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The occurrence of several precipitation extremes over sub-seasonal time windows can have major impacts
on human societies, leading for instance to floods. Here, we apply a simple statistical framework based on
Ripley’s K function, at a global scale and for each season separately, to identify regions where precipitation
extremes tend to cluster in time over timescales of a few days to a few weeks. We analyze several observational
and reanalysis datasets, as well as output from CMIP6 Global Climate Models (GCMs). Good agreement is
found on the spatio-temporal clustering patterns across datasets. Sub-seasonal temporal clustering is largely
concentrated over the tropical oceans, where it can be detected year-round. It is also significant over certain
tropical lands, like Eastern Africa, and seasonally outside the tropics in several regions, most notably around the
eastern subtropical oceans (Iberian Peninsula and Western North America during the DJF and MAM seasons)
Southwest Asia (especially during JJA and SON) and Australia (in SON). We also find that CMIP6 models
generally correctly reproduce clustering patterns, paving the way for an assessment of trends in sub-seasonal
clustering under climate change. Clustering of present-day extremes increases in many areas under climate
change. Changes diagnosed by comparing present day and future extreme percentiles are positive and negative
and strongest in the tropical areas.
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1. Introduction Sub-seasonal serial/temporal clustering of precipitation extremes

and associated weather systems has already been the subject of several

Precipitation extremes can have major impacts on humans and
ecosystems, among which floods or landslides. Consequently, the char-
acteristics of precipitation extremes (e.g., spatio-temporal distribution,
trends, sensitivity to climate change) have been extensively analyzed
in the literature (e.g., Westra et al., 2013; Sillmann et al.,, 2013;
O’Gorman, 2015). The impact of precipitation extremes, however, can
be much more severe if several events occur in close succession, in
which case one talks of a compound event (Zscheischler et al., 2020).
Short time intervals between heavy precipitation events can indeed
complicate clean-up and repair efforts, as well as prevent hydrological
systems from returning to base flow conditions. The temporal distribu-
tion of precipitation has a major impact on the flow response and flood
characteristics (Merz et al., 2016; Oppel and Fischer, 2020). Successive
extreme precipitation events can trigger a larger flow response, as
in Pakistan in 2010 (Martius et al., 2013), in the UK during the
2013/2014 winter (Priestley et al., 2017b), or in Southern Switzerland
in 2016 (Barton et al., 2016). Analyzing the tendency of precipitation
extremes to cluster in time, typically on timescales of a few days to a
few weeks that can be relevant for hydrology, is therefore crucial to
robustly assess climate risks.
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studies, most of them limited, however, to catchment or regional scales.
Specific clustered events, often linked to high-impact flood events, and
their large-scale atmospheric context have been the topic of many
studies, for instance over Europe (Blackburn et al., 2008; Grams et al.,
2014; Pinto et al., 2014; Barton et al., 2016; Priestley et al., 2017a,b),
California (Moore et al., 2020) or Pakistan (Martius et al., 2013). Villar-
ini et al. (2011) conducted a more systematic analysis of the clustering
of extreme precipitation at the annual timescale over the American
Midwest, using as a statistical metric the dispersion coefficient, the
variance-to-mean ratio of annual extreme counts. Mailier et al. (2006),
Vitolo et al. (2009) and Pinto et al. (2013) similarly relied on the
dispersion coefficient to assess clustering of extratropical storms in the
Euro-Atlantic sector during the winter half-year. Barton et al. (2016)
used Ripley’s K function to quantify temporal clustering and found
significant clustering of heavy precipitation over Southern Switzerland
during fall, and Yang and Villarini (2019) analyzed the effect of large-
scale climate modes on the temporal clustering of extreme precipitation
over Europe. More recently, Kopp et al. (2021) quantified the fre-
quency of sub-seasonal clustering of annual high-precipitation events
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and its contribution to large precipitation accumulations over land at
the global scale using count-based metrics. Even fewer studies have
attempted to quantify potential future trends in the temporal clustering
of extreme precipitation. Focusing specifically on mid-latitude winter
cyclones over Europe, Economou et al. (2015) found no significant
changes in cyclone dispersion statistics whereas Pinto et al. (2013)
and Bevacqua et al. (2020) both argued that future climate projections
showed a decrease in the temporal clustering of cyclones in the region.
Yet, to our knowledge, however, no study has looked at future trends
in the temporal clustering of extreme precipitation at the global scale.

The studies cited previously vary in their spatial scope, in the
clustering timescales they analyze, but also in their definition of what
constitutes an extreme event. From the perspective of surface im-
pacts, it can make sense to define precipitation extremes using annual
percentiles, ie. fixed percentile thresholds independent of the sea-
son (Villarini et al., 2011; Yang and Villarini, 2019; Kopp et al., 2021).
Still, this choice has its limitations. First, severe surface impacts of
extreme precipitation accumulations, like floods, do not always occur in
conjunction with the heaviest precipitation totals (e.g., Helbling et al.,
2006; Tuel and Martius, 2021). The phase of precipitation and surface
conditions, like soil saturation, evaporative demand or vegetation, also
matter (e.g., Berghuijs et al., 2019). Consequently, annual cycles of
extreme precipitation and river discharge magnitude are not necessarily
aligned. Second, in the case of a fixed annual percentile threshold, sub-
seasonal clustering of extremes may simply result from seasonality in
the occurrence of extreme precipitation.

By taking variable percentile thresholds using seasonal or monthly
percentiles, as in Barton et al. (2016), the influence of the seasonality
can be removed, and clustering at sub-seasonal timescales can be
detected. Additionally, when considering the impact of clustering on
flooding hazard, the choice of variable thresholds is quite flexible, in
the absence of any a priori knowledge of relevant flood triggering
processes. Depending on the location of interest, one can focus on the
season when precipitation extremes are important for flood generation.
Finally, most studies have focused only on a few specific regions, which
may not be the most relevant ones when it comes to sub-seasonal
clustering of precipitation extremes. Only Kopp et al. (2021) took a
global perspective, but excluded tropical land areas from their analysis.

Here, we seek to answer the following questions: (1) Where and in
what season(s) does extreme precipitation tend to cluster temporally at
sub-seasonal timescales? (2) How and where does temporal clustering
of extreme precipitation change in the future? To that end, we adopt
the approach of Barton et al. (2016) by defining extreme precipitation
events using seasonal percentiles, and using the framework of Ripley’s
K function to identify regions with significant sub-seasonal clustering of
precipitation extremes in time. We investigate each season separately.
The spatial and seasonal distribution of sub-seasonal clustering and
its robustness, in the current and future climates, are discussed using
several global observation- and model-based precipitation datasets.

2. Data and methods

As the reference dataset, we use daily precipitation at 0.25° res-
olution from the ERA5 reanalysis (Hersbach et al., 2020). The data
covers the whole world and extends over the 1979/1/1-2019/3/31
period. Precipitation in ERAS is a prognostic variable and precipitation
observations are not directly assimilated into the model. In the extra-
tropics, Rivoire et al. (2021) showed that ERA5 was able to capture
the timing of extreme precipitation events, but less so in the tropics.
Therefore, we also use three other satellite-based daily precipitation
products: TRMM TMPA (TRMM Multi-Satellite Precipitation Analysis)
3B42 version 7 (50°S-50°N, 1998-2019, 0.25°) (Huffman et al., 2007),
CMORPH (60°S-60°N, 2003-2019, 0.25°) (Joyce et al., 2004), and
GPCP One-Degree Daily (1DD) version 1.2 (40°S-40°N, 1997-2019,
1°) (Huffman et al., 2001), as well as the Climate Prediction Center
Global Unified Gauge-Based Analysis of Daily Precipitation (global,
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Table 1
List of CMIP6 models used in this study. Resolution is
in longitude by latitude.

Name Resolution
ACCESS-CM2 1.9° x 1.3°
ACCESS-ESM1-5 1.9° x 1.2°
BCC-CSM2-MR 1.1°x 1.1°
CanESM5 2.8°x2.8°
CESM2-WACCM 1.3°x0.9°
CNRM-CM6-1 1.4° x1.4°
EC-Earth3 0.7° % 0.7°
EC-Earth3-Veg 0.7° x 0.7°
FGOALS-g3 2°x2.3°
GFDL-CM4 1.3° x 1°
GFDL-ESM4 1.3° x 1°
HadGEM3-GC31-MM 0.8° x 0.6°
IITM-ESM 1.9° x 1.9°
INM-CM4-8 2°x1.5°
INM-CM5-0 2° x 1.5°
IPSL-CM6A-LR 2.5°%x1.3°
KIOST-ESM 1.9°x1.9°
MIROC6 1.4°x 1.4°
MPI-ESM1-2-LR 1.9° x 1.9°
MPI-ESM1-2-MR 0.94° x 0.94°
MRI-ESM2-0 1.1°x 1.1°
NESM3 1.9° x 1.9°
NorESM2-LM 2.5°x1.9°
NorESM2-MM 1.25° x 0.94°
TaiESM1 1.25° x 0.94°

land only, 1979-2019, 0.5°) (Chen et al., 2008). In addition, we analyze
daily precipitation output from 25 Global Climate Models (GCMs)
participating in the Coupled Model Intercomparison Project Phase 6
(CMIP6) (Eyring et al., 2016) (Table 1). For each model, data is
extracted from the historical (1976-2005) and SSP585 (2071-2100)
scenarios (O’Neill et al., 2016). Analyses are performed for each model
at its native resolution, and results are regridded to a common 1°
x 1° grid. In SSP585, an anomalous radiative forcing of 8.5 W/m? is
achieved by 2100.

For each dataset, monthly 99th all-day (i.e., including days both
with and without precipitation) percentiles of daily precipitation at
each grid point are used to define extreme precipitation events, and
events within each season (winter: DJF; spring: MAM; summer: JJA;
and fall: SON) are analyzed together. For information, we show on
Figure S1 the average seasonal 99th daily precipitation percentiles.
For the SSP585 CMIP6 runs, we define extreme events both using
the SSP585 percentiles (“scenario-dependent threshold”) and also the
historical percentiles (“historical threshold”). The former choice allows
us to detect changes in the temporal dependence of “fixed-probability”
extreme events, regardless of changes in extreme precipitation magni-
tude, while the second focuses on trends in the frequency and temporal
dependence of “fixed-magnitude” extreme events. The presence of
temporal trends in extreme daily precipitation percentiles in the future
CMIP6 simulations was not found to impact our results. We tested this
assumption by using 10-year moving windows to define extremes for
CMIP6 models and it made no significant difference (Figures S2 and
S3), likely because at the 30-year timescale inter-annual variability
in extreme precipitation magnitude dominates over climate-change
induced trends. Therefore, in the following, fixed percentiles were used
for the 2071-2100 period in the scenario-dependent threshold analysis.

As mentioned in the introduction, taking a seasonal approach allows
to remove much of the influence of the seasonality in the magnitude
and occurrence of extreme precipitation. Here, we choose to define
“locally-extreme” events in the daily precipitation time series by using
monthly precipitation percentiles. This yields a rather constant rate of
occurrence across the year, and allows to statistically assess clustering
and its significance more easily. By defining extreme events using a
grid-point dependent threshold, we also remove the influence of spatial
variability in extreme precipitation percentiles.
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With these definitions, we obtain binary daily time series of extreme
event occurrence and non-occurrence. Because daily precipitation at
extreme quantiles can exhibit short-term temporal dependence, typ-
ically due to the persistence of the associated weather systems, we
implement a declustering procedure to remove this dependence so as to
focus exclusively on clustering at longer (weekly and above) timescales.
Following Barton et al. (2016), a standard runs declustering (Coles,
2001) is applied to the binary series, which consists in regrouping
extreme events separated by less than r days as a single event, which
is (arbitrarily) chosen to occur on the day of maximum precipitation.
A run length r of 2 days is typical for the extratropics (see Barton
et al. (2016) and references therein). For the tropics, the analysis of
the duration of convective events also suggests a timescale of 1-2
days (Roca et al., 2020). Therefore a run length r of 2 days was used
in this analysis. For robustness, we also checked our results with run
lengths of 3 and 4 days, and the main conclusions remained unchanged
(Figure S4).

To quantify clustering in the occurrence of precipitation extremes,
we rely on Ripley’s K function (Ripley, 1981). Ripley’s K function is
a tool that is typically used to analyze clustering behaviors at varying
spatial scales in spatial point process data, but it can also be used for
point processes in one dimension along the time axis. Denoting our
binary time series as (Y;),-;_n, Ripley’s K function is defined for a time
lag n as:

K=" (E [Z Y 1Y, = 1] - 1) )

k=—n

where 4 is the average density of events in the time series. For sim-
plicity, we drop the A~! factor since it does not affect the results. Thus,
K(n) is equal to the average number of events within » time steps (in
our case, days) of a randomly chosen event, not counting that event.
K can be estimated with a simple empirical estimator K as in Barton
et al. (2016).

The significance of the temporal clustering of extreme events is
assessed, at each grid point and in each dataset at its native resolution,
by comparing the sample K values to the set of K values obtained
from a Monte-Carlo sampling of 5000 simulated homogeneous Poisson
processes with the same average event density A as the sample series
(hence why dropping A in Eq. (1) does not matter). Homogeneous
Poisson processes, in which events occur independently from each
other, exhibit complete temporal randomness, and have been used
before to test for the significance of clustering (Mailier et al., 2006;
Vitolo et al., 2009; Villarini et al., 2011; Barton et al., 2016). For a
given n, we define an empirical p-value for the sample series’ Ripley’s
K as one minus its percentile rank in the corresponding Monte-Carlo
sample. A series for which K(n) is larger than all values in the Monte-
Carlo sample will thus have a p-value of zero. The sample series is then
said to exhibit a significant clustering pattern if its p-value is lower than
p*, with

. i
= max (P(;) [ piy < Na) 2

where p;, are the sorted p-values from all N available grid points
and « = 0.05 is the chosen control significance level. This procedure
controls the false discovery rate when analyzing the results of multiple
hypothesis tests (Wilks, 2016). In other words, clustering significance
is detected when the sample series’ K(n) is larger than the bottom
100(1-p*)% values from the corresponding Monte-Carlo sample (Fig. 1).

By testing for different values of n, clustering can thus be quantified
at any timescale, but for simplicity we summarize the results across
four timescales: 5-15, 15-25, 25-35 and 35-45 days. If clustering is
significant for the majority of n values within each of these intervals,
then we consider clustering to be significant for the whole interval.
Note that since Ripley’s K value for step n is an estimate of the average
number of extreme events within n days of any randomly chosen
extreme event, in practice the “clustering size” associated with step » is
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Fig. 1. Assessment of clustering significance with Ripley’s K: example of Ripley’s K
values obtained from an observed time series (black crosses), and the corresponding
Monte-Carlo sample median (blue line) and 95% range (blue shading). In this case, the
observed series exhibits significant clustering over the 10-20 day timescale.

equal to 2n+ 1. Note also that significance is determined by comparing
against a sample of homogeneous Poisson series with the same event
probability, and not the same number of events, which makes our
assessment of significance rather conservative. In CMIP6 simulations,
the significance of clustering is assessed for each model and scenario
separately as well as, in the SSP585 runs, for each extreme event
definition (using historical or scenario-dependent daily precipitation
thresholds).

3. Results
3.1. ERA5

Wide areas with large K values, significantly different from those
expected from a random Poisson process, can be found year-round in
the ERA5 data. Specifically, all four seasons exhibit a general pattern
of high K values and significant clustering over tropical oceans (20°S-
20°N), particularly along the equator in the Central and Eastern Pacific
(Figs. 2 and 3). By contrast, Ripley’s K values are much lower in the
extratropics, and patterns of significance exhibit less spatial coherence.
A few regions with higher K values stand out outside the tropics, how-
ever. In the Northern Hemisphere, the Eastern North Atlantic generally
exhibits significant clustering in DJF, particularly between 30-40°N,
extending into Morocco and the Iberian Peninsula (Fig. 3-a), and to a
lesser extent in MAM, when significance extends over a band stretching
from the Caribbean to the British Isles (Fig. 3-b). Northeastern Russia
also experiences significant clustering during SON, as does Alaska, to
a lesser extent, in DJF and SON. Clustering is significant over the
central North Pacific (20-40°N) in DJF and MAM, with the region of
significance extending over Western North America in winter. Closer
to the tropics, some clustering significance can be seen in Southwest
Asia and the Middle East across much of the year. In the Southern
Hemisphere, Australia stands out, chiefly during SON, along with a
region of the subtropical South Pacific around 30°S/110°W in SON
and DJF. In the tropics, the dominant signal is concentrated over the
equatorial Pacific east of the dateline, with a zonal extent of 15-20°
during DJF and MAM, but only about 10° in JJA and SON. In addition,
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the Horn of Africa, as well as the neighboring ocean, also exhibit
significant clustering, particularly during SON and DJF, as does the
Maritime Continent in JJA and SON and Northeastern Brazil in DJF
and MAM.

These results are generally robust across timescales, as can be seen
from Figs. 4 and 5, with important differences however between the
tropics and extratropics. Over the tropical oceans, clustering signifi-
cance is not very dependent on the timescale. By contrast, outside the
tropics and over tropical land, significance tends to weaken as the time
window increases. Over Alaska and the Eastern Atlantic, for instance,
clustering significance is largely concentrated at timescales of 25 days
and less. While most regions exhibit more clustering significance at
shorter timescales, the opposite is generally not true: there is hardly
any area of the world where clustering becomes more significant at
longer time windows.

3.2. Comparison of datasets

We now turn to the other satellite- and gauge-based precipita-
tion datasets. Overall, significance patterns tend to be quite consistent
across the datasets, and the spatial coherence of areas exhibiting clus-
tering significance is strengthened compared to the ERA5-only analysis
(Fig. 6). This is particularly true for the tropics, where there is strong
agreement on the significance of the clustering over the equatorial
Pacific, the Western Indian Ocean, Northeastern Brazil or the Maritime
Continent, but also outside the tropics over Australia (particularly in
SON), the Southeastern Indian Ocean (in DJF) and Southwest Asia.
Similarly, the datasets all point towards significant clustering over the
Eastern Atlantic during DJF and to a lesser extent during MAM. The
robustness of the results at high latitudes (>50°) is more difficult to as-
sess since fewer datasets are available there (ERA5 over land and ocean
and CPC over land only, whose accuracy is limited by the scarceness of
stations at such latitudes), but at least there seems to be agreement on
significant clustering over Alaska and Northeastern Russia. In addition,
the comparison of the various datasets highlights a few regions that
did not particularly stand out in ERAS alone, but where other datasets
point to significance in the clustering of precipitation extremes: the
Western US and Mexico during DJF and MAM, the Western Sahel
in DJF, Northern Chile in SON, the subtropical North Pacific east of
Hawaii (especially in JJA) and Africa’s Great Lakes region during JJA.

To highlight differences between the datasets, we show in Fig. 7
zonal-mean clustering significance for ocean and land separately (re-
sults from CMIP6 models are discussed in the next section). Over
the oceans, within the 40°S-40°N band, TRMM and CMORPH are in
relatively good agreement, while ERA5 generally exhibits a similar
significance profile but of larger magnitude. This can also be seen in
Figs. 3 and 6, which highlight that datasets other than ERA5 tend
to show less clustering significance over the tropical oceans. GPCP is
clearly the outlier: it indicates much more clustering, and over a wider
latitude range, than the other datasets, particularly north of the equator
in JJA and SON (Fig. 7-c,d). This might be related to the tendency of
GPCP to underestimate extreme precipitation magnitudes, and thus to
exhibit daily time series with light tails (Bador et al., 2020). In high
latitudes of both hemispheres, particularly during their respective cold
seasons, CMORPH diverges from ERA5 by showing anomalously high
levels of significance, possibly due to this product’s limited performance
in capturing cold-season precipitation and snowfall (Xie et al., 2017).

By contrast, disagreement between the datasets is stronger over
land, notably during the DJF and JJA seasons. TRMM, ERA5 and GPCP
agree on the more frequent occurrence of clustering significance in
the tropical band (20°S-20°N) during MAM and SON (Northeastern
Brazil, Northern Australia and the Maritime Continent) and around
30°N in SON (Southwest Asia). At low to mid-latitudes, significance
tends to be weaker in GPCP and CMORPH, possibly due to them being
short records for which significance is harder to assess. As over oceans,
clustering significance in CMORPH often tends to increase rapidly
beyond 40°N/S.
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3.3. CMIP6 and future changes

Finally, we turn to the analysis of CMIP6 model output for the
historical (1976-2005) and future (2071-2100) periods. Fig. 8 shows
the multi-model mean clustering significance of daily precipitation
extremes for each season. Most of the main patterns identified in ERA5
and the observation-based datasets can also be found in the CMIP6
models: widespread significance of clustering over oceans around the
equator, particularly in the Pacific, and clustering limited to a handful
of hotspots in the extratropics. In particular, many of the regions
discussed in Sections 3.1 and 3.2 are also captured by CMIP6 models.
The latter indicate significant clustering over the eastern North Atlantic
in DJF and MAM, with a poleward shift and westward extension of
the region of significance during MAM, as in Fig. 6. CMIP6 models
also tend to exhibit significant clustering over Alaska and Northeastern
Russia (mainly in DJF), Australia and the Maritime Continent (JJA,
SON), Eastern Africa, Southwest Asia and the Middle East. Over the
subtropical North Pacific, the GCMs also show clustering, but more
structured spatially during DJF and MAM, with clustering concentrated
along a band extending from Hawaii to California, which does not
stand out in ERA5 and observation-based datasets (Fig. 6-a,b). Sim-
ilarly, the significance of the clustering over Southwest Asia appears
overestimated by CMIP6 models during DJF and MAM. CMIP6 models
also agree quite strongly on the presence of significant clustering over
the equatorial Atlantic during JJA and SON, by contrast with the
other datasets. As to zonal-mean values, they are overall consistent
with other datasets which are for the most part contained within the
range of CMIP6 values (Fig. 7). The notable exceptions are GPCP over
ocean grid-points, and CMORPH polewards of 40°N/S. The CMIP6
multi-model mean follows TRMM somewhat closely. Interestingly, the
inter-model spread is larger over land, especially in JJA and SON.

Future changes in Ripley’s K values and associated clustering sig-
nificance for precipitation extremes defined with a scenario-dependent
threshold are shown on Figs. 9 and 10, respectively. The largest changes
in areas that exhibit significant clustering are found over the tropical
oceans, unsurprisingly since they exhibit the largest Ripley’s K values
and most significance in the historical climate. One finds, however,
a strong seasonality in projected tropical changes. Shoulder seasons
(MAM and SON) are characterized by decreases in Ripley’s K values
and lower significance along the equator, particularly on the side of
the summer hemisphere, and the opposite over the subtropics of the
winter hemisphere (Fig. 10-b,d). In DJF, the changes show no clear
pattern, while in JJA, large changes are concentrated along the equator
(increasing significance over the Eastern Pacific and Indian Oceans,
but decreasing significance over the Atlantic and Western Pacific).
Over land, changes in clustering significance are also projected over a
few regions. Clustering over Alaska and southwestern Europe increases
slightly during MAM in the SSP585 scenario, as well as over Australia
during JJA and SON and southeastern Brazil during SON. In South-
west Asia, where clustering is particularly significant in the historical
climate, projections indicate a weak increase of clustering in JJA and
SON over the Arabian Peninsula, but a slight decrease over Iran and
Pakistan.

For the historical threshold analysis, projected changes in Ripley’s
K values exhibit the same pattern as future changes in extreme precipi-
tation magnitude (e.g., Pfahl et al., 2017): substantial declines over the
subtropical descent regions and large increases along the equator and at
mid-to-high latitudes (Fig. 11). In terms of clustering significance, the
picture is quite different (Fig. 12). We remind the reader that while the
frequency of extreme events is not equal to 1% in the historical thresh-
old analysis (since historical 99th daily precipitation percentiles are
used for the future SSP585 series), one can still assess the significance
of extreme event clustering by comparing to simulated series with the
same event frequency. Clustering significance is enhanced over much
of the world, particularly along the equator, over the subtropics and in
the high northern latitudes. It increases notably on the eastern margins
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of the subtropical North Atlantic and Pacific Oceans in DJF and MAM,
with potential implications in terms of climate risk. Southwest Asia also
stands out due to a substantial year-round increase in clustering, as do
Alaska in DJF and MAM, and Australia in all seasons except DJF.

4. Discussion
4.1. Physical drivers of clustering

The application of Ripley’s K function as a tool to assess the tem-
poral dependence in the occurrence of extreme precipitation makes
it possible to identify a number of regions around the world where
that dependence is strong. In addition, compared to most previous
studies, we define extreme events based on monthly daily precipitation
percentile, which removes the seasonal signal in extreme precipita-
tion magnitude. This approach therefore highlights clustering driven

by inter-annual variability or sub-seasonal dynamics. The analysis of
significance timescales can suggest mechanisms responsible for the
clustering. In the tropics, clustering significance is independent of
timescale (Figs. 4, 5), from a few days to several months. In other
words, for a given season, many extreme precipitation events will
occur within the same year. Long clustering timescales in the tropics
suggest an important role of sea-surface temperature (SST) anomalies,
which typically persist for months, and therefore SST-driven inter-
annual variability in extreme precipitation occurrence may be the
dominant cause of the clustering. The likelihood of extreme precipi-
tation in the tropical band is known to be influenced by large-scale
modes of SST variability, most notably the El Nifio Southern Oscillation
(ENSO) (Curtis et al., 2007). ENSO’s influence on extreme precipitation
is felt over land (Kenyon and Hegerl, 2010), but primarily over oceans
through its impact on the position of the Inter-Tropical Convergence
Zone (ITCZ) (Adam et al.,, 2016). ENSO’s influence also extends on
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the position of the Atlantic ITCZ (Miinnich and Neelin, 2005) which
may explain why this region also exhibits some sub-seasonal clustering.
The conclusion is likely similar over the Maritime Continent, another
region exhibiting large levels of clustering significance, where ENSO
and the Indian Ocean Dipole are known to influence ITCZ position
at inter-annual timescales (Freitas et al., 2017). In this region, the
Madden-Julian Oscillation may also play a role (Ratan and Venugopal,
2013). The IOD also drives inter-annual variability in extreme precipi-
tation over the western Indian Ocean coastline (Marchant et al., 2007)
and may explain the significant clustering regions of Eastern Africa and
Southwest Asia.

By contrast, in the extratropics, clustering significance is mostly
found at shorter timescales of one to four weeks. Unlike in the trop-
ics, extratropical extreme precipitation tends to be linked to synoptic
weather systems and atmospheric rivers (e.g., Pfahl and Wernli, 2012;
Catto and Pfahl, 2013; Pfahl et al., 2014), which may exhibit clustering
forced by sub-seasonal persistence in large-scale climate modes such as
the Arctic Oscillation (Kenyon and Hegerl, 2010; Yang and Villarini,
2019). It remains to explain however why clustering is concentrated
over certain regions like the subtropical Eastern Atlantic. Interestingly,
extratropical land regions where extreme precipitation occurrence is
known to be impacted by ENSO, like North America or Southeastern
Asia (Kenyon and Hegerl, 2010) do not exhibit significant clustering.
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Our approach here has been purely statistical, and our discussion
of physical drivers is speculative. Future work should aim at identi-
fying physical explanations for the sub-seasonal temporal clustering
highlighted in our results; in particular, potential links between persis-
tence in atmospheric dynamics and temporal clustering of precipitation
extremes.

4.2. Link to surface impacts
Our description of sub-seasonal clustering of extreme precipitation

relies on monthly timescales to define precipitation extremes and on
spatially-dependent extreme precipitation thresholds. This approach

highlights temporal dependence in the occurrence of precipitation ex-
tremes after removing seasonality in extreme precipitation magnitude,
and it does not focus on risks linked to sub-seasonal clustering of
these extremes. Indeed, precipitation accumulations associated with
clusters of extremes vary significantly depending on the region and
time of year, as do their potential surface impacts. Clustering may
thus be significant for a given place and season, but this does not
mean that clusters of precipitation extremes represent a major climate
risk to that area in that season. Contrarily, even where clustering is
statistically non-significant, clusters, rare as they may be, may still
pose major risks for instance through large precipitation accumulations.
Still, a simple global analysis of the fraction of the top-10 largest
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21-day precipitation accumulation episodes in ERA5 that co-occurred
with at least two extreme precipitation events shows that, even when
defining extreme events based on monthly percentiles, clusters tend
to overlap with large sub-seasonal precipitation accumulations over
many of the regions exhibiting clustering significance (Fig. 13). Some
of these regions (Southwestern Europe, Eastern Siberia) were also
highlighted as hotspots of cluster occurrence and contribution to large
precipitation accumulation by Kopp et al. (2021). In addition, many
of the clustering hotspots over land, like Southwestern Europe, Eastern
Africa or Australia, are semi-arid regions where rain-driven floods are
a major concern. On Fig. 13 Southwest Asia during SON seems to
be an outlier, possibly due to the seasonality of extreme precipitation
magnitude in that region, or to biases in ERA5 extreme precipitation
magnitude (Rivoire et al., 2021). Future work could refine that analysis

by identifying areas where clustering is both significant and a source
of major surface impacts such as floods.

4.3. Implications of future clustering trends

Future changes in Ripley’s K values and clustering significance
projected by CMIP6 models under the SSP585 scenario show large
contrasts between the “scenario-dependent threshold” and the “histor-
ical threshold” perspectives. Using a scenario-dependent precipitation
threshold changes are largely confined to the tropics and subtropics and
a few key land regions (Australia, Maritime Continent, Southwest Asia
and Southeastern Brazil) show non-zero trends. There, the strength-
ening of the temporal dependence of extreme precipitation events
has important implications in terms of climate risk: not only will the
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magnitude of extreme precipitation increase (especially over Southwest
Asia), but extreme events will be more clustered in time. Since inter-
annual SST variability is likely an important driver of clustering in these
regions, changes in that variability, either in its timescales or spatial
patterns, may also explain the trends projected by the CMIP6 ensemble.

By contrast, as revealed by the fixed-threshold analysis, there is a
clear tendency towards more significant clustering of extreme events
defined by historical percentiles. In other words, GCMs robustly project
increases in the persistence of historical extreme weather conditions.
This increase is found over much of the world and across all seasons,
though again trends are generally larger in the tropics. This increase
in clustering significance may result from enhanced inter-annual vari-
ability in large-scale climate modes (ENSO, IOD, etc.), from changes

in teleconnections between such modes and the likelihood of extreme
precipitation occurrence, or from dynamical trends. Long-term trends
in extreme precipitation magnitude seem unlikely to contribute much
to this overall increase in clustering, since the patterns from Figs. 11
and 12 do not show much correspondence. Areas with large changes
in extreme daily precipitation percentiles exhibit negligible changes on
Fig. 12, and conversely some areas with large clustering trends are
not projected to experience major changes in extreme precipitation
magnitude. The translation into an assessment of future climate risk
is however not straightforward. Risk in this case will depend on the
duration and magnitude of clusters, but also on their frequency. Yet, for
a given level of clustering, Ripley’s K is insensitive to the average ex-
treme event frequency in a time series. Therefore, while an increase in
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the persistence of current-day extremes may be projected, this analysis
says nothing about future changes in their frequency.

As a final note, one should also bear in mind that the future scenario
we analyzed here, SSP585, is a particularly extreme one. The analysis
of projected changes in Ripley’s K values and clustering significance
should then not be seen as an attempt to develop future projections
per se, but rather to understand at first order how the temporal depen-
dence in extreme precipitation events may respond to large levels of
greenhouse gas forcing.

4.4. Further perspectives on persistence

Our focus has been on sub-seasonal temporal clustering of extreme
precipitation, which is one specific type of persistence in extreme
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precipitation events. In particular, we did not consider persistence
in the duration of individual precipitation extremes, choosing instead
to consider as a single extreme event any series of extreme daily
precipitation events separated by less than 2 days. Long-lasting extreme
precipitation events can also result in large precipitation accumula-
tions and are relevant from the perspective of risk assessment. Large
precipitation accumulation episodes can also be driven by persistent
wet, but not extremely wet, conditions. Similarly, we considered only
clustering in very large precipitation extremes, and our results could be
complemented by analyzing the temporal dependence of daily precip-
itation above smaller percentiles, or using wet-day percentiles instead
of percentiles calculated from the whole distribution.
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5. Conclusions

This study offers a global perspective on the temporal dependence
in the occurrence of daily extreme precipitation events at sub-seasonal
timescales. By adopting a seasonal approach, we remove the effects
of seasonality in extreme precipitation magnitude, which makes it
possible to test the significance of the clustering in extreme precipita-
tion occurrence using a simple statistical framework based on Ripley’s
K function. While at the global scale clustering dominates over the
tropical oceans, several land regions exhibit significant clustering at
sub-seasonal timescales of a week to a month: in DJF, Southwestern Eu-
rope, Southwestern North America, Alaska and Eastern Siberia, in SON
Southwest Asia and Australia, and Eastern Africa for much of the year.
Interestingly, many of these regions have semi-arid climates and may
be particularly sensitive to series of heavy precipitation events occur-
ring at short time intervals. The spatio-temporal pattern of clustering
significance is robust across several datasets and generally well repro-
duced by the CMIP6 multi-model mean. When considering precipitation
extremes with fixed probability, clustering trends in future projections
under the SSP585 scenario are large in the tropics, especially over the
equatorial Pacific and the Maritime Continent, and generally weak in
the extratropics. Projections indicate however a strong global increase
in clustering in the occurrence of present-day extremes. Our analysis
opens the way for a better assessment of risk linked to clusters of ex-
treme precipitation events, and for the understanding of their physical
drivers.
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