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Abstract Previous studies have identified a crucial role of the gut microbiome in modifying

Alzheimer’s disease (AD) progression. However, the mechanisms of microbiome–brain interaction in

AD were so far unknown. Here, we identify microbiota-derived short chain fatty acids (SCFA) as

microbial metabolites which promote Ab deposition. Germ-free (GF) AD mice exhibit a substantially

reduced Ab plaque load and markedly reduced SCFA plasma concentrations; conversely, SCFA

supplementation to GF AD mice increased the Ab plaque load to levels of conventionally colonized

(specific pathogen-free [SPF]) animals and SCFA supplementation to SPF mice even further

exacerbated plaque load. This was accompanied by the pronounced alterations in microglial

transcriptomic profile, including upregulation of ApoE. Despite increased microglial recruitment to

Ab plaques upon SCFA supplementation, microglia contained less intracellular Ab. Taken together,

our results demonstrate that microbiota-derived SCFA are critical mediators along the gut-brain

axis which promote Ab deposition likely via modulation of the microglial phenotype.

Introduction
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the aggrega-

tion and deposition of amyloid-b (Ab) and tau. The identification of several AD risk genes such as

TREM2, CD33, or CR1 as key regulators of microglial function triggered mechanistic studies reveal-

ing the contribution of the brain’s resident innate immune cells to AD pathology. In particular, trig-

gering microglial phagocytic clearance of Ab can reduce amyloid plaque pathology (Daria et al.,

2017; Hansen et al., 2018). Besides the already well-acknowledged contribution of amyloidogenic

protein processing and neuroinflammation to AD pathology, the gut microbiome is emerging as a

novel and highly relevant modifier of brain pathology. A key function of the gut microbiome has

been established over the past decades in a number of neurological diseases spanning across

Colombo et al. eLife 2021;10:e59826. DOI: https://doi.org/10.7554/eLife.59826 1 of 23

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.59826
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


neurodevelopment, stroke, Parkinson’s disease, and neuropsychiatric disorders (Tremlett et al.,

2017). For example, we have previously described an intricate bidirectional link between the gut

and brain after acute stroke, where stroke changes the gut microbiota composition (Singh et al.,

2016). In turn, post-stroke dysbiosis induced changes in the immune response to stroke. Most

importantly, the gut microbiota composition can be modulated to improve the disease outcome in

stroke and other neurological disorders (Benakis et al., 2020), a finding that was robustly repro-

duced across disease entities and laboratories (Cryan and O’Mahony, 2011).

Only recently, a role of gut microbiota was also established in AD. AD patients have an altered

gut microbiome compared to matched control patients, characterized by reduced species diversity

and an increased abundance of Bacteroidetes (Vogt et al., 2017). Similar findings were obtained in

5xFAD and APPPS1 amyloidosis mouse models (Brandscheid et al., 2017; Harach et al., 2017).

Other studies have identified that antibiotic treatment-induced changes in microbiota composition

as well as microbial deficiency in germ-free (GF) animals were associated with reduced Ab pathology

(Dodiya et al., 2019; Harach et al., 2017; Minter et al., 2017; Minter et al., 2016). This effect

could result from reduced Ab production or increased clearance. Interestingly, GF animals as well as

antibiotic-mediated dysbiotic animals exhibited reduced microglial activation (Minter et al., 2017).

While previous studies documented a link between the gut microbiome and Ab pathology, the

underlying mechanisms and molecular mediators remain elusive. To address this key question, we

generated a GF amyloidosis mouse model which allowed us to explore and identify bacterial metab-

olites that mediate gut-brain axis in AD. Moreover, we performed a detailed analysis of the gut

microbiome’s impact on amyloidogenesis and neuroinflammation, in order to differentiate between

direct effects on Ab generation and effects mediated via microglial cells. Our findings identify micro-

biota-derived short chain fatty acids (SCFA), bacterial fermentation products of fiber, as the sufficient

mediator to promote Ab plaque deposition. We further identified microglial transcriptomic and func-

tional alterations that may underscore increased Ab deposition triggered by SCFA.

Results

The gut microbiome promotes AD pathology
In order to study mechanisms of microbiota–brain interaction in AD, we generated a GF amyloidosis

mouse model (APPPS1) by embryo transfer into axenic mice. GF APPPS1 mice were generated inde-

pendent of previous studies using a similar approach (Harach et al., 2017; Minter et al., 2016). In

accordance with these reports, we also observed a striking reduction in cerebral Ab plaque load in 5

months old GF APPPS1 animals compared to their littermate GF APPPS1 animals which have been

naturally recolonized (Rec) or APPPS1 mice housed under conventional, specific pathogen-free (SPF)

conditions (Figure 1A). Although not powered to specifically investigate sex differences, an increase

of plaque load by bacterial colonization was apparent also in a sex-specific analysis (Figure 1—fig-

ure supplement 1). Correspondingly, GF APPPS1 mice demonstrated a significantly better cognitive

performance in a spatial memory task compared to recolonized and SPF mice (Figure 1B). We fur-

ther analyzed the size distribution of Ab plaques between the GF and SPF animals using an auto-

mated analysis paradigm of three-dimensional plaque segmentation and quantification in the frontal

cortex (Peters et al., 2018) (Figure 1C). This showed that GF mice display a significantly decreased

density of small (4–8 mm) Methoxy-X04-positive plaques compared to SPF, while larger plaques were

not affected (Figure 1D). This result suggests that bacterial colonization might preferentially affect

plaque formation rather than plaque growth.

SCFA are bacterial metabolites contributing to AD pathology
As our initial experiments indicated a specific effect of the gut microbiome on the formation of small

plaques, we focused our mechanistic studies on the early phase of Ab plaque deposition, which cor-

responds to the 3 months of age in APPPS1 mouse model. Previous studies have demonstrated that

SCFA (acetate, butyrate, and propionate) are metabolites produced by the gut microbiota which are

critical mediators in various brain diseases such as stroke, Parkinson’s disease, and neuropsychiatric

disorders (Dalile et al., 2019). Therefore, we quantitatively analyzed the total plasma SCFA concen-

trations of acetate, butyrate, and propionate (C:2 C:4 SCFA) using gas chromatograph/mass spec-

trometry (GC/MS) based analysis in GF, recolonized and SPF mice. We observed an increase in
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plasma concentrations for all three SCFA in SPF APPPS1 mice compared to GF conditions

(Figure 2A). In order to study a causal link between SCFA and Ab deposition, we performed a SCFA

supplementation experiment by providing SCFA to GF APPPS1 mice. We used a combination of all

three SCFA (Figure 2B), because all three were affected in plasma by bacterial colonization and this

combination was also used by us and others in previous studies (Erny et al., 2015; Sadler et al.,

2020). In accordance with previous reports, the used amounts of supplemented SCFA in the
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Figure 1. Germ-free APPPS1 mice show reduced Alzheimer’s disease (AD) pathology. (A) Representative images and analysis of brain cortices from 5

months old germ-free (GF), naturally recolonized (Rec) and conventionally colonized (specific pathogen-free [SPF]) APPPS1 mice immunostained for Ab

(clone 6E10). Quantification of parenchymal plaque load reveals significantly reduced Ab burden in GF mice compared to the Rec and SPF groups.

Values are expressed as percentages of amyloid plaque area and normalized to GF group (ANOVA; n(GF) = 9, n(Rec) = 6, n(SPF) = 9). (B)

Representative results and quantification from Barnes maze behavioral analysis of 5 months old GF, Rec and SPF APPPS1 mice. Quantification of

frequency of error zone entering in the Barnes maze reveals a better performance in GF mice compared to Rec and SPF mice (ANOVA; n(GF) = 6, n

(Rec) = 8, n(SPF) = 6). (C) Sagittal overview image indicating the analysis ROIs in the frontal cortex (blue: Methoxy-X04-positive plaques) and

representative image demonstrating segmentation of Methoxy-X04 fluorescence intensity into individual plaques. The images show maximal intensity

projections. Individual plaques are labeled with different colors. (D) Frequency distribution of plaque radius in 5 months old GF and SPF APPPS1 mice

(two-way ANOVA; n(GF) = 5, n(SPF) = 5). All data are derived from at least three individual experiments and presented as mean ± SEM.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sex-specific analysis of amyloid plaque load.
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Figure 2. Short chain fatty acids (SCFA) are mediators of Ab plaque deposition. (A) Plasma SCFA concentrations of acetate, butyrate, and propionate

were quantified using GC/MS-based metabolomics analysis, showing an increase in specific pathogen-free (SPF) compared to germ-free (GF) mice

(ANOVA; n(GF) = 4, n(Rec) = 5, n(SPF) = 4; two individual experiments). (B) Experimental plan for SCFA supplementation in GF mice. Four weeks old

GF mice have been treated with SCFA in drinking water for 8 weeks. (C) Representative images from GF (control-treatment), Rec, and GF

supplemented with SCFA mice showing a significant increase in Ab plaque load upon SCFA administration (ANOVA; n(GF) = 7, n(Rec) = 9, n(GF

+SCFA) = 6; three individual experiments). (D) SPF APPPS1 mice were supplemented with control or SCFA in drinking water for 4 weeks (from 8 to 12

weeks of age). Histological analysis revealed a significantly increased plaque load in SCFA-supplemented SPF mice compared to control treatment

(unpaired T-test; n(Ctrl) = 4, n(SCFA) = 5; one individual experiment). All data in this figure are presented as mean ± SEM.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Total short chain fatty acids (SCFA) concentrations.
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drinking water were sufficient to normalize plasma SCFA levels comparable to SPF mice (Figure 2—

figure supplement 1). Strikingly, SCFA supplementation of GF APPPS1 mice was sufficient to nearly

double cerebral Ab plaque load (Figure 2C). Next, we treated SPF APPPS1 mice (4 weeks supple-

mentation, starting at 8 weeks of age) in order to test a bona fide disease-promoting function of

SCFA. Indeed, SCFA treatment of SPF mice significantly increased plaque load compared to control-

treated SPF mice, revealing the potential of SCFA to worsen Ab pathology in APPPS1 mice

(Figure 2D). Taken together, our results demonstrate that SCFA are sufficient to mediate effects of

bacterial gut colonization onto Ab pathology.

SCFA mildly increase amyloidogenic processing
After identifying SCFA as the key and sufficient mediator of the gut microbiome’s effect on Ab

pathology, we aimed to identify the underlying mechanism. First, we explored potential direct

effects of SCFA on amyloid precursor protein (APP) expression and processing by immunoblot analy-

sis of brain tissue of GF APPPS1 mice with SCFA or control supplementation (Figure 3A,B). In accor-

dance with the histological plaque load analysis, we identified markedly increased Ab levels in SCFA-

compared to control-supplemented GF APPPS1 mice. However, levels of the full-length APP

(APP FL) were comparable between the groups. We observed only a mildly reduced ratio of the APP

C-terminal fragment (CTFs) C83 (** in Figure 3A, produced by ADAM10 cleavage) and C99 (* in

Figure 3A, produced by BACE1 cleavage). However, this slightly increased amyloidogenic APP proc-

essing upon SCFA supplementation to GF APPPS1 mice is unlikely to explain alone the substantially

increased levels of Ab (Figure 3B). We further analyzed protein levels of secretases responsible for

APP processing (BACE1, ADAM10, and a catalytic subunit of g-secretase PSEN1), but could not

detect any alterations upon the SCFA supplementation of GF APPPS1 mice (Figure 3A,B). More-

over, using an in vitro g-secretase activity assay (Figure 3C), we show that addition of SCFA does

not change g-secretase activity or processivity as reflected by comparable levels of total Ab and

unaltered profiles of Ab species (Ab37, 38, 40, and 42/43) in this cell free assay. In contrast to a pre-

vious study (Ho et al., 2018), we could exclude a direct effect of SCFA on Ab aggregation

(Figure 3D) as similar Ab aggregation kinetics were determined in the presence or absence of SCFA

in a Thioflavin T aggregation assay. Taken together, our data suggest that increased levels of Ab

triggered by SCFA in vivo are not mediated by major quantitative or qualitative changes in Ab pro-

duction but may rather be triggered by alterations in Ab deposition and clearance.

SCFA supplementation results in increased microglial activation
Given the critical role of microglia in AD and a demonstrated link between microglial function and

Ab pathology, we next focused on microglia as the potential cellular mediators of the SCFA effect

on Ab pathology (Dodiya et al., 2019). First, we observed that microglia in SCFA-supplemented GF

APPPS1 mice had a significantly increased circularity index (CI; i.e. more amoeboid shape) indicating

a more activated microglial phenotype (Figure 4A). We combined single molecule fluorescent in situ

hybridization (smFISH, for microglial identification by Cx3cr1 expression) and immunofluorescence

(for plaque identification by staining with anti-Ab 2D8 antibody) to visualize and quantify clustering

of microglia around Ab plaques. We observed increased microglial recruitment to Ab plaques in

SCFA- compared to control-treated APPPS1 GF mice (Figure 4B). Next, we investigated the influ-

ence of bacterial colonization on microglial reactivity in the WT background. To this end, we injected

brain homogenates from 8 months old APPPS1 mice containing abundant Ab into the hippocampus

of GF or SPF WT mice (Figure 4C) and subsequently analyzed microglial abundance and Trem2

mRNA expression as a marker of microglial activation by smFISH. We observed a significant increase

in overall microglial cell counts at the peri-injection site of SPF compared to GF WT mice

(Figure 4D). Moreover, microglia in SPF mice expressed significantly more Trem2 mRNA puncta per

microglia compared to GF WT mice (Figure 4E). Next, we questioned whether this SCFA-induced

change in microglial recruitment and reactivity might also be associated with an altered phagocytic

capacity of microglia, which is one of the most intensively investigated microglial functions in the

context of AD. Therefore, we assessed the recruitment of microglia to Ab plaques and their phago-

cytic uptake. This was analyzed by SCFA- or control-treatment in SPF APPPS1 mice to avoid poten-

tial counteracting effects of GF mice on microglial recruitment or phagocytosis. Corresponding to

the increased recruitment and reactivity in GF SCFA-supplemented mice, we also observed a
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significantly increased microglial recruitment to Ab plaques in SCFA-supplemented SPF

APPPS1 mice (Figure 4F). In contrast to control-treated mice, we detected significantly less micro-

glia with intracellular Ab in SCFA-treated mice that is in accordance with the increased Ab pathology

(Figure 4F right). However, when using an ex vivo amyloid plaque clearance assay, we did not
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Figure 3. Short chain fatty acids (SCFA) mildly increase amyloidogenic processing. (A) Western blot analysis and (B) its densitometry quantification of 3

months old brain homogenates of control (Ctrl)- and SCFA-supplemented germ-free (GF) APPPS1 animals. The Ab level is significantly increased in

SCFA group in comparison to Ctrl, despite unaffected APP FL levels. APP CTFs show a decreased C83 (**) to C99 (*) ratio. We could not detect

alterations in protein levels of secretases involved in APP processing (ADAM10, BACE1, and g-secretase/PSEN1). m = ADAM10 mature form; im =

ADAM10 immature form. Data represent mean ± SEM (unpaired T-test; n(Ctrl) = 3, n(SCFA) = 3). (C) Upper panel: g-Secretase reconstituted into lipid

vesicles was incubated at 37˚C together with the C99-based substrate C100-His6 in the presence of increasing doses of a SCFA mixture (375 and 750

mM final concentration of total SCFA of an equimolar mixture of Na-acetate, Na-propionate, and Na-butyrate) for 24 hr. Production of Ab was analyzed

by immunoblotting. g-Secretase inhibitor (GSI) L-685,458 (0.4 mM) was used as a negative control. No alterations in Ab levels were detected in the

presence of SCFA. Lower panel: Qualitative analysis of individual Ab species via Tris-Bicine-Urea SDS-PAGE reveals that SCFA treatment does not alter

the ratio among the different Ab species (Ab37-38-40-42/43) suggesting no direct effects on modulation of g-secretase cleavage. (D) Aggregation

kinetics of monomeric Ab40 recorded by the increase in fluorescence of Thioflavin T incubated with either 30 mM NaCl (Ctrl) or 30 mM SCFA mixture

do not show any significant difference, suggesting that SCFA do not directly modify Ab fibrillarization. Data points represent mean ± SD from three

independent experiments.
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Figure 4. Short chain fatty acids (SCFA) modulate microglia. (A) Morphological analysis of microglia shows an increase in the circularity index, indicating

a more activated phenotype, in SCFA- compared to control-treated germ-free (GF) APPPS1 mice. Iba1 (red) has been used as microglial marker. For

each group, each shade of color represents the microglia from a single mouse (U test; n(Ctrl) = 6, n(SCFA) = 5). (B) smFISH analysis of microglial cells

(red, Cx3cr1 mRNA particles) surrounding amyloid plaques (green, anti-Ab clone 2D8) shows an increased number of Cx3cr1-positive cells (>4 puncta)

Figure 4 continued on next page
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detect a direct effect of SCFA-treatment on the phagocytic capacity of microglia (Figure 4—figure

supplement 1).

Microglia-derived ApoE expression is increased upon supplementation
by SCFA
To analyze the effect of SCFA on microglia in more detail, we performed a transcriptome Nanostring

analysis of brain samples from control- and SCFA-supplemented GF APPPS1 mice at 3 months of

age. Corresponding to the results of the smFISH and histological analysis (Figure 4A,B), we found

numerous candidate genes previously associated with microglial activation to be upregulated in

SCFA-supplemented APPPS1 animals (Figure 5A,B). Many of the most abundantly regulated micro-

glial genes were associated with secretory functions (chemokines and complement factor secretion)

and with pathogen recognition (e.g. Tlr7, Trem2, Tyrobp, and Myd88) (Figure 5B). A biological net-

work analysis revealed upregulation of ApoE and subsequent activation of the ApoE-TREM2 path-

way as a central biological pathway effected by SCFA (Figure 5C). In accordance with the

transcriptomic data, we further confirmed an increase in ApoE protein expression in SCFA- com-

pared to control-supplemented GF APPPS1 mice by immunohistochemistry (Figure 5D). Previous

studies have indicated astrocytes and microglia as major sources of cerebral ApoE (Holtzman et al.,

2012; Shi and Holtzman, 2018). Therefore, we analyzed by immunohistochemistry the amounts of

ApoE protein in control- and SCFA-supplemented GF APPPS1 mice and detected an increase of

ApoE coverage colocalizing with microglial cells but not with GFAP-positive astrocytes. Correspond-

ingly to bacterial colonization at 5 months of age (Figure 1D), also SCFA treatment of 3 months old

APPPS1 mice resulted specifically in an increase of small plaques (4–8 mm radius) (Figure 5F).

A direct effect of SCFA on the microglial transcriptomic profile was further confirmed by treating

cultured primary microglia from SPF WT mice with SCFA. As expected and previously described, the

overall transcriptomic profile between microglia in vitro differed from the in vivo profile, as also illus-

trated by the reduced ApoE expression (Bohlen et al., 2017; Butovsky et al., 2014). Nevertheless,

the combined SCFA treatment induced a pronounced upregulation of genes previously associated

with inflammatory functions of microglia (Figure 5—figure supplement 1A). Next, using this model

system, we compared the impact of individual SCFA (acetate, butyrate, and propionate) and the

combined treatment on the microglial transcriptome. Analysis of individual genes as well as biologi-

cal processes by pathway analysis revealed a more abundant overlap of butyrate and propionate

than acetate with the combined SCFA treatment effect (Figure 5—figure supplement 1B,C). Yet,

none of the individual SCFA effects were sufficient to achieve the changes in the transcriptomic pro-

file of the combined SCFA treatment, suggesting a synergistic effect of single SCFA on modulating

microglia.

Discussion
Recent studies have demonstrated a key role of the gut microbiome in Ab pathology in AD. How-

ever, the mechanisms by which the microbiome modulates disease progression and the molecular

Figure 4 continued

clustering around Ab plaques in SCFA- compared to control-supplemented GF APPPS1 mice. DAPI (blue) was used as nuclear dye (U test; n(Ctrl) = 5, n

(SCFA) = 5 mice, 5 FOV per mouse). (C) Experimental outline for APPPS1 brain homogenate injection into a WT mouse brain showing the injection site

(red dot). (D) smFISH analysis of Cx3cr1-positive cells (>4 puncta) surrounding the APPPS1 brain homogenate injection site (analysis area relative to

injection site for all brains) showing an enhanced recruitment of microglial cells in specific pathogen-free (SPF) versus GF WT mice. (E) APPPS1 brain

homogenate injection induces higher microglial activation in SPF in comparison to GF WT mice as shown by the higher amount of Trem2 mRNA puncta

(red) per Cx3cr1-positive (green) microglia. DAPI (blue) was used as nuclear dye. In D and E, each different shade of color represents the microglia from

a single mouse (U test, n(GF) = 3, n(SPF) = 3; two individual experiments, 120 analyzed images (with multiple microglia) per mouse). (F) Microglial

recruitment and Ab plaque uptake were histologically quantified in SCFA- and control-supplemented SPF APPPS1 mice. Although significantly more

CD68-positive (green) and Iba1-positive (red) microglial cells were located at Ab plaques (white, anti-Ab clone 3552), the number of Ab-positive

microglia was significantly reduced in the SCFA- compared to the control-treated group. Values are expressed as percentages and normalized to the

control-treated group (unpaired T-test; n(Ctrl) = 4, n(SCFA) = 5; one individual experiment).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Ex vivo amyloid plaque clearance assay.
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Figure 5. Increased ApoE expression marks microglial activation upon short chain fatty acids (SCFA) supplementation. (A) Heatmap of Nanostring

transcriptomic analysis from control- and SCFA-supplemented germ-free (GF) APPPS1 mice at 3 months of age. Row values were scaled using unit

variance scaling. Genes previously associated with microglial function have been annotated on the heatmap. Three mice per group have been

analyzed. (B) Top 20 upregulated genes in SCFA- versus control-treated samples. Most of transcriptome hits have been previously associated with

Figure 5 continued on next page
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mediators along the gut-brain axis have remained unknown. In this study, we identified microbiota-

derived SCFA as microbial metabolites contributing to Ab plaque deposition in the brain. GF

APPPS1 mice have markedly reduced SCFA concentrations and reduced plaque load, and supple-

mentation with SCFA is sufficient to mimic the microbiome’s effect and increase Ab plaque burden.

We identified microglia as the key cell population responsive to SCFA and increased microglial

ApoE may mediate accelerated Ab deposition during early stages of amyloidogenesis.

The gut bacteria have an intricate function in preserving the integrity of an intestinal–epithelial

barrier, but exceeding this function, they have also been demonstrated to be critical for shaping the

immune system, host metabolism, and nutrient processing (Bäckhed et al., 2004; Hooper et al.,

2001; Round et al., 2011). Indeed, the functions of the gut microbiome extend beyond the intesti-

nal tract. With their rich repertoire of antigens, metabolites, and direct interaction with the auto-

nomic nervous system the microbiome potently influences remote organ function including the

brain. The microbiome plays an important role in microglial maturation during development and in

adulthood (Abdel-Haq et al., 2019). Previously believed to be shielded from the peripheral immune

system and blood-borne mediators, it became apparent that the brain is accessible for microbial

metabolites to affect cerebral immunity in health and disease (Abdel-Haq et al., 2019;

Janakiraman and Krishnamoorthy, 2018).

In accordance with our observation of SCFA to be the mediator along the gut-brain axis in AD,

multiple lines of evidence have indicated that SCFA might be the key microbial metabolite group

acting on brain function. Particularly, SCFA have been demonstrated to induce microglial maturation

using a similar analysis paradigm by SCFA supplementation in GF mice as used in our study

(Erny et al., 2015). In a Parkinson’s disease mouse model, SCFA were sufficient to induce neuroin-

flammation and disease progression in the absence of the gut microbiome (Sampson et al., 2016).

Moreover, SCFA have been implicated in a wide range of brain disorders or physiological functions

under cerebral control such as mood disorders, autism spectrum disease, or energy metabolism

(Cryan et al., 2019; Li et al., 2018; van de Wouw et al., 2018). Specifically, for AD patients it has

previously been shown that they have alterations in microbiota composition (Haran et al., 2019;

Vogt et al., 2017). Thus, it is conceivable that SCFA concentrations might be altered in AD patients

(Nagpal et al., 2019). One previous clinical study focusing on the association between SCFA con-

centration and AD disease burden suggested a correlation between amyloid load and blood SCFA

concentrations (Marizzoni et al., 2020). Yet, all these clinical evidence of a potential association

between SCFA concentrations and disease progression in AD is rather preliminary and requires con-

firmation in prospectively recruited and larger cohorts.

Over the past decade, microglial cells have come into the focus of experimental AD research.

This has been driven by the identification of several genetic AD risk loci being associated with micro-

glial cells (Long and Holtzman, 2019). Moreover, microglia have been demonstrated in murine AD

models to actively contribute to various pathophysiological process in AD such as plaque seeding,

plaque phagocytosis, and neuronal dysfunction by synaptic pruning (Heneka et al., 2014;

Heneka et al., 2013; Hong et al., 2016; Sarlus and Heneka, 2017). Previous proof-of-concept stud-

ies investigating a potential role of the microbiome in AD have already indicated an effect of micro-

bial colonization or antibiotic treatment on microglial activation (Dodiya et al., 2019; Harach et al.,

2017; Minter et al., 2017). Although previous studies did not reveal a mechanistic link between

Figure 5 continued

microglial activation. (C) Functional gene interaction network analysis using Ingenuity Pathway Analysis. Genes are colored based on fold-change values

determined by RNA-Seq analysis, where red indicates an increase in SCFA- and green in control-treated animals. Network analysis revealed

upregulation of the ApoE-TREM2 axis as one of the principal biological pathways upregulated by SCFA. (D) Representative sagittal brain section

indicating location of the analyzed region of interest in the frontal cortex and representative image showing ApoE (green) distribution. Quantification of

ApoE signal showed a SCFA-dependent increase of ApoE expression (unpaired T-test; n(Ctrl) = 5, n(SCFA ) = 5; three individual experiments). (E)

Quantification of ApoE colocalization (absolute coverage area in mm2) with microglia and astrocytes in control- and SCFA-supplemented GF APPPS1

mice at 3 months of age (unpaired T-test; n(Ctrl) = 5, n(SCFA) = 5; two individual experiments). (F) Analysis of Methoxy-X04-stained brain sections

showed a specific increase in plaques of smaller sizes (4–8 mm radius) in 3 months old SCFA- compared to Ctrl-supplemented GF APPPS1 mice

(unpaired T-test per bin; n(Ctrl) = 5, n(SCFA) = 5; three individual experiments). Data represent mean ± SEM.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effect of individual short chain fatty acids (SCFA) on microglial polarization.

Colombo et al. eLife 2021;10:e59826. DOI: https://doi.org/10.7554/eLife.59826 10 of 23

Research article Immunology and Inflammation Neuroscience

https://doi.org/10.7554/eLife.59826


microbiome function and Ab plaque pathology, they have reproducibly shown that microbiota eradi-

cation (GF mice) or impairing the microbiome’s metabolic function (antibiotic treatment) reduced

microglial activation and Ab plaque load, which is in accordance with our study. This may at first

glance appear contradicting with the research hypothesis supporting microglial activation and their

corresponding increased phagocytic clearance as an approach to reduce Ab plaque load

(Daria et al., 2017; Guillot-Sestier et al., 2015). However, we should bear in mind a potentially dual

nature of microglial responses and their concomitant beneficial and detrimental roles in AD

(Lewcock et al., 2020). Accordingly, previous studies have unequivocally demonstrated a role of

microglia in promoting plaque seeding and growth, particularly at early stages of AD pathology. For

example, microglia have been attributed to promote plaque seeding by the release of pro-inflamma-

tory protein complexes, the so-called ASC specks (Venegas et al., 2017). A recent elegant study

using sustained microglia depletion starting before plaque pathogenesis revealed a critical role of

microglia in the formation of Ab plaques and plaque density (Spangenberg et al., 2019). On the

other hand, preventing microglial activation, such as upon loss of Trem2, increased amyloid seeding

due to reduced phagocytic clearance of Ab seeds, but at the same time reduced plaque-associated

ApoE (Parhizkar et al., 2019). Previous studies demonstrated that ApoE co-aggregates with Ab

fibrils and contributes to plaque seeding and plaque core stabilization (Liao et al., 2015), thus

underscoring the complexity of microglia–ApoE interactions during amyloidogenesis.

ApoE is predominantly produced by astrocytes under physiological conditions, but upregulated

in AD microglia (Sala Frigerio et al., 2019; Sebastian Monasor et al., 2020). Indeed, microglial

depletion in the 5xFAD mouse model resulted in a marked reduction of plaque-associated ApoE

(Spangenberg et al., 2019). In the present study we identified upregulation of microglial ApoE

expression. We hypothesize that increased ApoE expression may contribute to SCFA-driven micro-

glial activation and increased plaque load. However, final proof for this link requires investigation of

SCFA effects in mice with microglia-specific ApoE depletion and awaits future studies.

SCFA use membrane-receptors as well as receptor-independent mechanisms to enter target cells

and exert their functions. Receptors specifically activated by SCFA (free fatty-acid receptor-2 and -3)

have been identified in several organs, including the brain (Layden et al., 2013). Yet, the SCFA can

also freely enter target cells by simple diffusion or fatty acid transporters and exert their biological

function intracellularly, independent of specific receptors (Lin et al., 2012; Moschen et al., 2012).

Therefore, the most likely target mechanism to interfere with SCFA effects in microglia could be on

the level of chromatin remodeling and regulation of target gene expression as it has previously been

demonstrated (Davie, 2003; Huuskonen et al., 2004). However, the detailed mechanistic under-

standing of SCFA on microglial transcriptomic and functional regulation remains unclear and requires

future investigations.

Besides direct effects on brain function including glial cell homeostasis, SCFA can also affect

peripheral immune cells and thereby indirectly modulate neuroinflammatory mechanisms

(Cryan et al., 2019). SCFA have been demonstrated to be potent immune modulators particularly

of T cell function and their polarization into pro- and anti-inflammatory subpopulations (Smith et al.,

2013). In fact, we have previously demonstrated that the effect of SCFA on post-stroke recovery in

an experimental brain ischemia model was dependent on circulating T cells (Sadler et al., 2020;

Sadler et al., 2017). In these previous studies, circulating T cells mediated the effects of SCFA on

the cerebral micromilieu either by their reduction in cerebral invasion or by polarization of the

secreted cytokine profile. However, in contrast to AD, stroke induces a pronounced neuroinflamma-

tory response to the acute tissue injury with the invasion of large numbers of circulating T cells,

which have been demonstrated to contribute substantially to stroke pathology (Cramer et al., 2019;

Liesz et al., 2009). Therefore, while the peripheral polarization of T cells and their consecutive

impact on local neuroinflammation is conceivable after stroke, this pathway seems less likely in AD

with only very limited invasion of circulating immune cells into the brain, particularly in the early

stages of AD pathology. Moreover, the effect of SCFA on the peripheral immune compartment is

most likely site-dependent and might occur within the intestinal wall, blood circulation of secondary

lymphatic organs. It is a limitation of this study that SCFA supplementation was performed only by

oral administration (in drinking water) which might lead to unphysiologically high SCFA concentra-

tions in the upper gastrointestinal tract while physiological SCFA as fermentation products of the

microbiota occurs predominantly in the colon (Morrison and Preston, 2016). While site-specific
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effects of SCFA and differing resorption routes were beyond the scope of the present proof-of-con-

cept study, these aspects are critical for the clinical translation and require further studies.

Interestingly, the biological effect of SCFA on microglia seems to be largely dependent on the

specific disease condition. While SCFA in neurodegenerative conditions, as also in our study, have

been associated with microglial reactivity and activation, their function in primary autoimmune and

acute brain disorders has mainly been described to be anti-inflammatory. For example, we have

been previously shown that SCFA treatment promotes anti-inflammatory mechanisms and improve

neuronal function in ischemic stroke and similar findings have also been reported in experimental

autoimmune encephalitis (Haghikia et al., 2015; Sadler et al., 2020). The detailed cause of this

divergent functions of SCFA in different disease conditions is currently still unknown and requires

further exploration for the potential use of personalized treatment approaches. Yet, in light of our

results in the AD compared to the stroke model, it seems likely that the different effects of SCFA

treatment on disease outcome could be due to engaging different mechanistic routes, such as

peripheral lymphocyte polarization in EAE and stroke versus local effects on microglia in AD.

Our study suggests that SCFA-regulated pathways might be promising drug targets in the

peripheral circulation for early-stage AD to prevent microglial activation, ApoE production, and the

development of amyloid pathology. However, the therapeutic targeting and neutralization of SCFA,

e.g. by specific SCFA-scavengers, in order to chronically reduce circulating SCFA blood concentra-

tions is currently not established. Also attempting to reduce SCFA concentrations by reduction of

nutritional fiber intake is not a feasible therapeutic approach. Reduced fiber intake correlates with

increased risk of metabolic syndrome and cardiovascular events such as myocardial infarction and

stroke. Furthermore, dietary fiber restriction will most likely not be efficient to affect microglial acti-

vation in early-stage AD because a near-complete reduction of blood SCFA concentrations, as seen

in GF mice, will not be achieved by dietary intervention.

In conclusion, our study identifies SCFA as molecular mediators along the gut-brain axis in AD.

Identification of this novel pathway will open up new avenues for therapeutic targeting of the micro-

biome-SCFA-microglia axis to reduce the inflammatory impact on AD development.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Mus musculus)

APPPS1 doi:
10.1038/sj.embor.7400784

MGI:3765351 C57BL/6 background

Antibody Anti-IBA1
(guinea pig polyclonal)

SYSY Cat# 234 004,
RRID:AB_2493179

IHC (1:500)

Antibody Anti-IBA1
(rabbit polyclonal)

Wako Cat#:019–19741,
RRID:AB_839504

IHC (1:500)

Antibody Anti-CD68
(rat monoclonal)

Bio-Rad Cat#:MCA1957G,
RRID:AB_324217

IHC (1:500), WB (1:1000)

Antibody Anti-Amyloid Y188
(rabbit monoclonal)

Abcam Cat#:1565–1,
RRID:AB_562042

WB (1:1000)

Antibody Anti-Amyloid beta 3552
(rabbit polyclonal)

doi:
10.1523/JNEUROSCI.5354–05.2006

IHC (1:500), WB (1:2000)

Antibody anti-beta-Amyloid, 6E10
(mouse monoclonal)

BioLegend Cat# 803002,
RRID:AB_2564654

IHC (1:500)

Antibody Anti-Presenilin 1 (NT1)
(mouse monoclonal)

BioLegend Cat# SIG-39194–500,
RRID:AB_10720504

WB (1:1000)

Antibody Anti-Human Adam10
(mouse monoclonal)

R and D Systems Cat# MAB1427,
RRID:AB_2223057

WB (1:1000)

Antibody Anti-BACE1
(rabbit monoclonal)

Epitomics Cat# 2882–1,
RRID:AB_2061494

WB (1:1000)

Antibody Anti-Calnexin
(rabbit monoclonal)

Stressgen Cat# ADI-SPA-860,
RRID:AB_10616095

WB (1:1000)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Chemical compound, drug Sodium butyrate 98% Sigma Aldrich 303410 In vitro: 250 mM
In vivo: 40 mM

Chemical compound, drug Sodium propionate � 99.0% Sigma Aldrich P1880 In vitro: 250 mM
In vivo: 25.9 mM

Chemical compound, drug Sodium acetate anhydrous � 99% Sigma Aldrich S2889 In vitro: 250 mM
In vivo: 67.5 mM

Antibody Anti-Amyloid beta 2D8
(rat polyclonal)

DOI: 10.1016/j.nbd.2007.04.011 WB (1:1000)
IHC (1:300)

Antibody Anti-P2Y12
(rabbit polyclonal)

AnaSpec Cat# 55043A,
RRID:AB_2298886

IHC (1:100)

Antibody Anti-GFAP
(rabbit polyclonal)

Dako Cat# Z0334,
RRID:AB_10013382

IHC (1:200)

Antibody Anti-APOE
(mouse monoclonal)

DOI
10.1172/JCI96429

Clone HJ6.3B IHC (1:50)

Chemical compound, drug Thiazine red VWR Chemicals 27419.123 IHC (2 mM)

Chemical compound, drug Hoechst 33342 ThermoFisher H3570 IHC (1:2000)

Animal experiments
All animal experiments were performed under the institutional guidelines for the use of animals for

research and were approved by the governmental ethics committee of Upper Bavaria (Regierung-

spraesidium Oberbayern, license number #160–14). SPF B6.Cg-Tg (Thy1-APPSw,Thy1-PSEN1*L166P)

21Jckr (APPPS1) (Radde et al., 2006) mice were bred for this project at the core animal facility of

the Center for Stroke and Dementia Research in Munich. SPF mice in this study were kept at the

core animal facility of the Center for Stroke Dementia Research (Munich, Germany) in individually

ventilated cage systems at 12 hr dark–light cycle with ad libitum access to food and water.

GF mouse generation and handling
APPPS1 mice were rederived to GF status in the Clean Mouse Facility, University of Bern, Switzer-

land as previously reported (Harach et al., 2017) and housed in flexible-film isolators. All mouse

handling and cage changes were performed under sterile conditions. GF and SPF mice all received

the same autoclaved chow and sterile water. For SCFA treatment, mice were given a sterile-filtered

solution containing 25.9 mM sodium propionate, 40 mM sodium butyrate, and 67.5 mM sodium ace-

tate in sterile water ad libitum starting from 4 (treatment of GF mice) or 8 (treatment of SPF mice)

until 12 weeks of age. The SCFA water solution was renewed every 3 days. For surgical interventions

(stereotactic injection, see below) in GF mice, the whole surgical procedure and post-surgical care

was performed in a microbiological safety cabinet as previously described in detail (Singh et al.,

2018). Animals were regularly checked for germ-free status by aerobic and anaerobic cultures, cecal

DNA fluorescence stain, and 16 s rRNA PCR of fecal pellets. GF status of all animals used in this

study (control and SCFA-supplemented) has been confirmed after sacrificing the mice.

Natural recolonization of GF mice
GF littermate mice were naturally colonized through co-housing with conventional SPF mice from

the same SPF animal facility in which the conventional SPF APPPS1 mice were housed (Center for

Stroke and Dementia Research, Munich). Co-housing was started at 4 weeks of age and maintained

until sacrifice of the animals at 3 months of age. Animals were housed in HAN-gnotocage mini-isola-

tors and received sterile food pellets and water as GF mice.

Histological analysis of Ab plaque load and density
Mice were transcardially perfused with PBS followed by overnight post fixation with 4% PFA solu-

tion. Free floating 30 mm sagittal brain sections have been permeabilized and blocked for 1 hr in

PBS/0.5% Triton x-100/5% normal goat serum (NGS). Next, samples have been incubated overnight
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at 4˚C with primary antibody anti b-amyloid (Ab) (clone 6E10, 1:500, BioLegend) diluted in blocking

buffer and stained with the corresponding goat secondary antibody. Immunostainings have been

performed on six brain sections/animal collected every 300 mm starting from the interhemispheric fis-

sure. Three 10� images/section (front, middle, and rear cortex) have been acquired and the plaque

load (6E10 coverage area) has been determined using the particle analysis tool in ImageJ software

(NIH) and normalized on total tissue area. Analysis has been performed at least on five mice per

group/time point. Histological analysis has been performed by an investigator (AVC) blinded to

treatment groups. For analysis of plaque density, 30 mm sections were stained with Methoxy-X04

and confocal images were collected in Z-stacks. Eight ROI were selected across the cortex and

acquired across the different cortical layers. Image data analysis was performed as previously

reported in detail (Peters et al., 2018). In brief, local background correction was applied to diminish

intensity variations among different stacks and to account for the intensity decline in the axial dimen-

sion due to absorption and scattering of photons. For this purpose, the voxel intensity was normal-

ized in each Z-layer to the 70th percentile of Methoxy-X04 fluorescence intensity. Subsequently,

amyloid plaques were defined by applying the 90th percentile in the Methoxy-X04 fluorescence data

stacks. The radius of each individual plaque was calculated from the Z-plane with the largest area

extension in XY (radius=H(area/p)), assuming spherical shape of plaques (Hefendehl et al., 2011).

All plaques that contacted the image border were excluded from the analysis. The cut-off size was

set to a minimal plaque radius of 2 mm.

Barnes maze test for memory deficits
A modified version of Attar et al., 2013 was used to perform the Barnes maze test. The elevated

20-hole apparatus (diameter: 100 cm, hole diameter: 10 cm) had a target box which was placed

under the maze. The protocol includes three phases of interaction of mice with the maze: (1) habitu-

ation to the maze, (2) a 2-day training period, and (3) a probe trial 48 hr later. Before each day of

training or probe mice were placed 30 min prior procedure in the testing room for acclimatization.

On day 1 mice were habituated to the maze. Therefore, mice were placed in the center of the maze

in a 2 l glass beaker. After 1 min of acclimatization, mice were guided slowly by moving the glass

beaker toward the target hole. This was done three consecutive times per mouse. On day 2 mice

were placed in center and given the possibility to freely explore and find the target hole. If mice did

not reach the target hole within 3 min the glass beaker was used to slowly guide them to the target.

This was done in three consecutive trials. On day 3 mice were placed under the beaker and 10 s after

placement the beaker was removed, and mice were allowed to explore freely and find the target

hole. Again, three consecutive trials were performed with every mouse. This procedure was

repeated for the actual probe 48 hr later. Acquisition and zone-dependent analysis were performed

with Ethovision XT (Noldus). Data acquisition and analysis were performed by an investigator (SR)

blinded to treatment groups.

GC/MS-based SCFA analysis
The SCFA acetate, propionate, and butyrate were quantified as described before (Hoving et al.,

2018). Briefly, 10 ml of plasma was transferred to a glass vial containing 250 ml acetone (Sigma-

Aldrich), 10 ml one ppm internal standards solution containing acetic acid-d4, propionic acid-6, and

butyric acid-d8 (Sigma Aldrich), and 10 ml ethanol. Thereafter, samples were derivatized with penta-

fluorobenzyl bromide (PFBBr), as follows: 100 ml 172 mM PFBBr (Thermo) in acetone was added,

samples were mixed and heated to 60˚C for 30 min. After the samples had cooled down to room

temperature a liquid–liquid extraction was performed using 500 ml n-hexane (Sigma-Aldrich) and 250

ml LC-MS grade water. The upper n-hexane layer was transferred to a fresh glass vial and subse-

quently used for GC-MS analysis. Calibration standards were prepared analogous. For calibration

standards no plasma was added and 10 ml of EtOH was replaced by 10 ml standards solution (Sigma-

Aldrich) in EtOH. Samples were analyzed on a Bruker Scion 436 GC fitted with an Agilent VF-5ms

capillary column (25 m � 0.25 mm i.d., 0.25 mm film thickness) coupled with a Bruker Scion TQ MS.

Injection was performed using a CTC PAL autosampler (G6501-CTC): 1 ml sample was injected split-

less at 280˚C. Helium 99.9990% was used as carrier gas at a constant flow of 1.20 ml/min. The GC

temperature program was set as follows: 1 min constant at 50˚C, then linear increase at 40˚C/min to

60˚C, kept constant for 3 min, followed by a linear increase at 25˚C/min to 200˚C, linearly increased
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at 40˚C/min to 315˚C, kept constant for 2 min. The transfer line and ionization source temperature

were 280˚C. The pressure of the chemical ionization gas, methane (99.9990%), was set at 15 psi.

Negatively charged ions were detected in the selected ion monitoring mode, and acetic acid, acetic

acid-d4, propionic acid, propionic acid-d6, butyric acid, and butyric acid-d8 were monitored at m/z

59, 62, 73, 78, 87, and 94 respectively.

Sample preparation for biochemical analyses
Mouse brains were isolated and immediately snap frozen in liquid nitrogen. Frozen brains were then

mechanically pulverized for further applications and stored at �80˚C. Aliquots of brain powder were

lysed for 20 min in lysis buffer (150 mM NaCl, 50 mM Tris pH 7.5, 1% Triton X-100) supplemented

with protease and phosphatase inhibitor cocktail (Roche) on ice. Samples were then centrifuged at

17,000 g for 30 min at 4˚C. Supernatants were collected (soluble fraction) and stored at �80˚C.

In vitro amyloid aggregation assay
Synthetic Ab40 peptide (rPeptide) was solubilized (1 mg/ml) in 50 mM NH4OH (pH >11). Upon 15

min incubation at RT and subsequent water bath sonication (5 min), fractions of 100 mg Ab40 were

lyophilized and stored at �20˚C. 100 mg Ab40 was resuspended in 1 ml of 20 mM NaPi, 0.2 mM

EDTA, pH 8.0. After water bath sonication, the Ab40 solution was filtered through an Anatop 0.02

mm filter and stored on ice. Final Ab40 concentration was assessed from the UV spectrum ([Ab40] =

(A275-A340)/1280 mol/l). Circular Dichroism measurements (Jasco 810 Spectropolarimeter) con-

firmed the random coil conformation of the Ab peptide. For the rtQuic aggregation experiments,

Ab40 was diluted to 20 mM final concentration in 20 mM NaPi, 0.2 mM EDTA, pH 8.0 containing 100

mM Thioflavin T. 50 ml of this Ab40 solution was either mixed with 50 ml SCFA mixture (60 mM total

SCFA, i.e. a mixture of Na-acetate, Na-propionate, and Na-butyrate dissolved in equimolar ratios in

water containing 100 mM Thioflavin T) or mixed with 50 ml saline solution (60 mM NaCl, 100 mM Thio-

flavin T) to compare the aggregation of Ab40 (final concentration 10 mM) in 20 mM NaPi, 0.2 mM

EDTA buffer (pH 8.0), either enriched with 30 mM SCFA mixture or with 30 mM NaCl. Experiments

were performed in triplicates. Ab40 solution aliquots were incubated at 37˚C in 96-well plates under

constant double-orbital shaking in a FLUOStar Omega plate reader (BMG Labtech). The formation

of amyloid fibrils was monitored by the Thioflavin T fluorescence. Data were assessed every 15 min

(lex = 440 nm), (lem = 480 nm). In control experiments (blanks), 100 mM Thioflavin T was diluted in

the 20 mM NaPi, 0.2 mM EDTA, pH 8.0 alone, or enriched with the SCFA mixture (30 mM) or saline

solution (30 mM NaCl).

Immunoblot analysis of mouse brain
For western blot analysis, the soluble fraction from 3 months old APPPS1 mice have been quantified

using Bradford assay (Biorad) according to manufacturer’s protocol. At least 10 mg per sample have

been loaded either on a bis-tris acrylamide (APP, NT, ADAM10, and BACE1) or a Novex 10–20%

Tris-Tricine gel (Ab, C83, and C99) followed by blotting on nitrocellulose membrane (Millipore) using

the following antibodies: anti-C-term APP (Y188, 1:1000, Abcam), anti-Ab (3552, 1:1000,

Yamasaki et al., 2006), anti-Presenilin 1 (N terminus) (NT, 1:1000, BioLegends), anti-ADAM10 N-ter-

minal (1:1000; R and D Systems), and anti-BACE1 (1:1000, Epitomics). Blots have been developed

using horseradish peroxidase-conjugated secondary antibodies (Promega) and the ECL chemilumi-

nescence system (Amersham). An antibody against calnexin (1:1000, Stressgen) has been used as

loading control. Three mice per group were analyzed.

Densitometry analysis has been performed using gel analyzer tool on ImageJ (NIH).

Cell free g-secretase activity assay
g-Secretase cleavage assays using C100-His6 as substrate were carried out using purified g-secretase

reconstituted into small unilamellar vesicles (SUV) composed of POPC essentially as described

(Winkler et al., 2012) except that the reconstitution was performed 0.5� PBS, pH 7.4, instead of 35

mM sodium citrate, pH 6.4. The SCFA mixture (Na-acetate, Na-propionate, and Na-butyrate dis-

solved in water in equimolar ratios) was added to the assay samples at the indicated final concentra-

tions from stock solutions. Following separation of the assay samples by SDS-PAGE on Tris-Tricine
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or Tris-Bicine urea gels (for total Ab or Ab species, respectively) (Winkler et al., 2012), Ab was

detected by immunoblotting using antibody 2D8 (Shirotani et al., 2007).

Immunohistological microglia analysis
Free floating 30 mm sagittal brain sections were treated for antigen retrieval using sodium citrate

buffer and subsequently stained using primary antibodies for Iba1 (1:250, rabbit, Wako) and anti-

6E10 (1:1000, Biolegend), and the corresponding secondary antibodies and nuclear counterstain

using DAPI. Images were acquired in the frontal cortex using a Zeiss confocal microscope with 40�

magnification. Morphological analysis of microglial cells was performed using FIJI software. Each sin-

gle microglial cell was identified in the Z-stack and a maximum intensity projection (MIP) was created

for each individual cell from the image layers covering the individual microglial cell and the resulting

image was binarized by thresholding. The area and the perimeter of the cell shape were measured

and the CI was calculated (CI = 4p[area]/[perimeter]2) for each cell.

For analysis of ApoE expression in microglia and astrocytes, sections were stained with anti-

P2Y12 (1:100, Anaspec) or anti-GFAP (1:200, DakoCytomation Z 0334), mouse anti-6E10 antibody

(1:200, abcam), and biotinylated anti-ApoE antibody (1:50). Slides were then labeled with the sec-

ondary antibodies and counterstained with DAPI. Samples were imaged using an epifluorescence

microscope (40� magnification) and co-localization of Ab, ApoE, and microglia was analyzed using

FIJI software.

Immunohistological analysis of microglial recruitment
Free floating 30 mm sagittal brain sections have been permeabilized and blocked for 1 hr in PBS/

0.5% Triton x-100/5% NGS. Next, samples have been incubated overnight at 4˚C with primary anti-

body anti-CD68 (1:500, AbDserotec), anti-Iba1 (1:500, Synaptic Systems), anti b-amyloid (Ab) (3552,

1:500, Yamasaki et al., 2006), diluted in blocking buffer and stained with the corresponding goat

secondary antibody (1:500, Alexa-Fluor, Invitrogen). Immunostainings have been performed on four

control mice (APPPS1 supplemented with saline solution) and five treated mice (APPPS1 supple-

mented with SCFA). Each image has been analyzed through z-stack using Zen 3.2 blue edition (Zeiss)

for quantification of microglial recruitment to Ab plaques. Number of recruited microglia has been

normalized on plaque surface (3552 area). Ab positive microglia (Iba1 positive together with CD68

and 3552 co-localization) have been quantified and normalized on the total number of microglia

recruited to Ab plaques. Histological analysis has been performed by an investigator (AVC) blinded

to treatment groups with at least five images per mouse. All data have been normalized to control

group.

Stereotaxic hippocampal injections
All animal handling and surgical procedures for GF as well as the SPF mice were performed under

sterile conditions in a microbiological safety cabinet. Animals were anaesthetized, placed in a stereo-

tactic device, and a midline incision was performed to expose the skull. The skull was thinned above

the injection point (coordinates: lateral 1 mm, caudal 2.3 mm from bregma) and 2.5 ml mouse brain

homogenate with high plaque burden from 8 months old APPPS1 mice or saline were microinjected

(Hamilton syringe at 1 ml/min; 2.5 mm depth from the brain surface). The needle was retained for

additional 2 min before it was slowly withdrawn. 24 hr after injection, animals were sacrificed, and

brain samples processed for immunofluorescence and fluorescence in situ hybridization.

Single-molecule fluorescence in situ hybridization
Single-molecule fluorescence in situ hybridization (smFISH) was performed using the RNAscope Mul-

tiplex Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics) by the manufacturer’s protocols.

Briefly, free floating 30 mm sagittal brain sections were first dried, washed, and then incubated in

RNAscope Hydrogen Peroxide. Antigen retrieval and protease treatment were performed as per

protocol. Sections were then incubated with the probe mix (C2-TREM2 and C1-CX3XR1) for 2 hr at

40˚C and then immediately washed with wash buffer. Next, sections were incubated with RNAscope

Multiplex FL v2 AMP1, AMP2, and AMP3, and then probes were counter stained with TSA Plus Cy3

for C1-Cx3cr1 and TSA Plus Cy5 for C2-Trem2. After washing with PBS and blocking buffer, plaques

were identified using primary rat anti-2D8 antibody (1:300, Abcam #16669) and counterstained with
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secondary antibody AF488 goat anti-rat (1:200, Invitrogen #A11006). Finally, sections were stained

with DAPI. smFISH-stained RNA molecules were counted only within the DAPI staining of the cell; a

cell was considered CX3CR1-positive when more than four Cx3cr1 puncta were present. A cell was

quantified as Trem2 positive when Trem2 smFISH molecules were observed in the Cx3cr1-positive

cells.

Ex vivo Ab plaque clearance and phagocytosis assay
We investigated microglial phagocytosis by an ex vivo assay as already described (Colombo et al.,

2021). Briefly, 10 mm brain sections from APPPS1 mice (Radde et al., 2006) were incubated on cov-

erslips with anti-Ab antibodies (6E10, 5 mg/ml) to stimulate microglia recruitment. Primary microglia

were isolated from P7 WT mouse pups using the Neural Tissue Dissociation Kit, CD11b microbeads,

and a column MACS separation system (Miltenyi Biotec). Purified microglia were resuspended in

DMEM F12 with 10% fetal bovine serum and 1% PenStrep (Gibco). Then, isolated microglia were

incubated for 5 days at a density of 3 � 105 cells/coverslip in culturing medium containing 250 mM

mixed SCFA (acetate, butyrate, and propionate, each 83.3 mM) or control 250 mM NaCl. Next, sec-

tions were fixed and permeabilized and stained with primary antibodies against CD68 (1:500, AbD-

serotec) and Ab (3552, 1:500, Yamasaki et al., 2006) and corresponding secondary antibodies as

well as the nuclear dye Hoechst and fibrillar Ab dye Thiazine red (ThR 2 mM, Sigma Aldrich). Full sec-

tions were analyzed by tile scan mode on a Leica SP5 II confocal microscope. To evaluate microglial

phagocytic capacity, difference in plaque coverage (ThR signal area) was quantified between brain

sections incubated with microglia and a consecutive section where no microglia have been plated

using ImageJ software (NIH). Each experimental group has been tested in three animals (three inde-

pendent experiments with two technical replicates each).

SCFA treatment of primary microglia
Single cell suspension was obtained from P7 WT mouse brains using an enzymatic (200U of papain,

Sigma Aldrich) and a mechanical dissociation in DMEM GlutaMAX high glucose and pyruvate (Gibco)

supplemented with 10% fetal bovine serum (Sigma). Microglia were isolated using CD11b microbe-

ads and a column MACS separation system (Miltenyi Biotec). Purified microglia were resuspended

and plated in DMEM F12 with 10% fetal bovine serum and 1% PenStrep (Gibco) in a 96-well plate

format at a density of 5 � 104 cells/well. At 5DIV culturing medium was replaced with fresh medium

containing single SCFA (acetate, butyrate, or propionate, Sigma Aldrich) or an equimolar combina-

tion of them (final concentration 250 mM for all conditions). NaCl was used as control in equimolar

concentration. After 24 hr incubation, cells were lysed in Qiazol Lysis Reagent and RNA extraction

was performed using the RNeasy Mini Kit (all Qiagen).

Nanostring analysis
RNA samples from primary microglial cell were obtained as stated above. Brain samples were lysed

in Qiazol Lysis Reagent and total RNA was extracted using the MaXtract High Density kit with further

purification using the RNeasy Mini Kit (all Qiagen). 70 ng of total RNA per sample was then hybrid-

ized with reporter and capture probes for nCounter Gene Expression code sets (Mouse Neuroin-

flammation codeset) according to the manufacturer’s instructions (NanoString Technologies).

Samples were injected into NanoString cartridge and measurement run was performed according to

nCounter SPRINT protocol. Background (negative control) was quantified by code set intrinsic

molecular color-coded barcodes lacking the RNA linkage. As positive control code set intrinsic con-

trol RNAs were used at increasing concentrations. Data were analyzed using the nSolver software

4.0. In the standard data analysis procedure, all genes counts were normalized to the positive con-

trol values and the values for the standard reference genes. Clustering and heatmaps were per-

formed using the ClustVis package on normalized expression values derived from the nSolver report

(Metsalu and Vilo, 2015). For clustering, the z-scores were calculated using the mean expression of

biological replicates per condition and then clustered using K-means. Data were further analyzed

using the Ingenuity software (Ingenuity Systems). Differentially expressed genes (with corresponding

fold changes and p-values) were used for generating a merged biological network as previously

described (Butovsky et al., 2014).
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Statistical analysis
All analyses, unless otherwise specified, have been performed using GraphPad Prism software

(GraphPad, version 6.0). Sample size was chosen based on experience from previous experiments

and exact n numbers are reported in figure legends. The groups containing normally distributed

independent data were analyzed using unpaired T-test (for two groups) or ANOVA (for >2 groups).

The remaining data were analyzed using the Mann–Whitney U-test (for two groups). Similar variance

was assured for all groups, which were statistically compared. A p-value of <0.05 was regarded as

statistically significant and displayed in all figures.
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