23, p < 0.05; Figure 2e) as well as between changes
in TG and LDL-C (r = 0.1 and r = 0.13, p > 0.05; Figure 2f). The latter correlation was not
significant, however.

The change in lipid levels was further investigated for individual surgical character-
istics, represented in Figure 3. In terms of linear associations, a longer bypass time was
associated with a significant decrease in TC (p = 0.007), HDL-C (p < 0.001), and LDL-C
(p = 0.003). Longer aortic cross clamping was found to be associated with a significant
decrease in TC (p = 0.015), HDL-C (p = 0.002), and LDL-C (p = 0.004). Longer operations
were associated with larger decreases only in TC (p = 0.012) and HDL-C (p < 0.001). Higher
lowest body temperatures were associated with smaller drops in TC (p = 0.004), HDL-C
(p = 0.004), and LDL-C (p = 0.001).
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3.3. Clinical Outcomes

Overall, two patients died within 30 days after surgery (1.04%, N = 192), and seven patients
within one year after surgery (3.8%, N = 186). Postoperative myocardial infarction occurred
in six patients (3.12%, N = 186), and postoperative stroke was observed in 11 patients (5.7%,
N = 186). Clinical outcomes are summarized in Table 3. We found significantly lower risk
of postoperative stroke in patients who received statin therapy (crude OR 0.08 (95% CI 0.00,
0.41), p = 0.015; Table 4, Figure 4). Note, however, that this constitutes a crude estimate without
accounting for possible imbalances in other confounders with respect to the administration of a
statin therapy. This risk reduction continued to be observed in an adjusted multivariable elastic
net regression model (adjusted OR 0.15; Table 5). No difference in preoperative demographics
was observed for other clinical endpoints (Table S2).
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Table 3. Clinical outcomes. Nominal values present total number of patients for a particular clinical
endpoint, with distribution of the interquartile range as a percentage.

Clinical Outcomes All Patients

30-day mortality

Died 2 (1.04%; 0.13%–3.71%)

Survived 190 (98.96%; 96.29%–99.87%)
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Table 3. Cont.

Clinical Outcomes All Patients

1-year follow-up

Alive 179 (96.24%; 92.40%–98.47%)

Deceased 7 (3.76%; 1.53%–7.60%)

Hospital length of stay postoperative (days) 7.00 (6.00; 9.00)

Postoperative stroke

No 179 (94.21%; 89.88%–97.07%)

Yes 11 (5.79%; 2.93%–10.12%)

Myocardial infarction

No 186 (96.88%: 93.32%–98.84%)

Yes 6 (3.12%; 1.16%–6.68%)

Table 4. Association between individual lipids (in units (mmol/L)) and the outcome postoperative stroke. Preoperative
values as well as their change during the operation (postoperative minus preoperative) are presented. The left part of the
table shows odds ratios (OR) and their 95% confidence intervals for univariable regressions, both for the crude association
and adjusted for the confounders age, sex, BMI, and statins. The right part shows the OR computed by an elastic net logistic
regression to account for the correlation across the lipids. An OR > 1 refers to increased risk, and an OR < 1 refers to a
protective effect with respect to a unit change in a particular characteristic.

Logistic Regression
(Univariable)

Elastic Net
(Multivariable)

Covariate OR P OR
(Adjusted) P OR OR

(Adjusted)

Cholesterol (preop) 2.12 (1.23−3.82) 0.008 1.48 (0.74−3.17) 0.284 1.25 1.13
Cholesterol (∆) 0.46 (0.20−1.05) 0.062 0.29 (0.07−0.90) 0.047 0.97 0.78
HDL-C (preops) 3.12 (0.45−20.64) 0.239 1.95 (0.15−28.40) 0.612 0.46

HDL-C (∆) 0.08 (0.00−1.78) 0.104 0.01 (0.00−0.78) 0.039 0.30 0.08
LDL-C (preop) 2.51 (1.27−5.21) 0.010 1.68 (0.69−4.53) 0.272 1.39 1.33

LDL-C-(∆) 0.27 (0.08−0.91) 0.035 0.19 (0.03−0.88) 0.045 0.86 0.67
Triglycerides (preop) 1.03 (0.44−1.89) 0.937 0.82 (0.28−2.07) 0.699 0.91

Triglycerides (∆) 1.2 (0.41−5.28) 0.777 0.91 (0.25−4.14) 0.890 0.92
Age (y) 1.07 (1.00−1.16) 0.102 1.04

Sex (male) 1.13 (1.01−1.25) 0.029 0.30
BMI (kg/m2) 0.1 (0.02−0.38) 0.001 1.16
Statin (Yes) 0.08 (0.00−0.41) 0.015 0.22

Table 5. Association between individual lipids (in units (mmol/L)) and the outcome survival after one year follow-up.
Preoperative values as well as their change during the operation (postoperative minus preoperative) are presented. The left
part of the table shows odds ratios (OR) and their 95% confidence intervals for the case of univariable regressions both for
the crude association and adjusted for the confounders age, sex, BMI, and statins. The right part shows the OR computed
by an elastic net logistic regression to account for the correlation across the lipids. An OR > 1 refers to increased risk, and
OR < 1 refers to a protective effect with respect to a unit change in a particular characteristic.

Logistic Regression (Univariable) Elastic Net

Covariate OR P OR
(Adjusted) P OR OR

(Adjusted)

Cholesterol (preop.) 0.51 (0.25, 1.01) 0.058 0.45 (0.20, 0.98) 0.046 0.35 0.68
Cholesterol (∆) 1.81 (0.67, 4.64) 0.220 1.8 (0.67, 4.61) 0.217 4.57 1.49
HDL-C (preop.) 1.17 (0.09, 12.14) 0.900 0.8 (0.05, 10.46) 0.869 3.00

HDL-C (∆) 0.11 (0.00, 4.79) 0.233 0.15 (0.00, 8.22) 0.334 0.01 0.16
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Table 5. Cont.

Logistic Regression (Univariable) Elastic Net

Covariate OR P OR
(Adjusted) P OR OR

(Adjusted)

LDL-C (preop.) 0.55 (0.19, 1.39) 0.239 0.5 (0.15, 1.48) 0.230 0.96
LDL-C (∆) 0.99 (0.22, 5.14) 0.992 0.96 (0.19, 5.21) 0.965 0.07 0.67

Triglycerides
(preop.) 0.97 (0.29, 2.26) 0.952 1.19 (0.33, 3.08) 0.750 3.59 1.18

Triglycerides (∆) 1.13 (0.27, 7.66) 0.888 0.94 (0.19, 6.88) 0.948 2.06
Age (y) 1.02 (0.95, 1.12) 0.585

Sex (Male) 0.95 (0.79, 1.11) 0.563 0.91
BMI (kg/m2) 0.79 (0.16, 5.66) 0.783 0.98
Statin (Yes) 1.13 (0.24, 5.86) 0.878 0.83
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3.4. Association between Lipids and Postoperative Stroke and Overall Survival

The association between lipids and postoperative stroke is presented in Table 4. A
significantly elevated risk of developing postoperative stroke was observed by preoperative
levels of TC and LDL-C (crude OR 2.12 (1.23–3.82), p = 0.008; and OR 2.51 (1.27– 5.21),
p = 0.01, respectively). However, after adjusting for the confounder’s age, gender, BMI, and
statin therapy, we found no evidence of significance. In the adjusted model, a protective
effect was observed for pre-to-post-operative changes in TC (aOR 0.29 (0.07–0.90), p = 0.047),
in LDL-C (aOR 0.19 (0.03–0.88), p = 0.045), and in HDL-C (aOR 0.01 (0.00–0.78), p = 0.039).
This protective effect continued to be observed in the adjusted multivariable elastic net
regression model, although it was less evident (Table 4). We observed no significant
increase or decrease in the risk of dying within one year after cardiac surgery between
the pre-operative plasma lipid levels or their respective perioperative changes (Table 5,
Figure 5). Adjusting for CPB time as a potential confounder did not reveal a significant
impact (Supplemental Table S3). Missing data are presented in Supplemental Table S4,
descriptive statistics of cholesterol, HDL-C, LDL-C, and triglycerides at the different time
points for those patients only who did not receive any blood transfusion perioperatively in
Supplemental Figure S5 and Supplemental Table S6 and the association between individual
lipids (in units [mmol/L]) and the outcome postoperative stroke in Supplemental Table S7.
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4. Discussion

We observed a significant decline in levels of key plasma lipid mediators during
cardiac surgery, with the most significant decrease being observed in LDL-C and TC and
the weakest effect observed in HDL-C. The overall drop in LDL-C, TC, and HDL-C was
associated with the strongest risk reduction for postoperative stroke as well as with statin
therapy. All plasma lipid levels remained significantly lowered at 24 h after surgery. The
lipids with the strongest perioperative linear correlation were LDL-C and TC, TC and
HDL-C, as well as LDL-C and HDL-C. A perioperative decrease in plasma lipid levels was
not associated with a significant reduction or increase in the risk of death at one year after
cardiac surgery.

Little is known about the dynamics of lipid plasma levels during cardiac surgery
and how this affects clinical outcomes, although a drop in plasma levels of LDL-C and
TC has previously been observed up to five days after cardiac surgery [5,14–16]. Our
results confirm that a highly significant decrease in plasma levels of TC, LDL-C, and
HDL-C occurred during and after CPB. This decrease remained significantly lowered to
the pre-operative plasma levels at 24 h after surgery in all investigated lipids. While the
exact mechanisms remain to be determined, the most probable cause is the extracorporeal
circulation and its inherent membrane oxygenator as elemental parts of the CPB circuit used
for cardiac surgeries. In the subgroup analysis, no significant difference of decrease was
observed between CECC and MiECC circuits. This may indicate that a closed-loop system
with a reduced reservoir (MiECC), no blood-air contact, and a centrifugal pump, such as
a MiECC, is known to reduce SIRS reaction post cardiac surgery, does not significantly
alternate the plasma lipid levels compared to the CECC systems. It may also indicate that
the reason for the significant decrease in lipids is multifactorial (e.g., loss of free circulating
lipids or increased cellular reuptake of circulating lipids during surgery). Interestingly,
however, plasma levels of HDL-C were only marginally affected by the investigated
intraoperative variables (CPB system, CPB time, temperature, DHCA, and overall surgical
time). This might imply that an additional modifying factor is present in all cases (e.g., the
membrane oxygenator), but this needs to be investigated further.
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While statin therapy seemed to offer the strongest protection against postoperative
stroke in the unadjusted model, we found no evidence for significance when we adjusted
for the confounders age, gender, BMI, and statin therapy. In the adjusted model, however,
the strongest protective effect was observed in the intraoperative drop in HDL-C, with
aOR 0.01 (0.00–0.78), p = 0.039). This contradicts the recent findings that lower levels of
HDL-C in patients after acute coronary syndrome are associated with an increased risk
of cardiovascular events, including hemorrhagic stroke [17,18]. Nonetheless, this effect
should be interpreted carefully, as changes in the key plasma lipid level during surgery
are strongly correlated, which makes it challenging to attribute the impact of each lipid
to clinical endpoints, such as postoperative stroke. Additional large-scale analyses seem
required to investigate potential additional clinical outcome measures.

An important observation is that, although statin therapy had been established in
roughly 55% of the patients, the median preoperative plasma levels of all lipids were above
the recommended target range set in the 2019 European Society of Cardiology (ESC) guide-
lines [4]. Dyslipidemia—especially elevated LDL-C plasma levels—has been associated
with an increased risk of reduced graft patency after CABG surgery, and rapid reductions
of LDL-C plasma levels have been associated with favorable outcomes and improved
overall survival after acute coronary syndrome [1,19,20] and CABG surgery [10–12,21–23].
However, low plasma level of lipids have been previously associated with increased risk
of hemorrhagic stroke [18]. As 10 out of 11 patients who suffered postoperative strokes
received no statin therapy, it may indicate that statin therapy has a protective effect against
postoperative stroke in the setting of rapid decrease in lipid plasma levels observed during
CPB. Furthermore, statin therapy and a perioperative decrease in HDL-C plasma levels was
associated with the lowest risk for postoperative stroke, indicating a potentially protective
effect after cardiac surgery.

However, when analyzing the end point all-cause mortality one year after surgery, a
significant perioperative decrease in HDL-C and LDL-C was associated with the lowest net
risk. Inversely, perioperative decreases in TC and TG were observed to have the highest
net protective effect against death. Future studies are needed to investigate this correlation,
and these results should be interpreted with caution. As death occurred in only seven
patients (3.6%), the statistical significance is limited. Similarly, while only two patients
(1.04%) experienced postoperative myocardial infarction, the low event rate is insufficient
to confidently perform a risk analysis. At first glance, it is surprising that a low HDL choles-
terol concentration correlates with a better perioperative outcome. Yet, it has long been
known that all lipid fractions are considered negative acute phase reactants [24,25]. This
implies that their concentration decreases in acute or chronic stress. It was also described
that the potentially protective reverse cholesterol transport is disturbed in an acute phase
response [26] and can thus explain the reduced HDL cholesterol in the here-described
study. Furthermore, it is known that long-term chronic inflammation, for example, in-
duced by chronic infections [27] or rheumatoid arthritis [28], increases the cardiovascular
risk. In this respect, the results shown here are remarkable. Apparently, a short-term
stress response, at least in this setting, has a cardioprotective effects despite the short-term
inflammatory response and despite the disturbed reverse cholesterol transport, which
may point to a different significance of short-term and chronic stress in atherogenicity
and/or thrombogenicity.

This single-center study showing significant risk reduction at one year after cardiac
surgery has inherent limitations. Due to strict inclusion and exclusion criteria, only roughly
a fifth of cardiac surgery patients were included, adding to potential selection bias. Due to
the prospective design of the study and data acquisition, however, the treatment bias is
minimized. As the investigated lipids correlate strongly with one another, it is statistically
challenging to differentiate between a single variable effect and a joint effect of multiple
variables on the clinical outcome investigated. For this purpose, the elastic net regression
model was chosen to further investigate the net effect of a single variable. While we
adjusted the analysis for the potential confounders age, gender, BMI, and statin therapy, we
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were limited in our ability to control for other confounding more rigorously due to limited
sample size and low event rates. Hence, as is generally true in observational research,
our results do not support causal interferences or draw conclusions but should rather be
interpreted in terms of associations. Prior sample size and power analysis calculation
were not performed; thus, results should be interpreted with caution and confirmed in a
larger study.

5. Conclusions

In conclusion, cardiac surgery induces a significant sudden drop in levels of key
plasma lipids. This effect was pronounced during the operation, and levels remained
significantly lowered at 24 h after surgery. The intraoperative drop in LDL-C, TC, and
HDL-C was associated with a protective effect against occurrence of postoperative stroke in
adjusted models, with the strongest protective effect observed in lowering of HDL-C levels.
These results should be interpreted with caution, however, as the changes in the key plasma
lipid level during cardiac surgery are strongly correlated, which makes it challenging to
attribute the impact of each lipid to the clinic endpoints, such as postoperative stroke.
Additional large-scale analyses are needed to investigate potential additional clinical
outcome measures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10102717/s1, Table S1: Baseline patient demographics and perioperative characteristics
grouped by statin therapy; Table S2: Demographics and comorbidities stratified according to the
outcomes considered in this study; Table S3: Effect of cardiopulmonary bypass time as a potential
confounder for postoperative stroke; Table S4: Missing Data; Figure S5: Time series of cholesterol
(a), HDL-C (b), LDL-C (c), and triglycerides (d) for the baseline, pre-operative, intra-operative
and post-operative time points for those patients only who did not receive any blood transfusion
perioperatively; Table S6: Descriptive statistics of cholesterol, HDL-C, LDL-C, and triglycerides
at the different time points for those patients only who did not receive any blood transfusion
perioperatively; Table S7: Association between individual lipids (in units [mmol/L]) and the outcome
postoperative stroke.
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