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A P P L I E D  E C O L O G Y

Marine high temperature extremes amplify the impacts 
of climate change on fish and fisheries
William W. L. Cheung1*, Thomas L. Frölicher2,3, Vicky W. Y. Lam1,  
Muhammed A. Oyinlola1, Gabriel Reygondeau1, U. Rashid Sumaila1,4,5, Travis C. Tai1,  
Lydia C. L. Teh1, Colette C. C. Wabnitz1,6

Extreme temperature events have occurred in all ocean basins in the past two decades with detrimental impacts 
on marine biodiversity, ecosystem functions, and services. However, global impacts of temperature extremes on 
fish stocks, fisheries, and dependent people have not been quantified. Using an integrated climate-biodiversity- 
fisheries-economic impact model, we project that, on average, when an annual high temperature extreme occurs 
in an exclusive economic zone, 77% of exploited fishes and invertebrates therein will decrease in biomass while 
maximum catch potential will drop by 6%, adding to the decadal-scale mean impacts under climate change. The 
net negative impacts of high temperature extremes on fish stocks are projected to cause losses in fisheries revenues 
and livelihoods in most maritime countries, creating shocks to fisheries social-ecological systems particularly in 
climate-vulnerable areas. Our study highlights the need for rapid adaptation responses to extreme temperatures 
in addition to carbon mitigation to support sustainable ocean development.

INTRODUCTION
Marine fisheries are an important part of the global food system, 
generating economic benefits (1, 2), providing critical nutrients (3), 
and supporting people’s livelihoods (4). These benefits are particu-
larly pertinent for coastal communities in developing countries and 
indigenous communities (5). Recent international assessments (6, 7) 
have highlighted the predominantly negative impacts of climate 
change on marine ecosystems and fisheries. Previous studies project 
a global decline in total animal biomass (8), potential fisheries catches 
(9), economic benefits (10), and employment (11) under climate 
change. However, these works focused exclusively on the impacts of 
decadal-scale mean climate change, with the additional effects of 
climate variabilities such as marine extreme temperature events 
remaining unexamined.

A number of studies have documented large episodic shocks to 
marine social-ecological systems as a result of marine temperature 
extremes. These extreme events occur when ocean temperature is 
exceptionally high or low relative to the climatological average tem-
perature of the area and can last for days, months, or a few years 
(12). Globally, the frequency of marine extreme high-temperature 
events that last for days or months (i.e., marine heatwaves) has dou-
bled since 1982 and is projected to increase further under continued 
global warming (12, 13). Periods of extreme high ocean temperature 
(14) are already affecting many ecosystems (15), causing species’ 
range shifts (16, 17), reproductive failure and increased mortalities 
in marine species (18), mass coral reef bleaching (19), and die-offs 
of kelp forests (20) and other coastal biogenic habitats (21). These 
ecological responses to extreme temperature events are having rippling 

effects onto human communities, as many depend on the marine 
environment as a source of food, income, and livelihood and as a 
way of life (22, 23). These impacts can weaken the adaptive capacity 
of the ecological, social, and resource management systems to climate 
change. Therefore, fisheries’ climate impact assessments need to account 
for the ecological, economic, and social dimensions of extreme tem-
perature events in the context of decadal-scale climate change. How-
ever, with the exception of a few studies at the local scale (24), little 
is known about the global impact of marine temperature extremes 
on fisheries and dependent human communities.

There are multiple ways to define and characterize marine tem-
perature extremes, and the choice of definition depends on the study’s 
objectives (25, 26). Here, we focus on annual high temperature ex-
tremes, defined as the annual sea surface temperature (SST) anom-
alies exceeding the 95th percentile of a shifting baseline from 1950 
to 2100 (Materials and Methods). Under a shifting baseline, high 
temperature extremes emerge solely because of natural variability 
that adds to changes due to long-term mean ocean warming (Fig. 1). 
By using annual mean temperature data, we focus on temperature 
extremes that last at least 1 year, as these events often have the largest 
impacts on fisheries (Materials and Methods). Moreover, annual 
temperatures are used instead of shorter time frames because of the 
longer life cycle of most fish stocks considered here that generally 
integrate the impacts of temperature variations on populations across 
longer time frames. This study focuses largely on the impacts of high- 
temperature extreme events, as these impacts have been of broad 
concern for marine conservation and seafood production sectors. 
However, annual cold temperature perturbations may reverse the 
negative impacts from high temperature extremes. Therefore, we 
examine whether marine annual cold temperature extremes (“cold 
spells”) would lead to impacts that are opposite to those of marine 
high-temperature extreme events.

We use an integrated climate–marine biodiversity–fisheries–
economic impact model (27) to quantify the impact of marine high 
temperature extremes on global fisheries and dependent human 
communities. The modeling approach aims to provide a consistent 
framework that incorporates the current knowledge about marine 
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fisheries social-ecological systems and applies it to project the sys-
tems’ future under scenarios that integrate different climatic and 
socioeconomic drivers. We use the model outputs to calculate indi-
cators of biological, fisheries, and socioeconomic impacts including 
biomass, catches, fisheries revenues, and fisheries-related employ-
ment (Materials and Methods). On the basis of the projected changes 
in these impact indicators, we highlight the potential risks of marine 
high temperature extremes on fish stocks and fisheries, thereby 
identifying the needs for appropriate response options.

Our modeling approach accounts for the linkages between climate, 
fisheries catches, fish prices, fishing effort, employment, and fisheries 
management under greenhouse gas emissions and socioeconomic 
scenarios (Representative Concentration Pathway or RCP8.5 for 
high greenhouse gas emission scenario and Shared Socioeconomic 
Pathway or SSP3, respectively; see Materials and Methods; Fig. 1) 
(27). We include 10,088 stocks of fishes and invertebrates [each 
stock is delineated by a species in an exclusive economic zone 
(EEZ)] that accounted for 41% of global fisheries catches in 2016 
and 866 species from 265 countries’ EEZs (i.e., excluding the high 
seas and considering Atlantic, Arctic, and Pacific Canada for 
instance as three distinct EEZs) (Materials and Methods; fig. S1 and 
table S1) (28). The performance and uncertainties of the climate, 
marine biodiversity, fisheries, and employment components of 
the integrated model in representing changes in ocean conditions, 
biogeography, potential fisheries catches, and related jobs have 
been examined independently in previous studies and here (table 
S2) (27, 29).

RESULTS AND DISCUSSION
On average, the period 1981 to 2100 experienced a total of 13 to 
14 annual extreme high-temperature events, as defined herein, 
across all EEZs. During these high annual temperature events, 
we found the surface ocean in EEZs to be, on average, 0.72° ± 
0.31°C (SD) warmer than decadal-mean conditions (fig. S2). In 
addition to these episodic high-temperature events, surface waters 
of EEZs are projected to warm by 1.23° ± 0.33°C by 2041–2060 
relative to 1986–2005 under RCP8.5 (fig. S3 and table S2). The 
magnitude of sea bottom temperature anomalies in the EEZs 
during those extreme events is significantly and positively cor-
related with surface temperature anomalies (P < 0.05; see Materials 
and Methods).

Regionally, EEZs projected to experience the highest intensity of 
annual extreme warming events and decadal-scale mean sea surface 
warming (i.e., above global averages) are located in the Pacific Ocean, 
including the Indo-Pacific, Eastern Central Pacific, and Northeast 
Pacific regions (Fig. 2A). In contrast, EEZs in the North Atlantic 
Ocean and parts of the Southern Ocean are projected to experience 
strong extreme warming events but relatively low decadal-scale 
mean warming (30). In addition, the occurrences of extreme high- 
temperature events are related to interannual and decadal climate 
variabilities. The occurrence of extreme high-temperature events 
across many regions of the ocean is often associated with the domi-
nant climate modes. The occurrence of extreme high-temperature 
events is especially elevated during El Niño years (31, 32) and con-
versely reduced during La Niña years.

Fig. 1. Diagram illustrating this study’s methodological framework. It includes three components: (A) projections, (B) scenarios, and (C) models. MSY, maximum 
sustainable yield (see Materials and Methods). GDP, gross domestic product; GFDL-ESM2M, Geophysical Fluid Dynamics Laboratory Earth System Model 2M.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversitaetsbibliothek B

ern on O
ctober 03, 2021



Cheung et al., Sci. Adv. 2021; 7 : eabh0895     1 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 15

Marine annual extreme high-temperature events add to decadal-
mean warming impacts on fisheries stocks in the world’s EEZs through 
declines in biomass (Fig. 2B). On average, during an extreme high- 
temperature event in an EEZ, 77% of the studied fish stocks are 
projected to decrease in biomass and 44% of them are projected to 
decline at magnitudes that are larger than the magnitude of the pro-
jected global decadal-scale mean decrease (−3.6% per decade) be-
tween 1986–2005 and 2041–2060 under RCP8.5 (Fig. 2B). Particularly, 
EEZs in the Indo-Pacific, South Pacific, and West Africa regions are 

projected to register substantial declines in biomass due to both high 
temperature extremes and decadal-mean warming. Potential catches 
from EEZs that are projected to be positively affected by marine high 
temperature extremes are mainly in higher latitude regions, such as 
the North Atlantic and North Pacific Ocean.

Following changes in stock biomass, maximum catch potential 
is projected to decrease during annual high-temperature extreme 
events, in addition to impacts from decadal-scale mean climate change 
(Fig. 2C). The average rate of decline in maximum catch potential 

Fig. 2. Projected changes in the intensity of marine extreme high-temperature events and decadal-scale changes in mean sea surface warming and their 
impacts on stock biomass and their maximum catch potential by country’s EEZs. (A) Increase in SST, (B) percent of stocks with biomass declines that are below a 
threshold of −3.6%, and (C) maximum catch potential. The threshold of −3.6% is the average rate of biomass decline per decade across all the studied stocks that is due 
to decadal-scale mean change by 2041–2060 relative to 1986–2005 under RCP8.5
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among negatively affected stocks is projected to be 6% (ranging 
from less than 1 to 22%: 5th to 95th percentiles) relative to decadal-
mean levels. Some stocks (21% of all studied stocks) are projected to 
increase by an average of 5% (<1 to 15%: 5th to 95th percentiles) in 
maximum catch potential during extreme high-temperature events. 
In comparison, decadal-scale mean warming leads to changes in 
maximum catch potential of stocks that range from a decrease of 
11% to an increase of 8% per decade (5th and 95th percentiles, re-
spectively) by 2050 relative to the recent past under RCP8.5. Thus, 
adding the impacts of annual high-temperature extremes to decadal-
scale mean change is projected to result in an earlier emergence of 
risk of decrease in fish stocks and catches in the next few decades 
than from estimates based on mean changes alone. The earlier 
emergence of risk is consistent with observed impacts from extreme 
high-temperature events, for example, in the Northeast Pacific Ocean 
(e.g., the high-temperature extremes from 2013 to 2015) (24). In addi-
tion, over decadal time scales, accounting for the effects of annual 
low temperature extremes (“marine cold spells”) did not cancel out 
the impacts of marine high-temperature extremes due to asymme-
tries in biological sensitivities to ocean warming and cooling, such 
as thermal tolerance at species and community levels (see Supple-
mentary Materials) (33). Empirical evidence from shifting stock 
ranges also suggests time lag in recovery of distribution from tem-
perature perturbations in the Northwest Atlantic, resulting in com-
plex changes in fish communities that are not linearly related to 
changes in temperature (34).

Variability in marine species’ thermal tolerance and associated 
biological responses to warming affect the spatial patterns of fisheries 
impacts from marine annual temperature extremes and decadal-scale 
mean change (Fig. 2, B and C). Tropical fisheries stocks are more 
sensitive to warming because of their narrower thermal tolerance 
range relative to temperate species (35), which is consistent with our 
biological model projections (9). Specifically, the tropical Pacific is 
projected to experience large impacts from decadal-scale mean change 
and to remain a hot spot for impacts from extreme high-temperature 
events on biomass and maximum catch potential. Catches from the 
tropical Pacific are dominated by tunas and billfishes, species known 
to be highly sensitive to climatic variabilities and change (36). Pe-
lagic species are also exposed to larger temperature anomalies near 
the surface during extreme high-temperature events relative to de-
mersal species that live closer to the sea bottom where the magni-
tude of high-temperature extremes is smaller than at the sea surface 
(Materials and Methods). In contrast, in the North Pacific and 
Atlantic, negative impacts from extreme high-temperature events 
and decadal-scale mean changes are, on average, smaller than for 
tropical regions. Exploited stocks in these temperate and sub-Arctic 
regions include relatively more demersal species than those in the 
tropical Pacific.

Our study suggests that marine annual extreme high-temperature 
events are likely to have negative impacts on dependent human 
communities across most EEZs (Fig. 3). We projected changes in 
fisheries revenues based on forecasted ex-vessel prices of targeted 
fisheries stocks from a machine learning algorithm and fisheries- 
related employment from an empirical model developed using 
global fisheries and socioeconomic databases (Materials and Methods). 
Fisheries-based revenue from selected stocks and fisheries-related 
employment in more than 80% of maritime countries in our study 
are projected to be affected negatively by extreme high-temperature 
events. We also find that more than 70% of the countries have 

negative impacts on revenues that are larger than the average rate of 
decrease as a result of decadal-scale mean changes by mid-21st century 
relative to the recent past under RCP8.5. When extreme high- 
temperature events occur, revenues and employment are projected 
to decrease by a median of 3% (5th and 95th percentiles of 18 de-
crease to 2% increase) and 2% (13% decrease to 6% increase), re-
spectively, relative to impacts under mean conditions (Fig. 3). These 
socioeconomic impacts of extreme high-temperature events are in 
addition to projected decreases in revenue and employment across 
most countries as a result of decadal-scale mean climate change. The 
projected impacts of marine annual high-temperature events on 
revenues are driven by changes in catch and price. Our model projects 
prices to increase with decreases in catch and increases in seafood 
demand under RCP8.5 and SSP3 (11), with a median increase in 
ex-vessel price of stocks of 120% (8 to 245%, interquartile range) by 
mid-21st century relative to the recent past. The projected impacts 
of temperature extremes on employment are driven by changes in 
catches and affected by scenarios of indirect drivers such as demography 
and economic development under SSP3. The extreme warming-related 
socioeconomic impacts are consistent with available, although lim-
ited, evidence from fisheries that have been affected by marine high- 
temperature extremes [e.g., Gulf of Alaska Pacific Cod (37), Northeast 
Atlantic lobster (38), and Tasmanian shellfish (39) fisheries].

The added impacts from marine high-emperature extremes to 
decadal-scale mean change would substantially increase the risk of 
impacts on countries that are strongly dependent on fisheries for 
income and livelihoods. For example, Ecuadorian fisheries are among 
those countries projected to be severely affected by both marine 
annual high-temperature extremes and decadal-scale mean climate 
change (Fig. 3, A and B), with a projected 10% reduction in revenue 
because of temperature extremes on top of a 25% decrease due to 
decadal-scale mean climate change by the mid-21st century relative 
to the recent past under RCP8.5. In Bangladesh, where fisheries- 
related sectors employ over one-third of the country’s labor force, an 
extreme high-temperature event is projected to result in an average 
loss of 2% of potential fisheries-related employment, equivalent to 
over 1 million jobs (4). This adds to a 12% fisheries employment 
decline projected for 2050 relative to the recent past as a result of 
decadal-scale mean climate change. Similarly, in Pacific Island states 
such as the Solomon Islands, marine high-temperature extremes are 
projected to exacerbate large projected reductions in fisheries reve-
nue and employment caused by decadal-scale mean climate change 
(Fig. 3).

Using our integrated model that links the dynamic responses of 
fisheries stocks under climate change, with the economics of fishing 
and fishing effort (40), we examine the role of fisheries management 
actions in mitigating the effects of marine temperature extremes 
(Materials and Methods). Under two contrasting fishing scenarios 
(i.e., fishing under open access or managed through harvest control 
rules in response to changing stock biomass; see Materials and Methods), 
marine annual high-temperature extreme events are projected to con-
tinue to have negative impacts on marine stock biomass and catches 
relative to decadal-scale mean levels across most EEZs (Fig. 4). 
However, consistent with previous studies (41, 42), active fisheries 
management under decadal-scale mean climate change performs 
better in maintaining higher biomass relative to open access ex-
ploitation of stocks within EEZs (i.e., fishing is allowed to increase 
unabated). In addition, our results show that fisheries management 
through harvest control rules are projected to reduce the negative 
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impacts from high-temperature extremes relative to decadal-scale 
mean by 50% for biomass (from a cross-EEZ median of −7% under 
open access to −3% under harvest control rule) and 27% for catches 
(from a cross-EEZ median of −7 to −5%) (Fig. 4). The reduction in 
negative impacts on stock biomass is particularly large in EEZs that 
are projected to be hit hardest by marine high-temperature extremes, 
including those located in the Indo-Pacific (e.g., Gulf of Thailand, 
Indonesia, and Malaysia), Central America (e.g., Costa Rica, Peru, and 
Guatemala), Western Indian Ocean (e.g., Bangladesh), and West Africa 
(e.g., Ghana and Guinea). In contrast, for catches, some of the hardest 
affected EEZs are projected to become more sensitive to marine 
high-temperature events under the harvest control rule scenarios.

The harvest control rule scenario applied in this study adjusts 
allowable fishing levels based on predefined references of stock bio-
mass. These fisheries management tactics make fishing levels more 
responsive to climate-driven changes in exploited stocks and specif-
ically limit fishing if stock biomass decreases beyond the thresholds 
specified in the rules during extreme high-temperature events. Such 
a fishing control mechanism reduces the risk of stock depletion 
compared to the open access scenario where fishing is solely driven 
by economic factors. However, limiting fishing according to harvest 
control rules during marine extreme high-temperature events is 
projected to result in declines in catch because stock biomass drops 
below management thresholds during those extreme events. An ex-
ample of such a decision includes the closure of the Gulf of Alaska 
Pacific cod fisheries because of the low stock biomass assessed in 

relation to the marine extreme high-temperature event that affected 
large swaths of the Northeast Pacific in 2019–2020 (37).

The combination of high-temperature events and decadal-scale 
climate change may lead to long-term changes in fish stocks and 
fisheries that would be difficult to reverse (43). When simulating 
changes in fishing effort, a high-temperature extreme event’s impacts 
on fish stocks and associated fisheries revenue affect active fishing 
effort and investment into changing fishing capacity in subsequent 
years. These effects influence the trajectory of stock biomass and catch 
and thus increase the variabilities in projected future biomass and 
catches. Moreover, the impacts of a high-temperature extreme are 
projected to affect fisheries development after the event, particularly 
for fisheries that are already close to biological or economic thresh-
olds, e.g., stock biomass at a level close to the limit reference point 
of a harvest control rule when fishing would need to be substantially 
reduced or fisheries operating at bioeconomic equilibrium under open 
access (fisheries revenues equal cost). It would be useful for future 
studies to examine the reversibility or irreversibility of impacts of 
marine extreme high-temperature events on the social-ecological 
fisheries systems and implications for their resilience in supporting 
sustainable development.

The integrated climate-fisheries-socioeconomic model applied in 
this study facilitates the analysis of the linkages between social-ecological 
fisheries systems in responding to marine temperature extremes. 
However, the greater model complexity inevitably means that pro-
jections from the integrated model are likely to be more uncertain 

Fig. 3. Projected impacts of marine extreme high-temperature events and decadal-scale mean changes by 2041–2060 relative to 1986–2005, by fishing coun-
tries, under RCP8.5 and SSP3. (A) Projected average changes in fisheries revenue during an annual extreme high-temperature event. (B) Projected decadal-scale mean 
change in fisheries revenue per GDP. (C) Projected average changes in fisheries-related employment during an annual extreme high-temperature event. (D) Projected 
decadal-scale mean change in fisheries-related employment per capita. Grayed countries do not have a record of fishing on species included in this study.
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than from its components alone (table S2). While the main uncer-
tainties and assumptions of each subcomponent of the integrated 
model have been discussed in previous studies (table S2) (11, 29, 44), 
some of these are particularly relevant to the exploration of the im-
pacts of temperature extremes in this study. For the biophysical com-
ponent, the main relevant assumptions and uncertainties include 
the coarse spatial resolution of the Earth system model simulations 

used, the insufficient representation of processes that are driving 
some of the interannual variabilities of biological populations, 
and the effects and interactions of multiple human drivers on the 
exploited stocks that are not included in the model. For the human 
component, the model does not comprehensively capture the 
complex interactions between fisheries resources, fishing behav-
iors and fisheries management, the dynamic of fish prices, and 

Fig. 4. Effects of marine extreme high-temperature events and fisheries management scenarios on biomass and fisheries catches. (A) Stock biomass under 
high-temperature extremes relative to decadal mean biomass. (B) Catches under high-temperature extremes relative to decadal mean catches. Both (A) and (B) include 
all the studied stocks in the EEZs for 2041–2060 under two fisheries management scenarios, SSP3 and RCP8.5. The two fisheries management scenarios considered are 
open access (OA) and harvest control rule (HCR) (Materials and Methods). The outliers represent data points beyond 1.5 times the interquartile range. The names 
of the respective EEZs to the outliers are displayed.
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the interactions between different direct and indirect human driv-
ers at different temporal and spatial scales.

While comprehensive characterization of the full range of un-
certainties in projecting effects of temperature extremes on fisheries 
is beyond the scope of a single study, here, we examine the relative 
performance of our projections in representing plausible annual 
marine high-temperature extremes and their impacts on catches 
(see Materials and Methods). The ensemble simulations with the 
fully coupled GFDL-ESM2M (Geophysical Fluid Dynamics Laboratory 
Earth System Model 2M), by design, do not replicate the phasing of 
observed interannual climatic variability (44). However, the magnitude 
(median and maximum) of interannual variabilities of the simulated 
annual high-temperature extremes by EEZs is in relatively good agree-
ment with observation-based estimates (fig. S10), if slightly overesti-
mated. Nevertheless, the GFDL-ESM2M outperforms most other 
Coupled Model Intercomparison Project Phase 5 (CMIP5)–type models 
in simulating internal variability in SST over the historical period (45).

Since the biophysical and social-economic components of the 
integrated model are linked through catches, we compare the pro-
jected effects of annual high-temperature events on these stocks 
over the past six decades (1951–2016) with observational-based 
estimates (Materials and Method). The relationship between our pro-
jected maximum catch potential anomalies and observational-based 
catch anomalies under high-temperature extremes is much weaker 
than the comparison for temperature. The magnitude of the pro-
jected impacts on maximum catch potential from high-temperature 
extremes is smaller than those estimated from observational-based 
catch estimates. Thus, the projected changes can be considered more 
conservative. The biases and disagreement between model outputs 
and observational-based estimates are likely caused by both model 
and data uncertainties. Specifically, our model does not represent 
the full range of processes that are known to affect interannual vari-
abilities of biological populations, such as the complex linkages 
between ocean biogeochemistry (beyond temperature) and stock- 
recruitment relationship, and their differences between stocks (46). 
In addition, given the global scope of this study, some of the model 
parameters, such as temperature preferences and demographic rates, 
are based on averages across populations and thus do not represent 
some of the population-specific characteristics that may affect the 
differences in interannual variabilities between stocks. Moreover, 
the uncertainties in simulation of ocean physical and biogeochemical 
conditions by the Earth system model (47), such as the insufficient 
representation of the dynamics of eastern boundary upwelling sys-
tems that support large historical catches (e.g., the Humboldt Current 
system that strongly influences Peruvian fisheries), also directly affect 
the biological projections driven by these simulations. There are also 
substantial uncertainties in the reporting and reconstruction of the 
observation-based catch data used in this study (48). The observational- 
based catches are affected by a large number of confounding factors 
such as the interannual variations in fishing activities and fisheries 
management driven by factors that are independent of stock abun-
dance or distributions. For example, the collapse of the Peruvian 
anchoveta fisheries following the 1972 El Niño was likely the result 
of both low recruitment and decisions regarding catch quota by the 
management agency that yielded fishing levels exceeding the bio-
logical limits of the stocks (49). In addition, because of the constraint 
regarding the length of the observational-based time series, only two 
to three annual high-temperature extremes are identified per EEZ.  
The limited sample size of the observational-based estimations 

exacerbates the uncertainties in the use of such data for comparison 
with model projections.

Regions where fisheries are projected to be most affected by 
high-temperature extremes include EEZs that are consistent with 
observational-based estimations (Fig. 5). Particularly, EEZs in our 
identified high-temperature extreme hot spots—including the Eastern 
Central Pacific (e.g., Ecuador and Costa Rica), West Africa (e.g., 
Senegal and Cape Verde), Indo-Pacific (e.g., Maldives, Philippines, 
and Vietnam), and around Central and South Pacific islands (e.g., 
Kiribati, Samoa, and U.S. Minor Outlying Islands)—have consistent 
and significant impacts estimated from both the observational-based 
estimations and our model projections (P < 0.05; Fig. 5 and fig. 
S11). For EEZs where agreement between model projections and 
observational-based catches estimates is weaker, the risk of impacts 
of high temperature extremes on fisheries is associated with lower 
confidence levels [e.g., the United Kingdom and Peru (Fig. 5)].

Our modeling framework offers a way to incorporate some of the 
current knowledge about marine fisheries social-ecological systems 
into analyses of the plausible effects of marine high-temperature ex-
tremes on stock biomass, catches, as well as revenue and employment 
opportunities generated by a diversity of fisheries. Hence, our find-
ings provide a foundation for future research to build upon to gain 
better understanding of the effects of marine temperature extremes 
on marine fisheries social-ecological systems and inform approaches 
to support the sustainability of global fisheries. Such research should 
include the following: examining the effects of temperature extremes 
at higher temporal frequencies using daily or monthly climate model 
outputs, as well as the impacts of subsurface temperature extremes; 
exploring extreme events of other ecosystem drivers (25, 32) and 
their cumulative impacts, and the oceanographic, biological, and 
social-economic mechanisms underpinning the spatial and tempo-
ral variations of these impacts; examining the effects of temperature 
extremes on additional ecological and social-economic dynamics, 
such as trophic interactions and fisheries management; and evalu-
ating a wider range of possible fisheries management and adapta-
tion interventions to identify more effective measures to reduce risks 
and impacts on fisheries under climate change. Moreover, our find-
ings show that marine cold spells (low-temperature extremes) could 
affect fisheries in ways other than the inverse of marine high- 
temperature extremes and that are presently poorly understood. Ex-
ploration of these phenomena and their impacts would represent a 
new and worthwhile research direction for studying marine tempera-
ture extremes. Additional development and testing of each model sub-
components and the integrated analysis, such as through collation 
and comparison of model outputs with new observational datasets, 
could further increase the robustness of the findings and guide their 
further application. For example, this study uses a single algorithm 
to project the habitat suitability of exploited species, while previous 
studies suggested advantages in using multiple algorithms (29). 
Future studies could repeat the analyses presented here with multiple 
biological models or their components. Given the broad and multi-
disciplinary scope of this study, we chose to focus our analysis on a 
high emission climate change scenario (RCP8.5) and a specific 
socioeconomic pathway, SSP3, associated with high challenges both 
in mitigation and adaptation. The RCP8.5 and SSP3 are at the ex-
treme ends of the spectrum of climate change and social-economic 
scenarios. While the relationship between different levels of emissions 
and projected catches are strong (8, 9), the effects of other SSPs and 
their interactions with RCPs on fisheries have not been explored. 
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Expanding the current simulations to alternative RCPs and SSPs 
may help elucidate the consequences of more effective greenhouse 
gas mitigation and alternative societal development pathways to reduce 
the risks and projected impacts of marine extreme high-temperature 
events on fish stocks and fisheries.

In summary, our study provides a unique global-scale analysis of 
the potential impacts of marine annual extreme high-temperature 
events on fish stocks, catches, fisheries revenues, and employment 
and the effects of fisheries management. We show that most biological 
and socioeconomic impacts from annual high temperature extremes 
are negative. Previous assessments of climate change impacts on 
marine fisheries have focused on mean change and thus largely un-
derestimated climate risks, adding substantial challenge to human 
responses necessary for climate risk reduction. Particularly, this 
global analysis has identified potential hot spots of impacts where 
the biophysical and socioeconomic systems are at high risk to 
marine high-temperature events and decadal-scale mean warming. 
These hot spots include several EEZs in the Indo-Pacific, South 
Pacific, Central America, and West Africa regions. As some of these 
areas are underrepresented in existing studies of marine tempera-
ture extremes on fisheries and represent areas often highly depen-
dent on a range of benefits derived from marine fisheries, our 
findings suggest that these regions could be priority areas for future 
impact and adaptation studies. Furthermore, while fisheries manage-
ment can reduce impacts from long-term mean climate change, more 
climate-sensitive tactics may be more appropriate to help conserve 
fish stocks under marine extreme high-temperature events. In addi-
tion to climate-sensitive fisheries management, strategies are needed 
to help fishing sectors cope with the short-term socioeconomic impacts 
of lower catches or limited fishing as a result of high-temperature 
extremes. Our findings point to the need to mainstream consider-
ation of extreme temperature events in standard climate-fisheries 
assessments, as well as the development of a more anticipatory and 
comprehensive set of solution options for securing a sustainable future 
for the ocean and dependent human communities.

MATERIALS AND METHODS
Overview of scenarios and modeling approaches
We use an integrated global climate, marine biodiversity, fisheries, 
and economic impact model called “DIVERSE” (50) to quantify the 
impact of marine annual temperature extremes on exploited fish 
and invertebrate stock biomass, catches, and fisheries-dependent 
revenue and employment. We use the outputs from a large ensemble 
simulation of the fully coupled Earth system model GFDL-ESM2M 
developed at the GFDL to project changes in ocean conditions and 
their variabilities over time under the RCP8.5 scenario (see the 
“Large ensemble Earth system model simulations” section). We use 
the dynamic bioclimate envelope model (DBEM) to simulate changes 
in distribution, abundance, and catches of exploited marine fishes 
and invertebrates (see the “Modeling fisheries stock biomass and 
maximum catch potential” section). We apply a machine learning 
algorithm to forecast ex-vessel prices of targeted fisheries stocks 
(see the “Modeling ex-vessel prices” section). The algorithm is based 
on projected catches and aquaculture production to represent fish 
supplies to the market. We also include other economic indicators 
such as gross domestic product (GDP) per capita, population, and 
seafood consumption per capita under SSP3 to represent seafood 
demand from the market (see the “SSP and fishing scenarios” sec-
tion). We use generalized linear models to project fisheries-related 
employment based on catches and socioeconomic conditions of 
relevant countries (see the “Modeling fisheries-related employment” 
section). Use of these models and scenarios enables us to endoge-
nize the dynamic feedback between changes in supply and demand. 

Fig. 5. Comparison between observational-based estimated effects of high- 
temperature extremes with model projections for the 1951–2016 period. 
(A) The differences between observational-based estimated changes in annual 
catches from EEZs relative to the mean conditions subtracted by those using maximum 
catch potential projected from the dynamic bioclimate envelope model (DBEM) 
driven by the Earth system model large ensemble simulations. (B) A comparison 
between annual catch anomalies relative to mean conditions under the identified 
high-temperature extremes using observational-based catches and projected maximum 
catch potential from the model by EEZs. The solid dots in (B) represent those EEZs 
with significant (P < 0.05) differences in catches under high-temperature events 
relative to the mean conditions (see Materials and Methods). Red and blue 
labels indicate EEZs with effects of high-temperature events estimated from 
observational-based and projected catches that are consistent in the direction of 
impacts (red, negative impacts; blue, positive impacts), while green labels indicate 
those that have inconsistent direction of impacts. Only the solid dotted EEZs 
are labeled.
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We simulate the dynamics of fishing effort and fisheries management 
using a bioeconomic fishing effort dynamic model (see the “Modeling 
fishing effort dynamics” section). In addition, we also described the 
Sea Around Us catch data that are used in this study.

Large ensemble Earth system model simulations
The 10-member ensemble simulation was conducted with the fully 
coupled Earth system model 2M developed at the GFDL (GFDL- 
ESM2M) (51, 52). The ocean model MOM4p1 (50) has a nominal 
horizontal resolution of 1° latitude by 1° longitude, increasing toward 
the equator to ⅓°, and 50 vertical levels. The Tracers of Phytoplankton 
with Allometric Zooplankton version 2.0 is the ocean biogeochemistry 
and ecology model included in GFDL-ESM2M. The GFDL-ESM2M 
skillfully simulates the observed large-scale pattern of biogeochemical 
properties (47) and marine temperature extremes’ intensity (13) and 
captures the increase in marine high-temperature extreme days over 
the 1982–2016 satellite period (12).

The ensemble simulations were initialized through tiny pertur-
bations to the initial climate state in 1950. The first ensemble member 
was branched into 9 additional members using 2 to 10 January 1950 
of the first ensemble member for the initial conditions of members 
2 to 10 (53). The ensemble members are independent realizations 
after about 3 years of simulation for surface waters and about 10 years 
at a depth of 300 m (54). The 10 ensemble members cover the his-
torical 1950–2005 period and follow the RCP8.5 scenario over the 
2006–2100 period. RCP8.5 is a high emission scenario without ef-
fective climate policies and projects a net radiative forcing of 8.5 W 
m−2 by the end of the 21st century. In GFDL-ESM2M, atmospheric 
surface temperature in the RCP8.5 ensemble is projected to increase 
by 3.2°C between preindustrial times and 2081–2100.

Projecting marine annual temperature extremes
We identify the projected occurrence of marine annual extreme 
temperature events in the EEZs of the world ocean for each of the 10 
ensemble member simulations of GFDL-ESM2M. We define marine 
annual extreme temperature events using annual average SST anomalies 
relative to the smoothed ensemble mean SST across the ensemble 
members (with a cubic spline filter, using the smooth.spline func-
tion in R to remove any residual interannual temperature variabilities 
of the ensemble mean SST), with marine annual high-temperature 
extreme events being identified to occur when SST is above the 95th 
percentile of the SST anomalies (24). Previous definitions of marine 
extreme temperature events (13, 31) often used fixed baselines (e.g., 
preindustrial conditions). Here, we use a shifting baseline (i.e., the 
ensemble mean) against which marine annual extreme temperature 
events are defined. This has allowed us to isolate the changes in marine 
annual extreme temperature event characteristics that arise because 
of changes in natural internal variability of the climatic system alone 
and to compare these changes with the decadal-mean changes that 
are driven by climate change (Fig. 1).

The “shifting baseline” definition of marine high temperature 
extremes is consistent with that used in (55). Jacox et al. (55) applied 
this definition to study the thermal displacement in the surface ocean, 
which is directly connected to our study, as our projections on dis-
tribution and abundance of fish stocks and their catches are partly 
driven by the thermal displacement of the ocean. The advantage of 
shifting the baseline in time is that one can more clearly partition to 
what extent marine extreme high-temperature events are related to 
a mean background warming or to changes in temperature variance, 

which is particularly useful to elucidate the contributions of the ef-
fects of these variabilities on top of long-term mean changes. Other 
definitions of annual extreme temperature events have been used in 
the literature for other applications, e.g., (14, 15, 31, 56), and these 
definitions have been reviewed by studies such as that of Burger et al. 
(25) and Benthuysen et al. (17). The definition used here is particu-
larly useful to elucidate the contributions of temperature variance 
in addition to long-term mean changes on fish stocks and fisheries.

For every marine annual extreme temperature event identified from 
each ensemble member, we characterize its intensity (SST anoma-
lies relative to the smoothed ensemble mean values) and occurrence 
year. We then quantify the impacts of marine annual extreme tem-
perature events on stock biomass, catches, as well as revenue and 
employment for fisheries-dependent communities. We compare the 
impacts due to marine extreme temperature events with decadal-
scale mean changes over the 1981–2100 period.

Modeling fisheries stock biomass and maximum 
catch potential
We used the DBEM to simulate changes in distribution, abundance, 
and catches of exploited marine fishes and invertebrates. The struc-
ture of the DBEM is described in (29), and we summarize pertinent 
aspects of the model here, with details of the model described in the 
Supplementary Materials. First, the current distributions of com-
mercially exploited species, representing the average pattern of rel-
ative abundance in recent decades (i.e., 1970–2000), were produced 
using a species distribution modeling algorithm described in (57). 
The model then calculated an index of habitat suitability for each 
species (P) in each spatial cell i from temperature (bottom and sur-
face temperature for demersal and pelagic species, respectively), 
bathymetry, specific habitats (coral reef, continental shelf, slope, and 
seamounts), salinity (bottom and surface temperature for demersal 
and pelagic species, respectively), and sea ice with 30-year averages 
of outputs from 1971 to 2000 from GFDL-ESM2M. For anadromous 
species, our model represents the marine phase of their life cycle 
only. Next, DBEM estimated the temperature preference profile of 
each species by overlaying the estimated species distribution (29, 58) 
with annual seawater temperature and calculated the area-corrected 
distribution of relative abundance across temperature for each year 
from 1971 to 2000, subsequently averaging annual temperature 
preference profiles. Particular life stages at specific times of a year 
may be more sensitive to temperature. However, this study includes 
thousands of exploited fish stocks for which information about par-
ticularly sensitive time windows within a year are not available. 
Movement and dispersal of adults and larvae were modeled through 
advection-diffusion-reaction equations for larvae and adult stages 
using eq. S5 (A and B, respectively). Carrying capacity in each cell is 
assumed to be a function of the unfished biomass of the population, 
the habitat suitability, and net primary production in each cell. The 
global unfished biomass of the population is estimated on the basis 
of the average of the top 10 annual catches by weight of the modeled 
species in the world from 1950 to 2004 and their intrinsic popula-
tion growth rate. We assumed that the average of the top 10 annual 
catches was roughly equal to the maximum sustainable yield of the 
species. The initial carrying capacity () in each cell is calculated by 
prorating the unfished biomass to each cell based on the predicted 
habitat suitability. The model predicts changes in size and growth 
for each species according to changes in temperature, oxygen, and 
pH in the ocean relative to initial conditions. Adult natural mortality 
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rate was estimated from an empirical equation (59). Biomass (B) 
and catch (C) were then calculated from the population mean body 
weight and abundance. The model had a spin-up period of 100 years 
using the climatological average oceanographic conditions from 
1971 to 2000, thereby allowing the population to reach equilibrium 
before it was perturbed with oceanographic changes. To calculate 
maximum catch potential and assuming logistic population growth, 
exploitation rate is set to be equal to natural mortality rate M to 
have maximum equilibrium surplus production.

Projecting impacts on fisheries catches
The projections of species turnover and changes in maximum 
potential catches are consistent with other modeling studies and 
empirical observations, providing support to the validity of using its 
outputs to assess climate risk to marine fisheries (table S2). The pro-
jected species turnover is a result of shifts in distributions of the 
modeled species driven by changes in temperature, oxygen level, 
net primary production, salinity, and other ocean conditions. Previ-
ous studies have already shown that range shifts projected by DBEM 
are generally consistent with alternative species distribution models 
and projections from different structures (with different algorithms 
predicting habitat suitability and incorporation of ecosystem size 
spectrum as additional constraints on habitat’s carrying capacity) of 
DBEM and with observed range shifts, where data exist. In terms of 
projecting catches, DBEM is shown to reproduce current patterns 
of maximum catch potential across large marine ecosystems, and its 
projections are qualitatively similar to projections that are based on 
or have incorporated size-based trophodynamic interactions (29).

Uncertainties associated with biomass and maximum catch po-
tential projections include the coarse resolution of Earth system model 
outputs particularly for representing the dynamics of shelf seas and 
coastal waters, the assumption of the absence of species’ evolutionary 
responses to a changing climate, and insufficient consideration of 
the effects of trophodynamics. However, notwithstanding these un-
certainties, the modeling approach provides generally robust projec-
tions regarding the direction and relative intensity of climate impacts 
at the global scale.

Modeling ex-vessel price
Ex-vessel fish prices for commercial fish species for the period 1950 
to 2010 are based on the latest Fisheries Economics Research Unit 
and Sea Around Us global database as reported by Tai et al. (60). To 
project the prices reported by Tai et al. (60) into the future, we use 
an artificial neural network (ANN) to develop scenarios of the annual 
average ex-vessel price of the fish species covered by our analysis. 
We used the elm.fit function in the R package (“nnfor”) that applies 
the ANN algorithm described by Kourentzes et al. (61). We train 
the ANN algorithm to project prices for each fisheries stock using 
time series ex-vessel fish price data, combined with the following 
independent variables: catches of a species within the EEZ, global 
catches of the species of the stock, GDP per capita, and gross sea-
food consumption of the sovereign state of the EEZ and global sea-
food consumption. These input variables represent seafood supply 
and demand (62–64). The test reveals that the ANN developed 
can predict historical ex-vessel price dynamics that match historical 
data well. We, therefore, apply the ANN to project future changes 
in price given projected catches from each ensemble member 
simulation using DBEM and projected GDP and population size 
under SSP3.

The global ex-vessel fish price database that we used for fisheries 
prices is the third updated version of its kind (62–64). Prices from 
this database are matched to catch estimates from the Sea Around 
Us catch database. The price estimation model follows a rule-based 
schematic to first match raw price data to catches and then estimates 
prices using a country-product dummy model when raw prices were 
not available for a given taxa-country-year combination (60, 65, 66). 
The ex-vessel price, pijt, in country i, taxa j, and year t can be esti-
mated with

   p  i,j,t   =  IP  j,t   ·  PPP  i,t   ·  u  i,j,t    (1)

where IPj,t is the international price of taxa j in year t, PPPi,t is the 
purchasing power parity for country i in year t, and ui,j,t is the error 
term. Taking the natural logarithm of the equation, we obtain the 
dummy model

   y  i,j,t   =  a  j,t   +  B  1   ·  x  1,t   +  B  2   ·  x  2,t   + … +  B  n   ·  x  n,t   +  ε  i,j,t    (2)

where yi,j,t is the natural log of the reported price, aj,t is the natural 
log of the international price, and B is the dummy variable for the 
known coefficient xn,t equal to the natural log of the country effect 
on price. The number of countries (i.e., observations) is represented 
by n from j = 1, 2,…, n. The error term  is normally distributed with 
mean 0 and constant variance 2 and related to u in eq. S1 such that 
 = ln(u).

By rearranging Eq. 2 and solving for a, the model first relates 
ex-vessel prices (y) based on taxonomic classification and estimates 
a global “international” price using a country- and year-specific 
purchasing power parity (67). Matching ex-vessel prices follows a 
rule-based schematic based on taxonomic classification and ISSCAAP 
(International Standard Statistical Classification of Aquatic Animals 
and Plants) grouping, first matching at the species level and then 
broader categories (e.g., genus + ISSCAAP, genus, family + ISSCAAP, 
etc.). These international fish prices can then be converted to the 
currency for the country of interest and, thus, the ex-vessel price for 
a particular taxa j in country i.

Prices are converted to a common currency (U.S. dollars) and 
corrected for inflation using the U.S. consumer price index from the 
U.S. Bureau of Labor Statistics. Country-specific inflation is assumed 
to be captured by relative purchasing power parity between countries. 
One of the major assumptions of the price estimation model is that 
species are priced relatively similarly across countries (i.e., a global 
price) and that interannual variation in fish prices are represented 
in the purchasing power of the currency. Prices used in this analysis 
are the weighted average price across end product use (e.g., direct 
human consumption, fishmeal, and fish oil) (60).

We develop and use an ANN model to predict annual ex-vessel 
prices for each fisheries stock. We use the elm.fit function in the 
R package (nnfor) that applies the ANN algorithm described in (61). 
The prediction of ex-vessel prices includes four main steps (fig. S6).

In step 1, a set of historical time series data (1960 to 2010) are 
selected on the basis of economic theories that predict potential re-
lationship of these variables with ex-vessel price by fisheries species. 
To represent domestic seafood production and supply, we include 
reported catches of the stock and mariculture production while do-
mestic demand is represented by population size of the country, its 
GDP per capita, and seafood consumption per capita (62–64). A 
5-year running median was then applied to each time series to smooth 
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large interannual price variation that may likely be due to factors 
exogenous to what we considered.

In step 2, for each fisheries stock, we apply the processed time 
series data to train an ANN to predict ex-vessel prices. The method-
ology sets a number of hidden nodes (300) and estimates the weight 
of each connection to project future prices. While the methodology 
identifies the main component of a time series variability, it also 
allows various autocorrelation processes within and between variables 
in projecting ex-vessel prices. We performed 100 to 200 possible 
parallel pathways (i.e., simulations) to predict prices. We subse-
quently excluded the outlying lower and upper 1 percentiles of the 
pathways and computed the median ensemble pathway.

In step 3, to evaluate the uncertainty of the forecast predicted by 
the ensemble pathways, we compare the predicted price with reported 
price data from 2011 to 2015 that were not included in the training 
set of the Extreme Learning Machine algorithm (ELM). The model is 
considered validated if the test predicted that model median forecasts 
are significantly correlated with the reported values (P < 0.05) and over 
a R2 (coefficient of determination) of 80%; otherwise, the model is 
retrained by increasing the number of hidden nodes and simulation.

In step 4, we applied the developed ANN to forecast prices on the 
basis of projected catches by species and their global catches, pro-
jected GDP, and population size under SSP3. Since there is no pub-
lished global projection of seafood consumption, we assume that 
changes in per capita seafood consumption are dependent on the 
countries’ GDP. Thus, using per capita seafood consumption and 
GDP time series from all the countries, we develop a generalized 
linear model to project future per capita seafood consumption. The 
model obtained has a significantly positive relationship between per 
capita seafood consumption and GDP per capita (P < 0.01, R2 = 0.9).

The uncertainties in projecting seafood price decades into the 
future are large. The algorithm presented here aims to provide a con-
sistent framework to investigate the potential effects of direct and 
indirect drivers on seafood prices that are consistent with data. Future 
studies could further refine the ANN algorithm or apply other algorithms 
to examine the impacts of marine temperature extremes on prices.

Modeling fisheries-related employment
We apply an empirical model to predict fisheries-related employ-
ment based on the generalized linear model described in (68). This 
model predicts total fisheries-related employment of a country based 
on its rural population, economic development status, and total 
catch. The model is developed using the Fisheries Economics global 
dataset of fisheries-related employment (4).

Two versions of generalized linear models, which differ in how 
they include the interaction terms between GDP and catches, have 
been developed. We use both models and calculate the weighted [by 
the models’ Akaike information criterion (AIC)] average outputs from 
them. The parameter values of the models are given in table S5. Be-
cause the employment data are only available for a particular time 
period (standardized for 2010), each country is used as a sample. 
Fisheries-related jobs, rural population size, and catch are log-transformed 
for use in the models. Each model run is a combination of the three 
variables, starting with the total set of variables. Particularly, we hy-
pothesize that higher catches would result in more employment for 
fisheries-related sectors, with everything else being equal. In addi-
tion, since many fisheries-related jobs occur in rural coastal areas, we 
assume that a higher rural population would also be related to higher 
fisheries-related employment. Moreover, small-scale labor-intensive 

fisheries may be more dominant in less economically developed 
countries, while fisheries in developed countries are dominated by 
more technology-intensive fisheries that would require less labor 
per unit of catch. Thus, countries with higher GDP per capita would 
have lower fisheries-related employment. There may be interactions 
between income class and catches in relation to marine-related 
employment. The structures of the models are

  
Employment = a · log(ruralpopulation ) + b · log(Y ) +

     
  ∑ 
i=1

  
4
   d · factor( gdppc  i   ) + log(Y ) · ∑ i=1  4   factor( gdppc  i   ) · + ϵ.

    (model 1)

  
Employment = a · log(ruralpopulation ) +

    
b · log(Y ) +  ∑ i=1  4   d · factor( gdppc  i   ) + ϵ.

    (model 2)

where ruralpopulation is the rural population size of each country; 
Y denotes catches; gdppc is the GDP per capita; and a, b, d, and ϵ are 
coefficients and intercepts of the function, with Gaussian (log-link) 
error distribution function.

The model (model 1) with the lowest AIC predicts that the number 
of fisheries-related jobs is significantly related to rural population 
size, total fisheries catch, and the economic status of the country, with 
interactions between the latter two factors (P < 0.05, table S5 and fig. 
S7). Total fish catch is positively related to the number of fishers, 
indicating that future increases in fish catch are projected to drive 
additional fisheries jobs. However, for middle- and high-income 
countries, as indicated by their GDP per capita rankings, the sensi-
tivity of the number of jobs to catches is lower than in lower-income 
and lower-middle–income countries. This supports the hypothesis 
that fisheries employment in developed countries is likely to be 
structured differently than those in less developed countries. Rural 
coastal population size is also positively related to fisheries jobs, 
suggesting that countries with larger rural populations are expected 
to have proportionally more people engaged in fisheries. For the 
competing model (model 2), the conclusion is qualitatively similar 
to model 1, except that the model omits the potential interaction 
between catches and countries’ economic status. We use the ensem-
ble of models 1 and 2 to project changes in fisheries-related employ-
ment weighted by the model’s AIC.

Modeling fishing effort dynamics
We apply a fishing effort dynamic model (EDM) to simulate changes 
in fishing effort, fisheries catches, revenues and profits under sce-
narios of climate change, and fisheries management as described in 
(40). Parameter values of the effort dynamic model are estimated 
for each EEZ-ocean basin unit using available databases, empirical 
equations, and time series of fisheries catches data from 1950 to 2014. 
The model includes two main components: a biomass dynamic model 
and a fisheries economic model.

The biological component of the effort dynamic model is driven 
by outputs from the DBEM. The linkages between the DBEM and 
the fishing effort dynamic model are one way, with outputs from the 
earlier model feed into the effort dynamic model. Specifically, the 
biological component of the EDM is a biomass dynamic model 
that assumes logistic population growth. The biomass dynamic model 
is initialized with two parameters: the intrinsic population growth 
rate (r) and the carrying capacity (K) of the fisheries stock. The 
model is driven by two variables that relate to climate change effects 
on biological production and changes in fishing mortality rate for 
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each exploited stock. For each stock, annual relative change in bio-
mass is calculated from outputs of the DBEM. The computed rela-
tive change in biomass is then applied to the biomass dynamic model 
to simulate the effect of changes in abundance and production as a 
result of climate change. Changes in catchability and fishing mor-
tality are calculated from the active fishing effort that is an output 
from the fisheries economic component of the EDM.

The fisheries economic submodel assumes that fishers seek to 
maximize their profit according to the Gordon-Schaefer model (69). 
The model is based on four key parameters: the effort response to 
profit coefficient, reinvestment ratio, capital depreciation rate, and 
the catchability coefficient of the fishing fleet. Changes in fishing 
effort are also driven by annual profit that is dependent on the catch 
of exploited stocks, ex-vessel price of fish, fishing cost, and subsidies 
received. Parameter values of the effort dynamic model are estimated 
for each EEZ-ocean basin unit using available databases, empirical 
equations, and time series of fisheries catches data from 1950 to 
2014. Some initial parameters for the fisheries economic model are 
estimated on the basis of published datasets, while others are esti-
mated by fitting the model with catch data reported in the Sea Around 
Us catch database. Unit ex-vessel price of catch is from the Fisheries 
Economics Research Unit price database (60). Initial (first year) 
fishing cost is estimated on the basis of a cost per unit of total reve-
nue that is calculated from the reported total fishing cost from (70) 
and the total revenue from (10). Subsidies, expressed as a propor-
tion of the total fishing cost, are estimated on the basis of the global 
subsidy database (71, 72). Initial fishing effort is calculated from a 
catchability coefficient estimated by fitting the effort dynamic model 
with data. Other parameters that are estimated by model-data fitting 
include the rate of increase in catchability, the effort to profit re-
sponse ratio, the effort exit/depreciation rate, the effort investment 
rate, the cost inflation rate, and the initial capital cost (expressed as 
a percentage of total revenue). A numerical optimization algorithm 
(using the R function nlminb) is used to search for the set of parameter 
values that minimize the sum-of-square error between the predicted 
total catch from the effort dynamic model and the reported catch 
from the Sea Around Us database. The full description of the model 
is documented in (40).

We examined the occurrence of “path dependence” in the pro-
jected responses of fisheries to marine annual extreme warming 
events driven by the natural internal variability of the climate sys-
tem and the cascading effects on fisheries stocks and fisheries. This 
path dependence is visible in the increase in the anomalies of pro-
jected biomass and catches across ensemble members over time, as 
simulated by the fishing effort dynamic model even when anoma-
lies of SST decrease slightly over time (P < 0.05; table S4).

SSP and fishing scenarios
The SSP scenario used in simulations here is SSP3, commonly re-
ferred to as “Regional Rivalry—A Rocky Road” (73). In this scenario, 
the world is characterized as fragmented by resurgent nationalism, 
rife with concerns about competitiveness and security, and dominated 
by regional conflicts, pushing countries to focus on mostly domestic 
issues (73). Slow economic development, poverty, and pervasive en-
vironmental degradation in some regions result in poor progress 
toward sustainability (74). It is used here, as it reflects a possible 
decision space based on recent policy choices by a number of leaders.

In accordance with the globally applicable SSPs (73), we assumed 
for economic growth and the world’s population to follow established 

trends. The International Institute for Applied Systems Analysis 
(IIASA) and the National Center for Atmospheric Research have 
developed a set of population growth and urbanization projections. 
Under SSP3, relatively low investments in human capital and low 
income growth are thought to lead to relatively high fertility and 
population growth rates, despite high mortality rates, across the 
developing world. This leads to urban and rural settlement patterns 
across sub-Saharan Africa, the Middle East, India, and Southeast Asia 
that are very dense (75). In contrast, economic uncertainty leads to 
relatively low fertility rates and low population growth with rapidly 
aging populations in what are currently characterized as “low fertility” 
countries. Generally, however, migration is relatively limited, and 
urbanization proceeds slowly, partly because of poor urban planning 
that make cities unattractive destinations and slow socioeconomic 
development that limits mobility and employment opportunities in 
urban areas. Thus, at a global level, population growth rates are high 
while urbanization rates remain low, yielding a large rural population 
and concomitant low urban-to-rural population ratios (75). For GDP, 
three alternative interpretations of the SSPs by the teams from the 
Organization for Economic Co-operation and Development, the 
Potsdam Institute for Climate Impact Research, and the IIASA exist. 
Here, we followed GDP projections as developed by IIASA, which 
are based on harmonized assumptions for the interpretation of the 
SSP storylines in terms of the main drivers of economic growth (see 
IIASA supplementary note for further details: https://tntcat.iiasa.
ac.at/SspDb/static/download/ssp_suplementary%20text.pdf).

We explore two fisheries management scenarios: (i) open access 
and (ii) implementation of harvest or catch control rules. For the 
“open access” scenario, we assume no management control on fishing 
effort and that exploitation of fisheries stocks within EEZs are con-
sidered open access. For the “harvest or catch control rule” scenario, 
we assume fisheries in the world’s EEZs to be managed according to 
a control rule dependent on the stock biomass level relative to the 
model baseline of 1950. Specifically, if biomass of a fisheries’ stock 
falls below 50% of the baseline, then fishing mortality is reduced by 
50% of the preceding year’s level. If biomass declines further to 25%, 
then fishing mortality would be reduced by 75%, and if biomass is 
below 12.5% of the baseline, then fishing would be closed. This is 
reversed if stock biomass recovers. We run the fishing effort dy-
namic model with socioeconomic data (e.g., price, subsidies, and 
costs of fishing from 1950 to 2100; see the “Modeling fishing effort 
dynamics” section above), and these socioeconomic drivers are 
simulated under the SSP3 scenario.

Analyzing the impacts of marine annual extreme  
high-temperature events relative to decadal-scale mean change
We tested for the effects of occurrences of marine annual extreme 
high-temperature events on simulated biomass, maximum catch 
potential, revenue, potential fisheries-related employment, and 
“realized” catches using generalized linear models. Specifically, 
marine extreme high-temperature events estimated to occur in en-
semble member simulation from 1981 to 2100 are treated as sam-
ples and are compared with the decadal-scale mean climate change 
effects in the same year. The generic statistical model is

 Impact = a · factor(MHW′    i   ) + b · factor(year ) + c · factor(others ) +  d  

where Impact represents the specific impact variables (e.g., biomass 
or employment) while MHW is the occurrence of marine extreme 
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high-temperature events in ensemble member i. We account for the 
effects, if any, of the temporal trends of impact indicators. We also 
included a factor “others” that refers to other additional dimensions 
whose effect on impact indicators (e.g., fisheries management) we 
test for. The coefficients for the terms are represented by a to c, while 
d is the intercept. For biomass and catches, as the distribution is skewed 
with a long tail of large values, we assume a log-link Gaussian distri-
bution for the generalized linear model. For other impact variables, 
we assume a normal Gaussian distribution.

Sea around us catch data
We obtained catch data from the Sea Around Us reconstruction 
database (www.seaaroundus.org). Specifically, we extracted annual 
catches (tonnes) by each EEZ and species from 1951 to 2016. Since 
the catch data provided by the Sea Around Us database used a wide 
variety of data sources and information to estimate different dimen-
sions of “catch,” such as subsistence catch, recreational catch, and 
discards, which are missing from officially reported data (48), we 
used reconstructed catch in our analysis to capture a more compre-
hensive estimation of the total availability of nutrients from marine 
fisheries. The catch data are distributed onto 180,000, 30′ latitude 
by 30′ longitude spatial cells of the world ocean (76). The catch 
allocation process does not include climatic variables such as tem-
perature that are used in projecting catch potential.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abh0895
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