
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
4
6
5
9
6
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
2
.
1
1
.
2
0
2
1

 
University of Bern Social Sciences Working Paper No. 39 
 
 
Entropy balancing as an estimation command 
 
 
Ben Jann 
 
 
 
 
Current version:  August 16, 2021 
First version:  August 3, 2021 
 
 
 
 
http://ideas.repec.org/p/bss/wpaper/39.html 
http://econpapers.repec.org/paper/bsswpaper/39.htm 
 
 

Faculty of Business, Economics and 
Social Sciences 
 
Department of Social Sciences 
 

University of Bern 
Department of Social Sciences 
Fabrikstrasse 8 
CH-3012 Bern 
 

Tel. +41 (0)31 631 48 11 
Fax +41 (0)31 631 48 17 
info@sowi.unibe.ch 
www.sowi.unibe.ch 



Entropy balancing as an estimation command

Ben Jann
Institute of Sociology
University of Bern
ben.jann@unibe.ch

Abstract. Entropy balancing is a popular reweighting technique that provides
an alternative to approaches such as, for example, inverse probability weighting
(ipw) based on a logit or probit model. Even if the balancing weights resulting
from the procedure will be of primary interest in most applications, it is noteworthy
that entropy balancing can be represented as a simple regression-like model. An
advantage of treating entropy balancing as a parametric model is that it clarifies
how the reweighting a↵ects statistical inference. In this article I present a new
Stata command called ebalfit that estimates such a model including the variance-
covariance matrix of the estimated coe�cients. The balancing weights are then
obtained as model predictions. Variance estimation is based on influence functions,
which can be stored for further use, for example, to obtain consistent standard
errors for statistics computed from the reweighted data.

Keywords: st0001, Stata, ebalfit, entropy balancing, reweighting, inverse proba-
bility weighting, ipw, influence function

1 Introduction

The goal of entropy balancing, a procedure made popular by Hainmueller (2012), is to
find a vector of weights that balances the data between two subsamples with respect
to specific moments (e.g. the means and variances of a given set of covariates). For
example, in order to estimate an “average treatment e↵ect on the treated” (atet) from
observational data we might want to reweight a “control group” such that the means of
observed pre-treatment variables match the means of these variables in the “treatment
group”. Entropy balancing thus provides an alternative to other reweighting techniques
commonly used in the treatment e↵ects literature, such as inverse probability weighting
(ipw) or matching (see, e.g., Imbens and Wooldridge 2009 for an overview), some of
which are implemented in Stata’s teffects command ([TE] te↵ects). An advantage
of entropy balancing over classic ipw or matching is that it leads to perfect balance (if
perfect balance is possible given the degree to which the common support assumption
is violated); classic ipw and matching typically balance the data only approximately
(unless the balancing problem is very simple). Perfect balance means that modeling the
outcome (e.g. using regression adjustment) after the data have been balanced will lead
to no refinements in the treatment e↵ect estimate, implying that entropy balancing has
the “doubly robust” property (also see Zhao and Percival 2017).

Entropy balancing can also be useful for other types of applications. For example,
we may employ entropy balancing to construct weights for population surveys, say, by
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2 Entropy balancing as an estimation command

adjusting the sample to a known population distribution or by fitting weights based
on sampling frame data (see, e.g., Chapters 13 and 14 in Valliant et al. 2013 for an
overview of survey weighting). Related applications would be to use entropy balanc-
ing to compensate selective attrition in a randomized controlled trial (rct) (assuming
that selection is on observables) or to generalize experimental results from a selective
sample of participants to the population (assuming that treatment e↵ect heterogeneity
is conditional on observables). Furthermore, entropy balancing may be used for more
peculiar purposes, such as constructing weights that make the data orthogonal.

From a statistical point of view, entropy balancing boils down to a relatively simple
regression-like parametric model. A first key contribution of this paper is to show how
entropy balancing can be expressed as a system of moment equations and how, based on
this representation, influence functions can be derived for the parameters of the model.
These influence functions can then be used to obtain a consistent estimate of the variance
matrix of the entropy balancing coe�cients, but also to adjust the variance estimates
of statistics computed from the reweighted data to take account of the uncertainty
implied by the estimation of the weights. A second key contribution is to provide a
new command called ebalfit that implements the described methods. Advantages of
ebalfit over existing implementations1 are that ebalfit behaves like o�cial Stata’s
estimation commands (similar syntax, output, and returns), that it provides standard
errors and confidence intervals for the estimated coe�cients, and that influence functions
can be stored for further use in analyses employing the balancing weights.

This article is structured as follows. Drawing on preliminary work by Jann (2020b)
and Jann (2020c), I first describe the entropy balancing model and its estimation, in-
cluding the derivation of influence functions and an approach to adjust the standard
errors of reweighted statistics. I then describe the syntax and options of the new com-
mand. Finally, I provide a set of examples illustrating the practical application of the
new command.

2 The entropy balancing model

2.1 Two-sample balancing

In two-sample entropy balancing the goal is to reweight a sample of interest such that
it has the same characteristics as some reference sample. Let i = 1, . . . , N be the index
of observations across both samples. Indicator variable Si is equal to 1 for observations
that belong to the primary sample, that is, to the sample that is to be reweighted,
and 0 else. Furthermore, S is the set of indices of observations that belong to this
sample (i.e. observations for which Si = 1). Likewise, indicator variable Ri is equal to
1 for observations that belong to the reference sample, and R contains its indices. Note

1. See command ebalance by Hainmueller and Xu (2011, 2013). Note that entropy balancing can also
be performed by command psweight by Kranker (2019), a command that implements “covariate-
balancing propensity score” (cbps) estimation as proposed by Imai and Ratkovic (2014). Entropy
balancing is formally equivalent to just-identified cbps, leading to the same coe�cients and the
same balancing weights.
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that S and R do not need to be disjoint nor exhaustive (for example, the two samples
may overlap). Each observation has a base weight wi (e.g. a sampling weight based

on the survey design) and a k ⇥ 1 vector xi of data. Furthermore, W =
PN

i=1 wi is

the sum of weights across the joint sample; WS =
PN

i=1 Siwi =
P

i2S wi and WR =PN
i=1 Riwi =

P
i2R wi are the sums of weights in the primary sample and the reference

sample, respectively.

Given the target sum of weights ⌧̂ = WR =
P

i2R wi (i.e. the size of the reference
sample) and the k ⇥ 1 vector of target moments µ̂ = 1

WR

P
i2R wixi (i.e. the means of

the data in the reference sample), entropy balancing looks for an estimate of (�0,↵)0

such that

1

⌧̂

X

i2S
!̂ixi = µ̂ and

X

i2S
!̂i = ⌧̂ with !̂i = wi exp(x

0
i�̂ + ↵̂) (1)

Note that ↵ is just a normalizing constant ensuring that the sum of balancing weights
is equal to ⌧̂ . We could also set the target sum to some other (strictly positive) value,
say, 1 or WS . This would only a↵ect ↵, but not �.

Let � = (µ0, ⌧,�0,↵)0 be the complete vector of estimates involved in the entropy
balancing problem. Rearranging the above formulas for the di↵erent elements in � we
can express the model as a system of moment equations given as

1

W

NX

i=1

wih
�
i (�) = 0 with h

�
i (�) =

2

664

h
µ
i (�)

h⌧
i (�)

h
�
i (�)

h↵
i (�)

3

775 =

2

6664

Ri(xi � µ)
WRi � ⌧

Si exp(x0
i� + ↵)(xi � µ)

Si

⇣
exp(x0

i� + ↵)� ⌧
WS

⌘

3

7775
(2)

Following the approach outlined in Jann (2020b), the influence function for �̂ can thus
be obtained as

if�̂i = G
�1

h
�
i (�̂) where G = � 1

W

NX

i=1

wi
@h�

i (�)

@�0

����
�=�̂

(3)

Solving the derivatives we get

G =

2

664

G
µ

0 0 0

0 G⌧
0 0

G
�
µ 0 G

�
G

�
↵

0 G↵
⌧ G

↵
� G↵

3

775 = � 1

W

NX

i=1

wi

2

664

�RiIk 0 0 0

0 �1 0 0
�Si�̂iIk 0 h

�
i (�̂)x

0
i h

�
i (�̂)

0 �Si
1

WS
Si�̂ix0

i Si�̂i

3

775

(4)

where Ik is the identity matrix of size k and �̂i = ex
0
i�̂+↵̂. We are only interested in the

influence functions for �̂ and ↵̂. Hence, noting that Gµ = WR
W Ik, G⌧ = 1, and G↵

⌧ = 1
W ,

we collapse the system to
"
if�̂i
if↵̂i

#
=


G

�
G

�
↵

G
↵
� G↵

��1 
h
�
i (�̂)� W

WR
G

�
µh

µ
i (�̂)

h↵
i (�̂)� 1

W h⌧
i (�̂)

�
(5)
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Furthermore, applying rules for the inversion of a block matrix we can write


G

�
G

�
↵

G
↵
� G↵

��1

=

"
A �d

�
G

�
��1

G
�
↵

�G
↵
�A/G↵ d

#
with

A =
⇣
G

� �G
�
↵G

↵
�/G

↵
⌘�1

d = 1
G↵�G↵

� (G�)�1G�
↵

such that the influence functions can be expressed as

if�̂i = A

⇣
h
�
i (�̂)� W

WR
G

�
µh

µ
i (�̂)

⌘
� d

�
G

�
��1

G
�
↵

✓
h↵
i (�̂)�

1

W
h⌧
i (�̂)

◆
(6)

if↵̂i = d

✓
h↵
i (�̂)�

1

W
h⌧
i (�̂)

◆
�

G
↵
�A

G↵

⇣
h
�
i (�̂)� W

WR
G

�
µh

µ
i (�̂)

⌘
(7)

If balance is achieved, then G
�
µ = ⌧̂

W Ik, G�
↵ = 0, and G↵ = � ⌧̂

W such that the influence
functions simplify to

if�̂i = (G�)�1

✓
h
�
i (�̂)�

⌧̂

WR
h
µ
i (�̂)

◆
(8)

if↵̂i =
W

�⌧̂

✓
h↵
i (�̂)�

1

W
h⌧
i (�̂)�G

↵
� if

�̂
i

◆
(9)

In the current setup, note that ⌧̂/WR = 1, but we may wish to normalize the weights
using some other value for ⌧̂ , in which case ⌧̂/WR would no longer be equal to 1.
For example, we may set ⌧̂ to the sum of base weights in the primary sample, that
is, ⌧̂ = WS =

P
i2S wi. In this case, use h⌧

i (�) = WSi � ⌧ in (7) or (9) instead of
h⌧
i (�) = WRi � ⌧ . Alternatively, we may want to set ⌧ to some fixed value, such as

⌧ = 1. In this case, h⌧
i (�) = 0. Yet, an advantage of using ⌧̂ = WR is that, in this case,

p̂i = exp(x0
i�̂ + ↵̂)/(1 + exp(x0

i�̂ + ↵̂)) can be interpreted as a propensity score, that is,
as an estimate of the conditional probability of belonging to R rather than S given xi.

In general, it seems justifiable to assume ⌧ as fixed even when it is set to sample
quantities such as WR or WS . First, the moment condition for ⌧ will only a↵ect the in-
fluence function of ↵̂, which is typically only of minor interest (for example, the influence
function of ↵̂ is typically not needed when correcting the standard errors of statistics
computed from the reweighted data). Second, also for the influence function of ↵̂ the
bias introduced by assuming ⌧ as fixed will typically be small. This is why command
ebalfit discussed below will treat ⌧ as fixed when computing influence functions and
standard errors.

2.2 One-sample balancing

In one-sample entropy balancing, the data is adjusted to given values from an external
source (e.g. known population averages). To obtain the influence functions for this
situation, replace µ̂ by fixed vector µ and replace ⌧̂ by fixed value ⌧ (e.g. the population
size) and let � = (�0,↵)0. Compared to the two-sample case, all components related to



Ben Jann 5

the estimation of µ and ⌧ drop out of the system. Hence, we get

if�̂i = Ah
�
i (�̂)� d

�
G

�
��1

G
�
↵ h↵

i (�̂) (10)

if↵̂i = d h↵
i (�̂)�

G
↵
�A

G↵
h
�
i (�̂) (11)

and, if balance is achieved,

if�̂i = (G�)�1
h
�
i (�̂) (12)

if↵̂i =
W

�⌧

⇣
h↵
i (�̂)�G

↵
� if

�̂
i

⌘
(13)

2.3 Alternative formulation of the problem

Acknowledging that ↵ is just a normalizing constant, we can also rephrase the problem
such that � is estimated independently of ↵ in a first step and ↵ is then determined
taken the estimate of � as given. In this case, we first look for � that solves

1

⌦̂

X

i2S
wi exp(x

0
i�̂)xi = µ̂ (14)

where ⌦̂ =
P

i2S wi exp(x0
i�̂), and then set ↵ to ↵̂ = ln(⌧̂) � ln(⌦̂). The moment

conditions for � = (µ0,�0)0, the first part of the problem in the two sample setting, can
be written as

h
�
i (�) =


h
µ
i (�)

h
�
i (�)

�
=


Ri(xi � µ)

Si
1
⌦ exp(x0

i�)(xi � µ)

�
(15)

with

G =


G

µ
0

G
�
µ G

�

�
(16)

= � 1

W

NX

i=1

wi

"
�RiIk 0

�Si
1
⌦̂
exp(x0

i�̂)Ik h
�
i (�̂)

⇣
x
0
i �

P
i2S wi

1
⌦̂
exp(x0

i�̂)x
0
i

⌘
#

The influence function of �̂ can thus be obtained as

if�̂i = (G�)�1
⇣
h
�
i (�̂)�G

�
µ(G

µ)�1
h
µ
i (�̂)

⌘
= (G�)�1

✓
h
�
i (�̂)�

1

WR
h
µ
i (�̂)

◆
(17)

which reduces to
if�̂i = (G�)�1

h
�
i (�̂) (18)

in the one-sample setting. If balance is achieved, these expressions are formally equiv-
alent to (8) and (12), respectively. The moment condition for ↵ is still the same as

before, such that its influence function is given by (9) with if�̂i as defined in (17) or, in

the one-sample setting, by (13) with if�̂i as defined in (18).
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2.4 Estimation

We could use gmm ([R] gmm) to estimate the entropy balancing coe�cients based on
the moment equations provided in section 2.1. However, given that ↵ is simply a
normalization constant, it may be more convenient to first run an optimization algorithm
to fit �̂ and then determine ↵̂ as

↵̂ = ln(⌧)� ln

 
X

i2S
wi exp(x

0
i�̂)

!
(19)

as discussed in section 2.3. This ensures that the sum of balancing weights will always
match the target sum of weights. Furthermore, in the two-sample case, the complexity
of the estimation can be reduced by computing the target means µ and the target sum
of weights ⌧ upfront instead of including them in a joint optimization problem.

To obtain an estimate for �, we can run a standard Newton-Raphson algorithm that
minimizes

L! = ln

 
X

i2S
wi exp((xi � µ)0�)

!
= ln

 
X

i2S
!̃i

!
where !̃i = wi exp((xi � µ)0�)

(20)
with respect to � (also see Hainmueller 2012). The vector of first derivatives of L! (the
gradient vector) and the matrix of second derivatives (the Hessian), which are required
by the Newton-Raphson procedure, are given as

g =
1P

i2S !̃i

X

i2S
!̃i(xi � µ) and H =

1P
i2S !̃i

X

i2S
!̃i(xi � µ)(xi � µ)0 (21)

In practice, to avoid numerical overflow, we may want to change the definition of !̃ to

!̃i = wi exp((xi � µ)0� � c) where c = max((xi � µ)0�) (22)

and redefine L! as

L! = ln

 
X

i2S
!̃i

!
+ c (23)

Furthermore, instead of using L!, one may also determine convergence based on a loss
criterion that is directly defined in terms of achieved balance, while still employing the
gradient vector and Hessian given in (21) for updating �. For example, we could use
the maximum absolute di↵erence

Labsdif = max (abs(g)) (24)

the maximum relative di↵erence

Lreldif = max

✓
abs(g)

abs(µ) + 1

◆
(25)
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or the Euclidean norm
Lnorm = kgk =

p
g0g (26)

where g is the gradient vector as defined above. As can easily be seen from its definition,
the gradient vector

g =
1P

i2S !̃i

X

i2S
!̃i(xi � µ) =

 
1P

i2S !̃i

X

i2S
!̃ixi

!
� µ (27)

is equal to the di↵erence between the means of the reweighted data and the target values
µ, given the current current values of �. That is, g quantifies for each variable how well
the balancing has been achieved up to that point in the algorithm.

Practical experience indicates that using one of these balancing loss criteria instead
of L! makes the algorithm more robust in situations where perfect balance is not pos-
sible. However, as the optimization criterion is no longer fully consistent with the used
gradient and Hessian, the algorithm profits from some standardization of the data (so
that the di↵erent variables have similar scales). For example, we may obtain the stan-
dard deviations

�S =

s
1

WS

X

i2S
wi(xi � xS)2 with xS =

1

WS

X

i2S
wixi (28)

from the primary sample and then use xi/�S and µ/�S instead of xi and µ in equations
(20) to (27). Before computing ↵̂ in (19), back-transform the resulting estimate for �
by dividing it by �S .

Furthermore, as usual, collinear terms have to be excluded from estimation. These
terms, however, are relevant for the evaluation of final quality of the achieved balancing
(collinear terms may remain unbalanced). My suggestion thus is to use x

nc
i , a vari-

ant of xi without elements that are collinear in S, for estimation of � (with elements
corresponding to collinear terms set to 0) and then evaluate the final fit based on the
complete data by applying one of the above loss functions to

ĝ =
1P

i2S !̂i

X

i2S
!̂ixi � µ with !̂i = wi exp(x

0
i�̂ + ↵̂) (29)

The variance-covariance matrix of �̂ = (�̂0, ↵̂)0 can be estimated by taking the total
of the squared influence functions divided by the sum of weights. To be precise, if the
base weights are frequency weights (or if there are no base weights, i.e. wi = 1 for all
observations and W = N), then

bV (�̂) =
W

W � k � 1

NX

i=1

wi�i�
0
i with �i =

1

W

"
if�̂i
if↵̂i

#
(30)

If the base weights are probability (sampling) weights, then

bV (�̂) =
N

N � k � 1

NX

i=1

w2
i �i�

0
i with �i =

1

W

"
if�̂i
if↵̂i

#
(31)
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Complex survey design such as clustering or stratification can be taken into account
by appropriately modifying the aggregation. In practice, variance estimates can be
obtained by applying command [R] total to �i, possibly including the [SVY] svy prefix.

Technical note

Instead of running a Newton-Raphson algorithm as described above we may also
mimic the behavior of [R] gmm and apply the Gauss-Newton method to criterion

Q� =
�
q
�
�0
q
� with q

� =
X

i2S
h
�
i (32)

where h
�
i is as given in (15). This is equivalent to a Newton-Raphson algorithm with

gradient and Hessian set to

g = q
�
G

� and H =
�
G

�
�0
G

� (33)

with G
� given in (16).

2.5 Balancing of higher-order moments and covariances

In the exposition above I only considered balancing of first moments (i.e. the means),
but entropy balancing can easily be extended to higher moments such as the variance
or the skewness or even to covariances. The balancing constraints for higher moments
and covariances are equivalent to first-moment balancing constraints for specific trans-
formations of the variables. Rather than extending the above exposition to cover higher
moments, we may thus simply change the definition of the data. To balance the vari-
ance of a variable X in addition to its mean, add x2

i to the data. To also balance the
skewness, add x3

i . To balance the covariance between two variables X1 and X2, include
the product xi1xi2 in the data.

2.6 Correcting standard errors of reweighted estimators

Define !̂i = wi�̂i with

�̂i =

(
exp(x0

i�̂ + ↵̂) if Si = 1

1 else
(34)

That is, for observations within the reweighted sample, !̂i is equal to the balancing
weight, for all other observations, !̂i is equal to the base weight. Most estimators can
be expressed as a system of moment equations

1
PN

i=1 !̂i

NX

i=1

!̂ih
✓
i (✓) = 0 (35)
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such that !̂i does not appear in h
✓
i (✓). For such estimators, the necessary correction to

take account of the uncertainty imposed by the estimation of the balancing weights has
a very simple form. Re-expressing the system as

1

W

NX

i=1

wi

✓
�̂i
c
h
✓
i (✓)

◆
= 0 with c =

1

W

NX

i=1

!̂i (36)

we see that we can obtain the adjusted influence function as

if✓̂i =
�̂i
c
eif✓̂i �G

eif
� if

�̂ �G
eif
↵ if

↵̂ (37)

with

G
eif
� = � 1

W

NX

i=1

wiSi
�̂i
c
eif✓̂ix0

i G
eif
↵ = � 1

W

NX

i=1

wiSi
�̂i
c
eif✓̂i (38)

where eif✓̂i is the influence function of ✓̂ assuming the weights !̂i as fixed. Since G
eif
↵ = 0

by definition, the corrected influence function simplifies to

if✓̂i =
�̂i
c
eif✓̂i �G

eif
� if

�̂ (39)

To summarize, we can fist compute the influence function for ✓̂ in the usual way, as if
balancing weights were fixed, and then adjust the influence function using equation (39).
Naturally, we need a way to obtain the (unadjusted) influence function of our estimator
in the first place, but in many cases this is not very di↵cult (for example, see Jann 2020b
for practical instruction on how to obtain influence functions for maximum-likelihood
models given the results returned by Stata).2

3 Stata implementation

Command ebalfit, available from the ssc Archive, implements the methods described
above. To install the command on your system, type

. ssc install ebalfit

The heavy lifting is done by Mata function mm ebalance() that is provided as part of
the moremata library (Jann 2005), also available from the ssc Archive. To be able to
run ebalfit, the latest update of moremata is required. To install moremata, type

. ssc install moremata, replace

2. In the above derivation I assumed c, which depends on the relative size of the reweighted group
(i.e. the sum of balancing weights) with respect to the size (sum of base weights) of the rest of
the data, to be fixed. This is valid as long as the statistic conditions on Si such that the sum of
balancing weights does not matter or if ⌧ = WS such that c is always equal to 1. In other cases the
true correction would be more complicated, but the bias introduced by assuming c as fixed should
be negligible in most situations.
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The exposition below focuses on Stata command ebalfit and does not provide details
on Mata function mm ebalance(). Users interested in applying mm ebalance() directly
can type help mata mm ebalfit() after installation to view its documentation.

3.1 Syntax

Syntax 1: adjust a subsample to values from another subsample (two-sample balancing)

ebalfit varlist
⇥
if
⇤ ⇥

in
⇤ ⇥

weight
⇤
, by(varname)

⇥
options

⇤

Syntax 2: adjust a sample to population values (one-sample balancing)

ebalfit varlist
⇥
if
⇤ ⇥

in
⇤ ⇥

weight
⇤
, population(

⇥
size:

⇤
numlist)

⇥
options

⇤

Replay results

ebalfit
⇥
, reporting options

⇤

where reporting options are as described under “Reporting” in Section 3.2.

Generate predictions after estimation

predict
⇥
type

⇤
newvar

⇥
if
⇤ ⇥

in
⇤ ⇥

, predict options
⇤

where predict options are

w generate balancing weights (the default)
u generate raw balancing weights (i.e. without base weights)
pr generate propensity scores
pscore synonym for pr
xb generate linear predictions

Generate influence functions after estimation

predict
⇥
type

⇤ �
stub* | newvarlist

 ⇥
if
⇤ ⇥

in
⇤
, ifs

⇥
IF options

⇤

where IF options are

nocons skip influence function for ↵; only relevant with stub*
noalpha synonym for nocons

In both syntax 1 and syntax 2, varlist may contain factor variables (see [U] 11.4.3
Factor variables). fweights, pweights, and iweights are allowed (see [U] 11.1.6
weight).
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3.2 Options

Main

by(groupvar) is required in syntax 1 and identifies the subsamples. groupvar must be
integer and nonnegative and must identify exactly two groups. By default, the lower
value identifies the subsample to be reweighted and the higher value identifies the
reference subsample. Also see option swap.

swap swaps the subsamples (only allowed in syntax 1). By default, the lower value of
groupvar identifies the subsample to be reweighted. Specify swap to use the higher
value of groupvar as the subsample to be reweighted.

pooled uses the pooled sample across both groups as the reference sample (only allowed
in syntax 1). If pooled is specified, the selected subsample will be reweighted with
respect to the overall sample (rather than with respect to the other subsample).

population(spec) is required in syntax 2. Use this option to specify the size of the
population as well the population averages to which the sample should be reweighted.
The syntax of spec is

⇥
popsize:

⇤
numlist

where popsize is the size of the population and numlist provides the population
averages of the variables. numlist must contain one value for each variable. If
popsize is omitted, it will be set to the sum of weights in the sample.

tau(spec) specifies a custom target sum of weights for the balancing weights within the
reweighted sample. spec may either be real number (# > 0) or one of Wref (sum
of base weights in the reference sample), W (sum of base weights in the reweighted
sample), Nref (number of rows the reference sample), or N (number of rows the
reweighted sample). The default is Wref.

scales(spec) determines the scales to be used for standardization during estimation
(unless nostd is specified) and for computation of standardized di↵erences in the
balancing table. spec may either be a numlist containing custom values (one for
each term in the model; the values must be positive) or, alternatively, main (use
standard deviations from the main sample), reference (use standard deviations
from the reference sample), average (use standard deviations averaged between the
two samples), waverage (use standard deviations averaged between the two samples,
weighted by sample size), pooled (use standard deviations from the pooled sample).
reference, average, waverage, and pooled are only allowed in syntax 1. Standard
deviations are computed using population formulas (division byN rather thanN�1).
Scales equal to 0 will be reset to 1. The default is main.

targets(options) specifies the types of moments to be balanced. options are:
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mean balance means (the default)
variance balance variances (implies mean)
skeweness balance skewnesses (implies mean and variance)
covariance balance covariances (implies mean)

By default, only the means of the specified variables will be balanced. If you type, for
example, targets(variance), then the variances of the variables will be balanced in
addition to the means. Balancing of higher moments and covariances is implemented
by adding extra terms to varlist before running the balancing algorithm. For exam-
ple, variance will add c.varname#c.varname for each continuous variable in varlist
(skipping omitted terms). Likewise, covariance will add c.varname1#c.varname2
for each combination of continuous variables. Factor variables will be ignored by
variance and skewness, but covariance will consider them and add appropriate
interaction terms such as 1.fvvar#c.varname (skipping base levels).

If option targets() is specified, interaction terms such as i.fvvar#c.varname are
not allowed in varlist . However, interactions are allowed if option targets() is
omitted. For example, you could type

c.hours##c.tenure i.south i.south#c.tenure

to balance the means of hours and tenure, the covariance between hours and
tenure, the proportions of the levels of south, as well as the averages of tenure
within levels of south (see [U] 11.4.3 Factor variables for details on notation).
That is, you can use custom interactions as an alternative to option targets() if you
want to have more control over the exact configuration of moments to be balanced.

⇥
no

⇤
adjust(numlist) selects the terms to be balanced. Use this option if you want

to construct weights such that only a subset of terms is adjusted, while keeping the
others fixed. numlist provides the indices of the relevant terms. For example, in a
model with three variables, to adjust the means of the first two variables and keep the
mean of the third variable fixed, type adjust(1 2) or, equivalently, noadjust(3).
Keeping terms fixed leads to di↵erent results than excluding the terms from the
model.

Reporting

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level (see [R] level).

noheader suppresses the display of the header.

nowtable suppress the display of the summary table of balancing weights.

notable suppresses the display of the coe�cient table.

display options are standard reporting options to be applied to the coe�cient table,
such as eform, cformat(), or coeflegend; see [R] eform option and the Reporting
options in [R] Estimation options.
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baltab displays a balancing table in addition to the table of coe�cients. The balancing
table contains for each term the target value, the unbalanced value, the standardized
di↵erence between the target value and the unbalanced value, the balanced value,
and the standardized di↵erence between the target value and the balanced value.

VCE/SE

vce(vcetype) determines how standard errors are computed. vcetype may be:

robust
cluster clustvar
none

vce(robust), the default, computes standard errors based on influence functions.
Likewise, vce(cluster clustvar) computes standard errors based on influence func-
tion allowing for intragroup correlation, where clustvar specifies to which group each
observation belongs. vce(none) omits the computation of standard errors.

cluster(clustvar) can be used as a synonym for vce(cluster clustvar).

nose omits the computation of standard errors. Use this option to save computer time.
nose is a synonym for vce(none).

Generate

generate(newvar) stores the balancing weights in newvar . Alternatively, use command
predict to generate the balancing weights after estimation.

In syntax 1, weights will be filled in for both the reweighted subsample and the
reference subsample, using a copy of the base weights for the latter (or 1 if there are
no base weights).

ifgenerate(names) stores the influence functions of the coe�cients. names is either a
list of (new) variable names or stub* to create names stub1, stub2, etc. Alternatively,
use command predict with option ifs to generate the influence functions after
estimation. In any case, the influence functions will be scaled in a way such that
command [R] total can be used to estimate the variance-covariance matrix (that is,
compared to the expressions provided above, the stored influence functions will be
divided by the sum of weights in the overall sample).

nodescribe suppresses the list of generated variables that is displayed in the output by
default when generate() or ifgenerate() is specified.

replace allows replacing existing variables.
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Optimization

btolerance(#) sets the balancing tolerance. Balance is achieved if the balancing loss
is smaller than the balancing tolerance. The default is btolerance(1e-6).

ltype(ltype) sets the type of loss function to be used to evaluate balancing. ltype can
be reldif (maximum relative di↵erence), absdif (maximum absolute di↵erence),
or norm (norm of di↵erences). The default is reldif .

etype(etype) selects the evaluator to be used to fit the coe�cients. etype can be
bl (evaluator based on the balancing loss), wl (evaluator based on distribution of
weights, i.e. criterion L! from equation 20), mm (method of moments evaluator),
or mma (method of moments evaluator including the intercept). The default is bl.
Irrespective of the choice of evaluator, balancing loss will be used to evaluate the
final fit.

iterate(#) specifies the maximum number of iterations. Error will be returned if
convergence is not reached within the specified maximum number of iterations. The
default is as set by set maxiter ([R] set iter).

ptolerance(#) specifies the convergence tolerance for the coe�cient vector. Conver-
gence is reached if ptolerance() or vtolerance() is satisfied. See [M–5] optimize()

for details. The default is ptolerance(1e-6).

vtolerance(#) specifies the convergence tolerance for the balancing loss. Conver-
gence is reached if ptolerance() or vtolerance() is satisfied. See [M–5] opti-
mize() for details. The default is vtolerance(1e-7) in case of etype(bl) and
vtolerance(1e-10) else.

difficult uses a di↵erent stepping algorithm in nonconcave regions. See the singular
h methods in [M–5] optimize() and the description of the difficult option in
[R] Maximize.

nostd omits standardization of the data during estimation. Specifying nostd is not
recommended.

nolog suppresses the display of progress information.

relax causes ebalfit to proceed even if convergence or balance is not achieved. ebalfit
uses formulas assuming balance when computing influence functions and standard
errors. The stored influence functions and reported standard errors will be invalid
if balance has not been achieved.

nowarn suppresses any “convergence not achieved” or “balance not achieved” messages.
This is only relevant if option relax has been specified.

3.3 Stored results

ebalfit stores its results in e() similar to any other estimation command (see [R] Stored
results). See help ebalfit for a complete list of saved results.



Ben Jann 15

4 Examples

4.1 Balancing two samples

Consider the data from LaLonde (1986), provided by Dehejia and Wahba (1999) at
http://users.nber.org/ rdehejia/nswdata.html. The following code combines a subset of
the treatment group from the nsw training program with one of the psid comparison
groups.

. use http://users.nber.org/
~
rdehejia/data/nsw_dw.dta, clear

. keep if treat==1

(260 observations deleted)

. append using http://users.nber.org/
~
rdehejia/data/psid_controls2.dta

For purpose of exposition, I additionally generate some sampling weights (normalized
such that the group sizes are preserved). I also set the default storage type for new
variables to double so that some of the results below will have less roundo↵ error.

. set type double

. set seed 32387939

. generate w0 = runiform()

. summarize w0 if treat==0, meanonly

. quietly replace w0 = w0 * r(N) / r(sum) if treat==0

. summarize w0 if treat==1, meanonly

. quietly replace w0 = w0 * r(N) / r(sum) if treat==1

The focus of the LaLonde data lies on the comparison of re78 (real earnings in 1978
after the program intervention) between the (experimental) treatment group and the
(non-experimental) control group. The comparison is not straight forward as there are
substantial di↵erences between the two groups in terms of pre-treatment characteristics.
Members of the treatment group are younger, more often black, less often married, more
often without college degree, and have lower pre-treatment earnings than members of
the control group:

. table () (treat) [pw=w0], stat(mean age-re75) nototal

treat

0 1

age 37.39198 26.02386

education 10.50566 10.52379

black .4359494 .8572367

hispanic .0722888 .0567015

married .7481573 .1944541

nodegree .5295137 .6608205

re74 10401.03 2230.392

re75 7230.567 1682.258

Various techniques such as matching or inverse probability weighting (ipw) have been
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proposed in the literature to address the problem of making the groups comparable
such that the average e↵ect of program participation (the atet) can be estimated
consistently. Inverse probability weights, for example, could be obtained as follows:

. logit treat age-re75 [pw=w0], nolog

Logistic regression Number of obs = 438

Wald chi2(8) = 93.08

Prob > chi2 = 0.0000

Log pseudolikelihood = -159.20379 Pseudo R2 = 0.4663

Robust

treat Coefficient std. err. z P>|z| [95% conf. interval]

age -.092245 .0158144 -5.83 0.000 -.1232408 -.0612493

education .0642543 .0870386 0.74 0.460 -.1063382 .2348467

black 1.932721 .4336358 4.46 0.000 1.08281 2.782631

hispanic 1.671454 .543556 3.08 0.002 .6061038 2.736804

married -1.290829 .3192307 -4.04 0.000 -1.91651 -.665148

nodegree .2890979 .4642715 0.62 0.533 -.6208574 1.199053

re74 -.0000947 .0000395 -2.40 0.017 -.0001721 -.0000172

re75 -.0000944 .000078 -1.21 0.226 -.0002472 .0000584

_cons 1.649338 1.529141 1.08 0.281 -1.347723 4.646399

. predict pscore if treat==0, pr

(185 missing values generated)

. generate ipw = w0 * cond(treat==0, pscore/(1-pscore), 1)

. drop pscore

. table () (treat) [pw=ipw], stat(mean age-re75 re78) nototal

treat

0 1

age 25.21257 26.02386

education 10.70952 10.52379

black .8905226 .8572367

hispanic .0234441 .0567015

married .1699626 .1944541

nodegree .5972221 .6608205

re74 2814.793 2230.392

re75 2433.187 1682.258

re78 5088.788 6004.657

This worked quite well and much of the group di↵erences disappeared, but there are still
some non-negligible discrepancies, especially with respect to pre-treatment earnings. We
can now try to improve the reweighting using entropy balancing:

. ebalfit age-re75 [pw=w0], by(treat)

Iteration 0: balancing loss = .88095577

Iteration 1: balancing loss = .20574871

Iteration 2: balancing loss = .11227971

Iteration 3: balancing loss = .01088361

Iteration 4: balancing loss = .00056568

Iteration 5: balancing loss = 1.833e-06

Iteration 6: balancing loss = 1.884e-11

Iteration 7: balancing loss = 9.108e-17
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Final fit: balancing loss = 2.038e-16

Entropy balancing Number of obs = 438

Wald chi2(8) = 60.71

Prob > chi2 = 0.0000

Evaluator = bl

Main = 0.treat (253 obs) Loss type = reldif

Reference = 1.treat (185 obs) Balancing loss = 2.038e-16

balancing weights

minimum average maximum total CV DEFF

6.722e-09 .7312253 28.603379 185 3.3617903 12.301634

Robust

Coefficient std. err. z P>|z| [95% conf. interval]

age -.0962814 .0299907 -3.21 0.001 -.155062 -.0375008

education .0894269 .1486163 0.60 0.547 -.2018557 .3807096

black 1.640353 .5943787 2.76 0.006 .4753918 2.805314

hispanic 2.386918 .7496026 3.18 0.001 .917724 3.856112

married -1.079562 .4866648 -2.22 0.027 -2.033407 -.1257165

nodegree .8138536 .7268795 1.12 0.263 -.6108041 2.238511

re74 -.000121 .0000509 -2.38 0.017 -.0002208 -.0000212

re75 -.000174 .0000818 -2.13 0.033 -.0003343 -.0000136

_cons 1.585729 2.51717 0.63 0.529 -3.347834 6.519292

Option by() identifies the groups to be compared; the specified variable must be di-
chotomous (e.g. 0 and 1). By default, ebalfit takes the group with the lower value as
the group to be reweighted and takes the other group as the reference group. Specify
option swap to switch the groups.

The coe�cients displayed by ebalfit are similar to the coe�cients of the logit
model above. In fact, the coe�cients do have a similar interpretation: a positive e↵ect
means that people with high values on the respective variable tend to be overrepresented
in the reference group (and vice versa).

The output contains some more information that is relevant. For example, the
“balancing loss” is a measure of how well ebalfit managed to balance the data. In the
current situation, perfect balancing could be achieved as the balancing loss is essentially
zero.3 Furthermore, some information on the distribution of the weights is provided.
cv is the coe�cient of variation of the weights, defined as

cv =

q
1

NS

P
i2S(!̂i � !S)2

!S
with !S =

1

NS

X

i2S
!̂i

where summation is across the reweighted group (NS is the number of observations
in the reweighted group); deff is the “design e↵ect” of the weights based on Kish’s

3. ebalfit returns error if perfect balance cannot be achieved, unless option relax is specified. The
critical value for “perfect balance” can be set using option btolerance(). By default, the critical
value is set to 10�6, that is, a solution is considered as balanced if balancing loss, the maximum
relative di↵erence between the reweighted means and the target values, is smaller than 0.000001.
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formula for the e↵ective sample size (Kish 1965), that is

deff =
NS

P
i2S !̂2

i�P
i2S !̂i

�2

Both statistics indicate that there is large variation in the weights. Apparently, the two
groups are very di↵erent and balancing them is an ambitious exercise.

As mentioned, however, despite the di�culty of the problem, the output by ebalfit
tells us that perfect balance has been achieved. We can confirm that this is true by
replaying results with option baltable to displaying the balancing table that is provided
by ebalfit (but is suppressed in the output by default):

. ebalfit, baltable noheader nowtable notable

Balancing table

Target Unbalanced Balanced

value value std. dif. value std. dif.

age 26.02386 37.39198 .9464147 26.02386 -2.96e-16

education 10.52379 10.50566 -.0055215 10.52379 0

black .8572367 .4359494 -.8495743 .8572367 -2.24e-16

hispanic .0567015 .0722888 .0601908 .0567015 1.61e-16

married .1944541 .7481573 1.275604 .1944541 0

nodegree .6608205 .5295137 -.2630724 .6608205 0

re74 2230.392 10401.03 .775686 2230.392 -4.32e-17

re75 1682.258 7230.567 .6519779 1682.258 -2.67e-17

Options noheader, nowtable, and notable have been specified so that the default
output is not displayed again. As is evident, the reweighted means (column “Balanced
value”) perfectly match the target values (column “Target value”). The standardized
di↵erence between the target value and and the balanced value is essentially zero for all
variables.

If we still do not trust this result, we can use predict to generate the balancing
weights and then construct a balancing table manually:

. predict wbal

. table () (treat) [pw=wbal], stat(mean age-re75) nototal

treat

0 1

age 26.02386 26.02386

education 10.52379 10.52379

black .8572367 .8572367

hispanic .0567015 .0567015

married .1944541 .1944541

nodegree .6608205 .6608205

re74 2230.392 2230.392

re75 1682.258 1682.258
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A comparison of the weights from ipw and the weights from entropy balancing reveals
that the latter contain more variation:4

. dstat (cv0) ipw wbal if treat==0

cv0 Number of obs = 253

Coefficient Std. err. [95% conf. interval]

ipw 3.069078 .2628062 2.551501 3.586654

wbal 3.36179 .4408397 2.493591 4.22999

. program DEFF

1. syntax varname [if]

2. tempvar x2

3. quietly generate `x2´ = `varlist´^2

4. summarize `x2´ `if´, meanonly

5. local NX2 = r(sum) * r(N)

6. summarize `varlist´ `if´, meanonly

7. display as res `NX2´/r(sum)^2

8. end

. DEFF ipw if treat==0

10.419239

. DEFF wbal if treat==0

12.301634

Apparently, the better balance came at the cost of more variation in the weights. Large
variation in weights generally reduces statistical e�ciency so that weights with lower
variation may be preferable. As illustrated below, however, this is not necessarily true
for treatment e↵ect analyses because the degree to which the weights balance the data
also plays a role for the e�ciency of the estimate. Yet, for some applications, for example
when using entropy balancing to construct sampling weights, we might want to apply
some trimming to the resulting weights to reduce the design e↵ect without sacrificing
too much precision in balance.5

4.2 Computing a treatment e↵ect with corrected standard errors

We now continue estimating the treatment e↵ect on post-treatment earnings. The naive
estimate of the atet (average treatment e↵ect on the treated) is negative:

. mean re78 [pw=w0], over(treat)

Mean estimation Number of obs = 438

Mean Std. err. [95% conf. interval]

c.re78@treat

0 9104.129 758.2113 7613.935 10594.32

4. I use command dstat (Jann 2020a), available from the ssc Archive, because it allows computing
the cv in the same way as ebalfit does. The cv could also be computed using [R] tabstat, which
applies a slightly di↵erent definition (division by N � 1 rather than N in the variance).

5. Also see Kranker et al. (2020) who propose penalized cbps to address this issue (on cbps see
footnote 1).
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1 6004.657 567.8919 4888.518 7120.796

. lincom _b[c.re78@1.treat] - _b[c.re78@0bn.treat]

( 1) - c.re78@0bn.treat + c.re78@1.treat = 0

Mean Coefficient Std. err. t P>|t| [95% conf. interval]

(1) -3099.472 947.3043 -3.27 0.001 -4961.311 -1237.633

However, as seen above, the two groups are very di↵erent in terms of pre-treatment
characteristics. Using ipw or entropy balancing to remove these discrepancies, the
treatment e↵ect estimate becomes positive:

. mean re78 [pw=ipw], over(treat)

Mean estimation Number of obs = 438

Mean Std. err. [95% conf. interval]

c.re78@treat

0 5088.788 943.9743 3233.493 6944.082

1 6004.657 567.8919 4888.518 7120.796

. lincom _b[c.re78@1.treat] - _b[c.re78@0bn.treat]

( 1) - c.re78@0bn.treat + c.re78@1.treat = 0

Mean Coefficient Std. err. t P>|t| [95% conf. interval]

(1) 915.8695 1101.63 0.83 0.406 -1249.282 3081.021

. drop ipw

. mean re78 [pw=wbal], over(treat)

Mean estimation Number of obs = 438

Mean Std. err. [95% conf. interval]

c.re78@treat

0 4174.016 999.5839 2209.426 6138.605

1 6004.657 567.8919 4888.518 7120.796

. lincom _b[c.re78@1.treat] - _b[c.re78@0bn.treat]

( 1) - c.re78@0bn.treat + c.re78@1.treat = 0

Mean Coefficient Std. err. t P>|t| [95% conf. interval]

(1) 1830.641 1149.639 1.59 0.112 -428.8669 4090.15

. drop wbal

The two e↵ect estimates are not statistically significant, but note that we did not yet
correct the standard errors for the fact that the balancing weights are estimated. To do
so for the estimate based on entropy balancing, we can use the formulas provided in sec-
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tion 2.6. As inputs we need the influence functions of the entropy balancing coe�cients
as well as the influence functions of the mean estimates assuming the balancing weights
as fixed. The former we can obtain by applying command predict after ebalfit; the
latter we can compute as ifµ̂ = W

WS
Si(xi � µ̂) where xi is the variable of interest, Si is

an indicator for the analyzed subsample, WS is the sum of weights in the subsample,
and W is the overall sum of weights. In the computations below I omit the leading
W because this is how ebalfit defines influence functions and because it implies that
factor c in the correction formulas will be equal to 1 and can be omitted. To obtain
standard errors from influence functions that are scaled in this way command [R] total
can be used (rather than command [R] mean).

. ebalfit age-re75 [pw=w0], by(treat)

(output omitted )

. predict wbal

. predict IFeb*, ifs noalpha // the IF for the constant is not needed

. summarize re78 if treat==0 [aw=wbal], meanonly

. generate IFy0 = (treat==0) * (re78 - r(mean)) / r(sum_w)

. summarize re78 if treat==1 [aw=wbal], meanonly

. generate IFy1 = (treat==1) * (re78 - r(mean)) / r(sum_w)

. total IFy0 IFy1 [pw=wbal]

Total estimation Number of obs = 438

Total Std. err. [95% conf. interval]

IFy0 -5.68e-13 999.5839 -1964.59 1964.59

IFy1 5.26e-13 567.8919 -1116.139 1116.139

Note how total applied to the influence functions of the two mean estimates reproduces
the standard errors reported by mean above. We can now correct the influence functions
using the formulas from section 2.6. We only need to correct IFy0, the influence function
of the mean estimate in the control group because in the treatment group we did not
apply any reweighting.

. mata:

mata (type end to exit)

: // data

: grp = st_data(., "treat")

: X = st_data(., "age-re75")

: IFy0 = st_data(., "IFy0")

: IFeb = st_data(., "IFeb*")

: wbal = st_data(., "wbal")

: w0 = st_data(., "w0")

: // compute (negative of) G

: G = colsum(select(wbal :* IFy0 :* X, grp:==0))´

: // adjust IF

: st_store(., st_addvar("double", "IFy0c"), wbal :/ w0 :* IFy0 + IFeb * G)

: end
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To compute the corrected standard error of the reweighted mean di↵erence take the
total of the di↵erence between the (corrected) influence functions of the two means:

. generate IFte = IFy1 - IFy0c

. total IFy0c IFy1 IFte [pw=w0]

Total estimation Number of obs = 438

Total Std. err. [95% conf. interval]

IFy0c -8.53e-14 750.6493 -1475.332 1475.332

IFy1 5.26e-13 567.8919 -1116.139 1116.139

IFte 5.40e-13 906.1741 -1781.001 1781.001

. drop IF*

We see how taking account of the estimated nature of the balancing weights reduces
the standard error of the mean estimate in the control group and also brings down the
standard error of the treatment e↵ect estimate, such that the treatment e↵ect estimate
is now statistically significant (t = 1830.6/906.2 = 2.02, p = 0.043).6

As mentioned above, entropy balancing is doubly-robust so that applying a regression
adjustment model to the reweighted data does not change the estimate of the treatment
e↵ect (as long as the same covariates are used in the regression adjustment). I illustrate
this here by running [TE] te↵ects ra including the entropy balancing weights:

. teffects ra (re78 age-re75) (treat) [pw=wbal], atet

Iteration 0: EE criterion = 3.671e-22

Iteration 1: EE criterion = 1.249e-24

Treatment-effects estimation Number of obs = 438

Estimator : regression adjustment

Outcome model : linear

Treatment model: none

Robust

re78 Coefficient std. err. z P>|z| [95% conf. interval]

ATET

treat

(1 vs 0) 1830.641 905.139 2.02 0.043 56.60155 3604.681

POmean

treat

0 4174.016 749.7919 5.57 0.000 2704.45 5643.581

. display _se[ATET:r1vs0.treat] * sqrt(e(N) / (e(N)-1))

906.17408

The estimate is still the same and also the standard error is identical even though
regression adjustment assumed the balancing weights as fixed (the small di↵erence is

6. The appendix illustrates how a similar correction can be implemented for ipw.
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because teffects divides by N while total divides by N � 1 when computing the
variance). That is, if regression adjustment is used to analyze the balanced data no
further correction is needed for the standard errors (as long as the same covariates are
used in both models). This may seem remarkable, but it is a direct consequence of the
doubly-robust property.

4.3 Balancing variances and covariance

In the example above we just balanced the means of the di↵erent covariates. To also
balance higher moments or covariances we can add powers interactions to the model.
Here is an example using a reduced set of covariates:

. ebalfit c.age##c.age c.education##c.education 1.black ///

> c.age#c.education 1.black#c.(age education), by(treat) nolog vsquish

Entropy balancing Number of obs = 438

Wald chi2(8) = 80.49

Prob > chi2 = 0.0000

Evaluator = bl

Main = 0.treat (253 obs) Loss type = reldif

Reference = 1.treat (185 obs) Balancing loss = 2.532e-15

balancing weights

minimum average maximum total CV DEFF

.00023148 .7312253 13.072914 185 1.7253741 3.9769159

Robust

Coefficient std. err. z P>|z| [95% conf. interval]

age -.3454953 .1819311 -1.90 0.058 -.7020737 .0110831

c.age#c.age -.0007966 .0017921 -0.44 0.657 -.004309 .0027159

education -.6033715 .8552482 -0.71 0.481 -2.279627 1.072884

c.education#

c.education -.0240512 .0360925 -0.67 0.505 -.0947912 .0466887

1.black -3.866887 2.519995 -1.53 0.125 -8.805986 1.072212

c.age#

c.education .0232092 .0105351 2.20 0.028 .0025608 .0438577

black#c.age

1 .0905916 .0420067 2.16 0.031 .00826 .1729231

black#

c.education

1 .2766195 .1750993 1.58 0.114 -.0665689 .6198078

_cons 11.74866 6.392829 1.84 0.066 -.7810508 24.27838

. predict wbal2

. summarize age education black if treat==0 [iw=wbal2]

Variable Obs Weight Mean Std. dev. Min Max

age 253 185 25.81622 7.155019 18 55

education 253 185 10.34595 2.01065 0 17

black 253 185 .8432432 .3645579 0 1

. summarize age education black if treat==1 [iw=wbal2]

Variable Obs Weight Mean Std. dev. Min Max

age 185 185 25.81622 7.155019 17 48
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education 185 185 10.34595 2.01065 4 16

black 185 185 .8432432 .3645579 0 1

. corr age education black if treat==0 [aw=wbal2]

(sum of wgt is 185)

(obs=253)

age educat
~
n black

age 1.0000

education -0.0080 1.0000

black 0.0535 -0.0368 1.0000

. corr age education black if treat==1 [aw=wbal2]

(sum of wgt is 185)

(obs=185)

age educat
~
n black

age 1.0000

education -0.0080 1.0000

black 0.0535 -0.0368 1.0000

We see that means, standard deviations (and variances), as well as correlations (and
covariances) have been perfectly balanced. Alternatively, option targets() can be used
to generate the necessary terms automatically. ebalfit will then expand the variable
list accordingly, taking account of the types of the variables (e.g., no terms for variances
of categorical variables will be included as balancing the mean of a 0/1 variable also
balances its variance):

. ebalfit age education 1.black, by(treat) targets(variance covariance) ///

> nolog vsquish

Entropy balancing Number of obs = 438

Wald chi2(8) = 80.49

Prob > chi2 = 0.0000

Evaluator = bl

Main = 0.treat (253 obs) Loss type = reldif

Reference = 1.treat (185 obs) Balancing loss = 2.532e-15

balancing weights

minimum average maximum total CV DEFF

.00023148 .7312253 13.072914 185 1.7253741 3.9769159

Robust

Coefficient std. err. z P>|z| [95% conf. interval]

age -.3454953 .1819311 -1.90 0.058 -.7020737 .0110831

c.age#c.age -.0007966 .0017921 -0.44 0.657 -.004309 .0027159

education -.6033715 .8552482 -0.71 0.481 -2.279627 1.072884

c.education#

c.education -.0240512 .0360925 -0.67 0.505 -.0947912 .0466887

1.black -3.866887 2.519995 -1.53 0.125 -8.805986 1.072212

c.age#

c.education .0232092 .0105351 2.20 0.028 .0025608 .0438577

black#c.age

1 .0905916 .0420067 2.16 0.031 .00826 .1729231

black#

c.education

1 .2766195 .1750993 1.58 0.114 -.0665689 .6198078

_cons 11.74866 6.392829 1.84 0.066 -.7810508 24.27838
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Manually typing out the higher-oder and interaction terms is only needed if one wants
to balance a subset of the higher moments and covariances (e.g. the covariance between
age and education, but not between black and the other variables).

4.4 Adjusting a sample to population values

Assume that you know from census data that the mean age is 30, the mean of education
is 10, and the distribution of ethnicities is 50% white, 40% black, 10% hispanic. The
population() option can be used (instead of option by()) to balance the sample to
these values:

. ebalfit age education black hispanic, population(30 10 .4 .1) baltable nolog

Entropy balancing Number of obs = 438

Wald chi2(4) = 92.37

Prob > chi2 = 0.0000

Evaluator = bl

Loss type = reldif

Population size = 438 Balancing loss = 1.547e-14

balancing weights

minimum average maximum total CV DEFF

.1893295 1 4.8232235 438 .68869277 1.4742977

Robust

Coefficient std. err. z P>|z| [95% conf. interval]

age -.0392513 .0058811 -6.67 0.000 -.0507781 -.0277246

education -.1730964 .0264454 -6.55 0.000 -.2249285 -.1212643

black -1.206872 .1398756 -8.63 0.000 -1.481023 -.9327208

hispanic -.3027049 .2401386 -1.26 0.207 -.7733679 .167958

_cons 3.614511 .4453534 8.12 0.000 2.741634 4.487388

Balancing table

Target Unbalanced Balanced

value value std. dif. value std. dif.

age 30 31.75342 .153049 30 4.22e-14

education 10 10.58904 .2144023 10 -5.11e-14

black .4 .5821918 .3694088 .4 -7.09e-15

hispanic .1 .0639269 -.147464 .1 -4.31e-15

The balancing table illustrates that the reweighted sample data perfectly reproduces
the population values. We did not specify a population size, so ebalfit normalized the
sum of balancing weights to the sample size. Assume that the size of the population is
1.36 million. We could normalize the weights to this target sum as follows:

. ebalfit age education black hispanic, population(1.36e6: 30 10 .4 .1) nolog

Entropy balancing Number of obs = 438

Wald chi2(4) = 92.37

Prob > chi2 = 0.0000
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Evaluator = bl

Loss type = reldif

Population size = 1,360,000 Balancing loss = 1.547e-14

balancing weights

minimum average maximum total CV DEFF

587.87243 3105.0228 14976.219 1360000 .68869277 1.4742977

Robust

Coefficient std. err. z P>|z| [95% conf. interval]

age -.0392513 .0058811 -6.67 0.000 -.0507781 -.0277246

education -.1730964 .0264454 -6.55 0.000 -.2249285 -.1212643

black -1.206872 .1398756 -8.63 0.000 -1.481023 -.9327208

hispanic -.3027049 .2401386 -1.26 0.207 -.7733679 .167958

_cons 11.65529 .4453534 26.17 0.000 10.78241 12.52816

The target values do not necessarily need to be true values from a population. We
can also use entropy balancing to construct as-if scenarios by setting the targets to
theoretically interesting values, as long as the targets are not too far away from the
center of the data such that no balancing solution exists.

4.5 Partial balancing

The adjust() option can be used to select the terms to be balanced, while keeping
the means of the remaining variables fixed at their original values. Here is an example
where the control group is reweighted such that the racial distribution is adjusted to the
distribution in the treatment group, but the means of age and education are preserved:7

. ebalfit age education 1.black, by(treat) adjust(3) ///

> nolog noheader nowtable notable baltab

Balancing table

Target Unbalanced Balanced

value value std. dif. value std. dif.

age 36.09486 36.09486 0 36.09486 1.12e-14

education 10.7668 10.7668 0 10.7668 2.80e-14

1.black .8432432 .3913043 -.9260241 .8432432 -6.85e-14

Such partial reweighting can be useful, for example, to study the “contributions”
of individual covariates to an overall group di↵erence in an outcome variable.8 In
the following example we see that the group di↵erence in 1978 earnings is reduced
substantially if the racial distribution is adjusted while keeping age and education fixed.
Additionally adjusting age and education only leads to a minor further decrease in the
di↵erence.

7. The same result could also be obtained by typing noadjust(1 2) instead of adjust(3).
8. See Fortin et al. (2011) for an overview of counterfactual decomposition methods; see Jann (2008)

for an implementation of the popular Oaxaca-Blinder decomposition in Stata.
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. table () (treat), stat(mean re78) nototal

treat

0 1

Mean 9995.95 6349.144

. ebalfit age education 1.black, by(treat) generate(wbal) replace adjust(3)

(output omitted )

. table () (treat) [pw=wbal], stat(mean re78) nototal

treat

0 1

Mean 8160.198 6349.144

. ebalfit age education 1.black, by(treat) generate(wbal) replace

(output omitted )

. table () (treat) [pw=wbal], stat(mean re78) nototal

treat

0 1

Mean 8104.765 6349.144

5 Conclusions

Entropy balancing is a powerful alternative to other reweighting techniques such as
inverse probability weighting based on logistic regression. In this paper I defined the
model, derived influence functions for the parameters of the model, and illustrated how
consistent standard errors can be obtained for statistics based on the reweighted data.
I further presented software that implements the discussed methods.

The software provides a convenient tool for estimating balancing weights and gen-
erating influence functions, but adjusting statistical inference for reweighted statistics
still requires a good understanding of the problem at hand and some programming skills
on the side of the user. Based on the results presented in this paper, entropy balancing
could be integrated into other estimation commands as a preprocessing device, such that
reweighted estimates with consistent statistical inference would be readily available for
a variety of applications without the need to write lengthy code. Some steps in this
direction have already been taken. Command dstat, available from the ssc Archive,
o↵ers a balance() option that applies reweighting to a large collection of summary
statistics (Jann 2020a). In fact, the treatment e↵ect estimate in section 4.2 can be
replicated by dstat in a single line of code:

. dstat re78 [pw=w0], over(treat, contrast) balance(eb:age-re75, reference(1))

Difference in mean Number of obs = 438

Contrast = 0.treat
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Balancing:

method = eb

reference = 1.treat

controls = e(balance)

re78 Coefficient Std. err. t P>|t| [95% conf. interval]

1.treat 1830.641 906.1741 2.02 0.044 49.64029 3611.643

Similar support for reweightig is provided in reldist, a command for relative distri-
bution analysis (Jann 2020c). Furthermore, the matching and reweighting command
kmatch (Jann 2017) supports entropy balancing, albeit without specific adjustment of
statistical inference. Since regression adjustment after entropy balancing yields consis-
tent standard errors, however, command kmatch can still be used to obtain valid results.
Here is a replication of the treatment e↵ect from section 4.2 using kmatch. The trick is
to include the full vector of covariates also in the outcome equation.

. kmatch eb treat age-re75 (re78=age-re75) [pw=w0], nomtable att

(fitting balancing weights ... done)

Entropy balancing Number of obs = 438

Balance tolerance = .00001

Treatment : treat = 1

Targets : 1

Covariates : age education black hispanic married nodegree re74 re75

RA equations: re78 = age education black hispanic married nodegree re74 re75 ...

Treatment-effects estimation

re78 Coefficient Std. err. t P>|t| [95% conf. interval]

ATT 1830.641 906.1741 2.02 0.044 49.64029 3611.643

Implementing entropy balancing as a reweighting and standardization option may also
be useful for various other types of estimators, but such work still has to done. Another
topic that deserves further investigation whether the e�ciency of reweighted statistics
based on entropy balancing can further be improved by optimized trimming techniques,
and how this would a↵ect statistical inference. See Kranker et al. (2020) for work that
goes in this direction

6 Appendix: Correction of IPW standard errors

For ipw we can adjust the standard errors of statistics based on the reweighted data in
a similar way as for entropy balancing. In fact, working through the details (see Jann
2020c) shows that for ipw based on a logit model the correction has the exact same form
as for entropy balancing. We simply need to replace the entropy balancing influence
functions by the influence functions of the parameters of the logit model. A convenient
way to compute influence functions for maximum likelihood models makes use of the
scores and the model-based variance matrix (see Jann 2020b). The correction goes as
follows:



Ben Jann 29

. logit treat age-re75 [pw=w0]

(output omitted )

. predict pscore if treat==0, pr

(185 missing values generated)

. generate ipw = w0 * cond(treat==0, pscore/(1-pscore), 1)

. predict score, score

. forvalues i=1/9 {

2. quietly generate IFipw`i´ = .

3. }

. mata:

mata (type end to exit)

: X = st_data(.,"age-re75")

: X = X, J(rows(X), 1, 1) // add constant

: score = st_data(.,"score")

: Ginv = st_matrix("e(V_modelbased)")

: st_view(IF=., ., "IFipw*")

: IF[.,.] = (X :* score) * Ginv´

: end

. drop score

. drop IFipw9 // drop the IF for the constant; it is not needed

. summarize re78 if treat==0 [aw=ipw], meanonly

. generate IFy0 = (treat==0) * (re78 - r(mean)) / r(sum_w)

. summarize re78 if treat==1 [aw=ipw], meanonly

. generate IFy1 = (treat==1) * (re78 - r(mean)) / r(sum_w)

. mata:

mata (type end to exit)

: // data

: grp = st_data(., "treat")

: X = st_data(., "age-re75")

: IFy0 = st_data(., "IFy0")

: IFipw = st_data(., "IFipw*")

: ipw = st_data(., "ipw")

: w0 = st_data(., "w0")

: // compute (negative of) G

: G = colsum(select(ipw :* IFy0 :* X, grp:==0))´

: // adjust IF

: st_store(., st_addvar("double", "IFy0c"), ipw :/ w0 :* IFy0 + IFipw * G)

: end

. generate IFte = IFy1 - IFy0c

. total IFy0c IFy1 IFte [pw=w0]

Total estimation Number of obs = 438

Total Std. err. [95% conf. interval]

IFy0c -6.88e-08 943.3969 -1854.159 1854.159

IFy1 5.26e-13 567.8919 -1116.139 1116.139

IFte 6.88e-08 1071.73 -2106.385 2106.385
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. drop IF*

The e↵ect of the correction is less pronounced than for entropy balancing. This is related
to the finding that conditioning on the estimated propensity score is more e�cient
than conditioning on the true propensity score, because random imbalance is partially
removed. For entropy balancing this e�ciency gain is stronger than for ipw because
entropy balancing completely removes random imbalance.
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