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Abstract 

Background: Egg production traits are economically important in poultry breeding programs. Previous studies 
have shown that incorporating genomic data can increase the accuracy of genetic prediction of egg production. Our 
objective was to estimate the genetic and phenotypic parameters of such traits and compare the prediction accuracy 
of pedigree‑based random regression best linear unbiased prediction (RR‑PBLUP) and genomic single‑step random 
regression BLUP (RR‑ssGBLUP). Egg production was recorded on 7422 birds during 24 consecutive weeks from first 
egg laid. Hatch‑week of birth by week of lay and week of lay by age at first egg were fitted as fixed effects and body 
weight as a covariate, while additive genetic and permanent environment effects were fitted as random effects, along 
with heterogeneous residual variances over 24 weeks of egg production. Predictions accuracies were compared 
based on two statistics: (1) the correlation between estimated breeding values and phenotypes divided by the square 
root of the trait heritability, and (2) the ratio of the variance of BLUP predictions of individual Mendelian sampling 
effects divided by one half of the estimate of the additive genetic variance.

Results: Heritability estimates along the production trajectory obtained with RR‑PBLUP ranged from 0.09 to 0.22, 
with higher estimates for intermediate weeks. Estimates of phenotypic correlations between weekly egg produc‑
tion were lower than the corresponding genetic correlation estimates. Our results indicate that genetic correlations 
decreased over the laying period, with the highest estimate being between traits in later weeks and the lowest 
between early weeks and later ages. Prediction accuracies based on the correlation‑based statistic ranged from 0.11 
to 0.44 for RR‑PBLUP and from 0.22 to 0.57 for RR‑ssGBLUP using the correlation‑based statistic. The ratios of the 
variances of BLUP predictions of Mendelian sampling effects and one half of the additive genetic variance ranged 
from 0.17 to 0.26 for RR‑PBLUP and from 0.17 to 0.34 for RR‑ssGBLUP. Although the improvement in accuracies from 
RR‑ssGBLUP over those from RR‑PBLUP was not uniform over time for either statistic, accuracies obtained with RR‑
ssGBLUP were generally equal to or higher than those with RR‑PBLUP.
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Background
Egg production traits are an important component of 
selection indexes in commercial turkey flocks. Since the 
heritability of egg production traits changes through-
out the laying period [1], a single value of cumulated 
egg production over the entire laying period does not 
sufficiently describe it. The efficiency of genetic selec-
tion for egg production traits can be improved by 
using longitudinal models, which enable a more cor-
rect consideration of genetic variances and covariances 
over time. Random regression (RR) models have been 
used successfully for genetic evaluation of longitudinal 
traits in various livestock species [2–4]. Such models 
have proven to be useful for the genetic improvement 
of egg production and persistency of egg laying hens 
[1]. The advantage of the RR model is its ability to 
predict breeding values for cumulative egg produc-
tion throughout the laying period and at any specific 
day of production [5] and to evaluate persistency of 
production.

Incorporating genomic data into breeding programs 
has improved selection accuracy in several species [6–8]. 
Single- and multi-step approaches have been used for 
genomic evaluation but single-step methods are pre-
ferred because they use all available genotypic and phe-
notypic information. The single‐step genomic best linear 
unbiased prediction (ssGBLUP) method integrates the 
genomic relationship matrix with the pedigree relation-
ship matrix, thus allowing inclusion of all genotyped and 
non-genotyped animals. This simultaneous use of rela-
tionships enables unbiased prediction of breeding values 
[9, 10]. In addition to the advantages of the single-step 
method, its straightforward extension to more complex 
models, such as RR models for longitudinal traits, makes 
it particularly useful for genomic evaluation [11, 12].

The use of ssGBLUP based on RR has been shown 
to increase the accuracy of genomic predictions for 
longitudinal traits in dairy cows [12, 13]. In order to 
maximize genetic gain and accuracy of the prediction 
of breeding values in turkeys, the implementation of 
genomic approaches over traditional methods by using 
RR requires investigation. The goal of our study was to 
estimate variance components of egg production traits 
in turkeys over time and to compare the prediction 
accuracy of pedigree-based random regression BLUP 
(RR-PBLUP) and genomic single-step random regres-
sion BLUP (RR-ssGBLUP).

Methods
Data
Egg production was recorded on 7422 hens from a female 
line over a 9-year period. The hens laid in individual trap 
nests and egg numbers were recorded on a daily basis. 
The trait analyzed was the cumulative number of hatch-
able eggs laid in trap nests per week over 24 weeks from 
the date of the first egg for each bird. Thus, hens started 
laying at different ages, but all hens completed egg lay-
ing in 24 weeks. This is similar to milk yield in dairy cat-
tle, which begins at calving and continues until the cow 
produces less than a certain amount of milk, at which 
point it is dried off, or until it reaches a certain lactation 
length, e.g. 305  days. Cows milk for different numbers 
of days from 240 to 400  days, and begin to milk at dif-
ferent ages at calving, but the RR model accommodates 
these differences, as well as a variable number of test 
measures per cow. Similarly, in hens, production starts 
with the first egg and ends with the last egg (in a speci-
fied week), for hens of different ages at first egg, and the 
RR model can accommodate this. Hens will typically take 
one to two weeks to begin laying eggs after exposure to 
longer light periods is initiated (light date) to stimulate 
the on-set of lay. The production curves of hens are more 
similar when production is described relative to the first 
day of lay. Hens that start lay a week or two after the light 
date are not desired, but that is a different trait than egg 
production and will be called delay time (DT). Selection 
against hens with a long DT regardless of their estimated 
breeding values for egg production is beyond the scope of 
this paper. Normal practice for commercial producers is 
to look at eggs produced within 26 weeks from the light-
ing date regardless of when a hen begins laying, which is 
adequate when total egg production is the target, but not 
if egg production curves are needed to identify different 
shapes of production, as in this study.

Statistical analyses
A phenotypic variance–covariance matrix of order 24 
was estimated using the egg production data recorded 
by week using the R software [14]. Covariance functions 
were fitted to this matrix and reduced orders of fit were 
examined. A third order polynomial was found to fit the 
24-by-24 matrix sufficiently well. Hence, third order Leg-
endre polynomials (i.e. 4 covariates) were used in the RR 
models for the genetic and permanent environmental 
components.

Conclusions: Our findings show the potential advantage of incorporating genomic data in genetic evaluation of 
egg production traits using random regression models, which can contribute to the genetic improvement of egg 
production in turkey populations.
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In total, 3561 animals in this population were geno-
typed using the Illumina 65 K single nucleotide polymor-
phism (SNP) panel. Genotyping quality control consisted 
of filtering out SNPs that had a minor allele frequency 
lower than 5%, a call rate lower than 95%, or that were 
localised in non-autosomal regions. In total, 3178 birds 
and 47,387 SNPs passed quality control and were used 
for the analysis.

The data were analyzed with the following RR model:

where yijmt is the vector of observations for weekly egg 
production; H is the hatch-week of birth, which describes 
the hens born at the same time and raised under the same 
conditions (i.e. contemporaries); week of lay W  ( t = 1 to 
24) and age at first egg ( AFE ), which was categorized into 
three groups (i.e. 29 to 31, 32 to 34, and > 34 weeks) are 
fixed effects; body weight at start of lay ( Bwt ) is a covari-
ate with a different slope for each week of lay; for each 
hen j , αkj and pkj are the kth random regression coeffi-
cients for additive genetic and permanent environmental 
effects, respectively; ∅k(t) is the kth Legendre polynomial 
covariate for the observation of individual j in week t ; 
third order Legendre polynomials of weeks of produc-
tion were fitted for both additive genetic and permanent 
environmental effects; eijmt is the residual variance, which 
was assumed to be heterogeneous and divided into four 
periods (1 to 4, 5 to 13, 14 to 19, and 20 to 24 weeks).

The matrix representation of the model is:

where y is the vector of observations; X , Q and Z are 
incidence matrices corresponding to the fixed effects ( b ), 
additive genetic effects ( a ), and permanent environmen-
tal effects ( p ); e is the vector of residuals. For the pedi-
gree-based model, denoted RR-PBLUP, it was assumed 
that:

where I is an identity matrix with dimensions equal to the 
number of hens, ⊗ is the Kronecker product, C and P are 
(co)variance matrices of additive genetic and permanent 
environmental regression coefficients, respectively. The 
size of C and P is (4 × 4), R is a diagonal matrix of four 
residual variances corresponding to the four lay periods, 
of order equal to the number of observations, and A is 
the numerator relationship matrix based on pedigree 

yijmt = (H ×W )it + (W × AFE)mt + bt(Bwt)t

+

3∑

k=0

αkj∅k(t)+

3∑

k=0

pkj∅k(t)+ eijmt ,

y = Xb+Qa + Zp+ e,

Var




a
p
e



 =




A ⊗ C 0 0

0 I⊗ P 0

0 0 R



,

information of order equal to the number of animals in 
the pedigree file.

The variance and covariance components for the ran-
dom effects for weekly egg number were obtained as 
φ′Cφand φ′Pφ , where φ is the matrix of Legendre polyno-
mial covariates per order (4 by 24). The resulting covari-
ance matrices are of order 24-by-24.

For RR-ssGBLUP, the inverse of the numerator rela-
tionship matrix ( A ) in the traditional mixed model equa-
tions (MME) was replaced by the H−1 matrix, which is 
defined as follows [15]:

where A−1 is the inverse numerator relationship matrix 
for all animals, A−1

22
 is the inverse of a pedigree-based 

relationship matrix for genotyped animals only, and G−1 
is the inverse genomic relationship matrix. G was calcu-
lated by using the first method proposed by VanRaden 
[16], with Gk blended as 0.95G+ 0.05A22 to obtain a 
non-singular matrix.

Analyses for the estimation of genetic parameters were 
performed using a Bayesian approach via Gibbs sampling 
implemented in the GIBBS1F90 module of the BLUPF90 
software [17]. The Gibbs sampler was run for 200,000 
rounds, with the first 20,000 considered as burn-in and 
then every 50th sample saved for posterior analysis. Pos-
terior means and standard deviations were calculated 
to obtain estimates of variance components. Conver-
gence of the posterior parameters was assessed by visual 
inspection of trace plots of posterior distributions gener-
ated by the Coda R package [18]. Only the estimates of 
the variances and covariances obtained with RR-ssGB-
LUP are presented.

Accuracy of prediction of breeding values
Two statistics were calculated to assess the improve-
ment in accuracy from incorporating genomic infor-
mation. The first statistic was the correlation between 
estimated breeding values and phenotypic data. For this 
purpose, the data were divided into reference and vali-
dation subsets. Approximately 10% of the youngest tur-
keys were assigned to the validation group, for which 
predictions were made, while the remaining 90% were 
used to train the model. Prediction accuracy of estimated 
breeding values in the validation data was estimated as 
the Pearson correlation coefficient between estimated 
pedigree breeding values (EBV) or genomic breeding val-
ues (GEBV) and phenotypes corrected for fixed effects 
divided by the square root of heritability obtained with 
RR-ssGBLUP [19].

H−1
= A−1

+

[
0 0

0 G−1
− A−1

22

]
,
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The second statistic, not previously published in the 
literature, was developed as follows. The use of genomic 
data in genetic evaluation aims at improving the accuracy 
of the Mendelian sampling effect, so that full-sibs may be 
ranked. Thus, Mendelian sampling effects were predicted 
by BLUP as:

where EBV i , EBV sire , and EBVdam are the BLUP esti-
mated breeding values of individual i and of its sire and 
dam, respectively, invoking the invariance property of 
BLUP. BLUP theory says that the predicted variance of 
the Mendelian sampling effects approaches the expected 
variance as the estimates become more accurate (or as 
the prediction error variance decreases) [20]. Thus, the 
ratio of the variance of the estimated Mendelian sam-
pling effects to its expected variance, which is one half 
of the additive genetic variance, gives a measure of the 
general accuracy of the Mendelian sampling estimates, as 
follows:

As the predicted Mendelian sampling effects become 
more accurate, the ratio should become larger and ν 
should range from 0 to 1. Only animals with records and 
both parents known were used. Data do not need to be 
partitioned into reference and validation subsets, and the 
statistic does not directly involve phenotypic records, y.

Results and discussion
Means, standard deviations, and coefficients of variation 
(CV) of weekly egg numbers over 24 weeks are in Table 1. 
The smallest mean number of eggs (3.52) and the high-
est CV were obtained in the last week, while the lowest 
CV was obtained in the first week. Previous studies that 
were conducted in layers reported greater variation dur-
ing the early and final production periods [21, 22]. These 
differences between studies may be due to our definition 
of weekly egg production and to the difference in the 
production curves of layers compared to turkeys. Here, 
weekly egg production was defined from age at first egg, 
whereas the previous study on layers by Anang et al. [21] 
used the lighting date, but not all hens start laying on the 
lighting date. Analysis of egg production curves provides 
information regarding the peak, decline, and persistency 
of lay, which helps to select birds at young ages, effec-
tively manage the farm, and increase egg production [23].

Genetic parameters
Table 2 presents posterior means and highest 95% poste-
rior density (HPD) intervals for the additive genetic and 
permanent environmental variances for the weekly egg 

m̂si = EBVi − 0.5(EBVsire + EBVdam)

ν = Var(ms)/(0.5Var(a)).

production traits. All parameters were estimated with 
precision, as reflected by the narrow 95% HPD intervals. 
Estimates indicate that environmental differences in the 
studied weeks have a large influence on egg production. 
Estimates of covariance matrices, C and P , for addi-
tive genetic and permanent environmental effects are 
in Tables 3 and 4 along with the heterogeneous residual 
variances in Table 5.   

Estimates of heritabilities and genetic correlations 
for egg production by using pedigree information for 
the selected weeks are in Table  6. Previously reported 
heritability estimates for monthly egg production using 
random regression models in turkeys ranged from 0.08 
to 0.12 [24]. In our study, estimates of heritability for 
weekly egg production were lower, ranging from 0.09 
to 0.22, which is consistent with estimates obtained 
with spline models in laying hens [25]. For the first 
four weeks, our estimates of heritability for egg pro-
duction were lower than those reported for White 
Leghorn hens and native chickens for the early weeks 
of production [22]. For early egg production, Biscarini 
et  al. [26] found heritabilities of 0.36 for total number 

Table 1 Descriptive statistics for the egg production traits

The egg production curve was divided into 24 weeks of 7 days, starting with the 
day of first egg

Week Number of hens Average egg 
production

Standard 
deviation

Coefficient of 
variation (%)

1 7422 5.21 1.34 25.7

2 7351 5.26 1.47 28.0

3 7332 5.30 1.48 27.9

4 7310 5.22 1.49 28.6

5 7296 5.16 1.51 29.3

6 7284 5.06 1.53 30.2

7 7259 4.94 1.53 30.9

8 7231 4.85 1.54 31.7

9 7205 4.77 1.52 31.9

10 7184 4.71 1.51 32.1

11 7132 4.58 1.50 32.6

12 7055 4.50 1.49 33.0

13 7022 4.38 1.47 33.6

14 6972 4.29 1.47 34.1

15 6937 4.16 1.45 34.8

16 6883 4.09 1.44 35.1

17 6823 3.98 1.44 36.1

18 6683 3.91 1.43 36.5

19 6592 3.88 1.41 36.5

20 6427 3.84 1.40 36.3

21 6081 3.82 1.37 35.9

22 5719 3.82 1.35 35.4

23 5101 3.73 1.30 34.9

24 3478 3.53 1.30 36.9
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of eggs produced from 17 to 24 weeks of age in laying 
hens; Nurgiartiningsih et al. [27] reported heritabilities 
of 0.32 and 0.38 for number of eggs produced in the 
first month of lay in two lines of White Leghorn hens. 
The high heritability estimate for early production was 

strongly influenced by variation in the rate of lay before 
the production peak as well as variation in age at sexual 
maturity [27]. The lower estimates of heritability for the 
early weeks in our study could be partially explained 
by differences in the models used for the analysis and 
in the definition of egg production traits. In our study, 
AFE was considered as a fixed effect in the model, and 
egg production was defined from age at first egg. Esti-
mates of heritability were moderately high for weeks 
18 to 20  (h2 = 0.22 ± 0.02) of production and decreased 
during the last four weeks  (h2 = 0.12 ± 0.01).

Table 2 Posterior means and 95% highest probability density (HPD) intervals for additive genetic and permanent environmental ( PE ) 
variances and of the heritability for egg number for over 24 weeks of lay

Week Genetic variance PE variance Heritability

Estimate HPD Estimate HPD Estimate HPD

1 0.19 0.15–0.22 0.55 0.52–0.58 0.09 0.08–0.10

2 0.19 0.16–0.23 0.47 0.45–0.5 0.10 0.08–0.11

3 0.21 0.17–0.25 0.48 0.45–0.5 0.10 0.09–0.12

4 0.23 0.19–0.27 0.52 0.49–0.55 0.11 0.10–0.13

5 0.26 0.22–0.3 0.57 0.54–0.6 0.12 0.10–0.13

6 0.28 0.24–0.33 0.61 0.58–0.64 0.12 0.11–0.14

7 0.31 0.26–0.35 0.63 0.6–0.66 0.13 0.12–0.15

8 0.33 0.29–0.37 0.64 0.61–0.67 0.14 0.13–0.15

9 0.35 0.31–0.39 0.63 0.61–0.66 0.15 0.14–0.16

10 0.37 0.33–0.41 0.61 0.59–0.64 0.16 0.15–0.17

11 0.39 0.35–0.42 0.59 0.57–0.62 0.16 0.15–0.17

12 0.40 0.37–0.44 0.57 0.55–0.59 0.17 0.16–0.18

13 0.42 0.39–0.45 0.55 0.53–0.57 0.19 0.18–0.20

14 0.43 0.4–0.47 0.54 0.52–0.56 0.20 0.19–0.21

15 0.44 0.41–0.48 0.53 0.51–0.55 0.20 0.19–0.21

16 0.45 0.41–0.49 0.52 0.5–0.55 0.21 0.20–0.22

17 0.45 0.41–0.49 0.51 0.49–0.54 0.21 0.20–0.22

18 0.45 0.39–0.5 0.50 0.47–0.53 0.22 0.20–0.23

19 0.43 0.36–0.49 0.48 0.44–0.52 0.21 0.19–0.23

20 0.40 0.32–0.48 0.45 0.39–0.51 0.21 0.18–0.23

21 0.37 0.25–0.47 0.42 0.33–0.51 0.19 0.15–0.23

22 0.32 0.16–0.47 0.40 0.27–0.53 0.18 0.11–0.22

23 0.27 0.05–0.48 0.41 0.22–0.61 0.15 0.04–0.22

24 0.21 0.00–0.51 0.50 0.21–0.81 0.12 0.00–0.21

Table 3 Estimates of covariance matrices for order three 
Legendre polynomials for the additive genetic effects



0.62 0.06 −0.08 −0.01

0.06 0.04 −0.02 −0.02

−0.08 −0.02 0.02 0.00

−0.01 −0.02 0.00 0.01




Table 4 Estimates of covariance matrices for order three 
Legendre polynomials for the permanent environmental effects



0.73 −0.03 −0.12 0.04

−0.03 0.18 −0.01 −0.06

−0.12 −0.01 0.09 −0.01

0.04 −0.06 −0.01 0.05




Table 5 Estimates of residual variances

Period Residual 
variances

Weeks 1 to 4 1.33

Weeks 5 to 12 1.38

Weeks 13 to 17 1.21

Weeks 18 to 24 1.10
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Persistency
Table  1 shows that the production peak occurred on 
average during week 3 of lay. Persistency is defined as 
the slope from the peak to a later point in the production 
period. For example, the slope could be the difference in 
production at week 3 from the production at week 18, 
divided by 16, with a smaller slope representing greater 
persistency. Hens could be ranked by total 24-week pro-
duction, within that by persistency, and within that by 
delay time from light date to the day of first egg or by 
using an index approach. This requires solving a three-
trait selection problem on the components of egg pro-
duction. Availability of individual feed intake would 
allow a complete picture on how to select efficient birds. 
Furthermore, RR models allow accurate predictions of 
breeding values of 24-week egg production based on pro-
duction data over 16 to 20 weeks after first egg. Correla-
tions between egg production based on 16 and 24 weeks 
were high and ranged from 0.94 to 96.

Genetic correlations between weeks of lay
Estimates of the genetic correlations between weeks 
of lay were positive and ranged from moderate (0.67) 
to high (0.99) (Table  6). The genetic correlation esti-
mates tended to decrease as the time interval between 
weeks of production increased. The lowest estimates 
(0.66) were found between weeks 1 and 18. Kranis et al. 
[24] compared RR models with multi-trait models over 
five consecutive 28-day periods of lay in turkeys and 
reported lower genetic correlations of the first with the 
third (−  0.09) and fourth (−  0.08) periods than those 
estimated in our study. Estimates of genetic correlations 
between periods in the later stages of production were 
stronger than those between earlier stages, with esti-
mates ranging from 0.94 to 0.99. Estimates of genetic cor-
relations for later stages of production were also similar 
to those found in turkeys and quail [28]. These results 
show that variance components and genetic correlations 
between records at different weeks were less than 1 and 

changed over time. In these situations, RR models allow 
more precise modelling of the data and are, therefore, 
recommended for the genetic evaluation of egg produc-
tion traits in turkeys.

Genomic prediction
Here, comparisons of EBV and GEBV were conducted 
based on validation correlations and based on the vari-
ance of Mendelian sampling predictions. The valida-
tion correlations are shown in Fig. 1 for each week. The 
prediction accuracies ranged from 0.11 to 0.44 for RR-
PBLUP and from 0.22 to 0.57 for RR-ssGBLUP. A similar 
advantage of ssGBLUP over the pedigree-based EBV in 
terms of accuracy was reported in commercial layers for 
the later periods of production [29].

The highest accuracies recorded in our study were 
at weeks 20 and 24 for RR-PBLUP and RR-ssGBLUP, 
respectively. The accuracies of RR-ssGBLUP were lower 
but not statistically different from those for RR-PBLUP 
for some weeks. In a previous study conducted on layer 
hens, genomic information did not improve the accu-
racy of prediction for longitudinal egg numbers in the 
early stages of production [29]. These results may be due 
to differences in the genetic architecture of egg produc-
tion traits between species or breeds, differences in link-
age disequilibrium (LD) between markers and QTL, and 
variation of the genetic expression of egg production at 
different ages. Further investigation into the dynamics of 
the prediction accuracy in different periods of egg pro-
duction is ongoing.

Mendelian sampling variance ratios are shown in Fig. 2 
for each week. The ratios were higher for RR-ssGBLUP 
(ranging from 0.17 to 0.34) than for RR-PBLUP (ranging 
from 0.17 to 0.26), which indicates that including marker 
information indeed improved the estimates of Mendelian 
sampling effects. The gain was consistent over all weeks, 
as found by Buch et  al. [30], who reported that predic-
tion accuracy increased significantly for traits with a low 
heritability when genomic information was included. 

Table 6 Estimates ± standard error of heritability (on the diagonal in italics) and of genetic (above diagonal) and phenotypic 
correlations (below diagonal) for egg number in selected weeks of egg production

Week 1 Week 4 Week 8 Week 12 Week 16 Week 20 Week 24

Week 1 0.09 ± 0.01 0.88 ± 0.04 0.75 ± 0.06 0.70 ± 0.06 0.67 ± 0.06 0.67 ± 0.06 0.76 ± 0.05

Week 4 0.27 ± 0.01 0.11 ± 0.01 0.96 ± 0.01 0.88 ± 0.02 0.78 ± 0.04 0.74 ± 0.04 0.87 ± 0.02

Week 8 0.18 ± 0.01 0.35 ± 0.01 0.14 ± 0.01 0.97 ± 0.01 0.89 ± 0.02 0.84 ± 0.03 0.94 ± 0.01

Week 12 0.15 ± 0.01 0.30 ± 0.01 0.39 ± 0.01 0.17 ±  0.01 0.97 ± 0.01 0.95 ± 0.01 0.99 ± 0.01

Week 16 0.14 ± 0.01 0.23 ± 0.01 0.32 ± 0.01 0.40 ± 0.01 0.21 ± 0.02 0.99 ± 0.00 0.99 ± 0.00

Week 20 0.15 ± 0.01 0.18 ± 0.01 0.25 ± 0.01 0.34 ± 0.01 0.42 ± 0.01 0.21 ± 0.02 0.97 ± 0.01

Week 24 0.14 ± 0.01 0.21 ± 0.01 0.24 ± 0.01 0.25 ± 0.01 0.27 ± 0.01 0.31 ± 0.01 0.12 ± 0.01
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However, the accuracy of genomic prediction depends 
on many factors, including population size, heritability of 
the trait, number of markers, LD, and the number of QTL 
influencing the trait [29, 30]. Similar to our study, Schaef-
fer et  al. [31] used the variance of Mendelian sampling 
effect predictions to compare the accuracy of genomic 
over pedigree analyses in Atlantic salmon and found that 
the genomic method gave substantially higher ratios than 
the pedigree method.

Both the correlation-based statistic and Mendelian 
sampling statistic indicate that inclusion of genomic 
information can improve the accuracy of predictions of 
breeding values and that the increase in accuracy can 
occur over the entire trajectory of egg production. The 

correlation-based statistic required the use of validation 
phenotypes, which include genetic, permanent environ-
mental effect, and residual effects for a generally small 
subset of the data. Thus, the correlation-based statis-
tic shows more variability over the 24  week trajectory 
because each time point involves a different set of phe-
notypic records. The Mendelian sampling statistic makes 
use of the same information at each time point, and thus, 
appears to be smooth over the production trajectory.

Conclusions
To provide knowledge on egg production traits and 
maximize the accuracy of EBV for egg production 
in a turkey population, a single step RR model was 
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Fig. 1 Correlation‑based accuracies of estimated breeding values using single‑step random regression (RR‑ssGBLUP) and using pedigree‑based 
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compared with a pedigree-based RR model, and vari-
ance components were estimated over time. Although 
the increase in accuracy over RR-PBLUP was not uni-
form across time, the predictions based on RR-ssG-
BLUP generally increased the accuracy of prediction, 
especially in the later weeks of lay. Random regression 
models require that egg production is monitored from 
the day of first egg, which may need some adjustments 
in the procedures applied in a commercial enterprise, 
but in return they provide a clearer picture of the shape 
of the egg production curves and allow quantification 
of persistency of production. The economic benefits 
versus the cost of obtaining those benefits require fur-
ther consideration.
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