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Abstract: Precipitation of calcium carbonates in aqueous systems is an important factor controlling
various industrial, biological, and geological processes. In the first part of this study, the well-
known titration approach introduced by Gebauer and coworkers in 2008 s used to obtain reliable
experimental dataset for the deep understanding of CaCO3 nucleation kinetics in supersaturated
solutions over a broad range of pH and ionic strength conditions. In the second part, the effect of
impurities, i.e., 1 mol% of Pb2+, was assessed in the same range of experimental conditions. Divalent
lead has been shown to have an inhibitory effect in all ranges of the conditions tested except for
pH 8 and low ionic strength (≤0.15 mol/L). Future investigations might take advantage of the
methodology and the data provided in this work to investigate the effect of other system variables.
The investigation of all the major variables and the assessment of eventual synergic effects could
improve our ability to predict the formation of CaCO3 in complex natural systems.

Keywords: CaCO3 nucleation; scaling formation; calcite; Pb; divalent lead

1. Introduction

Calcium carbonates belong to the most abundant mineral phases in the earth’s crust.
Limestone plays a fundamental role in the global carbon cycle through weathering and
sedimentation processes [1–3]. Calcium carbonate and its crystalline polymorphs are com-
mon constituents of biominerals, the intermixed organic/inorganic materials synthesized
by many living organisms to build their hard tissues [4]. CaCO3 is a common material in
technological applications. Limestone is the main source of lime in cement clinker pro-
duction [5]. Calcium carbonate is also envisaging to play an important role in developing
carbon sequestration, especially in the processes that aim to mimic natural weathering
phenomena [6,7]. Finally, CaCO3 is one of the most common scale building materials in
various contexts ranging from household cleaning to oil production and hydrothermal
systems [8,9].

Several high-quality studies in the last decades have addressed the CaCO3 crystalliza-
tion mechanism [10–12], the crystallographic control of the carbonate growth [13–15], and
the action of inhibitors and catalysts [16–18]. However, to the best of our knowledge, no
sufficient data are available to provide systematic guidance for predictions of homogeneous
nucleation from supersaturated solutions, in a broad range of pH and ionic strength (I.S.)
conditions. Therefore, this study initiates a systematic effort to provide a comprehensive
description of the calcite supersaturation degree necessary to nucleate instantaneously
solid CaCO3 in a homogeneous solution. The supersaturation indexes (SI) reported for the
different solutions at the onset of nucleation always refer to calcite rather than more soluble
polymorphs (aragonite, vaterite, amorphous calcium carbonate). The practical reason
behind this choice is the possibility of reusing and rescale the reported data. The solubility
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product of calcite is well known. It is included in all the most popular geochemical software,
in contrast to the solubility data for other polymorphs of CaCO3 (e.g., amorphous calcium
carbonate). It should be mentioned that the SI data provided in this work can be easily
converted into the saturation indexes of other CaCO3 polymorphs by just subtracting the
difference in the solubility product between the target CaCO3 polymorphs and calcite. For
example, SI indexes with respect to aragonite would be−0.14 SI units lower than the values
provided in this work. In the case of the different amorphous calcium carbonate phases
identified by Gebauer et al. [10], the SI for protovaterite would be −1.06 SI units lower than
calcite. In comparison, the SI for protocalcite would be −0.97 SI units lower. The pH range
between 8 and 10 was investigated, at ionic strength values ranging from 0.05 (i.e., no back-
ground salt) to 1 M. This range is relevant to several natural and engineering processes [1].
Another variable investigated in the same experimental conditions was the effect of Pb2+

impurities, at the 1% mole ratio regarding calcium, on the CaCO3 nucleation. The effect of
trace elements on calcium carbonate formation has relevant implications for technological
applications such as wastewater treatment and carbon capture and storage [19–21].

The experimental results presented below provide a basis for the investigations of
more complex effects, which is essential to improve the prediction of CaCO3 formation in
real systems.

2. Materials and Methods
2.1. Materials

American Chemical Society (ACS) grade reactants (Ca(NO3)2·4H2O, Pb(NO3)2, Na2CO3,
KNO3, NaCl, CaCl2·2H2O) from MilliporeSigma (Missouri, St. Louis, MO, USA) were used
to prepare the stock solutions. Stock solution with an exact concentration of NaOH 0.1 N
and NaOH 0.01 N from MilliporeSigma and HNO3 0.1 M and HNO3 0.01 M (Titrisol®) from
Merck (Darmstad, Germany) were used. All the stock solutions were prepared on a molality
base. The reactants were diluted in fresh ultrapure water (resistivity = 18.2 MΩ). All
experiments were conducted in borosilicate glassware from VWR (Pennsylvania, Radnor,
PA, USA).

2.2. Titration Equipment

An OMNIS® Titration system from Metrohm (Herisau, Switzerland), equipped with a
conductivity module (856), was used for the controlled-addition pH-stat experiments. The
titration system was equipped with two burettes of 20 mL. Six electrodes from Metrohm
were used to monitor the evolution of the precipitation reaction: (i) a digital pH-electrode
(dUnitrode, Metrohm). (ii) A combined polymer membrane calcium ion-selective electrode
(CaISE). (iii) A lead ion-selective electrode (PbISE) with a crystal membrane was used in
combination with a reference electrode. (iv) The reference electrode was a silver/silver
chloride cell with a double junction system. (v) A conductivity probe, 5-ring conductivity
measuring cell with a cell constant c = 0.7 cm−1, with an integrated Pt1000 temperature
sensor, was connected to the 856 conductivity module. (vi) A visible light transmittance
probe (Optrode, Metrohm) was used to monitor the solution’s turbidity, thereby identifying
the formation of solid phases. According to the literature, the Optrode is an optical
sensor for photometric titrations, and a wavelength of 610 nm was chosen [18,22]. The
system was vigorously stirred with a magnetic impeller at a fixed stirring rate to avoid
concentration gradients.

2.3. Titration Experiments

Table 1 summarizes the nucleation experiments performed with or without Pb2+ at
three different pH (8, 9, and 10) and ionic strength (0.05, 0.15, and 1.06 M, the last ones are
often abbreviated as 0.1 M and 1 M). Nucleation experiments were carried out by adding
up to 60 mL of 30 mM Ca(NO3)2 (with or without PbII) at a constant rate (0.24 mL/min) to
180 mL solution with 0.04 M of total inorganic carbon (initial beaker solution). To ensure
that the pH of the initial solutions is close to the target experimental condition, sodium
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carbonate and sodium bicarbonate were mixed in proportions described in Table 1. In the
experiments containing Pb, the burette 1 reagent was a mixture of Ca(NO3)2 and Pb(NO3)2.
The concentrations are described in Table 1. NaOH 0.1 N was added (software controlled)
via the burette 2 to ensure a constant pH value during all the experiments. Experiments
were performed at room temperature (23 ± 2 ◦C) and were stirred constantly with a
magnetic impeller. To fix the ionic strength, a background electrolyte was added into the
initial solution when necessary, i.e., for 0.1 M and 1 M experiments. Indeed, the experiments
with 0.05 M ionic strength had the smallest ionic strength, as no background salt was
added. In this condition, the ions in the solution were uniquely the target components
and their counter ions. Their concentration increased over time and determined the ionic
strength. The value of 0.05 M corresponded to the ionic strength of a solution with the same
composition that the system shows at nucleation for pH 9, assuming all the ions to be in the
liquid phase (CaTOT = 0.8± 0.1 mM, CTOT = 39± 1 mM). The use of KNO3 as a background
electrolyte was motivated by the need to avoid the formation of insoluble Pb halogenides
(e.g., chlorine forms phosgenite) [23]. Between experimental runs, the glassware and the
sensors were cleaned in a 0.01 M HCl solution to ensure that no precipitates formed in the
previous run were still present. To calculate the saturation index of calcite at nucleation,
the actual total concentration of calcium and inorganic carbon were used as input values
in a geochemical speciation model calculated with PHREEQC (USGS, Virginia, Reston,
VA, USA) using the homonymous database [24]. The geochemical modeling software
PHREEQC was also used to compute the thermodynamic properties of the calcite-water
equilibrium. In the discussion, to provide an immediate distinction between the color plots
containing experimental data and the contour plots derived from geochemical modeling,
the latter were presented with a wider pH range, from 7 to 11.

Table 1. Overview of the experimental conditions employed for the precipitation experiments.

Experimental Conditions Beaker (Initial Composition) Burette 1 Burette 2

# Ionic
Strength(KNO3) pH Reagent mol% Total Inorganic

Carbon Ca(NO3)2 Pb(NO3)2 NaOH

1 0.05 M
8 NaHCO3 100% 0.04 M 0.03 M 0 (no Pb) 0.1 N2 0.15 M

3 1.06 M

4 0.05 M

9 NaHCO3 92% + Na2CO3 8% 0.04 M 0.03 M 0 (no Pb) 0.1 N5 0.15 M

6 1.06 M

7 0.05 M

10 NaHCO3 49% + Na2CO3 51% 0.04 M 0.03 M 0 (no Pb) 0.1 N8 0.15 M

9 1.06 M

10 0.05 M

8 NaHCO3 100% 0.04 M 0.03 M
0.0003 M

(Ca/Pb = 100) 0.1 N11 0.15 M

12 1.06 M

13 0.05 M

9 NaHCO3 92% + Na2CO3 8% 0.04 M 0.03 M
0.0003 M

(Ca/Pb = 100) 0.1 N14 0.15 M

15 1.06 M

16 0.05 M

10 NaHCO3 49% + Na2CO3 51% 0.04 M 0.03 M
0.0003 M

(Ca/Pb = 100) 0.1 N17 0.15 M

18 1.06 M
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2.4. Calibrations

The pH electrode was calibrated every week using certified standards from Merck
(Certipur®) with pH values 4, 7, and 10. The isoelectric point was always between 6.9 and
7.0, and the slope was between 99% and 100%. The conductivity probe was calibrated
with a conductivity standard from Sigma-Aldrich to determine the cell constant. The
determined cell constant of C = 0.66 cm−1 was found to agree with the manufacturer’s
specifications. The ion-selective electrodes were calibrated after each series of nucleation
experiments. The ISE calibrations were performed with continuous additions rather than
by measuring a fixed number of standards. There are no anions (i.e., there is a nitrate, but
no carbon source in the beaker) present during calibrations to avoid solids forming, or in
other words, to ensure that all calcium dosed will be in solution, thereby measurable.

3. Results
3.1. Physical-Chemistry Basis for Titration Experiments

The investigation of the pure system was a preliminary step to understand the effect of
Pb2+ on the formation of CaCO3. The formation of CaCO3 was observed at different condi-
tions of pH and ionic strength. To explain the underlying processes of chemical control and
system behavior in titration experiments, the four channels that were constantly monitored
during an experimental run with no-Pb, are shown in Figure 1 for the intermediate condi-
tions (pH 9, I.S. = 0.15 M). The saturation index of calcite calculated when nucleation was
observed is hereafter referred to as the critical supersaturation. A critical supersaturation
concerning calcite was reached by adding a constant amount of Ca2+ ions to the C-bearing
solution. After a certain time corresponding to a specific degree of saturation, the formation
of a solid phase was observed. The nucleation of a solid phase was clearly distinguishable
in all the monitored channels. Three distinct regions could be identified by observing
the signal recorded by the CaISE (Figure 1A). The initial segment of the curve showing a
linear increase of [Ca2+]free defines the prenucleation stage. This region was followed by an
interval where the free calcium concentration reached a maximum despite the continuous
addition (II in Figure 1A). This second region was referred to as the nucleation stage, and it
was delimited on the left by the loss of a linear relationship between dosed calcium and free
calcium and on the right by the maximum of [Ca2+]free. The difficulty in precisely locating
the nucleation event represents the major uncertainty in interpreting the experimental data
reported below. The nucleation stage had a typical duration of about 300 s. This time
interval is usually longer than the uncertainty of the measurement derived from the CaISE
onset in two independent replicas of the same experiment. The maximum of [Ca2+]free
curve marks a boundary to the third region where the dominant process is the continuous
growth of the solid particles out of nuclei formed at the second stage (III in Figure 1A).
The formation of a solid phase (i.e., the nucleation, stage II) could also be detected by
the drop of visible light transmittance (Figure 1B). The development of turbidity in the
reactor results from the formation of suspended solid particles that scatter the light. This
phenomenon is tracked with an in situ visible light transmittance probe, the Optrode. The
drop in the light transmittance recorded by the Optrode reveals the appearance of solid
particles in the solution. Occasionally, the formation of air bubbles due to stirring on the
Optrode window induces a distortion of the signal. Still, it can be easily identified, and
the bubbles can be removed by moving the probe gently in the solution. The formation
of solid phases leads to a decrease in the concentration of the aqueous species. Therefore,
the electrical conductivity shows a slope change in correspondence with the solid phase
formation (Figure 1C). Dashed lines corresponding to a linear fit of the initial and final
segments are displayed together with the experimental data to highlight the presence of a
slope change in correspondence with the beginning of the nucleation stage.
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Figure 1. General overview of a titration experiment (pH 9, ionic strength 0.15 M) without Pb2+. (A) The signal recorded by
the CaISE is converted into the concentration of free calcium after specific calibrations of the electrode in carbonate-free
solutions. Latin numbers indicate three stages of the experiment: prenucleation (I), nucleation (II), and growth (III). (B) The
potential recorded by the Optrode is converted in a percent scale to normalize the value along with the different experimental
runs. The drop of visible light transmittance corresponds to the development of turbidity. This phenomenon is related to
the formation of solid particles in the initially homogenous solution. (C) The electrical conductivity of the solution shows
a slope change in correspondence of the nucleation stage. (D) The pH of the solution was maintained constant during
the experiments thanks to the automatic addition of NaOH. The consumption of NaOH shows an acceleration after the
nucleation of the solid phase.

The incorporation of CaCO3 units into the solid phase leads to the acidification of the
solution because the carbonate units are removed selectively from the carbon species.

Ca2+ + CO3
2− → CaCO3(s) (1)

The removal of carbonate units by precipitation reaction (1) modifies the ratio between
carbonate and bicarbonate ions. Consequently, the pH of the solution becomes more acidic.
When the selected threshold of pH is reached, the automatic addition of a base raises the
pH. According to the law of mass action, the initial carbonate/bicarbonate ratio is restored.

HCO3
− + OH− → CO3

2− + H2O (2)

In the experiments presented below, the pH was maintained constant during the
entire process thanks to the automatic addition of 0.1 N NaOH (Figure 1D). The cumulative
amount of NaOH showed a slope change in correspondence with the nucleation stage. The
increase of the rate of NaOH addition coincided with the point when the consumption of
carbonate ions due to the formation of a solid phase that becomes predominant over the
consumption associated with the formation of aqueous species (i.e., complexes, ion pairs,
and prenucleation clusters).
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3.2. The Effect of pH and Ionic Strength on CaCO3 Formation

The effect of pH on CaCO3 formation was studied, modifying the ratio of carbonate
salts used to prepare the initial solution in the reactor. Increasing pH at constant ionic
strength reduces the Ca concentration necessary for the formation of the solid phase. This
effect was evident by observing the CaISE and the light transmittance channels (Figure 2A)
for the intermediate ionic strength, 0.15 M. Analogous results were obtained for the other
ionic strength conditions tested (0.05 and 1.05 M), as shown in the discussion.
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while keeping pH constant delays nucleation. As ion-selective electrodes are very sensitive to ionic strength variations, the
mL of dosed NaOH are also reported together with CaISE and Optrode signals.
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The systematic investigation of the effect of ionic strength was obtained by adding
KNO3 in the reactor and the calcium burette. To observe the effect of ionic strength, the
experiments at pH 9 with different ionic strengths are reported in Figure 2B. While dealing
with ionic strength, it is worth mentioning that ion-selective electrodes are extremely
sensitive to this parameter. To avoid artefacts, in addition to the signals from CaISE
and the light transmittance sensor, the amount of dosed NaOH was also reported for the
experiments at different ionic strengths. These measurements confirmed that the nucleation
of CaCO3 was delayed when the concentration of background salts increased. All three
channels showed an abrupt change that corresponds to the formation of a solid phase.
Only the conductivity was not shown due to the very different initial values. As previously
shown, these changes allowed us to estimate the total calcium concentration necessary to
achieve the precipitation of a solid phase in a homogenous solution containing Ca and C in
a concentration above the solubility of calcite, thus supersaturated.

3.3. The Effect of Pb2+ on CaCO3 Formation

The addition of 1-mole percent of Pb2+ to the Ca2+ reactant clearly affected the CaCO3
nucleation kinetics. At most of the conditions studied, Pb2+ ions showed inhibition
of CaCO3 nucleation. The only exceptions were the experiments at low ionic strength
(≤0.15 M) and pH 8, for which only a weak inhibition effect was observed if compared
with the experimental uncertainty. Figure 3 shows the evolution of free calcium and visible
light transmittance during experiments at different pH and constant ionic strength. When
Pb was present, higher supersaturation was required for the instantaneous nucleation
of CaCO3 to occur. The effect was remarkable for pH 9 and 10, while it fell within the
experimental uncertainty for pH 8. The effect was very notable at pH 9 as the average
time for the onset of nucleation almost doubled in the presence of Pb. For example, the
induction time increased from 25 ± 3 min to 55 ± 5 min in the experiments at pH 9 and
ionic strength 0.1 M (Figure 3). The delay in the nucleation indicates that a higher total
calcium concentration was necessary to trigger the instantaneous nucleation of CaCO3. In
the above-mentioned example, the increase due to Pb2+ of the CaTOT at nucleation was
from 0.8 ± 0.2 mM to 2.0 ± 0.3 mM.

The ionic strength also influences the inhibitory effect of Pb on CaCO3 nucleation. In
general, the effect is higher at higher ionic strength, as explained in the discussion. The
uncertainty in determining the nucleation onset of the calcium carbonate in the experi-
ments involving Pb was higher than in the pure system because the nucleation was also
determined based on the signal recorded by the PbISE. In order to maintain the focus of
this work, the Pb was considered to co-precipitate always with CaCO3. The time difference
between the onset recorded by the CaISE and the PbISE was considered to be within the
experimental error. Further studies will be necessary to describe the incorporation of Pb in
calcium carbonate, the existence of co-precipitation, and the formation of solid solutions.
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Figure 3. A comparison of the nucleation in the systems with and without Pb2+ is provided by the variation of CaISE and
Optrode signals at different pH and constant ionic strength. In the presence of Pb2+, the instantaneous precipitation of
CaCO3 starts at a higher total calcium concentration. The effect is observed in most of the experimental conditions tested.
Nevertheless, the effect becomes comparable with experimental reproducibility at pH 8, as explained in detail below.

4. Discussion
4.1. The Effect of pH and Ionic Strength on the Saturation State of Calcite

The saturation state of calcite in a solution, with constant Ca and C concentration, is
highly dependent on pH and ionic strength. The ionic strength is a crucial parameter that
controls the activity of the ions in the solution. The Debye–Huckel and the Davies equations
are commonly used to describe the relationship existing between activity coefficients and
ionic strength. These equations demonstrate that the activity coefficients of the ions in a
solution decrease with increasing ionic strength. Therefore, calcite becomes more soluble
at higher salinity, and the saturated solution contains a higher concentration of calcium
and carbonate ions. This effect can be seen by analyzing a vertical cross-section along the
contour plot in Figure 4A. At constant CaTOT and CTOT, the supersaturation with respect to
calcite is smallest at 0.05 M and highest at 1 M. The effect of pH on the solubility of calcite is
substantial. The dissociations constants of the carbonic acid control the concentration of the
mono and doubly protonated carbon species. In Figure 4B, the mole percentage of CO3

2−

among the carbon speciation is presented for the range of pH and ionic strength of interest.
The mole percent of CO3

2− increases one order of magnitude (from 1 to 10%) while passing
from pH 8 to 9. The different amount of carbonate ions as a function of pH, at constant CTOT,
is mainly responsible for the strong variation of the supersaturation of calcite with pH.
Following a horizontal line in Figure 4A, the variation of the supersaturation index of calcite
as a function of pH is observable. The supersaturation index corresponds to the logarithm
of the ratio between the ions’ activity product and the solubility product. Therefore, an
increase of the saturation index by one unit corresponds to a tenfold increase in the ratio
between the actual ions activity and the activity of the ions at equilibrium. Increasing the
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pH by one unit at constant ionic strength corresponds to increase the supersaturation index
by about 0.8 units between pH 8–9 and by 0.5 units for the pH range 9–10.
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The precipitation experiments performed allow calculation of the supersaturation
index necessary for instantaneous nucleation of CaCO3, the critical supersaturation of
calcite. Molecular aspects of the association between calcium and carbonate ions during the
crystallization of CaCO3 are under debate [10,11,25,26]. In this work, the supersaturation
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indices presented below refer to the values calculated at the nucleation stage based on
the total amount of calcium (i.e., weighted in value) through the geochemical modeling
software PHREEQC. Figure 5 shows the critical supersaturation of calcite obtained from
our experiments together with literature values derived from two publications that used the
same setup, although different experimental conditions [10,18]. In particular, the different
concentrations employed in other publications lead to a different Ca2+/CO3

2− activity
ratio at the nucleation stage. This effect has been pointed out as a crucial variable during
calcite formation [27–29]. The values calculated from these different experiments show
remarkable consistency, assuming an experimental error of about 0.1 units that derive from
the intrinsic criticisms presented in the Results.
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The critical supersaturation of calcite increases with increasing the pH and the ionic
strength (Figure 5). Comparing the critical supersaturation of calcite in the experiments
(Figure 5) and the theoretical supersaturation of calcite in a solution with the same CTOT
and a constant CaTOT = 2 mM (Figure 4A), it is possible to understand if the theoretical
solutions would precipitate instantaneously or remain metastable for a certain amount
of time. In the example in Figure 4A, at CaTOT = 2 mM (reached after 3300 s in our
system), the comparison with the matrix of critical supersaturation allows us to predict
that instantaneous precipitation occurs in all the solutions with pH higher than 8.
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The critical supersaturation is a useful upper threshold for determining the conditions
that lead to CaCO3 nucleation in a homogenous aqueous phase. Calcium carbonate
formation has a crucial role in mineral scaling, cement degradation, and the prediction of
sediment deposition [8,9,30–32]. Therefore, the contour plots in Figure 5 can be used as a
practical guide for predicting the conditions that will bring to the formation of CaCO3 in
a homogeneous solution. The broad ranges of pH and ionic strength that are considered
allow estimating of the critical supersaturation of calcite in real systems such as marine
and fluvial basins and groundwater and wastewater [1].

4.2. Inhibitory Effect of Pb2+ on Calcium Carbonate Nucleation

Calcium carbonate formation is affected by the pH and the ionic strength of the
medium, but not only by them. Another crucial factor that plays a role in the nucleation
and growth of CaCO3 is the presence of foreign ions. Divalent cations are particularly prone
to interact with CaCO3. Magnesium [33,34] and ferrous iron [18,35] were reported to inhibit
CaCO3 nucleation and growth. An inhibitory effect on CaCO3 formation is also observed
for divalent lead (Figure 6). In the presence of Pb2+, the total CaTOT required to obtain the
instantaneous precipitation of CaCO3 was higher than in the experiments without Pb2+.
This behavior is visible for all the conditions tested, except for the experiments performed
at pH 8. At the lowest pH tested, the onset of CaISE and PbISE signals shows a mismatch
as reflected by the increase of the experimental error; this behavior suggests the possibility
of a parallel nucleation event by a secondary phase to occur in these conditions. Further
studies will investigate the nature of the precipitates, the formation of solid solutions, and
the ion partitioning between liquid and solid phases.
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To observe the effect of Pb2+ on the CaCO3 nucleation, a contour plot with the critical
supersaturation of calcite (Figure 7A) is calculated from the onset of the CaISE signal
using PHREEQC weighted-in concentrations, as previously done for the pure Ca-CO2-H2O
system (Figure 5). The difference between the critical supersaturation values of calcite
observed in the presence and in the absence of Pb2+ is reported in Figure 7B. The critical
supersaturation necessary for spontaneous nucleation is higher in the presence of Pb2+
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except for pH 8 at low ionic strength values (≤0.15 M). The most pronounced inhibition
of CaCO3 nucleation due to the presence of Pb2+ is observed at pH 9 and with low ionic
strength. In the context of predicting CaCO3 formation, it could be very useful to have
difference matrices (analogous to Figure 7B) for the most relevant components of the real
systems to be able to realistically predict the supersaturation of calcite that will trigger the
homogenous precipitation of calcite (using Figure 5 as reference value). To improve the
reusability of the data included in this work, the matrix with the critical supersaturation
indexes of calcite, corresponding to Figures 5 and 7b, is provided in Table 2.
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Figure 7. (A) Saturation index of calcite at the nucleation stage for the experiments in the presence of PbII, 1 mol% concerning
calcium. (B) Difference between the saturation indexes of calcite in the experiments with Pb2+ minus the saturation index in
the pure system. This plot can be considered a possible correction factor for Figure 5 to predict the formation of CaCO3 in a
system containing Pb2+. The possibility to derive similar corrections factors to include the effect of other variables could
substantially contribute to the prediction of CaCO3 in real systems.

Table 2. Saturation indexes of calcite at the nucleation stage in the pure system and correction factors for the presence of
1 mol% of Pb2+. The data correspond to the values plotted in Figures 5 and 7B.
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thereby refining the ability to forecast the concentration that will induce the instantaneous
appearance of solid CaCO3 in a specific context or application.

5. Conclusions

The precipitation of carbonate minerals is highly relevant in numerous technological
and environmental challenges faced by modern society. The control of anthropogenic CO2
emissions, the reduction of scaling-related issues, and the removal of heavy metals are just
a few most prominent examples. Despite years of research, a reliable forecast of carbonate
precipitation is still unfeasible due to the lack of experimental data covering the entire
range of relevant chemical conditions.

The experimental results presented in this work aim to improve the predictability
of spontaneous CaCO3 precipitation in a broad range of pH (8–10) and ionic strength
(0.05–1 M) conditions. In this whole range of conditions, we observed the precipita-
tion of CaCO3 at solution compositions corresponding to a saturation index of calcite
SI = 1.4–2.2 ± 0.1 in the pure system and SI = 1.3–2.4 ± 0.1 in the presence of Pb2+. These
results constitute the basic knowledge to understand and quantify the effect of other
fundamental components of real systems. An example of this incremental approach is
given for the presence of Pb2+. This harmful heavy metal is a common and dangerous
contaminant found in an aquatic system subject to the release of industrial wastewater. The
experiments performed show that Pb2+ has a significant inhibitory effect on the formation
of CaCO3 even at a high Ca/Pb mole ratio (Ca/Pb = 100) that resembles the composition
of real systems.

This result is particularly interesting for applications in the field of geological carbon
storage. The Carbfix project in Iceland is optimizing the conditions for carbon sequestration
via mineralization of dissolved CO2 in contact with basaltic rocks in a process that mimics
natural rock weathering [6,7]. A serious problem found during pilot injections is the
quick and progressive loss of permeability in the injection well. The formation of CaCO3
scaling in the early segments of the injection well is the main responsible for this systematic
clogging phenomenon. If the fresh groundwater, normally used to dissolve the CO2,
would be substituted with wastewater, which normally has higher salinity and higher
concentration of foreign divalent ions (Pb, Cd, Zn, Ni, etc.), the formation of CaCO3 scaling
in the early reaction stage could be delayed improving the efficiency of the carbon capture
process. Such a scenario could also combine the cost associated with two highly demanding
processes (water treatment and carbon capture) into a single and more efficient process.
However, further studies will be necessary to understand and quantify the effect of other
divalent cations. In particular, the role of co-precipitation vs. dual precipitation events, the
formation of solid solutions, and the partitioning of ions between liquid and solid phases.
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