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A B S T R A C T   

Background:  Physiological responding is a key characteristic of fear responses. Yet, it is unknown whether the 
time-consuming measurement of somatovisceral responses ameliorates the prediction of individual fear re
sponses beyond the accuracy reached by the consideration of diagnostic (e.g., phobic vs. non phobic) and 
cognitive (e.g., risk estimation) factors, which can be more easily assessed. 
Method:  We applied a machine learning approach to data of an experiment, in which spider phobic and non- 
spider fearful participants (diagnostic factor) faced pictures of spiders. For each experimental trial, partici
pants specified their personal risk of encountering the spider (cognitive factor), as well as their subjective fear 
(outcome variable) on quasi-continuous scales, while diverse somatovisceral responses were registered (heart 
rate, electrodermal activity, respiration, facial muscle activity). 
Results:  The machine-learning analyses revealed that fear ratings were predominantly predictable by the diag
nostic factor. Yet, when allowing for learning of individual patterns in the data, somatovisceral responses 
contributed additional information on the fear ratings, yielding a prediction accuracy of 81% explained variance. 
Moreover, heart rate prior to picture onset, but not heart rate reactivity increased predictive power. 
Limitations:  Fear was solely assessed by verbal reports, only 27 females were considered, and no generalization to 
other anxiety disorders is possible. 
Conclusions:  After training the algorithm to learn about individual-specific responding, somatovisceral patterns 
can be successfully exploited. Our findings further point to the possibility that the expectancy-related autonomic 
state throughout the experiment predisposes an individual to experience specific levels of fear, with less influ
ence of the actual visual stimulations.   

1. Introduction 

The question of whether somatovisceral responses may inform about 
mental states has been debated for a long time, especially in the field of 
emotion psychology (see (Pace-Schott et al., 2019), for an overview). 
While it remains unclear whether emotion-specific somatovisceral 
response profiles exist (Kreibig, 2010), the majority of recent theories on 
emotion converge on the assumption that affective experiences go hand 
in hand with significant bodily changes (e.g., (Critchley and Garfinkel, 

2017; Damasio and Carvalho, 2013; Lang et al., 2017). Unsurprisingly, 
therefore, prevailing classification systems (American Psychiatric As
sociation, 2013; World Health Organization, 1992) specify diverse 
somatovisceral responses as characteristic symptoms of phobias and 
panic attacks (see (Roth, 2005), for details). Among those symptoms 
figure changes in sympathetic tone (sweating, trembling or shaking, 
palpitations, pounding heart, or accelerated heart rate) or respiration 
(sensations of shortness of breath or smothering, feeling of choking, 
chest pain or discomfort, feeling dizzy, unsteady, lightheaded or faint, 
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paresthesia). Thus, phobic fear responses go along with substantial 
changes in objective and subjective physiological responding. 

Numerous empirical findings from studies on visceral responding in 
animal fear and phobia conform to these criteria by revealing elevated 
blood pressure, heart rate, and electrodermal activity (e.g., (Fredrikson 
et al., 1985; Globisch et al., 1999; Hamm et al., 1997; Mühlberger et al., 
2006; Sarlo et al., 2002; Wendt et al., 2008)). Observations regarding 
respiratory changes in animal fear and phobia are generally sparse (e.g., 
(Sarlo et al., 2002)), and those for facial muscle activity (e.g., (Aue et al., 
2007; Dimberg et al., 1998; Knopf and Pössel, 2009; Wendt et al., 2008)) 
are little consistent across studies. 

In an earlier publication investigating the sensitivity of physiological 
measures to variations in subjective fear intensity (Aue et al., 2012) in 
spider phobic and non-spider-fearful individuals, we hypothesized that 
(a) parts of the inconsistencies relate to differences in existing fear levels 
between the experiments, and (b) somatovisceral measures may be 
characterized by different onset thresholds and ceiling levels when 
indexing fear and phobia. To this aim, we looked more closely into 
variations in fear levels and their associations with physiological 
responding when spider phobic and non-spider-fearful participants 
faced pictures of spiders (and snakes). We observed that autonomic and 
respiratory responses, as well as facial muscle activity changed with 
varying degrees of subjective fear. Most importantly, those variables 
were differentially sensitive to different fear levels. Specifically, respi
ration differed between phobic and nonphobic participants but not be
tween fear-level variations within each group of participants. Skin 
conductance captured only very high levels of fear (i.e., high fear in 
phobic participants), whereas activity at the M. Corrugator supercilii 
(related to frowning) was capable of distinguishing phobic from non
phobic, and additionally low and high fear in the phobic population. 
Notably, activity at the M. zygomaticus major (related to a fear grimace) 
and heart rate were most sensitive to variations in subjective fear. Apart 
from distinguishing the two populations, they also discriminated be
tween high and low fear within both groups of participants. 

While suggestive, these data do not inform about (a) the degree to 
which psychophysiological data acquired in a given set of situations 
support the prediction of subjective fear responses in a new situation, and 
(b) the relative importance of the different somatovisceral variables in 
doing so (i.e., the different measures had not been considered simulta
neously, whereas them being analyzed in a combined way may 
considerably increase predictive power). Furthermore, our earlier study 
did not provide insights into (c) the importance of psychophysiological 
responses compared with diagnostic (e.g., diagnosis of being phobic vs. 
not phobic) and cognitive (e.g., subjective threat or risk in a given situ
ation) factors. Accordingly, an added value of the usually time- 
consuming somatovisceral assessments needs to be proven. Finally, 
nothing is known about (d) the relative importance of baseline (i.e., pre- 
stimulus, thus referring to habitual responding or expectancies) vs. stimulus- 
driven physiological responding in the prediction of subjective fear 
responding. Correspondingly, the current study addressed those four 
open issues by the application of machine learning. 

The utilization of machine learning approaches in the study of 
emotion has become increasingly popular (Bălan et al., 2020; Cowen, 
Sauter et al., 2019; Hui and Sherratt, 2018; Izquierdo-Reyes et al., 2018; 
Kukolja et al., 2014; Song et al., 2019). Among various facial and voice 
parameters, as well as brain activity, analyses aiming at the differenti
ation of discrete affective states (e.g., fear and disgust) included soma
tovisceral measures derived from the electrocardiogram, electrodermal 
activity, and respiration. In the clinical field, machine learning has been 
used to assist diagnosis, predict treatment outcome, and inform 
individual-specific tailoring of therapeutical procedures for various 
anxiety disorders (Deckert and Erhardt, 2019; Frick et al., 2014; Hahn 
et al., 2015; Lueken et al., 2015; Lueken et al., 2015; Mansson et al., 
2015; Nicholson et al., 2019; Schwarzmeier et al., 2020). 

While machine learning in the above fields of research mostly tested 
whether physiological variables can successfully classify events into 

qualitatively distinct categories, it may also be used for quantitative 
predictions, such as fear level classification. Bălan and colleagues 
(Bălan et al., 2019, 2020) adopted a machine learning approach to es
timate fear levels (two or four categories ranging from no fear to high 
fear) from electrophysiological and peripheral responding (e.g., heart 
rate, skin conductance) in acrophobic patients. Based on such estima
tion, they (Bălan et al., 2019) applied an individually tailored virtual 
reality task designed to decrease phobic symptoms. The authors of the 
two studies reported good fear level classification accuracy (up to 90%) 
with different machine learning methods. Electroencephalogram (EEG) 
signals in the beta frequency range, skin conductance, and heart rate 
turned out to be the most important features for fear level classification 
in one of their studies (Bălan et al., 2020). 

Because these earlier publications on subjective fear intensity 
included phobic individuals only, it remains to be determined whether 
somatovisceral responses also help in the prediction of fear responses in 
mixed populations (i.e., healthy and phobic individuals). Moreover, it is 
still unclear, whether somatovisceral responses add predictive value 
beyond cognitive (e.g., evaluations of subjective risk) and diagnostic (e. 
g., being diagnosed as phobic vs. non-phobic individual) factors. If 
physiology does not add to those cognitive and diagnostic predictors, it 
may not be worthwhile including time-consuming and work-intense 
physiological assessment procedures in the prognosis of individual fear. 

Accordingly, in the current investigation we examined whether the 
inclusion of somatovisceral variables increases predictive power beyond 
the consideration of solely cognitive and diagnostic factors. Specifically, 
we re-analyzed data from a previous investigation of variations in 
phobic and non-phobic fear displayed toward spiders and snakes (Aue 
et al., 2012). In this experiment, spider phobic and control participants 
(diagnostic factor) looked at pictures of spiders, snakes, and birds, while 
various somatovisceral responses were assessed (heart rate, electro
dermal activity, muscle activity at the M. corrugator supercilii [frown
ing] and the M. zygomaticus major [fear grimace], respiration rate, and 
tidal volume). They additionally specified their subjective risk of 
encountering the animal displayed (cognitive factor) as well as their fear 
of the respective animals displayed (predicted outcome variable, 
quasi-continuous rating). 

In the present approach, we used a machine learning-based regres
sion analysis to estimate the predictive power of somatovisceral re
sponses beyond diagnostic and cognitive factors. When identifying the 
variables that best predicted subjective fear of spiders (responses to 
snakes and birds were not considered), we further distinguished be
tween baseline responses (i.e., responses before the display of spider 
pictures; not considered in (Aue et al., 2012)) and reactivity (i.e., 
changes arising during the viewing of the spider pictures). Baseline re
sponses describe bodily states in absence of visual stimulation, thereby 
referring to a more basic state throughout an experiment that may 
reflect, among others, general tension in the experimental setting or 
expectations regarding subsequently presented animals – without the 
participants knowing whether or not a spider will ultimately be shown. 
Reactivity, on the contrary describes responses toward specific spider 
pictures and therefore clearly relates to (visual) processing of biological 
threat. 

We hypothesized that diagnostic and cognitive factors would be 
characterized by greater predictive power with respect to individual fear 
levels than would be somatovisceral responding. This is because both 
diagnostic and cognitive factors relied on verbal reports, as did the 
assessment of subjective fear in the current study (see Method section for 
details). Nonetheless, we assumed somatovisceral responses to aid in the 
fine-tuning of fear-level predictions, and hence contribute independent 
predictive power. This prediction is based on the observation that mind 
and body are intimately linked, mutually influence each other, and 
hence do not function as separate units (see (Critchley et al., 2013), for 
details). In addition, we expected somatovisceral reactivity measures to 
be better predictors than baseline measures because the former (but not 
the latter) relate to stimulus-specific processing. These hypotheses were 
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tested with two different machine learning approaches. One version 
permitted learning of participant-specific patterns (a given participant’s 
data were allowed to be partly in the training and partly in the test sets), 
and another version that prevented learning of participant-specific 
patterns (inclusion of a given participant’s data in either the training 
or the test set). 

2. Methods 

2.1. Participants 

Our machine learning approach relied on data of 34 female (17 
spider phobic) participants of an earlier publication (Aue et al., 2012). 
Because of artifacts leading to missing values in some somatovisceral 
variables in some participants, and because we needed a complete set of 
somatovisceral responses for each participant, 7 of those 34 participants 
could not be included in our analyses (for details on excluded measures 
and participants, see (Aue et al., 2012)). 

The remaining sample consisted of 13 spider phobics and 14 non 
spider-fearful controls, aged between 20 and 44 years (M = 26.5, SD =
6.19). Spider phobia was diagnosed based on a telephone interview 
checking for DSM-IV-TR (American Psychiatric Association, 2000) and 
ICD-10 (World Health Organization, 1992) criteria for the presence and 
absence of spider phobia (cf. (Mühlberger et al., 2006). This classifica
tion constituted our diagnostic factor. Additionally, participants rated 
their fear of spiders on a scale from 0 (no fear at all) to 100 (maximal or 
extreme fear) and on the Fear of Spiders Questionnaire (FSQ; (Szymanski 
and O’Donohue, 1995)). Phobics expressed greater fear of spiders than 
their low spider-fearful counterparts, rating scale: t(25) = 12.24, p <
.001, d = 4.71 (Mphobic = 84.5; Mcontrol = 16.3); FSQ: t(25) = 13.79, p <
.001, d = 5.31 (Mphobic = 97.9; Mcontrol = 23.7). 

2.2. Experimental task, procedure, and included somatovisceral measures 

Participants viewed 30 pictures displaying spiders, 30 pictures dis
playing snakes, and 30 pictures displaying birds (only responses to 
spiders were considered in our main analyses; see Supplementary Ma
terials for responses to snakes). In each experimental trial, they first saw 
a picture of a forest location (presented for 1s) and imagined to be there. 
They next viewed a picture of an animal (presented for 4s) and rated 
their personal risk of encountering the animal displayed (available time: 
4s; detailed findings on encounter expectancies are presented elsewhere; 
(Aue and Hoeppli, 2012)). This risk evaluation constituted our cognitive 
factor. Subsequently, participants rated their fear at facing the possi
bility of encountering the animal displayed on a 17-point scale (from 0% 
[no fear at all] to 100% [extreme, paralyzing fear], increasing in steps of 
6.25%), constituting the to-be-predicted quasi-continuous outcome in 
our machine learning approach. 

While the participants performed the task, their somatovisceral re
sponses were registered continuously with AcqKnowledge 4.1 (Biopac, 
Goleta, CA). In the machine learning approach, we considered the 
following measures: Heart rate during picture presentation, mean skin 
conductance during the entire experimental trial (~15s; because of its 
high latency), respiration rate and maximal respiratory amplitude (as an 
estimate of tidal volume) for the entire experimental trial, and facial 
muscle activity at the M. Zygomaticus major and M. Corrugator super
cilii during picture presentation. Additionally, we included the baselines 
of these variables (i.e., activity before picture onset; 2s for all variables 
except the rapidly changing muscle activity; for the latter: 1s). Further 
details about the experimental task, setting, procedure and included 
somatovisceral measures can be found in (Aue et al., 2012). 

2.3. Multivariable regression of fear ratings 

A machine learning analysis using a multivariable regression model 
was performed in Python (v3.8.3), to identify factors that predict the 

individual fear ratings of participants. For the machine learning model, 
“Extra Trees” (ExtraTreesRegressor, scikit-learn library v0.23.1, 
(Pedregosa et al., 2011)) was chosen, because it is computationally 
efficient, highly accurate, and able to model linear as well as non-linear 
relationships between factors and the prediction target, in our case the 
fear ratings (Hastie et al., 2009); (Geurts et al., 2006). Extra Trees 
implement an ensemble of “Extremely randomized trees” (Geurts et al., 
2006). Generally, ensemble methods improve the performance of base 
predictors (decision trees in the case of the Extra Trees regressor) by 
averaging the predictions of all base predictors and using this average as 
the final prediction of the ensemble. However, to obtain diverse pre
dictions from the same base predictors, it is necessary to use processes 
that introduce randomness when building the base predictors. Hence, 
the name “randomized trees”. 

The model performance – the prediction accuracy – was estimated 
using a nested cross-validation (CV) procedure (Cawley and Talbot, 
2010; Hastie et al., 2009). CV allows to assess the performance of the 
model that can be expected on new, unseen data, hence, the generaliz
ability of the model. CV implements repeated train-test splits of the data; 
a separate model is trained and tested in each CV repetition. In the main 
CV loop, a shuffle-split data partitioning with 33% of the data in the 
testing-set was repeated 100 times, resulting in 100 Extra Trees models 
(1000 trees per model). Feature scaling (z-scoring) and hyper-parameter 
tuning was carried out within the main CV loop, with using the 
training-data of the current CV loop only. Hyper-parameter tuning is 
necessary to control model complexity and, as a consequence, to avoid 
overfitting the data. The hyper-parameter tuning was implemented in an 
inner (nested) CV procedure. Hence, a separate CV was carried out for 
each repetition of the outer CV loop. The inner CV loops used again a 
shuffle-split partitioning scheme, but these times with 50 repetitions 
only, to save computation time. To control model complexity and 
consequently prevent overfitting the data, we decided to restrict the 
maximum number of possible interactions of a decision tree in the Extra 
Trees ensembles by controlling the number of maximum leave nodes per 
tree. The candidate maximum number of leave nodes were randomly 
drawn between 2 and 512 (50 random draws, RandomizedSearchCV, 
scikit-learn, v0.23.1). The maximum number of leave nodes that led to 
the lowest squared error was subsequently used in the outer CV loop. 

After hyper-parameter tuning, an Extra Trees model was trained in 
the main (outer) CV loop using the obtained hyper-parameter and the 
following constant parameters: n_estimators=1000, criterion=’
friedman_mse’, max_depth=None, min_samples_split=2, min_
samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, 
min_impurity_decrease=0.0, ccp_alpha=0.0, max_samples=None. 

The obtained model was tested on the respective hold-out set of the 
main CV loop. The hold-out set (33% of the data) was explicitly not used 
in the inner CV loop. In each repetition of the main CV loop, the 
following two model performance metrics were computed: (1) the mean 
absolute error (MAE), and (2) the prediction coefficient of determina
tion (prediction R2) of the model (Hastie et al., 2009). For MAE smaller 
values represent a better model fit, whereas for R2 higher values indicate 
a better model fit. MAE values lie between 0 (perfect model fit, no error 
at all) and infinity (bad performing model), and are not scale invariant, 
hence the values of the MAE depend on the scale of the target (fear 
rating). To establish a baseline MAE for determining statistical signifi
cance of the MAE, we additionally computed the chance MAE based on 
the predictions of a model with exact same parameters but trained with 
shuffled target data in each CV repetition. R2 values lie between minus 
infinity (a model that performs worse than using the mean target value 
as the prediction) and 1 (perfect model, where all predictions are exactly 
the true values of the target). R2 is scaled that 0 means that the model 
performs as good as using the average target value as predictor (this is 
referred to as the trivial predictor), and that 1 means no error at all. 
Statistical significance of the MAE and of the R2 were determined using 
bootstrap tests (100,000 bootstrap samples; (Efron, 1992)). The 
null-hypothesis for the MAE was that the difference between MAE and 

T. Aue et al.                                                                                                                                                                                                                                      



Journal of Affective Disorders 294 (2021) 296–304

299

chance MAE is smaller than or equal to zero. The null-hypothesis for the 
prediction R2 was that the prediction R2 is smaller than or equal to zero. 

This analysis (computing the models in a nested CV) was carried out 
four times. First, two times with only non-physiological factors (small 
model). These factors were whether a participant was classified as 
phobic or not (i.e., diagnostic factor) and the perceived risk of 
encountering a spider (i.e., cognitive factor). Second, two times with the 
same factors and the somatovisceral measurements (big model). The 
factors included in this model were: whether a participant was classified 
as phobic or not (i.e., diagnostic factor), the perceived risk of encoun
tering a spider (i.e., cognitive factor), baseline heart rate from electro
cardiogram (ECG) of 2s before stimulus presentation, heart rate change 
from baseline to stimulus presentation (ECG of 4s after stimulus pre
sentation minus ECG baseline), baseline electrodermal activity (EDA) of 
2s before stimulus presentation, EDA change from baseline to stimulus 
presentation (EDA of 15s after stimulus presentation minus EDA base
line), baseline electromyogram (EMG) at the M. Corrugator supercilii of 
1s before stimulus presentation, Corrugator EMG change from baseline 
to stimulus presentation (Corrugator EMG of 4s after stimulus presen
tation minus Corrugator EMG baseline), baseline EMG at the M. Zygo
maticus major of 1s before stimulus presentation, Zygomaticus EMG 
change from baseline to stimulus presentation (Zygomaticus EMG of 4s 
after stimulus presentation minus Zygomaticus EMG baseline), baseline 
respiration amplitude (RESP_amp) of 2s before stimulus presentation, 
respiration amplitude change from baseline to stimulus presentation 
(RESP_amp of 15s after stimulus presentation minus RESP_amp base
line), baseline respiration rate (RESP_freq) of 2s before stimulus pre
sentation, respiration rate change from baseline to stimulus presentation 
(RESP_freq of 15s after stimulus presentation minus RESP_freq baseline). 
The separation in small and big models allows to analyze the contribu
tion of the physiological measures to the respective models’ 
performance. 

For the big models only, we further analyzed the contributions of 
single factors to the models’ performances. For non-linear models, as 
used here, this is not as straightforward as for linear models. One cannot 
analyze model weights as they usually do not exist in non-linear 
methods as the Extra Trees model. However, one analysis technique 
that can be applied with non-linear methods, too, is permutation feature 
importance testing, which works as follows: (1) A baseline R2 score is 
recorded by passing a testing-set through the model. (2) The values of a 
single factor are permuted, and the testing-set is passed again through 
the model. (3) The R2 score is recomputed. (4) The importance of a 
factor is the difference between the baseline and the drop in overall R2 

score caused by permuting a factor’s values (Molnar, 2019). The per
mutation thus disentangles the relationship between a factor and the 
prediction (fear rating), i.e. the drop in the model score is indicative of 
how much the model depends on that factor (Molnar, 2019). We report 
the drop in R2 score for each factor normalized to the baseline R2 score. 
Hence, permutation feature importance values lie between minus in
finity (contradictive, misleading information), 0 (not important, because 
R2 score does not change) and 1 (very important, because R2 changes to 
zero). To determine whether a feature’s contribution was statistically 
significant, we tested the null-hypothesis that the median drop in R2 of a 
feature is smaller than or equal to zero with a bootstrap test (100,000 
bootstrap samples per feature; (Efron, 1992)). Subsequently, obtained 
p-values were Bonferroni corrected for multiple comparisons. 

As mentioned above, the analyses were repeated twice with the small 
as well as twice with the big model, hence, in total four times. In the first 
run of the small and the big model, all fear ratings were assumed to be 
independent. However, it is very likely that fear ratings, (as well as risk 
ratings and somatovisceral responses) of different participants exhibit 
specific patterns (e.g., general high or low ratings, etc.) and conse
quently, fear ratings of a given participant form clusters and are not 
statistically independent. This is a kind of a repeated-measures problem, 
where a participant is measured several times. Therefore, we ran a 
second analysis with the small as well as with the big model, where the 

CV procedure had an additional constraint per CV repetition, namely 
that the data of one participant were not allowed to be in both, the test- 
as well as the training-set. This strict participant-based data separation 
was implemented to avoid an information flow between training and 
testing-set due to the above-mentioned participant-specific patterns or 
clusters of fear ratings. Hence, the first analysis of the small and the big 
models reflects how well one can predict the fear ratings in the case that 
participant-specific patterns in the data are known (learning of 
participant-specific patterns permitted), whereas the second analysis 
reflects how well one can predict the fear ratings in the case that 
participant-specific patterns in the data are not known (in other words, 
how well the prediction would perform if we tried to predict the fear 
ratings of new, formerly not available participants; learning of 
participant-specific patterns prevented). Furthermore, the difference 
between these analyses shows whether such clusters are present or not 
and how much they contribute to prediction accuracy. 

3. Results 

We applied a machine learning algorithm to predict fear ratings from 
diagnostic information (phobic), cognitive information (perceived risk), 
and, additionally, physiological information (based on ECG, EDA, EMG, 
RESP). In total, we computed four analyses. Two analyses with the small 
model (only phobic and perceived risk as features) and two analyses 
with the big model (all described features). The analyses differed in 
whether learning of participant-specific patterns was permitted or not. 
To prevent learning of participant-specific patterns, the CV data splitting 
was modified so that samples of a given participant were only available 
during the model’s training or testing, but never in both. 

First, we computed a correlation matrix (Fig. 1) of all factors and the 
target by using Pearson product moment correlation coefficients. On the 
one hand, this revealed a high correlation (0.7) between participants’ 
fear ratings and being classified as phobic (vs. control; i.e., diagnostic 
factor), as well as a medium negative correlation (-0.5) between 
RESP_freq changes and the respective baselines. On the other hand, 
except of phobic state, we found only low correlations between features 
and the fear ratings (Fig. 1, bottom row). Due to its sensitivity to outliers, 
however, the Pearson product moment correlation coefficient can fail to 
detect the existence of meaningful relationships between variables 
(Rousselet and Pernet, 2012). Particularly, it cannot uncover non-linear 
relationships or more complex multivariate patterns of interdependent 
relationships. Thus, we used machine learning in the next step to predict 
fear ratings from the variables (factors) to establish which ones (if any) 
contribute to the prediction. 

Second, we estimated the multivariate models and determined the 
models’ performances. The Extra Trees models provided a good fit in 
accordance with conventional ranges of cutoff values (Table 1). In 
analysis one (small model, learning of participant-specific patterns 
permitted) the average absolute error is 0.19, within a fear rating range 
of 0 to 1. The prediction-based coefficient of determination is 0.56, 
which indicates that the model explains on average 56% of the variance 
in the fear ratings. In the second analysis (small model, learning of 
participant-specific patterns prevented), the average absolute error is 
bigger than in analysis 1 with 0.21, at the same fear ratings range of 0 to 
1. Consistent with this finding, the prediction coefficient of determina
tion is smaller than in the first analysis (0.43, corresponding to 43% 
explained variance in the fear ratings). This observation is supportive of 
the existence of participant-specific patterns in the data. In the third 
analysis (big model, learning of participant-specific patterns permitted), 
the average absolute error is 0.12, within a fear rating range of 0 to 1. 
The prediction-based coefficient of determination is 0.81, which in
dicates that the models explains on average 81% of the variance in the 
fear ratings. In the fourth analysis (big model, learning of participant- 
specific patterns prevented), the average absolute error is 0.21, within 
a fear rating range of 0 to 1. The prediction-based coefficient of deter
mination is 0.4, which indicates that the models explains on average 
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40% of the variance in the fear ratings. 
Third, we analyzed the contributions of single factors to the big 

models’ performance, i.e. which factors are important to predict fear 
ratings in the big models. For that, we applied permutation importance 
calculations and, subsequently, bootstrap significance tests. In analysis 
three (big model, learning of participant-specific patterns permitted; 
Fig. 2), the most relevant features were – in descending order: Phobic, 
somatovisceral measurements (baseline heart rate, baseline activity at 
the M. Zygomaticus major, reactivity at the M. Zygomaticus major), and 
the perceived risk of encountering a spider. Other factors did not 
contribute significantly. Noteworthy, the feature phobic (diagnostic 
factor) was by far the most important feature. It had a median impor
tance of 0.66, whereas the second most relevant feature (ECG_BSL) had a 
median importance of 0.09. In the fourth analysis (big model, learning of 
participant-specific patterns prevented; Fig. 3), the most relevant 
feature was whether a participant was classified as being phobic or not 
with a median importance of 0.93. All other features were not 
significant. 

Taken together, the machine learning analyses revealed that fear 
ratings were predominantly predictable by whether a participant was 
phobic or not. However, in the case that learning of individual patterns 
in the data is possible, somatovisceral measurements become important, 
too, and contribute additional information on the fear ratings. When 
participant-specific patterns in the data are known (third analysis), the 

Fig. 1. Full correlation matrix depicting the association between features and target of the machine-learning analysis. No significance computed, serves illustration 
purposes only. 

Table 1 
Extra Trees regressor prediction results of fear ratings. 100 repetitions from 
cross-validation.   

Average Mean Absolute 
Error (MAE) ±
standard deviation | p 
value of bigger or equal 
than chance level MAE 

Average coefficient of 
determination (R2) ±
standard deviation | p 
value of smaller or equal 
than 0 

1. Small model (non- 
physiological factors 
only); learning of 
participant-specific 
patterns permitted 

0.19 ± 0.01 | p <0.001 0.56 ± 0.04 | p < 0.001 

2. Small model (non- 
physiological factors 
only); learning of 
participant-specific 
patterns prevented 

0.21 ±0.03 | p <0.001 0.43 ± 0.18 | p < 0.001 

3. Big model (all factors); 
learning of participant- 
specific patterns 
permitted 

0.12 ± 0.01 | p <0.001 0.81 ± 0.02 | p < 0.001 

4. Big model (all factors); 
learning of participant- 
specific patterns 
prevented 

0.21 ± 0.03 | p <0.001 0.40 ± 0.27 | p < 0.001  
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prediction is very accurate, with 81% explained variance. After 
removing the participant-specific pattern information (fourth analysis), 
the prediction accuracy drops to 40% explained variance. 

4. Discussion 

We investigated how the prediction of subjective fear responses is 
informed by somatovisceral responding – beyond the level of diagnostic 
interviews and rating scales assessing perceived threat. We hypothesized 
that diagnostic and cognitive factors would be characterized by greater 
predictive power than the somatovisceral factor(s), while the latter 
would still aid in the fine-tuning of the prediction. Our findings are 
predominantly consistent with these hypotheses. The analyses con
ducted demonstrate that the diagnostic factor is by far most important 
when prognosticating subjective fear. Yet, under certain circumstances, 
the other factors considered are also relevant. 

The third model (big model, learning of participant-specific patterns 
permitted) incorporates all investigated factors and has the lowest MAE 
and highest R2 of all models. Its comparison with the first model (small 
model, learning of participant-specific patterns permitted) points out 
that somatovisceral measures carry additional information about the 
fear ratings; information that cannot be provided by the diagnostic and 
cognitive factors, because the predictive power of the first compared 
with the third model dropped from R2 of 0.81 to 0.56. Consistent with 
our earlier publication (Aue et al., 2012), heart rate and muscle activity 
at the M. Zygomaticus major supply significantly to this higher predic
tive power. The other somatovisceral measures included did not add 
independent information. 

Our findings are in line with the widespread assumption that heart 
rate is an important constituent of fear responses. For instance, estab
lished classification systems (American Psychiatric Association, 2013; 
World Health Organization, 1992) state palpitations, pounding heart, 
and accelerated heart rate as characteristic indicators of specific phobia. 
Furthermore, various theoretical considerations and empirical findings 
include heart rate changes as important indexes of fear responses (Aue 
et al., 2016; Aue et al., 2007; Hamm, 2020; Lang and Bradley, 2013; 
Lang et al., 2017). Somewhat surprisingly though, opposed to our ex
pectations, in the current investigation baseline heart rate (which we did 
not consider in our earlier publication on the same data; (Aue et al., 
2012)), but not heart rate reactivity was sensitive to variations in fear 
levels. Hence, with respect to the prediction of situation-specific sub
jective fear responses to spiders, heart rate prior to the onset of the spider 
picture (rather than heart rate accompanying processing of the spider 
stimulus) is more informative. This finding points to the possibility that 
the expectancy-related autonomic state throughout the experiment 
predisposes an individual to experience specific levels of fear, with less 
influence of the actual visual stimulations. Such an interpretation of the 
data is corroborated by the observation that this did not only held for 
responses to spiders (i.e., phobic stimulus material for half of our par
ticipants), but also for responses to snakes (see Supplementary Materials 
for details). The present finding is of particular interest for the clinical 
context, because it suggests that imagined (rather than real) circum
stances as well as the associated uncertainty determine subsequently 
expressed fear levels. This implies that successful therapies should have 
a strong focus on problematic expectancies that may be hard to over
come. Because empirical studies commonly do not consider both base
line heart rate and heart rate reactivity, these results remain to be 
confirmed. Future investigations should do so and further examine the 
possibility of differential predictive power of baseline and reactivity 
features. 

That facial muscle activity at the M. Zygomaticus major (including 
muscles that are located close-by) is able to capture fear and very 
negative stimulation has been reported before (Aue et al., 2007; Bradley 
and Lang, 2007; Ekman, 2003; Elgee, 2003; Larsen et al., 2003). Such 
activity may relate to the existence of a so-called fear grimace or 
bared-teeth display (Van Hooff, 1972) as well as signal appeasement and 

submissive behavior in primates (Parr et al., 2016; Waller and Dunbar, 
2005). Interestingly, we found both baseline activity as well as reactivity 
to yield independent information for the prognostication of subjective 
fear. As for heart rate, therefore, findings for muscle activity at the M. 
Zygomaticus major suggest that subsequent research should carefully 
differentiate the two. 

For respiratory and electrodermal measurements, we did not observe 
independent contributions to the prediction of the participants’ fear 
levels. Yet, our findings do not necessarily suggest that respiration and 
electrodermal measures are uninformative overall. Notably, respiration 
measures included in the current study differed significantly between 
phobic and control participants, and electrodermal activity differed 
between high and low fear in phobic participants (see (Aue et al., 2012), 
for details). The present approach goes a step further and shows that 
respiratory and electrodermal measures do not add beyond the diag
nostic, cognitive, and already available somatovisceral information 
(provided by heart rate and facial muscle activity at the M. Zygomaticus 
major). Thus, if we know that a given participant belongs to the phobic 
or control group, specified a certain perceived risk, and showed specific 
heart rate and fear grimace responses, additional consideration of the 
participants’ respiratory and electrodermal responses does not amelio
rate the prediction accuracy for subjective fear. It has yet to be consid
ered that, because the current study design relied on a rather quick 
succession of stimuli, it may not have been possible for those low-latency 
signals to capture rapidly occurring psychological changes. It therefore 
remains to be determined whether a study involving only slowly 
changing events (and corresponding psychological states) yields a 
replication of our finding of limited predictive value of electrodermal 
and respiratory responses. 

While our data show that the consideration of some somatovisceral 
measures may assist the prediction of phobic fear (in addition to diag
nostic and cognitive factors), we also see that their predictive power 
disappears, if an individual’s data cannot figure in both the training and 
test sets (i.e., learning of participant-specific patterns is prevented). A 
direct comparison of MAEs and R2s of the two respective models reveals 
that the fourth model (big model, learning of participant-specific pat
terns prevented) is only about as good as the second (small model, 
learning of participant-specific patterns prevented). Moreover, we see a 
big drop in model performance (only half R2) from model three (big 
model, learning of participant-specific patterns permitted) to model four 
(big model, learning of participant-specific patterns prevented). Because 
the control for individual clusters was the difference between models 
three and four, this drop of model performance suggests that somato
visceral information is highly individual and does not generalize be
tween participants. Hence, somatovisceral measures included in the 
current study are of little value in the prediction of an unknown in
dividual’s subjective fear responses. In other words: knowing how an 
individual responds to a given situation improves prediction substan
tially. By contrast, if a new individual is considered, the algorithm needs 
to learn about the individual (e.g., whether or not there is a general 
tendency to report high or low fear).  

An aspect that needs attention, in this regard, is that people can be 
distinguished with respect to the degree of affective-autonomic response 
dissociation displayed (Brosschot and Janssen, 1998). According to this 
conception, in some individuals there can be a divergence between the 
levels of fear revealed in verbal reports, on the one hand, and in 
somatovisceral responses, on the other hand. Whereas a considerable 
number of people show coherence between verbal reports and psycho
physiology in that they display high or low expressions in both types of 
measures, other individuals do not. For instance, so-called repressors are 
characterized by low subjective fear levels while demonstrating high 
sympathetic arousal (Asendorpf and Scherer, 1983). Sensitizers, on the 
other hand, are individuals who report high fear with concurrent low 
sympathetic arousal (Derakshan and Eysenck, 1997). To no surprise, 
therefore, investigations involving machine learning approaches may, 
sometimes, reveal only weak correspondence between subjective and 
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physiological indicators of fear (e.g., (Taschereau-Dumouchel et al., 
2019)). Applied to our own observations, these reflections suggest that 
predictions of subjective fear levels from somatovisceral responding 
may be of limited use if nothing is known about an individual’s personal 
affective-autonomic response relationship. 

Importantly, the exact same applies to the cognitive factor (i.e., 
estimated risk). Thus, cognitive factors do not appear to be per se more 
effective in the prediction of subjective fear than are somatovisceral 

measures. Subsequent investigations should explore a greater variety of 
cognitive (e.g., expectancies of being harmed (Aue and Hoeppli, 2012; 
Aue and Okon-Singer, 2015); reappraisal of a potentially threatening 
situation (Everaert and Joormann, 2019; Kamphuis and Telch, 2000)) 
and somatovisceral (e.g., blood pressure and ECG T wave amplitude; 
(Globisch et al., 1999; Sarlo et al., 2002)) measures in order to get closer 
insight into this point. Other considered sources of information related 
to electrophysiological (e.g., (Bălan et al., 2019; Bălan et al., 2020)) and 

Fig. 2. Distribution of permutation-based feature importance for predicting fear ratings with Extra Trees regressors over 100 cross-validation repetitions. For the 
cross-validation, all fear ratings were treated as being independent, hence not depending on a specific participant. Therefore, data of a participant were present in the 
training set as well as in the testing set. This data partitioning reflects how well one can predict the fear ratings in the case that participant-specific patterns in the 
data are accessible. ACT = Activity (relating to activity following picture onset); amp = Amplitude; BSL = Baseline; corr = M. Corrugator supercilii; ECG = Elec
trocardiogram; EDA = Electrodermal activity; EMG = Electromyogram; freq = Frequency; RESP = Respiration; zygo = M. Zygomaticus major. 

Fig. 3. Distribution of permutation-based feature importance for predicting fear ratings with Extra Trees regressors over 100 cross-validation repetitions. For the 
cross-validation, fear ratings were treated as depending on specific participants. Therefore, data of a participant were present in the training set or in the testing set, 
but never in both. This data partitioning reflects how well one can predict the fear ratings in the case that participant-specific patterns in the data are not accessible, 
hence, how well the prediction generalizes to unknown participants. ACT = Activity (relating to activity following picture onset); amp = Amplitude; BSL = Baseline; 
corr = M. Corrugator supercilii; ECG = Electrocardiogram; EDA = Electrodermal activity; EMG = Electromyogram; freq = Frequency; RESP = Respiration; zygo = M. 
Zygomaticus major. 
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speech parameters (e.g., pitch; (Koduru et al., 2020; Seng et al., 2016)). 
Those sources have been repeatedly examined in emotion research that 
relied on machine learning approaches and may be of interest when 
predicting subjective fear responses as well. 

Finally, it may seem that the Bălan et al. (2019, 2020) models 
(achieving classification accuracy up to 90%) that included EEG mea
sures in addition to our somatovisceral parameters, outperformed our 
own when predicting subjective fear. However, these authors’ models 
relied on (few) phobic participants only. Moreover, subjective fear re
sponses, in these earlier models were classified into only two (no fear; 
fear) or four categories (no fear; low fear; medium fear; high fear), while 
here, we employed a quasi-continuous variable. In addition, these au
thors did not investigate methods that prevented the learning of 
participant-specific patterns. The specific value of EEG measures with 
respect to our own models, therefore, remains to be determined. 

5. Limitations 

Part of the high correlation between subjective fear and the diag
nostic factor in the current investigation can possibly be explained by 
the fact that both variables were obtained from verbal reports. A limi
tation of the study, therefore, is that it did not assess clinically relevant 
features of fear other than verbal reports (e.g., behavioral avoidance). In 
addition, the present number of participants (n = 27) may be considered 
comparably low (note, however that, due to the repeated-measures 
design, our overall sample size was n = 803). In light of these limita
tions, subsequent studies need to examine how the effects observed 
replicate in new participants with multiple indices of fear. 

Future studies further need to address whether the results can be 
generalized (a) to men; (b) to other anxiety disorders (e.g., social anxiety 
disorder, agoraphobia, or generalized anxiety disorder); and (c) across 
different experimental settings. Especially the demonstration of com
monalities and divergences across different anxiety disorders (related to 
point b) may yield meaningful insights about possible shared mecha
nisms between these disorders. Furthermore, identification of the key 
predictors for these different forms of anxiety disorders will likely 
highlight important starting points for the therapeutic context (Deckert 
and Erhardt, 2019; Frick et al., 2014; Hahn et al., 2015; Lueken, Hilbert, 
et al., 2015; Lueken, Straube, et al., 2015; Mansson et al., 2015; Nich
olson et al., 2019; Schwarzmeier et al., 2020), whith these starting 
points possibly varying across anxiety disorders. 

6. Summary and Conclusions 

The current investigation demonstrates the general utility of ma
chine learning in the prediction of subjective fear. Combining diag
nostic, cognitive, and somatovisceral factors can achieve high levels of 
prediction accuracy when learning of participant-specific patterns is 
allowed for – with heart rate and facial muscle activity at the M. 
Zygomaticus major being the most effective somatovisceral predictors. 
Thus, physiological assessments may help to fine-tune fear level pre
dictions. Yet, the utility of somatovisceral and cognitive risk factors 
fades when no prior corresponding information about an individual is 
available. Hence, the algorithm needs to learn about the individual (e.g., 
about a potential affective-autonomic response dissociation) in order to 
successfully integrate cognitive and somatovisceral information into 
fear level prediction for subsequent trials. Once such learning has taken 
place, the inclusion of somatovisceral predictors may be beneficial if one 
does not want to continuously interrupt an experiment and let partici
pants consciously assess their fear levels. Future studies may replicate 
our findings with the consideration of additional physiological measures 
and further distinguish between baseline and reactivity responses. 
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Bălan, O., Moise, G., Moldoveanu, A., Leordeanu, M., Moldoveanu, F., 2020. An 
investigation of various machine and deep learning techniques applied in automatic 
fear level detection and acrophobia virtual therapy. Sensors 20 (2), 496. 
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