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Simple Summary: Social insects use cuticular hydrocarbons for chemical recognition and communi-
cation. Cuticular hydrocarbons can also be exploited by parasites to their advantage for undermining
host recognition systems. The small hive beetle (SHB) is a parasite of honey bee colonies but can also
infest nests of other bee species. However, its chemical profile is still not known. For the first time,
the present study investigated the SHB chemical profile and compared it with that of its honey bee
host. The results show that the SHB has a low chemical profile that is similar to its honey bee host’s.
However, while honey bees had a clear colony-specific chemical profile, SHBs did not. The generic
chemical profile of the SHB is most likely linked to its free-flying behaviour in the field as these
parasites are known to switch between host colonies, possibly limiting the acquisition of a colony
specific chemical profile. Our findings also suggest that SHBs do not exploit any finely tuned chemical
strategy to conceal their presence inside host colonies and probably rely on behavioural adaptations.

Abstract: Cuticular hydrocarbons (CHCs) cover insects’ bodies and play important roles in chemical
communication, including nestmate recognition, for social insects. To enter colonies of a social host
species, parasites may acquire host-specific CHCs or covertly maintain their own CHC profile by
lowering its quantity. However, the chemical profile of small hive beetles (SHBs), Aethina tumida,
which are parasites of honey bee, Apis mellifera, colonies, and other bee nests, is currently unknown.
Here, adults of SHB and honey bee host workers were collected from the same field colonies and
their CHC profiles were analysed using GC-MS. The chemical profiles of field-sampled SHBs were
also compared with those of host-naive beetles reared in the laboratory. Laboratory-reared SHBs
differed in their CHC profiles from field-sampled ones, which showed a more similar, but ten-fold
lower, generic host CHC profile compared to host workers. While the data confirm colony-specific
CHCs of honey bee workers, the profile of field-collected SHBs was not colony-specific. Adult SHBs
often commute between different host colonies, thereby possibly preventing the acquisition of a
colony-specific CHC profiles. An ester was exclusive to both groups of SHBs and might constitute
an intraspecific recognition cue. Our data suggest that SHBs do not use any finely tuned chemical
strategy to conceal their presence inside host colonies and instead probably rely on their hard
exoskeleton and defence behaviours.
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1. Introduction

Discrimination between group members and foreign individuals represents a key
feature of any social species. In social insect colonies, the ability to recognize colony
members (i.e., nestmates) is essential to maintain group integrity, avoid the exploitation of
colony resources, and defend the colony from parasites and pathogens [1–3]. Although
different sensory channels can be involved in the recognition process, depending on
the species and context (e.g., stage of the colony) [4–6], such differentiation is primarily
governed by odour cues in which cuticular hydrocarbons (CHCs) covering the body surface
of individual insects are of particular significance [7]. Serving as a basis for nestmate
recognition, CHCs are usually qualitatively similar among individuals of a species but can
vary in their relative amounts among individuals of colonies of the same species [8–10].

Many parasites have developed a number of strategies to deceive and exploit this
recognition system, and to gain access to valuable colony resources [11–14]. They can
employ chemical mimicry so that their chemical profile matches that of their host, or they
can adopt a strategy of chemical insignificance or neutral odour by reducing the quantity
of chemical cues or selectively suppressing the expression of those cues that are important
for recognition [15]. This decreases the chances it will be detected by the host. To date,
only a few studies have addressed the question of quantitative perception thresholds for
recognition, and demonstrated that in practice [16–18]. Parasites often employ more than
one strategy to overcome the host recognition system. For example, they may change their
CHCs depending on the progression of the invasion, such as the butterfly Maculinea rebeli
which synthesises host-specific compounds before invading the nest of its ant host Myrmica
schenki. Once inside the colony, it fine-tunes its chemical profile to the host’s colony odour
by acquiring compounds, possibly through trophallaxis with the host [19].

Insects obtain most of their CHCs through synthesis that starts during the larval stage
and slows down during the post-feeding stage; however, it will usually take several days
after emergence to develop a complete CHC profile [8,20,21]. Another way to acquire
CHCs is through contacts with nest material [22–24]. Furthermore, CHCs can be trans-
ferred between conspecifics via direct interactions such as grooming, body contact, and
trophallactic exchange [25,26]. The CHC profile can also change with individual age or
health condition [27–29], as well as nutritional status [30,31].

The small hive beetle (SHB), Aethina tumida, is a parasite of honey bee, Apis mellifera,
colonies native to sub-Saharan Africa [32]. In 1996, it was first reported in the USA and
started its global journey reaching all of the continents except Antarctica [33–35]. Within
its native range, it is usually considered to be a minor pest [36]; however, it can have a
considerable impact on honey bee colonies in its invaded ranges [35]. SHB can also infest
colonies of other social bees, as well as solitary bee nests [35,37,38], but the role of these
alternative hosts is poorly understood. Larval and adult SHBs feed on honey, pollen, host
brood, dead or live adult bees, and can even trick honey bees into trophallactic feeding [39].
Adult SHBs are known to conduct long-range dispersal flights searching for a host colony
to enter [40]. Within the apiary, SHBs usually have a non-random distribution, tending to
aggregate in particular colonies [41,42], but they can also frequently move among colonies
within an apiary [43]. It has been observed that honey bees are usually less aggressive
towards adult SHBs that have been inside their colonies compared to newly introduced
ones [44]. However, the chemical profile of the SHB and its potential role in overcoming
the host defence is still not known.

Here, we characterized for the first time the chemical profile of the adult SHB and
investigated the similarities with its honey bee host profile. Based on previous observations
of lower aggressiveness exhibited by honey bees towards nestmate SHBs [44], and the
occurrence of trophallactic feeding between honey bees and SHBs [39], we hypothesized
that after entering the host colony, SHB could express a colony-specific profile similar to
its host. To test this, the CHC profile of the SHB and honey bee workers from the same
colonies were characterized and compared. Additionally, we analysed the chemical profile
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of laboratory-reared SHBs naive to honey bees to understand if SHBs already show a
characteristic chemical signature prior to entering a host colony.

2. Materials and Methods
2.1. Experimental Design

Adult SHBs (N = 48 in total, 8–10/colony) and adult honey bee workers (N = 48 in
total, 9–10/colony) were collected from five different queenright honey bee, A. mellifera,
colonies in three different apiaries around Auburn, AL, USA in Summer 2019. Honey bee
workers were collected from brood frames and SHB from entire hives of local naturally
honey bee colonies using aspirators [45]. Experimental insects were freeze-killed, stored at
−20 ◦C, and then used for the subsequent chemical analysis.

To obtain laboratory-reared bee naive individuals, SHB adults were collected from
naturally infested honey bee colonies and used to initiate laboratory rearing following
standard protocols [45]. In brief, freshly hatched SHB larvae were fed by providing them
with a honey bee worker brood frame until they had reached the post-feeding wandering
stage and then transferred into a 473 mL glass jar filled with suitable autoclaved soil
for pupation. Pupation containers were kept at 25 ◦C, 80% RH, 24 h dark until adult
emergence [46]. Upon emergence, adult SHBs [N = 10] were kept in incubators with sugar
water [45] for seven days and then freeze killed for further chemical analysis. Samples
were stored at −20 ◦C.

CHC extracts were obtained by washing each honey bee worker in 1 mL of hexane
and each SHB in 0.5 mL of hexane for 15 min. The different amounts of solvents were
reflecting differences in body size. Then, the extracts were allowed to evaporate and dried
samples were covered with foil and transported to Italy for coupled gas–chromatography
mass spectrometry analysis (GS-MS).

2.2. GC-MS Analyses

Dried extracts of all specimens (N = 9 laboratory-reared SHBs; N = 47 field-collected
SHBs; N = 47 honey bee workers) were re-suspended in 100 µL of pentane and transferred
to a conical glass insert inside the original vial used for extraction. The solvent was then
dried under a stream of nitrogen and the SHB samples were re-suspended in 20 µL of
heptane with 70 ng/µL of heptadecane (n-C17) as the internal standard. For the honey
bee worker samples, 80 µL of heptane with 70 ng/µL of heptadecane (n-C17) as internal
standard. The final volume of resuspension was quadrupled for honey bee samples since
preliminary analyses of a few specimens showed peak saturation for honey bee extracts re-
suspended in 20 µL of heptane added with heptadecane due to the high quantity of CHCs
extracted from honey bee workers. One µL of the extract was injected in a Hewlett Packard
(Palo Alto, CA, USA) 5890A gas chromatograph (GC) coupled to an HP 5970 mass selective
detector (using 70 eV electronic ionization source). A fused ZB-WAX-PLUS (Zebron) silica
capillary column (60 m × 0.25 mm × 0.25 mm) was installed in the GC. The injector port
and transfer line temperatures were set at 200 ◦C and the carrier gas was helium (at 20 PSI
head pressure). The temperature protocol was from 50 ◦C to 320 ◦C at a rate of 10 ◦C/min,
and the final temperature was kept for 5 min. Injections were performed in splitless mode
(1 min purge valve off). Data acquisition and analysis were performed using the Chem
Station G1701 BA (version B.01.00)—Copyright© Hewlett-Packard 1989–1998. Compounds
corresponding to different peaks in each chromatogram were identified on the basis of
their retention time and mass spectra. Mass spectra were compared with mass spectral
electronic libraries (Wiley 275, NIST 2.0).

2.3. Statistical Analyses

The amount of each compound was evaluated by dividing its abundance by the
abundance of n-C17 (multiplied by 4 for honey bee workers because of the higher dilution).
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The resulting amount was transformed by the method provided by Aitchison [47], which
avoids bias due to the use of compositional data in multivariate analyses:

Zij = lnYij/g(Yj)

where Yij is the amount of peak i for individual j, g(Yj) is the geometric mean of the amounts
of all peaks for individual j, and Zij is the transformed amount of peak i for individual j.

Univariate and multivariate analyses were applied to compare the possibility of at-
tributing honey bees and SHBs to the colony they belong to based on chemical composition.
With this aim, first was performed a Partial Least Square Discriminant Analysis (PLSDA)
as implemented in the mixOmics R package [48]. As a grouping variable, we used eleven
groups identified by different species (SHBs vs. honey bees), colony membership, and
SHBs laboratory or field collection status as a priori grouping variable. The composition for
all compounds was compared among laboratory-reared SHBs, field-collected SHBs, and
honey bees by using Kruskal–Wallis test paired with post hoc comparisons (kruskal.test and
pairwise.wilcoxon.test of the stats R package). p values from multiple Kruskal–Wallis tests
were adjusted by using the Benjamini and Hochberg procedure implemented in the p.adjust
function of the stat R package. To detect if SHB changed its profile after entering a honey
bee colony to match that of the host chemical, we calculated chemical dissimilarity among
the signature centroid of honey bee workers (average transformed amount of each com-
pound), host-naive SHBs reared in the laboratory, and SHBs collected from host colonies
in the field. Chemical dissimilarity was calculated using the Bray–Curtis dissimilarity
(vegdist function of the vegan R package). Dissimilarities to honey bee worker centroid to
laboratory-reared and field-collected SHBs were compared with a Mann–Whitney test.

The possibility to attribute honey bee workers to their maternal colonies based on
the typical colony profiles was tested by a jackknife procedure where a sparse PLSDA
(SPLSDA), more conservative than a PLSDA since it allows the inclusion of a reduced
number of variables per each discriminant component (ten variables in our assessment),
was performed on all the specimens but one using colony membership as a grouping
variable. Then, colony membership of the excluded specimen was predicted on the basis
of their CHCs composition. Colony membership of field-collected SHBs was predicted
on the full SPLSDA model obtained for honey bee workers. The percentage of correctly
attributed cases was used as a measure of the possibility to blindly attribute individuals to
their colonies. Finally, the overall quantity of compounds (not transformed by Aitchison
formula) was compared among laboratory-reared SHBs, field-collected SHBs, and honey
bee workers by using a Kruskal–Wallis test with post hoc comparisons. All calculations
were performed using the program R [49].

3. Results

Laboratory-reared and field-collected SHBs had a low chemical profile that was similar
to its honey bee host (Figure 1). Laboratory-reared SHBs had a less pronounced chemical
profile than SHBs collected from the field.
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ters (Figure 2). Most of the variation was due to the first component, thereby explaining 
82.0% of the chemical variation and separating the two species. A much lower variance 
was explained by the second component (0.8%), encompassing differences among labor-
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portance of compounds in the PLSDA solution was reported as loadings for the first two 
components in Table 1. 
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Figure 1. Representative chromatograms of laboratory-reared and field-collected small hive beetles,
Aethina tumida (SHB), and their honey bee host workers, Apis mellifera. Abundance of compounds is
shown over Counts (%) vs. Acquisition time (min).

3.1. Colony Membership Allocation

A Partial Least Square Discriminant Analysis (PLSDA) separating 11 groups of honey
bees and SHBs (five colonies for honey bees, five colonies for field-collected SHBs, and
one group of laboratory-reared SHBs) based on their CHC signatures showed that the
laboratory-reared SHBs, field-collected SHBs, and honey bees formed three distinct clusters
(Figure 2). Most of the variation was due to the first component, thereby explaining 82.0%
of the chemical variation and separating the two species. A much lower variance was
explained by the second component (0.8%), encompassing differences among laboratory-
reared and field-collected SHBs and honey bees from different colonies. The importance of
compounds in the PLSDA solution was reported as loadings for the first two components
in Table 1.

Table 1. Chemical compounds detected in one-week-old laboratory-reared (lab) small hive beetles (SHB), Aethina tumida,
field-collected SHBs and honey bee, Apis mellifera, host workers, and their ng/µL average amount (Mean) and standard
deviation (SD) in the cuticular mixture. The results of the Kruskal–Wallis analysis and Wilcoxon post hoc tests are also shown
(n.s.—not significant). Significant differences between groups (p < 0.05) are indicated with bold p-values (*—compounds
not present in laboratory-reared SHBs; **—compounds not present in field-collected SHBs; ***—compounds not present in
honey bee workers). Based on its mass spectrum, the unidentified ester found only in SHBs was putatively identified as an
acetic acid octadecyl ester. The loadings of Partial Least Square Discriminant Analysis (PLSDA) are also shown.

Compound
Lab SHB
Mean +

SD

Field SHB
Mean +

SD

Honey
Bees

Mean +
SD

χ2 p
Lab SHB

vs.
Field SHB

Lab SHB
vs.

Honey
Bees

Field SHB
vs.

Honey Bees

Loadings
PLSDA1

Loadings
PLSDA2

C19:1 *,** 0 ± 0 0 ± 0 0.26 ± 0.48 17.158 <0.001 n.s. <0.001 <0.001 0.138 −0.132

n-C19 * 0 ± 0 0.03 ± 0.24 1.99 ± 3.55 72.880 <0.001 n.s. <0.001 <0.001 0.214 −0.004
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Table 1. Cont.

Compound
Lab SHB
Mean +

SD

Field SHB
Mean +

SD

Honey
Bees

Mean +
SD

χ2 p
Lab SHB

vs.
Field SHB

Lab SHB
vs.

Honey
Bees

Field SHB
vs.

Honey Bees

Loadings
PLSDA1

Loadings
PLSDA2

C21:1 * 0 ± 0 0.04 ± 0.19 0.31 ± 0.38 26.821 <0.001 0.012 <0.001 <0.001 −0.186 −0.088

n-C21 * 0 ± 0 0.94 ± 0.61 10.01 ±
8.41 22.086 <0.001 <0.001 <0.001 n.s. 0.135 −0.052

C22:1 0.32 ± 0.73 0.33 ± 0.56 0.11 ± 0.24 1.544 0.492 n.s. n.s. n.s. 0.101 0.211

n-C22 * 0 ± 0 0.29 ± 0.56 3.15 ± 2.87 40.414 <0.001 n.s. <0.001 <0.001 −0.047 −0.011

Unidentified
ester *** 0.33 ± 0.55 0.42 ± 0.55 0 ± 0 22.007 <0.001 n.s. <0.001 <0.001 0.158 0.108

C23:1a
2.16 ±
0.008

10.02 ±
6.21

14.99 ±
23.26 19.498 <0.001 n.s 0.046 <0.0001 −0.116 0.031

C23:1b * 0 ± 0 0.70 ± 0.61 2.04 ± 2.86 14.413 0.001 0.003 <0.001 n.s. −0.187 −0.052

n-C23 2.23 ± 1.36 10.74 ±
5.34

196.32 ±
295.13 0.371 0.856 n.s. n.s. n.s. −0.118 0.117

C24:1a * 0 ± 0 0.02 ± 0.11 0.32 ± 1.12 8.203 0.021 n.s. n.s. 0.032 0.004 0.212

C24:1b 0.08 ± 0.25 0.17 ± 0.35 1.05 ± 1.94 11.404 0.005 n.s. 0.046 0.012 −0.013 0.086

n-C24 * 0 ± 0 1.10 ± 0.55 14.67 ±
12.86 23.262 <0.001 <0.001 0.001 n.s. 0.075 −0.093

C25:2 * 0 ± 0 0.08 ± 0.35 1.65 ± 5.47 23.887 <0.001 n.s. 0.015 <0.001 0.076 0.033

C25:1a 9.97 ± 8.12 17.12 ±
9.38

44.79 ±
69.01 29.544 <0.001 0.015 <0.001 <0.001 0.054 0.242

C25:1b 0.49 ± 0.69 1.66 ± 1.09 7.07 ±
13.19 7.711 0.026 n.s. n.s. 0.05 0.101 −0.026

n-C25 4.80 ± 3.28 16.94 ±
7.54

373.49 ±
482.33 0.259 0.892 n.s. n.s. n.s. −0.145 −0.006

meC25 0.90 ± 1.57 0.58 ± 0.72 8.21 ± 5.43 15.768 0.001 n.s. 0.044 <0.001 −0.031 0.224

C26:1a 0.09 ± 0.30 1.67 ± 1.48 0.94 ± 1.66 20.703 <0.001 0.005 0.005 <0.001 0.013 −0.007

C26:1b * 0 ± 0 0.22 ± 0.53 0.33 ± 0.53 7.724 0.026 n.s. 0.047 n.s. 0.123 0.026

n-C26 * 0 ± 0 0.21 ± 0.45 18.38 ±
14.564 51.920 <0.001 n.s. <0.001 <0.001 −0.062 0.206

meC26a 1.19 ± 0.49 1.41 ± 0.79 0.87 ± 1.35 41.729 <0.001 0.041 <0.001 <0.001 0.043 0.046

meC26b * 0 ± 0 0.57 ± 0.83 0.48 ± 1.36 5.428 0.077 n.s. n.s. n.s. 0.171 0.070

C27:1a 1.89 ± 1.64 4.94 ± 2.45 28.30 ±
42.73 9.322 0.013 n.s. n.s. 0.007 −0.140 −0.092

C27:1b 0.26 ± 0.58 0.47 ± 2.49 9.18 ±
15.63 43.211 <0.001 n.s. 0.011 <0.001 −0.001 0.067

n-C27 4.73 ± 3.81 14.88 ±
9.64

501.33 ±
341.54 0.073 0.964 n.s. n.s. n.s. −0.085 0.100

meC27a 2.25 ± 2.54 0.04 ± 0.19 0.02 ± 0.16 28.048 <0.001 <0.001 <0.001 n.s. 0.153 0.010

meC27b 0.87 ± 1.76 1.10 ± 0.77 23.05 ±
27.22 6.683 0.042 n.s. 0.019 n.s. 0.003 −0.018

C28:1a 0.04 ± 0.22 0.38 ± 0.64 1.48 ± 2.70 17.695 <0.001 0.010 n.s. <0.001 −0.078 −0.210

C28:1b * 0 ± 0 0.33 ± 0.46 0.84 ± 1.04 7.487 0.029 n.s. 0.008 n.s. 0.047 0.148

n-C28 0.45 ± 0.62 1.03 ± 0.87 12.65 ±
8.86 4.377 0.128 n.s. n.s. n.s. 0.099 −0.184

meC28 ** 0.20 ± 0.44 0 ± 0 1.63 ± 2.61 35.014 <0.001 0.002 n.s. <0.001 0.036 0.092

C29:2a * 0 ± 0 0.44 ± 0.61 1.22 ± 2.69 6.402 0.048 <0.05 n.s. n.s. 0.072 0.142

C29:2b 0.08 ± 0.25 0.01 ± 0.10 0.06 ± 0.31 1.764 0.413 n.s. n.s. n.s. 0.131 −0.140

C29:1a 1.55 ± 1.21 2.33 ± 1.62 9.91 ±
18.72 37.454 <0.001 n.s. <0.001 <0.001 −0.018 0.140

C29:1b * 0 ± 0 0.26 ± 1.71 20.66 ±
20.56 55.416 <0.001 n.s. <0.001 <0.001 0.004 −0.085

n-C29 12.42 ±6.83 22.11 ±
15.45

294.39 ±
204.54 8.662 0.017 n.s. <0.05 n.s. −0.175 0.096

meC29a 0.07 ± 0.22 0.69 ± 0.68 18.15 ±
24.33 15.965 0.001 0.029 <0.001 0.036 0.201 −0.039

me-C29b 0.19 ± 0.42 0.01 ± 0.11 2.22 ± 3.55 25.779 <0.001 0.030 n.s. <0.001 −0.061 −0.007
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Table 1. Cont.

Compound
Lab SHB
Mean +

SD

Field SHB
Mean +

SD

Honey
Bees

Mean +
SD

χ2 p
Lab SHB

vs.
Field SHB

Lab SHB
vs.

Honey
Bees

Field SHB
vs.

Honey Bees

Loadings
PLSDA1

Loadings
PLSDA2

C30:1 * 0 ± 0 0.07 ± 0.33 2.63 ± 2.62 54.909 <0.001 n.s. <0.001 <0.001 0.108 0.137

n-C30 0.13 ± 0.41 0.22 ± 0.51 7.05 ± 6.33 47.351 <0.001 n.s. <0.001 <0.001 0.122 −0.141

meC30 *,** 0 ± 0 0 ± 0 0.49 ± 0.93 17.158 <0.001 n.s. <0.001 <0.001 0.198 −0.031

C31:2a *,** 0 ± 0 0 ± 0 0.31 ± 0.94 8.694 0.017 n.s. 0.022 0.014 0.176 0.035

C31:2b * 0 ± 0 0.04 ± 0.27 4.26 ± 4.63 55.987 <0.001 n.s. <0.001 <0.001 0.114 −0.075

C31:1a * 0 ± 0 4.69 ± 7.10 89.27 ±
70.97 24.395 <0.001 <0.001 <0.001 n.s. 0.092 −0.066

C31:1b * 0 ± 0 4.10 ± 6.16 87.23 ±
71.41 25.265 <0.001 <0.001 <0.001 n.s. 0.197 −0.043

n-C31 1.21 ± 0.92 4.74 ± 7.48 196.39 ±
158.69 3.335 0.211 n.s. n.s. n.s. 0.083 0.314

meC31a ** 0.08 ± 0.25 0 ± 0 6.30 ± 9.13 64.691 <0.001 0.020 <0.001 <0.001 0.068 0.292

meC31b *,** 0 ± 0 0 ± 0 1.52 ± 1.74 53.756 <0.001 n.s. <0.001 <0.001 0.012 0.140

C32:1 * 0 ± 0 0.11 ± 0.59 8.07 ± 6.43 69.219 <0.001 n.s. <0.001 <0.001 0.202 −0.045

C33:2 3.96 ± 3.34 3.49 ± 3.12 22.24 ±
23.78 3.129 0.230 n.s. n.s. n.s. 0.192 −0.070

C33:1 0.29 ± 0.94 9.73 ±
15.77

263.50 ±
190.31 24.503 <0.001 <0.001 <0.001 n.s. 0.207 −0.002

n-C33 * 0 ± 0 0.01 ± 0.11 14.76 ±
26.10 27.807 <0.001 n.s. <0.001 <0.001 −0.012 −0.002

meC33 * 0 ± 0 0.53 ± 1.85 1.16 ± 2.26 9.590 0.008 n.s. n.s. 0.027 0.077 0.309

C35:2 * 0 ± 0 0.03 ± 0.24 2.30 ± 2.97 35.511 <0.001 n.s. 0.007 <0.001 0.167 −0.125

C35:1a * 0 ± 0 0.04 ± 0.30 4.18 ± 4.80 43.226 <0.001 n.s. 0.002 <0.001 0.083 −0.018

C35:1b * 0 ± 0 0 ± 0 3.40 ± 7.35 28.375 <0.001 n.s. 0.019 <0.001 0.173 −0.098

Oleic acid ester
1 * 0 ± 0 0.65 ± 2.27 19.59 ±

18.43 40.351 <0.001 n.s. 0.001 <0.001 0.179 −0.057

Oleic acid ester
2 * 0 ± 0 0.85 ± 4.98 46.01 ±

47.44 53.180 <0.001 n.s. <0.001 <0.001 0.106 0.053

Oleic acid ester
3

29.01 ±
19.68 9.55 ± 8.87 7.95 ±

30.33 43.506 <0.001 n.s. <0.001 <0.001 −0.012 −0.107

Oleic acid ester
4 9.58 ± 7.28 3.44 ± 3.99 3.91 ±

20.67 39.310 <0.001 n.s. <0.001 <0.001 0.158 0.009

Field-collected SHBs showed changes in chemical composition compared to laboratory-
reared ones, thereby resembling a more generic honey bee profile. Indeed, a jackknife
procedure performed to blindly attribute each honey bee sample to a colony based on
comparing each chemical profile with a SPLSDA model constructed on all other honey
bees showed that 68.1% of honey bees were correctly classified. Conversely, when profiles
of SHBs were attributed to a colony based on SPLSDA models constructed on honey bee
profiles, only 14.6% of individuals were correctly classified. Accordingly, a the PLSDA
where honey bees and field-collected SHBs were grouped to their colony membership
showed that honey bee workers form distinct groups based on the two first discriminant
components alone (Figure 2); conversely, field-collected SHB individuals were largely
admixed among colonies, which denoted no chemical characterization (Figure 2).

Chemical dissimilarity, calculated as the pairwise Bray–Curtis dissimilarity from
the chemical signature centroid of field-collected honey bee workers, was significantly
higher for the CHC profiles of laboratory-reared SHBs than for field-collected SHBs (Mann–
Whitney test; W = 411, p < 0.001, Figure 3).
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3.2. Qualitative Chemical Analysis

Many compounds contributed to the observed pattern as it can also be observed
in univariate comparisons, where 52 compounds of 61 showed an overall significant
difference among groups (Table 1). In pairwise comparisons, 17 compounds differed
between laboratory and field-collected SHBs, 44 between laboratory-reared SHBs and
field-collected honey bee workers, as well as 40 between field-collected SHBs and honey
bee workers. The chemical profile of laboratory-reared SHBs showed the lowest number of
detected compounds (31 out of 61, Table 1); 54 different compounds were identified in field-
collected SHBs, while only one peak corresponding to an unidentified ester (putatively
acetic acid n-octadecyl ester) was exclusive to both groups of SHBs and not found in any
honey bee worker. The majority of compounds differing between laboratory-reared and
field-collected SHBs consisted of alkenes and methyl-branched alkanes (15 compounds
out of 17, Table 1), which were absent or less abundant in laboratory-reared SHBs, apart
from me-C27a, me-C28, me-C29b, and me-C31a which were present in a lower amount or not
found in field-collected SHBs (Table 1).

3.3. Quantitative Chemical Analyses

The overall amount of chemicals significantly differed between laboratory-reared SHBs,
field-collected SHBs, and honey bee workers (Kruskal–Wallis test chi–squared = 78.90, p < 0.001).
Post hoc comparisons showed a significant effect in all pairwise comparisons (pairwise
Wilcoxon test: laboratory-reared SHBs vs. field-collected SHBs, p < 0.005; laboratory-
reared SHBs vs. honey bee workers, p < 0.0001; field-collected SHBs vs. honey bee workers,
p < 0.0001; Figure 4). The three groups also differed in the total amount of CHCs calculated
through the 70 ng/µL of heptadecane (n-C17) as internal standard (total CHCs amount:
laboratory-reared SHBs, 1.98 ± 1.02 µg; field-collected SHBs, 3.28 ± 1.67 µg; honey bee
workers, 48.42 ± 25.48 µg; Kruskal–Wallis test chi−squared = 79.29, p < 0.0001, post hocs:
laboratory-reared SHBs vs. field-collected SHBs, p = 0.008; laboratory-reared SHBs vs.
honey bee workers, p < 0.0001; field-collected SHBs vs. honey bee workers, p < 0.0001).
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4. Discussion

Our data provided the first characterization of adult SHB CHC profiles. Laboratory-
reared SHBs had a less pronounced CHC profile both in terms of quantity and chemical
composition compared to field-collected ones, which displayed a low generic host CHC
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profile. However, while the data confirmed colony-specific CHC profiles of honey bee
workers [8,10], SHBs did not display such host colony-specific profiles.

With the exception of a single ester, cuticular profiles of adult SHBs and honey bee
workers shared all compounds. The absence of an evident colony signature in field-
collected SHBs suggests that these parasites do not use finely tuned chemical mimicry to
conceal their presence inside a honey bee host colony. It is likely that the observed generic
CHC host profile of adult SHBs may be linked to the behaviour of free-flying adults in the
field. Indeed, it has been previously reported that adult SHBs can easily move among honey
bee colonies of the same apiary and even disperse to distant apiaries [40,42,43,50], thereby
possibly limiting the acquisition of a host colony-specific CHC profile. Even though SHBs
appear not to mimic a colony-specific signature, a hard exoskeleton and various defence
behaviours [35] are apparently sufficient to survive inside host colonies. An example is
the turtle defence posture, where the SHB tucks its head under the pronotum, presses legs
and antennae tightly to the body and stays motionless [51]. Indeed, usually less than one
percent of honey bee worker attacks result in bees grabbing an SHB antenna [39], and the
killing of adult SHBs by honey bee workers is extremely rare (PN unpublished observation).
Moreover, SHB can also infest nests of bumble bees, stingless bees, and solitary bees [35,37].
In light of such a broad potential host spectrum and the mobile nature of free-flying adult
SHBs, host colony-specific CHC profiles might be costly.

The generic host chemical profile observed in field-collected SHBs did not seem to
be immediately developed by SHBs after emergence, since a noticeable increase in the
total amount of CHCs and in the number of compounds was observed in beetles collected
from host colonies. The higher complexity of CHCs in field-collected SHBs might be due
to age [52–54]. However, the adult SHBs were kept for one week after emergence under
controlled laboratory conditions, which was sufficient to develop a full CHC profile in
other insect species [20,55]. Furthermore, in field-collected SHBs there was no increase
in the amount of compounds that were already present in laboratory-reared ones as
expected in case of an age-related CHC increase [50]. Instead, there was a consistent rise
in both the total amount of CHCs and the number of compounds, which almost doubled
in field-sampled SHBs. Since the cuticular compound dynamics in insects can depend
on diet [56–59], adult SHBs may have actively acquired the low generic host profile via
trophallactic feeding, feeding on hive products, dead bees or debris [35]. Alternatively,
but not mutually exclusive, a CHC acquisition may have also passively occurred through
contact with the host colony nest environment (e.g., wax comb) [22,60,61] and their honey
bee hosts, as in case of ectoparasitic mites Varroa destructor [62].

Despite the qualitative and quantitative differences in the chemical profile between
laboratory-reared and field-sampled SHBs, all SHBs taken together showed a ten-fold
lower quantity of CHCs when compared to honey bee workers. Since adult SHBs are
about half the size of adult honey bee workers [63], the differences in body size alone are
unlikely to explain the observed difference in the total amount of CHCs. In addition, there
are differences in body shape between SHBs and honey bees, leading to differences in
surface area to volume ratios. This can also influence the total amount of CHCs present [64]
and might partially explain the observed differences. In any case, the low amount of
CHCs taken together with the relative simplicity of the CHC profile before entering host
colonies might represent an adaptation to at least partly evade the honey bees’ nestmate
recognition system [10]. Indeed, laboratory-reared SHBs lacked alkenes and methyl-
branched alkanes instrumental for nestmate recognition in social insects [62,63]. The more
chemically neutral profile of honey bee-naive beetles might favour the first host colony
intrusion after emergence and could also constitute a strategy towards exploiting a broad
spectrum of host bee species. However, follow up studies are required to test whether
those bee-naive beetles can more successfully invade a host colony.

Interestingly, one unidentified ester (putatively acetic acid n-octadecyl ester based
on its mass spectrum) was exclusively found in both laboratory-reared and field-collected
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SHBs, but not in honey bee workers. This ester may, therefore, constitute an intraspecific
SHB recognition cue, whose actual role for communication appears worthy of investigation.

5. Conclusions

The present work provides the first characterization of adult SHB chemical profiles
in comparison to honey bee host workers. Our data showed that adult SHBs possess
a generic honey bee host CHC profile. In the field, the SHB CHC profile was not host
colony-specific, probably due to adult beetles commuting between host colonies. This
suggests that SHBs do not use a finely tuned chemical mimicry to conceal their presence
inside a honey bee colony. The ten-fold lower CHC profiles of field-collected adult SHB
compared to honey bee workers might, nevertheless, constitute an adaptation to at least
partly evade nestmate recognition.

Author Contributions: A.P., R.C., F.C., L.D., and P.N. designed the experiment and wrote the
manuscript; A.P. and F.C. collected laboratory data; G.R.W., R.C., and R.B. provided materials and/or
equipment; L.D. performed the statistical analysis; R.C., F.C., and L.D. analysed the data. All authors
have read and agreed to the published version of the manuscript.

Funding: Financial support was granted by the Swiss Federal Commission for Scholarships for For-
eign Students (A.P.), the Vinetum Foundation (P.N.) and by the University of Florence (F.C., L.D. and
R.C). It was additionally supported by the USDA National Institute of Food and Agriculture Multi-
state Hatch project NC1173 and the USDA ARS Cooperative Agreement 6066-21000-001-02-S (G.R.W.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The complete raw data will be deposited at the Dryad repository upon
acceptance for publication.

Acknowledgments: We wish to thank the team of the Auburn Bee Laboratory for enthusiastic
and superb technical support. We also thank Francesca Boscaro and Giuseppe Pieraccini of CISM
(Centro di Servizi di Spettrometria di Massa) of the University of Florence for their help with the
chemical analyses.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Breed, M.D.; Cook, C.N.; McCreery, H.F.; Rodriguez, M. Nestmate recognition in eusocial insects: The honeybee as a model system.

In Social Recognition in Invertebrates: The Knowns and the Unknowns; Aquiloni, L., Tricarico, E., Eds.; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 147–164, ISBN 9783319175997.

2. d’Ettorre, P.; Lenoir, A. Nestmate recognition. In Ant Ecology; Lach, L., Parr, C., Abbott, K., Eds.; Oxford University Press: Oxford,
UK, 2010; pp. 194–209, ISBN 9780191720192.

3. Leonhardt, S.D.; Menzel, F.; Nehring, V.; Schmitt, T. Ecology and evolution of communication in social insects. Cell 2016, 164,
1277–1287. [CrossRef]

4. Cervo, R.; Cini, A.; Turillazzi, S. Visual recognition in social wasps. In Social Recognition in Invertebrates: The Knowns and the
Unknowns; Aquiloni, L., Tricarico, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 125–145, ISBN 9783319175997.

5. Cini, A.; Sumner, S.; Cervo, R. Inquiline social parasites as tools to unlock the secrets of insect sociality. Philos. Trans. R. Soc. B Biol.
Sci. 2019, 374, 20180193. [CrossRef]

6. Schönrogge, K.; Barbero, F.; Casacci, L.P.; Settele, J.; Thomas, J.A. Acoustic communication within ant societies and its mimicry by
mutualistic and socially parasitic myrmecophiles. Anim. Behav. 2017, 134, 249–256. [CrossRef]

7. Howard, R.W.; Blomquist, G.J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 2005,
50, 371–393. [CrossRef] [PubMed]

8. Blomquist, G.J.; Bagnères, A.G. Insect Hydrocarbons Biology, Biochemistry, and Chemical Ecology; Cambridge University Press:
Cambridge, UK, 2010; ISBN 9780511711909.

9. Bruschini, C.; Cervo, R.; Stefano, T. Pheromones in Social Wasps. Vitam Horm. 2010, 83, 447–492. [CrossRef]
10. Lenoir, A.; D’Ettorre, P.; Errard, C.; Hefetz, A. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 2001, 46,

573–599. [CrossRef] [PubMed]
11. Cini, A.; Bruschini, C.; Signorotti, L.; Pontieri, L.; Turillazzi, S.; Cervo, R. The chemical basis of host nest detection and chemical

integration in a cuckoo paper wasp. J. Exp. Biol. 2011, 214, 3698–3703. [CrossRef] [PubMed]
12. Dettner, K.; Liepert, C. Chemical mimicry and camouflage. Annu. Rev. Entomol. 1994, 39, 129–154. [CrossRef]

http://doi.org/10.1016/j.cell.2016.01.035
http://doi.org/10.1098/rstb.2018.0193
http://doi.org/10.1016/j.anbehav.2016.10.031
http://doi.org/10.1146/annurev.ento.50.071803.130359
http://www.ncbi.nlm.nih.gov/pubmed/15355247
http://doi.org/10.1016/S0083-6729(10)83019-5
http://doi.org/10.1146/annurev.ento.46.1.573
http://www.ncbi.nlm.nih.gov/pubmed/11112180
http://doi.org/10.1242/jeb.059519
http://www.ncbi.nlm.nih.gov/pubmed/21993800
http://doi.org/10.1146/annurev.en.39.010194.001021


Insects 2021, 12, 751 12 of 13

13. Uboni, A.; Bagnères, A.G.; Christidès, J.P.; Lorenzi, M.C. Cleptoparasites, social parasites and a common host: Chemical
insignificance for visiting host nests, chemical mimicry for living in. J. Insect Physiol. 2012, 58, 1259–1264. [CrossRef]

14. Vander Meer, R.K.; Wojcik, D.P. Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science 1982, 218,
806–808. [CrossRef] [PubMed]

15. Lorenzi, M.C.; d’Ettorre, P. Nestmate recognition in social insects: What does it mean to be chemically insignificant? Front. Ecol.
Evol. 2020, 7, 488. [CrossRef]

16. Cappa, F.; Bruschini, C.; Cipollini, M.; Pieraccini, G.; Cervo, R. Sensing the intruder: A quantitative threshold for recognition cues
perception in honeybees. Naturwissenschaften 2014, 101, 149–152. [CrossRef]

17. Cini, A.; Gioli, L.; Cervo, R. A quantitative threshold for nest-mate recognition in a paper social wasp. Biol. Lett. 2009, 5, 459–461.
[CrossRef]

18. Ichinose, K.; Lenoir, A. Hydrocarbons detection levels in ants. Insectes Soc. 2010, 57, 453–455. [CrossRef]
19. Akino, T.; Knapp, J.J.; Thomas, J.A.; Elmes, G.W. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social

parasite of Myrmica ant colonies. Proc. R. Soc. B Biol. Sci. 1999, 266, 1419–1426. [CrossRef]
20. Lorenzi, M.C.; Cervo, R.; Zacchi, F.; Turillazzi, S.; Bagnères, A.G. Dynamics of chemical mimicry in the social parasite wasp

Polistes semenowi (Hymenoptera: Vespidae). Parasitology 2004, 129, 643–651. [CrossRef] [PubMed]
21. Young, H.P.; Schal, C. Cuticular hydrocarbon synthesis in relation to feeding and developmental stage in nymphs of Blattella

germanica (Dictyoptera: Blattellidae). Ann. Entomol. Soc. Am. 1997, 90, 655–663. [CrossRef]
22. Bos, N.; Grinsted, L.; Holman, L. Wax On, Wax off: Nest soil facilitates indirect transfer of recognition cues between ant nestmates.

PLoS ONE 2011, 6, e19435. [CrossRef] [PubMed]
23. Couvillon, M.J.; Caple, J.P.; Endsor, S.L.; Kärcher, M.; Russell, T.E.; Storey, D.E.; Ratnieks, F.L.W. Nest-mate recognition template

of guard honeybees (Apis mellifera) is modified by wax comb transfer. Biol. Lett. 2007, 3, 228–230. [CrossRef]
24. D’Ettorre, P.; Wenseleers, T.; Dawson, J.; Hutchinson, S.; Boswell, T.; Ratnieks, F.L.W. Wax combs mediate nestmate recognition by

guard honeybees. Anim. Behav. 2006, 71, 773–779. [CrossRef]
25. Dahbi, A.; Cerdá, X.; Hefetz, A.; Lenoir, A. Adult transport in the ant cataglyphis iberica: A means to maintain a uniform colonial

odour in a species with multiple nests. Physiol. Entomol. 1997, 22, 13–19. [CrossRef]
26. Soroker, V.; Vienne, C.; Hefetz, A. Hydrocarbon dynamics within and between nestmates in Cataglyphis niger (Hymenoptera:

Formicidae). J. Chem. Ecol. 1995, 21, 365–378. [CrossRef]
27. Cappa, F.; Beani, L.; Cervo, R. The importance of being yellow: Visual over chemical cues in gender recognition in a social wasp.

Behav. Ecol. 2016, 27, 1182–1189. [CrossRef]
28. Cappa, F.; Petrocelli, I.; Dani, F.R.; Dapporto, L.; Giovannini, M.; Silva-Castellari, J.; Turillazzi, S.; Cervo, R. Natural biocide

disrupts nestmate recognition in honeybees. Sci. Rep. 2019, 9, 3171. [CrossRef] [PubMed]
29. McDonnell, C.M.; Alaux, C.; Parrinello, H.; Desvignes, J.P.; Crauser, D.; Durbesson, E.; Beslay, D.; Le Conte, Y. Ecto- and

endoparasite induce similar chemical and brain neurogenomic responses in the honey bee (Apis mellifera). BMC Ecol. 2013, 13, 25.
[CrossRef] [PubMed]

30. Blomquist, G.J.; Jackson, L.L. Incorporation of labelled dietary n-alkanes into cuticular lipids of the grasshopper Melanoplus
sanguinipes. J. Insect Physiol. 1973, 19, 1639–1647. [CrossRef]

31. Liang, D.; Silverman, J. “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine
ant, Linepithema humile. Naturwissenschaften 2000, 87, 412–416. [CrossRef]

32. Lundie, A.E. The small hive beetle, Aethina tumida. Sci. Bull. Dep. Agric. For. Union S. Afr. 1940, 220, 30.
33. Al Toufailia, H.; Alves, D.A.; Bená, D.D.C.; Bento, J.M.S.; Iwanicki, N.S.A.; Cline, A.R.; Ellis, J.D.; Ratnieks, F.L.W. First record of

small hive beetle, Aethina tumida Murray, in South America. J. Apic. Res. 2017, 56, 76–80. [CrossRef]
34. Liu, Y.; Han, W.; Gao, J.; Su, S.; Beaurepaire, A.; Yañez, O.; Neumann, P. Out of Africa: Novel source of small hive beetles infesting

Eastern and Western honey bee colonies in China. J. Apic. Res. 2020, 60, 108–110. [CrossRef]
35. Neumann, P.; Pettis, J.S.; Schäfer, M.O. Quo vadis Aethina tumida? Biology and control of small hive beetles. Apidologie 2016, 47,

427–466. [CrossRef]
36. Neumann, P. Small hive beetle in Italy: What can we expect in the future? In Small Hive Beetle—A Growing Problem in the 21st

Century; Carreck, N.L., Ed.; International Bee Research Association: Bristol, UK, 2017; pp. 33–40.
37. Gonthier, J.; Papach, A.; Straub, L.; Campbell, J.W.; Williams, G.R.; Neumann, P. Bees and flowers: How to feed an invasive beetle

species. Ecol. Evol. 2019, 9, 6422–6432. [CrossRef] [PubMed]
38. Spiewok, S.; Neumann, P. Infestation of commercial bumblebee (Bombus impatiens) field colonies by small hive beetles (Aethina

tumida). Ecol. Entomol. 2006, 31, 623–628. [CrossRef]
39. Neumann, P.; Naef, J.; Crailsheim, K.; Crewe, R.M.; Pirk, C.W.W. Hit-and-run trophallaxis of small hive beetles. Ecol. Evol. 2015, 5,

5478–5486. [CrossRef]
40. Neumann, P.; Hoffmann, D.; Duncan, M.; Spooner-Hart, R.; Pettis, J.S. Long-range dispersal of small hive beetles. J. Apic. Res.

2012, 51, 214–215. [CrossRef]
41. Neumann, P.; Elzen, P.J. The biology of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae): Gaps in our knowledge of

an invasive species. Apidologie 2004, 35, 229–247. [CrossRef]
42. Spiewok, S.; Pettis, J.S.; Duncan, M.; Spooner-Hart, R.; Westervelt, D.; Neumann, P. Small hive beetle, Aethina tumida, populations

I: Infestation levels of honeybee colonies, apiaries and regions. Apidologie 2007, 38, 595–605. [CrossRef]

http://doi.org/10.1016/j.jinsphys.2012.06.013
http://doi.org/10.1126/science.218.4574.806
http://www.ncbi.nlm.nih.gov/pubmed/17771039
http://doi.org/10.3389/fevo.2019.00488
http://doi.org/10.1007/s00114-013-1135-1
http://doi.org/10.1098/rsbl.2009.0140
http://doi.org/10.1007/s00040-010-0103-4
http://doi.org/10.1098/rspb.1999.0796
http://doi.org/10.1017/S0031182004005992
http://www.ncbi.nlm.nih.gov/pubmed/15552409
http://doi.org/10.1093/aesa/90.5.655
http://doi.org/10.1371/journal.pone.0019435
http://www.ncbi.nlm.nih.gov/pubmed/21559364
http://doi.org/10.1098/rsbl.2006.0612
http://doi.org/10.1016/j.anbehav.2005.05.014
http://doi.org/10.1111/j.1365-3032.1997.tb01135.x
http://doi.org/10.1007/BF02036724
http://doi.org/10.1093/beheco/arw025
http://doi.org/10.1038/s41598-019-38963-3
http://www.ncbi.nlm.nih.gov/pubmed/30816211
http://doi.org/10.1186/1472-6785-13-25
http://www.ncbi.nlm.nih.gov/pubmed/23866001
http://doi.org/10.1016/0022-1910(73)90094-2
http://doi.org/10.1007/s001140050752
http://doi.org/10.1080/00218839.2017.1284476
http://doi.org/10.1080/00218839.2020.1816686
http://doi.org/10.1007/s13592-016-0426-x
http://doi.org/10.1002/ece3.5217
http://www.ncbi.nlm.nih.gov/pubmed/31236232
http://doi.org/10.1111/j.1365-2311.2006.00827.x
http://doi.org/10.1002/ece3.1806
http://doi.org/10.3896/IBRA.1.51.2.11
http://doi.org/10.1051/apido:2004010
http://doi.org/10.1051/apido:2007042


Insects 2021, 12, 751 13 of 13

43. Spiewok, S.; Duncan, M.; Spooner-Hart, R.; Pettis, J.S.; Neumann, P. Small hive beetle, Aethina tumida, populations II: Dispersal of
small hive beetles. Apidologie 2008, 39, 683–693. [CrossRef]

44. Schmolke, M.D. A Study of Aethina Tumida: The Small Hive Beetle; University of Rhodesia: Harare, Zimbabwe, 1974; Project Report.
45. Neumann, P.; Evans, J.D.; Pettis, J.S.; Pirk, C.W.W.; Schäfer, M.O.; Tanner, G.; Ellis, J.D. Standard methods for small hive beetle

research. J. Apic. Res. 2013, 52, 1–32. [CrossRef]
46. Papach, A.; Gonthier, J.; Williams, G.R.; Neumann, P. Project report sex ratio of small hive beetles: The role of pupation and adult

longevity. Insects 2019, 10, 133. [CrossRef]
47. Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: London, UK, 1986; ISBN 9780412280603.
48. Neumann, P.; Hoffmann, D.; Duncan, M.; Spooner-Hart, R. High and rapid infestation of isolated commercial honey bee colonies

with small hive beetles in Australia. J. Apic. Res. 2010, 49, 343–344. [CrossRef]
49. Neumann, P.; Pirk, C.W.W.; Hepburn, H.R.; Solbrig, A.J.; Ratnieks, F.L.W.; Elzen, P.J.; Baxter, J.R. Social encapsulation of beetle

parasites by Cape honeybee colonies (Apis mellifera capensis Esch.). Naturwissenschaften 2001, 88, 214–216. [CrossRef] [PubMed]
50. Bernhardt, V.; Pogoda, W.; Verhoff, M.A.; Toennes, S.W.; Amendt, J. Estimating the age of the adult stages of the blow flies Lucilia

sericata and Calliphora vicina (Diptera: Calliphoridae) by means of the cuticular hydrocarbon n-pentacosane. Sci. Justice 2017, 57,
361–365. [CrossRef]

51. Butterworth, N.J.; Drijfhout, F.P.; Byrne, P.G.; Keller, P.A.; Wallman, J.F. Major transitions in cuticular hydrocarbon expression
coincide with sexual maturity in a blowfly (Diptera: Calliphoridae). J. Chem. Ecol. 2020, 46, 610–618. [CrossRef] [PubMed]
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