
Computers & Operations Research 132 (2021) 105304

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A matheuristic for large-scale capacitated clustering
Mario Gnägi ∗, Philipp Baumann
Department of Business Administration, University of Bern, Schützenmattstrasse 14, 3012 Bern, Switzerland

A R T I C L E I N F O

Keywords:
Large-scale capacitated clustering
Capacitated p-median problem
Capacitated centered clustering problem
Binary linear programming
Matheuristic

A B S T R A C T

Clustering addresses the problem of assigning similar objects to groups. Since the size of the clusters is
often constrained in practical clustering applications, various capacitated clustering problems have received
increasing attention. We consider here the capacitated 𝑝-median problem (CPMP) in which 𝑝 objects are
selected as cluster centers (medians) such that the total distance from these medians to their assigned objects
is minimized. Each object is associated with a weight, and the total weight in each cluster must not exceed
a given capacity. Numerous exact and heuristic solution approaches have been proposed for the CPMP. The
state-of-the-art approach performs well for instances with up to 5,000 objects but becomes computationally
expensive for instances with a much larger number of objects. We propose a matheuristic with new problem
decomposition strategies that can deal with instances comprising up to 500,000 objects. In a computational
experiment, the proposed matheuristic consistently outperformed the state-of-the-art approach on medium- and
large-scale instances while having similar performance for small-scale instances. As an extension, we show that
our matheuristic can be applied to related capacitated clustering problems, such as the capacitated centered
clustering problem (CCCP). For several test instances of the CCCP, our matheuristic found new best-known
solutions.
1. Introduction

Clustering is the task of assigning similar objects to groups (clus-
ters), where the similarity between a pair of objects is determined by
a distance measure based on features of the objects. Since clustering
is used in many different domains for a broad range of applications,
numerous different clustering problems have been discussed in the
literature. The widely studied 𝑝-median problem is an example of such
a clustering problem. This problem consists of selecting a given number
of 𝑝 objects as cluster centers (medians) such that the total distance be-
tween the objects and their nearest median is minimized. The 𝑝-median
problem has been studied mainly in the context of facility location
but also in other contexts, such as large-scale data mining (e.g., Avella
et al. 2012). In practical clustering applications, the size of the clusters
is often constrained. For example, when grouping customers to form
sales force territories, the workload of an individual salesperson must
be restricted to guarantee adequate service quality (Mulvey and Beck,
1984). This gives rise to an extension of the 𝑝-median problem, namely,
the capacitated 𝑝-median problem (CPMP).

The CPMP can be stated as follows (e.g., Lorena and Senne 2004).
Given a set of 𝑛 weighted objects that are described by 𝑚 features, the
goal is to form a prescribed number of 𝑝 clusters by selecting 𝑝 objects
as medians and by assigning the objects to these medians such that the
total distance (e.g., Euclidean distance) between the objects and their

∗ Corresponding author.
E-mail addresses: mario.gnaegi@pqm.unibe.ch (M. Gnägi), philipp.baumann@pqm.unibe.ch (P. Baumann).

medians is minimized. Furthermore, for each median, the sum of the
weights of the objects assigned to it must not exceed a given capacity
limit. As an extension of the uncapacitated 𝑝-median problem, which is
known to be NP-hard, the CPMP is also NP-hard (Osman and Ahmadi,
2007), and the problem of finding a feasible solution to an instance
of the CPMP is NP-complete (Ceselli and Righini, 2005). The largest
publicly-available test instances for the CPMP that have been tested in
the literature thus far comprise up to 5,000 objects. In contrast, existing
test instances for the uncapacitated 𝑝-median problem comprise up
to 100,000 objects (e.g., Hansen et al. 2009). Since the CPMP is an
extension of the uncapacitated 𝑝-median problem, we are interested in
developing an approach for large-scale instances of the CPMP.

Several exact solution approaches (e.g., Ceselli and Righini 2005,
Boccia et al. 2008) and numerous heuristic solution approaches (e.g.,
Mulvey and Beck 1984, Scheuerer and Wendolsky 2006, Stefanello
et al. 2015) have been proposed for the CPMP. Existing exact ap-
proaches can solve instances with up to 1,000 objects within a rea-
sonable running time. For instances that involve more than 1,000 ob-
jects, the iterated reduction matheuristic algorithm (IRMA) proposed
by Stefanello et al. (2015) is considered the state-of-the-art approach
(Jánošíková et al., 2017). The approach of Stefanello et al. (2015)
iteratively constructs an initial solution with a randomized procedure
vailable online 29 March 2021
305-0548/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.cor.2021.105304
Received 18 May 2020; Received in revised form 22 March 2021; Accepted 22 Ma
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

rch 2021

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:mario.gnaegi@pqm.unibe.ch
mailto:philipp.baumann@pqm.unibe.ch
https://doi.org/10.1016/j.cor.2021.105304
https://doi.org/10.1016/j.cor.2021.105304
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2021.105304&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann
and improves this initial solution by first solving a mathematical model
for the entire problem and then iteratively for subproblems. Reduction
heuristics are applied to eliminate variables from the models. In a
comprehensive computational experiment based on instances with up
to 5,000 objects, Stefanello et al. (2015) demonstrated the superior
performance of their approach in comparison to recent benchmark
approaches from the literature. For instances that comprise many more
than 5,000 objects, however, the approach of Stefanello et al. (2015)
becomes computationally expensive for three reasons. First, the ran-
domized procedure requires many iterations to construct a good initial
solution, especially when the capacity limit is tight. Second, solving
the mathematical model for the entire problem becomes intractable
for large-scale instances, despite the reduction heuristics. Third, the
subproblem selection procedure does not prioritize subproblems with
great potential for improving the objective function value. Another
challenge that was not specifically discussed by Stefanello et al. (2015)
is that the number of distances between objects and potential medians
grows quadratically with an increasing number of objects. For instances
with much more than 5,000 objects, the computation of all these dis-
tances becomes prohibitively time consuming and exceeds the available
memory of most standard workstations.

In this paper, we propose a matheuristic with new problem de-
composition strategies that are specifically designed for large-scale
instances. These strategies (a) focus on subproblems with the potential
for substantially improving the objective function value, (b) exploit
the power of binary linear programming to ensure the feasibility with
respect to the capacity constraints during the entire solution process,
and (c) apply efficient data structures (k-d trees; Bentley 1975) to
avoid computing a large number of pairwise distances. The proposed
matheuristic comprises two phases: a global optimization phase in
which the subproblems involve all objects and a local optimization
phase in which the subproblems involve only a subset of objects. In
the global optimization phase, we decompose the CPMP into a series
of generalized assignment problems, which are formulated as binary
linear programs and solved using a mathematical programming solver.
In each of these subproblems, objects are optimally assigned to fixed
medians subject to the capacity constraints. The fixed medians are up-
dated between the solution of two consecutive subproblems. By fixing
the medians and allowing objects to be assigned only to one of their
𝑔-nearest fixed medians, the number of required distance computations
is reduced from 𝑛(𝑛−1)

2 to 𝑛𝑔 per subproblem, where parameter 𝑔 can
be controlled by the user. To efficiently identify the 𝑔-nearest fixed
medians of each object and to compute the corresponding distances,
we use k-d trees. In the local optimization phase, we decompose the
entire problem into subproblems that comprise groups of clusters only.
A binary linear programming formulation of the CPMP is then solved
for these groups of clusters individually using a mathematical program-
ming solver. The proposed subproblem selection procedure focuses
on groups of clusters with spare capacity and thus prioritizes sub-
problems with the potential for substantially improving the objective
function value. We also use k-d trees in the local optimization phase to
considerably reduce the number of required distance computations.

In a computational experiment, we compare the performance of
the proposed matheuristic to the performance of the state-of-the-art
approach proposed by Stefanello et al. (2015). Furthermore, we pro-
vide the results of an exact approach based on the binary linear
program presented by Lorena and Senne (2004) and a mathematical
programming solver. We apply all three approaches to a set of stan-
dard test instances from the literature, including the largest existing
instances. In comparison to instances for the uncapacitated 𝑝-median
problem, these largest existing instances for the CPMP are considered
small-scale (e.g., Avella et al. 2012). To assess the performance of
the three approaches on instances that are comparable in size to
large instances of the uncapacitated 𝑝-median problem, we addition-
ally generate some medium-scale instances with up to approximately
50,000 objects and some large-scale instances with up to approximately
2

Table 1
Notation used for the binary linear program (M-CPMP).
Parameters and sets

𝑛 Number of objects
𝐼 Set of objects (𝐼 = {1,… , 𝑛})
𝑝 Number of clusters
𝑣𝑖 Feature vector of object 𝑖 ∈ 𝐼
𝑞𝑖 Weight of object 𝑖 ∈ 𝐼
𝑄 Capacity limit

Decision variables

∗ 𝑥𝑖𝑗

{

= 1, if object 𝑖 is assigned to median 𝑗
= 0, otherwise (𝑖, 𝑗 ∈ 𝐼)

500,000 objects. It turns out that, for small-scale instances, the proposed
matheuristic matches the performance of the state-of-the-art approach,
and for medium- and large-scale instances, the proposed matheuris-
tic consistently delivers superior results. For the largest instances,
only the proposed matheuristic identifies feasible solutions given the
available computational resources. Furthermore, we generated some
high-dimensional instances with up to approximately 800 features. The
proposed matheuristic performs best among the tested approaches also
for these high-dimensional instances. Note that the implementation of
the proposed matheuristic and the generated instances are publicly
available.

As an extension, we show that the proposed matheuristic can easily
be applied to other capacitated clustering problems, such as the ca-
pacitated centered clustering problem (CCCP) (Negreiros and Palhano,
2006). In the CCCP, the cluster centers are computed as the geometric
mean of the assigned objects and are not selected among the set of
objects. For the largest problem instances of the CCCP tested in this
paper, we were able to find new best-known solutions.

The remainder of this paper is organized as follows. In Section 2,
we describe the CPMP in more detail. In Section 3, we review the
related literature. In Section 4, we describe the proposed matheuristic.
In Section 5, we report the computational results. In Section 6, we apply
the proposed matheuristic to the CCCP, and in Section 7, we provide
some conclusions and give an outlook on future research.

2. Capacitated 𝒑-median problem

In this section, we describe the CPMP in more detail (Section 2.1)
and provide a small illustrative example (Section 2.2).

2.1. Description of the problem

The CPMP can be stated as follows (e.g., Lorena and Senne 2004).
Given is a set of 𝑛 objects denoted as 𝐼 = {1,… , 𝑛}. Each object
𝑖 ∈ 𝐼 corresponds to an 𝑚-dimensional feature vector 𝑣𝑖 ∈ R𝑚 and is
associated with a weight 𝑞𝑖. Based on these feature vectors, a distance
𝑑(𝑣𝑖, 𝑣𝑗 ) can be computed for each pair of objects 𝑖, 𝑗 ∈ 𝐼 (e.g., Euclidean
distance). Note that the distances do not constitute an input to the
problem as they must be calculated based on the feature vectors. The
goal is to partition the objects into a prescribed number of clusters
by selecting 𝑝 objects as cluster centers (medians) and by assigning
the objects to these medians such that the total distance between the
medians and their assigned objects is minimized. In doing so, the total
weight in each cluster must not exceed a given capacity limit 𝑄.

The CPMP can be formulated as a binary linear program (Lorena
and Senne, 2004); the notation used is summarized in Table 1. Note
that an object 𝑗 ∈ 𝐼 is selected as a median if it is assigned to itself,

i.e., 𝑥𝑗𝑗 = 1.



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann

3

t
c
w
e
o

i
w
m
a
t
p
b
T

3

C
s
p
p
p
t
e
f
a
p
a

t
1
1
b

Table 2
Coordinates and number of employees of stores in the illustrative example.

Store (𝑖) 𝑥-coordinate 𝑦-coordinate Number of employees (𝑞𝑖)

1 12 31 1
2 10 91 1
3 61 50 2
4 26 50 2
5 94 34 1
6 39 12 2
7 58 13 2
8 78 72 2
9 5 78 3

10 35 64 3
11 27 82 1
12 79 42 4
13 50 21 3
14 41 89 2
15 51 78 1

(M-CPMP)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Min. ∑

𝑖∈𝐼
∑

𝑗∈𝐼 𝑑(𝑣𝑖, 𝑣𝑗 )𝑥𝑖𝑗 (a)
s.t. ∑

𝑗∈𝐼 𝑥𝑗𝑗 = 𝑝 (b)
∑

𝑗∈𝐼 𝑥𝑖𝑗 = 1 (𝑖 ∈ 𝐼) (c)
∑

𝑖∈𝐼 𝑞𝑖𝑥𝑖𝑗 ≤ 𝑄𝑥𝑗𝑗 (𝑗 ∈ 𝐼) (d)
𝑥𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗 ∈ 𝐼) (e)

(1)

The objective function given in (1)(a) captures the total distance
between the medians and their assigned objects. Constraint (1)(b)
ensures that exactly 𝑝 objects are selected as medians. Constraints (1)(c)
assure that each object is assigned to exactly one selected median.
Constraints (1)(d) impose the capacity limit for each object that is
selected as a median. Finally, the domains of the decision variables are
defined in (1)(e).

The CPMP has various real-world applications that have been dis-
cussed in the literature. Many of these real-world applications arise in
facility location (e.g., Medaglia et al. 2009, Jánošíková et al. 2017).
Other exemplary applications are the consolidation of customer orders
into truckload shipments (Koskosidis and Powell, 1992) and the struc-
turing of multiprotocol-label switching networks (El-Alfy, 2007). For
a broad overview of real-world applications of the CPMP, we refer
to Ahmadi and Osman (2005).

2.2. Illustrative example

We present a small example to illustrate the description of the CPMP
provided above. Furthermore, we use this example to illustrate the
proposed matheuristic in Section 4.4.

We consider a coffeehouse chain that wants to group its stores into
a given number of clusters such that stores in the same cluster are close
to each other. A manager is then put in charge of each resulting cluster.
The selected median of a cluster represents the store at which the office
of the assigned manager should be located. To ensure that the stores
within a given cluster can be managed adequately, capacity constraints
are required that limit the total number of employees within a cluster.

The coffeehouse chain has 𝑛 = 15 stores that must be grouped
into 𝑝 = 4 clusters. The coordinates (feature vectors) and the number
of employees (weights) of the stores are given in Table 2. The total
number of employees within a cluster is limited to 𝑄 = 8. The pairwise
distances between the stores are calculated as Euclidean distances. In
Fig. 1, an optimal solution for the illustrative example is depicted; the
objective function value (OFV) of the depicted solution is provided in
the bottom-right corner. The size of a point in the figure represents
the number of employees of the corresponding store. Stores that are
selected as medians are indicated with a red circle, and the assignments
of the stores to the medians are indicated with green lines.
3

g

Fig. 1. Optimal solution of the illustrative example.

. Literature review

Capacitated clustering has received a lot of attention recently. In
his section, we focus only on solution approaches for the CPMP. Other
losely related capacitated clustering problems differ from the CPMP
ith respect to the objective function (e.g., Brimberg et al. 2019, Zhou
t al. 2019, Puerto et al. 2020), the constraints (e.g., Espejo et al. 2021),
r both (e.g., Ríos-Mercado et al. 2021).

We categorize and discuss the papers dealing with the CPMP accord-
ng to the types of proposed solution approaches. In Sections 3.1 to 3.4,
e review exact approaches, classic heuristics, metaheuristics, and
atheuristics. Table 3 gives an overview of the discussed approaches

nd lists the number of objects of the largest instance that was used to
est the corresponding approach. Note that given the considerable im-
rovement in available software and hardware, the approaches might
e applicable to larger instances than those listed in the last column of
able 3.

.1. Exact approaches

Almost all papers listed in Table 3 provide a formulation of the
PMP as a binary linear program. These formulations can be used to
olve small-scale instances to optimality by applying a mathematical
rogramming solver such as Gurobi or CPLEX. In addition, a few
roblem-specific exact approaches have been proposed. Pirkul (1987)
roposed a branch-and-bound algorithm for the capacitated concen-
rator location problem that can be adapted to the CPMP. Baldacci
t al. (2002) presented an exact approach based on a set partitioning
ormulation of the CPMP, and Ceselli and Righini (2005) proposed

branch-and-price algorithm with different branching strategies and
ricing methods. Finally, Boccia et al. (2008) developed a cutting plane
lgorithm based on Fenchel cuts.

These exact approaches have been used to devise provably op-
imal solutions for small-scale instances with up to approximately
,000 objects (Table 3). For instances that comprise many more than
,000 objects, the required running time of these exact approaches
ecomes prohibitively large since the number of distinct clusterings

rows drastically with the increasing number of objects.



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann
Table 3
Solution approaches for the CPMP.

Paper Exact
approach

Classic
heuristic

Meta-
heuristic

Math-
heuristic

Largest
instance (𝑛)

Mulvey and Beck (1984) ✓ 100
Pirkul (1987) ✓ 100
Koskosidis and Powell (1992) ✓ 100
Osman and Christofides (1994) ✓ 100
Maniezzo et al. (1998) ✓ 100
Baldacci et al. (2002) ✓ 200
Lorena and Senne (2003) ✓ 402
Ahmadi and Osman (2004) ✓ 150
Ahmadi and Osman (2005) ✓ 150
Ceselli and Righini (2005) ✓ 900
Díaz and Fernandez (2006) ✓ 737
Scheuerer and Wendolsky (2006) ✓ 402
Chaves et al. (2007) ✓ 402
Osman and Ahmadi (2007) ✓ 150
Boccia et al. (2008) ✓ 402
Fleszar and Hindi (2008) ✓ 402
Landa-Torres et al. (2012) ✓ 500
Yaghini et al. (2013) ✓ 200
Stefanello et al. (2015) ✓ 4,461
Jánošíková et al. (2017) ✓ 3,038
Mai et al. (2018) ✓ 156
Proposed approach ✓ 498,378
3.2. Classic heuristics

The category of classic heuristics comprises problem-specific heuris-
tics that are not based on metaheuristic concepts. Mulvey and Beck
(1984) proposed a classic heuristic based on alternately applying an
object-assignment step and a median-update step. The objects are
assigned in a greedy manner to their nearest median that has suffi-
cient unused capacity. The order in which the objects are assigned is
determined based on a regret value that is computed for each object.
The regret value of an object is defined as the difference between the
distance to its second nearest fixed median and the distance to its first
nearest fixed median. Furthermore, an improvement heuristic based on
local switches of objects between clusters was proposed. The approach
of Mulvey and Beck (1984) was extended in Koskosidis and Powell
(1992) by new initialization methods for the initial set of fixed medians
and a new definition of the regret value. Lorena and Senne (2003)
presented a local search heuristic based on Lagrangian/surrogate re-
laxation techniques introduced by Senne and Lorena (2000) for the
uncapacitated 𝑝-median problem. The best upper bounds obtained by
the local search heuristic of Lorena and Senne (2003) were compared
in Lorena and Senne (2004) with lower bounds devised by a column
generation approach based on a set partitioning formulation of the
CPMP. Finally, Mai et al. (2018) proposed a construction and an
improvement heuristic for the CPMP. The construction heuristic uses
a Gaussian mixture modeling approach that incorporates the capacity
constraints. The improvement heuristic shifts or swaps objects between
different clusters.

These classic heuristics are based on the idea of performing many
iterations, where each iteration slightly improves the solution qual-
ity. For instances that comprise up to approximately 5,000 objects
(Table 3), good-quality solutions can be devised since each iteration
can be performed extremely fast. For instances that comprise much
more than 5,000 objects, however, each iteration becomes expensive in
terms of the required running time. Moreover, for large-scale instances
with tight capacities, the classic heuristics that are based on a greedy
assignment strategy often need many time-consuming attempts to even
generate a first feasible solution. Because of these limitations, individ-
ual objects are often aggregated to reduce the problem size. Lorena and
Senne (2003), for example, reduced the problem size by aggregating
houses (apartments) to blocks. This aggregation, however, leads to a
loss of information and aggregation errors in the solutions (e.g., Erkut
and Bozkaya 1999).
4

3.3. Metaheuristics

In addition to classic heuristics, many metaheuristics have been
proposed, such as the bionomic algorithm presented by Maniezzo et al.
(1998), the problem-space search algorithm developed by Ahmadi and
Osman (2004), the scatter search heuristics proposed by Scheuerer
and Wendolsky (2006), the guided construction search heuristics intro-
duced by Osman and Ahmadi (2007), and the grouping evolutionary al-
gorithms developed by Landa-Torres et al. (2012). In addition, various
approaches have been proposed that combine multiple metaheuristic
concepts. Osman and Christofides (1994) combined the concepts simu-
lated annealing and tabu search, Ahmadi and Osman (2005) merged
a greedy random adaptive search procedure and adaptive memory
programming, Díaz and Fernandez (2006) proposed an approach that
combines scatter search and path relinking, and Chaves et al. (2007)
linked the concepts clustering search and simulated annealing.

Like the classic heuristics, these metaheuristics also require many
iterations to substantially improve the solution quality, which becomes
costly in terms of the required running time for large-scale instances.
In addition, they either apply manual checks while generating new
solutions to guarantee that the capacity constraints are satisfied, or they
apply repair operators to fix newly generated infeasible solutions. Both
tasks are time consuming as well for large-scale instances.

3.4. Matheuristics

Recently, matheuristics have received increasing attention.
Matheuristics, in general, are a powerful tool because they combine
heuristic approaches with the continuously improved performance of
mathematical programming solvers (e.g., Carrizosa et al. 2018, Gnägi
and Strub 2020). Fleszar and Hindi (2008) presented a variable neigh-
borhood search matheuristic. Neighbors are found by randomly switch-
ing some selected medians of the current best solution to objects that
are currently not selected as medians. To quickly assess the quality
of the neighbors, approximation methods are used, such as assigning
the objects to their nearest selected median without considering the
capacity constraints. For the most promising neighbors, feasible solu-
tions to the CPMP are devised by solving a general assignment problem
formulated as a binary linear program. Stefanello et al. (2015) proposed
their iterated reduction matheuristic algorithm (IRMA) that comprises
three phases. First, a simplified version of the greedy construction

heuristic of Mulvey and Beck (1984) is applied. In contrast to the



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann

d
m
m
t
a

(

approach of Mulvey and Beck (1984), the order in which the objects are
assigned to the fixed medians is drawn randomly and is not determined
based on a regret value. Second, a mathematical programming solver
is used to solve a binary linear programming formulation of the CPMP
until an optimal solution is found or a time limit is reached. Third, if
the optimality has not been proven in the second phase, a local search
heuristic is applied that iteratively solves a binary linear programming
formulation of the CPMP for subsets of clusters only. In the second
and third phases, two heuristics (referred to as reduction heuristics)
are applied to eliminate variables that are unlikely to be nonzero in
an optimal solution. Finally, Jánošíková et al. (2017) presented two
combinations of a genetic algorithm with binary linear programming.
Binary linear programming is either used to generate elite individuals
during the solution process of the genetic algorithm or as a postpro-
cessing technique to improve the best solution returned by the genetic
algorithm.

These matheuristics overcome some of the abovementioned limits
of classic heuristics and metaheuristics by applying binary linear pro-
gramming to efficiently handle the capacity constraints. However, they
are either combined with a greedy assignment heuristic and/or need
to compute and store large distance matrices at some point, which is
challenging in terms of the required running time and prohibitive in
terms of the required storage space.

4. Proposed matheuristic

In this section, we present the global optimization phase (Sec-
tion 4.1) and the local optimization phase (Section 4.2) of our proposed
matheuristic in detail. Moreover, we briefly describe the data structure
k-d trees (Section 4.3), which we use in both phases of the proposed
matheuristic. Finally, we illustrate the proposed matheuristic by means
of the illustrative example provided in Section 2.2. For the total running
time of the proposed matheuristic, we prescribe a maximum time limit
denoted as 𝜏𝑡𝑜𝑡𝑎𝑙.

4.1. Global optimization phase

In the global optimization phase, we aim to devise a good-quality
feasible solution by performing only a few iterations of the procedure
described below; this phase builds on the approach of Baumann (2019)
that was proposed for the CCCP. First, we identify and fix a set of
promising medians, denoted as 𝐽𝑓 with |𝐽𝑓

| = 𝑝. Second, we assign
the remaining objects to the fixed medians by using the binary lin-
ear program (M-G) provided below. By fixing the medians, we avoid
computing all 𝑛(𝑛−1)

2 pairwise distances such that only 𝑛𝑝 distances
between objects and fixed medians must be computed. To further
reduce the number of required distance computations, we exploit the
idea that objects are rarely assigned to medians that are far away
and thus only allow objects to be assigned to their 𝑔-nearest medians.
The 𝑔-nearest medians of each object can be determined efficiently
using k-d trees without computing all pairwise distances (Section 4.3).
Consequently, only 𝑛𝑔 distances between objects and fixed medians
must be computed. We denote the set that comprises the 𝑔-nearest
medians of object 𝑖 ∈ 𝐼 ⧵ 𝐽𝑓 as 𝐽𝑓

𝑖 with 𝐽𝑓
𝑖 ⊆ 𝐽𝑓 . Accordingly, we

enote the set consisting of all objects that are not selected as fixed
edians and that have the fixed median 𝑗 ∈ 𝐽𝑓 among their 𝑔-nearest
edians as 𝐼𝑗 with 𝐼𝑗 ⊆ 𝐼 ⧵ 𝐽𝑓 . The binary linear program that we use

o assign the objects to the fixed medians, referred to as (M-G), reads
s follows:

M-G)

⎧

⎪

⎪

⎨

⎪

⎪

Min. ∑

𝑖∈𝐼⧵𝐽𝑓
∑

𝑗∈𝐽𝑓
𝑖
𝑑(𝑣𝑖, 𝑣𝑗 )𝑥𝑖𝑗 (a)

s.t. ∑

𝑗∈𝐽𝑓
𝑖
𝑥𝑖𝑗 = 1 (𝑖 ∈ 𝐼 ⧵ 𝐽𝑓 ) (b)

∑

𝑖∈𝐼𝑗 𝑞𝑖𝑥𝑖𝑗 ≤ 𝑄 − 𝑞𝑗 (𝑗 ∈ 𝐽𝑓 ) (c)
𝑓 𝑓

(2)
5

⎩ 𝑥𝑖𝑗 ∈ {0, 1} (𝑖 ∈ 𝐼 ⧵ 𝐽 ; 𝑗 ∈ 𝐽𝑖 ) (d)
The objective function given in (2)(a) captures the total distance be-
tween the fixed medians and their assigned objects. Constraints (2)(b)
ensure that each object is assigned to exactly one fixed median. Con-
straints (2)(c) impose the capacity limit for each of the fixed medians;
the capacity limit for each fixed median 𝑗 ∈ 𝐽𝑓 is 𝑄 − 𝑞𝑗 because it is
assigned to itself a priori and thus must accommodate its own weight.
Finally, the domains of the decision variables are defined in (2)(d). The
binary linear program (M-G) represents a special case of the generalized
assignment problem in which the weight of an object is independent of
the cluster to which the object is assigned. We continue by alternating
between a median-update step and an object-assignment step with the
goal of improving the solution quality of the initial solution. In the
object-assignment step, we again use the binary linear program (M-G)
as described above to assign the objects to the currently fixed medians.
In the median-update step, we update the currently fixed medians based
on the new assignments obtained in the previous object-assignment
step. We determine for each cluster the object that minimizes the total
distance to all other objects assigned to this cluster. These objects are
then used as the new fixed medians in the next object-assignment step.
We perform these two steps iteratively until the current solution can
no longer be improved.

Algorithm 1 describes the global optimization phase in detail. We
start by initializing the parameter 𝑔, which defines the number of
nearest medians to which an object can be assigned. Moreover, we
initialize the set of fixed medians 𝐽𝑓 . For this initialization, we propose
two alternative methods which we describe further below. Then, to set
up the binary linear program (M-G), we determine the sets 𝐽𝑓

𝑖 for the
objects 𝑖 ∈ 𝐼 ⧵ 𝐽𝑓 and 𝐼𝑗 for the fixed medians 𝑗 ∈ 𝐽𝑓 based on the
current value of 𝑔, and we calculate the distances between the objects
𝑖 ∈ 𝐼 ⧵ 𝐽𝑓 and the medians 𝑗 ∈ 𝐽𝑓

𝑖 . Thereafter, we attempt to solve
the binary linear program (M-G) using a mathematical programming
solver. We stop the solver as soon as the MIP gap reaches a value
of 1% or lower. This setup exploits our observation that optimal or
near-optimal solutions are often found quickly, while a rather long
additional running time is spent on proving the optimality of these
solutions. If it is found that no feasible solution exists, we double
the value of 𝑔, set up the binary linear program (M-G) based on the
increased value of 𝑔, and try to solve the binary linear program (M-
G) again. This process is repeated until a feasible solution, denoted
as 𝑆, has been found. Then, we update each median of the solution
𝑆 (lines 12–17) by determining the objects assigned to the median,
calculating the pairwise distances between these assigned objects, and
determining the object that minimizes the total distances to all other
assigned objects. For instances with 𝑛

𝑝 > 10,000, we propose applying
an approximate median-update step to further reduce the number of
distance computations. In this case, we update each median by selecting
the object that is nearest to the center of gravity of the assigned objects.
After all medians have been updated, we evaluate whether a new best
solution, denoted as 𝑆∗, has been found (lines 18–24). If this is the case,
we reset the value of 𝑔 to 𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙, we update the set of fixed medians 𝐽𝑓

to comprise the updated medians in the new best solution 𝑆∗, and we
start the next iteration if the time limit 𝜏𝑡𝑜𝑡𝑎𝑙 has not been reached.
Otherwise, we stop the algorithm and return the best solution found.



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann

s

b
r
r
o
𝑔
c

Algorithm 1 Global optimization phase
1: procedure GlobalOptimization(𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝜏 𝑡𝑜𝑡𝑎𝑙, 𝑖𝑛𝑖𝑡)
2: 𝑔 ← 𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙;
3: 𝐽 𝑓 ← set of initial medians with |𝐽 𝑓

| = 𝑝 using method 𝑖𝑛𝑖𝑡;
4: while time limit 𝜏 𝑡𝑜𝑡𝑎𝑙 has not been reached do
5: Determine sets 𝐽 𝑓

𝑖 for objects 𝑖 ∈ 𝐼 ⧵ 𝐽 𝑓 and sets 𝐼𝑗 for medians
𝑗 ∈ 𝐽 𝑓 ;

6: Calculate distances 𝑑(𝑣𝑖, 𝑣𝑗 ) between objects 𝑖 ∈ 𝐼 ⧵ 𝐽 𝑓 and medians
𝑗 ∈ 𝐽 𝑓

𝑖 ;
7: Solve (M-G) until MIP Gap ≤ 1%;
8: if no feasible solution exists then
9: 𝑔 ← 𝑔 × 2;

10: else
11: 𝑆 ← new feasible solution found;
12: for medians 𝑗 ∈ 𝐽 𝑓 do
13: 𝐴𝑗 ← set of objects assigned to median 𝑗 in solution 𝑆;
14: Calculate distances 𝑑(𝑣𝑖, 𝑣𝑖′ ) between objects 𝑖, 𝑖′ ∈ 𝐴𝑗 ;
15: 𝑗′ ← new median 𝑗′ ∈ argmin𝑖′∈𝐴𝑗

∑

𝑖∈𝐴𝑗
𝑑𝑖𝑖′ ;

16: Update median 𝑗 to 𝑗′ in solution 𝑆;
17: end for
18: if solution 𝑆 is new best solution then
19: 𝑔 ← 𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙;
20: 𝑆∗ ← S;
21: 𝐽 𝑓 ← set of medians in solution 𝑆∗;
22: else
23: break;
24: end if
25: end if
26: end while
27: return best solution 𝑆∗;
28: end procedure

To determine the initial medians (line 3 of Algorithm 1), we con-
ider two alternative methods:

• The 𝑘-means++ algorithm proposed by Arthur and Vassilvitskii
(2007). This method aims at spreading out the initial medians
as far as possible. Thereby, objects are iteratively selected to be
medians with a probability that is proportional to the squared dis-
tance between an object and its closest already selected median.
Note that this method does not consider any capacity constraints.

• A capacity-based initialization method that corresponds to an
accelerated version of the procedure GlobalOptimization(𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙,
𝜏𝑡𝑜𝑡𝑎𝑙, 𝑖𝑛𝑖𝑡) with 𝑖𝑛𝑖𝑡 = 𝑘-means++. To accelerate this procedure,
we introduce the following two modifications. First, instead of
assigning the objects to the fixed medians by using the binary
linear program (M-G) (line 7 of Algorithm 1), each object is
assigned greedily to its nearest fixed median that has a sufficient
amount of unused capacity. The order in which the objects are
assigned is determined based on the regret function proposed
by Mulvey and Beck (1984), i.e., a regret value 𝑟𝑖 is calculated
for each object 𝑖 with 𝑟𝑖 = 𝑑(𝑣𝑖, 𝑣𝑗′′ ) − 𝑑(𝑣𝑖, 𝑣𝑗′ ) where 𝑗′ and 𝑗′′
are the first and second nearest medians of object 𝑖. The objects
are assigned in decreasing order of their regret values. Second,
instead of returning the best feasible solution, only the set of
medians in the best feasible solution found is returned.

The 𝑘-means++ algorithm quickly returns a set of initial medians
ut neglects the capacity restriction. The novel capacity-based method
equires a longer running time but takes into account the capacity
estrictions and thus provides more promising initial medians. A set
f promising initial medians allows to choose a smaller value for
𝑖𝑛𝑖𝑡𝑖𝑎𝑙. This is beneficial especially for large-scale instances since it
onsiderably reduces the size of the binary linear program (M-G).

Note that in both initialization methods, we use the 𝑘-means++
algorithm, which is a randomized procedure. We generate multiple
different solutions by running the global optimization phase multiple
times, each time with a different random seed. We then return the best
solution found over all runs. We denote the number of runs of the global

𝑠𝑡𝑎𝑟𝑡
6

optimization phase as 𝜈 .
4.2. Local optimization phase

In the local optimization phase, we iteratively apply the following
procedure to further improve the best solution obtained from the global
optimization phase. First, we select a subset of 𝑤 clusters from the set
of clusters in the current best solution. The cluster-selection procedure
starts with selecting the median that has the largest amount of unused
capacity. Then, the 𝑤 − 1 medians that are nearest to the already
selected median are selected. These nearest medians can be determined
efficiently using k-d trees (Section 4.3). Second, we identify the set
of objects that are assigned to the selected medians. We denote this
set of objects as 𝐼𝑠 with 𝐼𝑠 ⊆ 𝐼 . Third, we solve the binary linear
program (M-L) given below for this subset of objects only. To speed
up the solution process of the binary linear program, we consider
as potential new medians only the medians of the selected subset of
clusters and their 𝑙-nearest objects. This procedure is similar to the
neighborhood median size-reduction heuristic proposed by Stefanello
et al. (2015). The 𝑙-nearest objects of each median can again be de-
termined efficiently using k-d trees (Section 4.3). We denote the set of
potential new medians as 𝐽 𝑠 with 𝐽 𝑠 ⊆ 𝐼𝑠. Starting with a small subset
of clusters, we enlarge the size of the subset after several iterations
without improvement. Furthermore, we track the clusters (represented
by their medians) of the current best solution for which no further
local improvement has been found. The binary linear program that we
use during the local optimization phase, referred to as (M-L), reads as
follows:

(M-L)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Min. ∑

𝑖∈𝐼𝑠
∑

𝑗∈𝐽 𝑠 𝑑(𝑣𝑖, 𝑣𝑗 )𝑥𝑖𝑗 (a)
s.t. ∑

𝑗∈𝐽 𝑠 𝑥𝑗𝑗 = 𝑤 (b)
∑

𝑗∈𝐽 𝑠 𝑥𝑖𝑗 = 1 (𝑖 ∈ 𝐼𝑠) (c)
∑

𝑖∈𝐼𝑠 𝑞𝑖𝑥𝑖𝑗 ≤ 𝑄𝑥𝑗𝑗 (𝑗 ∈ 𝐽 𝑠) (d)
𝑥𝑖𝑗 ≤ 𝑥𝑗𝑗 (𝑖 ∈ 𝐼𝑠; 𝑗 ∈ 𝐽 𝑠) (e)
𝑥𝑖𝑗 ∈ {0, 1} (𝑖 ∈ 𝐼𝑠; 𝑗 ∈ 𝐽 𝑠) (f)

(3)

The objective function given in (3)(a) captures the total distance
between the medians and their assigned objects in the selected subset
of clusters. Constraint (3)(b) ensures that exactly 𝑤 objects are selected
as medians. Constraints (3)(c) ensure that each object is assigned
to a median, and constraints (3)(d) impose the capacity limits. Con-
straints (3)(e) are valid inequalities that substantially speed up the solu-
tion process since they tighten the linear relaxation of the binary linear
program (e.g., Ceselli and Righini 2005, Deng and Bard 2011, Kramer
et al. 2019). Finally, the domains of the decision variables are defined
in (3)(f).

Algorithm 2 describes the local optimization phase in detail. We
start by initializing the best solution found so far, denoted as 𝑆∗,
with the initial solution 𝑆 𝑖𝑛𝑖𝑡𝑖𝑎𝑙, which represents the best solution
obtained at the end of the global optimization phase. We additionally
initialize the parameter 𝑤 based on the input parameter 𝑛𝑡𝑎𝑟𝑔𝑒𝑡, which
represents a target number of objects in the initial subset of objects 𝐼𝑠.
A suitable value for 𝑛𝑡𝑎𝑟𝑔𝑒𝑡 should be chosen such that a mathematical
programming solver can solve the resulting binary linear program (M-
L) within a reasonable running time. Moreover, we initialize an empty
set 𝐿, which is used throughout the local optimization phase to track
the medians for which no further local improvement has been found. To
set up the binary linear program (M-L), we perform the following steps
(lines 6–15). First, we determine the set of potential new medians 𝐽 𝑠

and the set of objects that belong to the selected clusters 𝐼𝑠. We start
with the median 𝑗′ that has the largest amount of unused capacity in
the current best solution 𝑆∗ and that has not been marked as a median
that has been optimized in previous iterations without finding any local
improvement. Then, we include the 𝑤 − 1 medians that are nearest to
median 𝑗′ in the set 𝐽 𝑠. At this point, we copy set 𝐽 𝑠 and denote the
copy as 𝐽𝑤. Then, we determine the set 𝐼𝑠 by including all objects
assigned to the medians 𝑗 ∈ 𝐽𝑤 in the current best solution 𝑆∗. We



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann

l
a
r
i
(
(
𝑤
a

1
1
1
1
1
1

p
s
l
l
n
t

5

m
t
p
o

then further enlarge set 𝐽 𝑠 by including the 𝑙-nearest objects 𝑖 ∈ 𝐼𝑠 of
each median 𝑗 ∈ 𝐽𝑤. Second, we calculate the distances between the
objects 𝑖 ∈ 𝐼𝑠 and the medians 𝑗 ∈ 𝐽 𝑠. Thereafter, we try to improve
the current best solution using the binary linear program (M-L) and a
mathematical programming solver. To avoid very long running times
for single iterations, we stop the solver after a time limit of 𝜏𝑙𝑜𝑐𝑎𝑙 has
been reached, or as soon as the MIP gap reaches a value of 1% or
lower. Furthermore, we provide a warm start based on the current best
solution 𝑆∗ and the set of selected clusters. This typically speeds up the
solution process of the solver since a first feasible solution is already
provided. If the current best solution has been improved, we update
set 𝐿 by excluding all medians 𝑗 ∈ 𝐽𝑤 (line 25) such that these medians
can be selected again in subsequent iterations; otherwise, we include all
medians 𝑗 ∈ 𝐽𝑤 in set 𝐿 (line 27). This process of setting up the binary
inear program (M-L), trying to solve the binary linear program (M-L),
nd updating set 𝐿 is performed iteratively until the time limit 𝜏𝑡𝑜𝑡𝑎𝑙 is
eached, or all medians selected in the current best solution are also
n set 𝐿. In the latter case, we double the value of 𝑤 and empty set 𝐿
lines 29 and 30 of Algorithm 2). As soon as the binary linear program
M-L) has been optimized with the number of medians to be selected

being equal to the total number of clusters 𝑝, we stop the algorithm
nd return the best solution found.

Algorithm 2 Local optimization phase
1: procedure LocalOptimization(𝑆 𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝑛𝑡𝑎𝑟𝑔𝑒𝑡, 𝑙, 𝜏 𝑙𝑜𝑐𝑎𝑙, 𝜏 𝑡𝑜𝑡𝑎𝑙)
2: 𝑆∗ ← 𝑆 𝑖𝑛𝑖𝑡𝑖𝑎𝑙;
3: 𝑤 ← max{⌈ 𝑛𝑡𝑎𝑟𝑔𝑒𝑡×𝑝

𝑛
⌉, 2};

4: 𝐿 ← {};
5: while time limit 𝜏 𝑡𝑜𝑡𝑎𝑙 has not been reached do
6: 𝐽 ∗ ← set of medians in solution 𝑆∗;
7: 𝑗′ ← median 𝑗′ ∈ 𝐽 ∗ ⧵ 𝐿 with largest amount of unused capacity in

solution 𝑆∗;
8: 𝐽 𝑠 ← {𝑗′};
9: 𝐽 𝑠 ← 𝐽 𝑠 ∪ set of (𝑤 − 1)-nearest medians 𝑗 ∈ 𝐽 ∗ of median 𝑗′;
0: 𝐽𝑤 ← copy set 𝐽 𝑠;
1: 𝐼𝑠 ← set of objects assigned to medians 𝑗 ∈ 𝐽𝑤 in solution 𝑆∗;
2: for medians 𝑗 ∈ 𝐽𝑤 do
3: 𝐽 𝑠 ← 𝐽 𝑠 ∪ set of 𝑙-nearest objects 𝑖 ∈ 𝐼𝑠 of median 𝑗;
4: end for
5: Calculate distances 𝑑(𝑣𝑖, 𝑣𝑗 ) between objects 𝑖 ∈ 𝐼𝑠 and medians

𝑗 ∈ 𝐽 𝑠;
16: Solve (M-L) with warm start based on solution 𝑆∗ until MIP Gap

≤ 1% or time limit 𝜏 𝑙𝑜𝑐𝑎𝑙 is reached;
17: 𝑆 ← update solution 𝑆∗ according to the solution found to (M-L);
18: if 𝑤 = 𝑝 then
19: 𝑆∗ ← new solution 𝑆;
20: break;
21: end if
22: if solution 𝑆 is better than solution 𝑆∗ then
23: 𝑆∗ ← new best solution 𝑆;
24: 𝐽 ∗ ← set of medians in solution 𝑆;
25: 𝐿 ← 𝐿 ⧵ 𝐽𝑤;
26: else
27: 𝐿 ← 𝐿 ∪ 𝐽𝑤;
28: if 𝐽 ∗ = 𝐿 then
29: 𝑤 ← min{𝑤 × 2, 𝑝};
30: 𝐿 ← {};
31: end if
32: end if
33: end while
34: return best solution 𝑆∗;
35: end procedure

A novelty of the local improvement phase that distinguishes the
roposed approach from other local search matheuristics is the cluster-
election procedure. The procedure starts with the cluster that has the
argest amount of unused capacity as the initial cluster. In contrast, the
ocal search matheuristic of Stefanello et al. (2015), for example, does
ot prioritize subproblems with great potential for improving the objec-
ive function value. In Appendix A, we provide results which indicate
7

t

that this cluster-selection procedure outperforms other cluster-selection
procedures.

4.3. Search for nearest neighbors using k-d trees

Both phases of the proposed matheuristic require to search for
nearest neighbors. This task can be performed efficiently using k-d trees
without calculating all pairwise distances (Bentley, 1975). A k-d tree is
a binary tree, in which each node represents an object. Moreover, each
node is associated with a feature by which the feature space is divided
into two halves. Once such a k-d tree is constructed, the tree structure
can be exploited to eliminate large portions of the search space, such
that the nearest neighbors of any object described by the same features
can be determined efficiently. Note that in high-dimensional feature
spaces smaller parts of the search space can be eliminated than in low-
dimensional feature spaces, such that the search for nearest neighbors
using k-d trees becomes more time consuming.

4.4. Illustrative example

Fig. 2 illustrates the solution process of the proposed matheuristic
for the illustrative example from Section 2.2. Stores that are selected
as medians are indicated with a red circle, and the assignments of the
stores to the medians are indicated with green lines.

The first column of Fig. 2 depicts the solution process of the global
optimization phase. The objective function value (OFV) after each
iteration is provided in the bottom-right corner of the corresponding
subfigures. Starting with an initial set of medians determined by the
𝑘-means++ algorithm, three iterations (denoted as G1 to G3) are per-
formed. In the first iteration, a first feasible solution is found. In the
second iteration, the current solution is improved. A third iteration is
performed, which does not improve the current solution and therefore
is not depicted in Fig. 2. Thus, the global optimization phase terminates
with the solution depicted in the subfigure at the bottom of the first
column of Fig. 2.

The second column of Fig. 2 depicts the solution process of the local
optimization phase. We provide the objective function value (OFV)
after each iteration in the bottom-right corner of the corresponding
subfigures. Starting with the solution returned at the end of the global
optimization phase, four iterations (denoted as L1 to L4) are performed.
We start with a subset consisting of 𝑤 = 2 clusters, which includes
the cluster with the largest amount of unused capacity. In the first
iteration, a new best feasible solution is found by solving the binary
linear program (M-L) for the two selected clusters only. In the second
and third iterations, two subsets of clusters are considered for which no
improvement is found. At this point, we double the number of clusters
to be selected to 𝑤 = 4 because all clusters in the current best solution
have been examined once without achieving any improvements. Hence,
in the fourth iteration, all 𝑝 = 4 clusters are selected, and thus, all stores
are considered. At the end of the fourth iteration, after finding again a
new best feasible solution, we terminate the local optimization phase
since all stores have been considered. Note that the best solution found
at the end of the fourth iteration corresponds to an optimal solution.
However, there is no guarantee of finding an optimal solution as long
as the parameter value 𝑙 is chosen such that 𝑙 < 𝑛.

. Computational experiment

In this section, we evaluate the performance of the proposed
atheuristic in terms of solution quality and running time. In Sec-

ion 5.1, we introduce the test set. In Section 5.2, we choose the control
arameters of our matheuristic. In Section 5.3, we explain the design
f our computational experiment. In Section 5.4, we report and discuss
he computational results.



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann

5

b
l
w
f
S
f
t
c
b
i
l
i
1
k
a

S
c
e
w
f
a
p
o
C

a
o
i

a
H
g

Fig. 2. Solution process of the proposed matheuristic for the illustrative example.

.1. Test set

The complete test set comprises the 31 instances described in Ta-
le 4. The first 16 instances are well-known test instances from the
iterature. These include the six instances from the group SJC that
ere introduced by Lorena and Senne (2003) and the ten instances

rom the groups p3038 and fnl4461 that were generated by Lorena and
enne (2004) and Stefanello et al. (2015), respectively. The instances
rom the group SJC comprise real-world data of the central area of
he Brazilian city São José dos Campos. The objects of these instances
orrespond to blocks, and the weights represent the number of houses
elonging to each block. The authors did not provide any additional
nformation regarding the interpretation of the clusters or the capacity
imit. The ten instances from groups p3038 and fnl4461 are generic
nstances that are based on two TSP instances from the TSPLIB (Reinelt,
991) with 3,038 and 4,461 nodes, respectively. To the best of our
nowledge, the instances of group fnl4461 are the largest publicly-
8

vailable test instances that have been tested in the literature so far.
ince large-scale instances for the uncapacitated 𝑝-median problem
omprise up to 100,000 objects (e.g., Hansen et al. 2009), these largest
xisting instances for the CPMP are considered small-scale. Therefore,
e generated a set of medium- and large-scale instances based on

our TSP instances from the VLSI collection (Rohe, 2013) ranging from
pproximately 10,000 up to approximately 500,000 nodes. Following the
rocedure proposed by Stefanello et al. (2015), we took the coordinates
f the nodes of the TSP instances as features for the objects of our
PMP instances. Furthermore, for each object 𝑖 ∈ 𝐼 , we determined

a weight 𝑞𝑖 by drawing a random integer from the set {1, 2,… , 100}.
Finally, for each of the four TSP instances, we generated a group of
three CPMP instances with 𝑝 = {100, 1,000, 2,000} being the number of
clusters to be found. Based on these numbers of clusters, we determined
the capacity 𝑄 by using Eq. (4), where 𝑟 was randomly drawn from the
range [0.8, 0.9].

𝑄 =

⌈

∑

𝑖∈𝐼

𝑞𝑖
𝑝 × 𝑟

⌉

(4)

Note that instances 7 to 28 are not based on real-world data. These
generic instances were generated with the aim of testing the perfor-
mance of different solution approaches when the number of objects to
be clustered increases.

Additionally, we generated three high-dimensional instances with
up to approximately 800 features. Since the clustering of images is an
important task in data mining (e.g., Ushakov and Vasilyev 2019), the
objects of the first two instances represent images, and we took the
grayscale level of the pixels as features for the objects. The instance
cancer5000_10_784 is based on the images from the collection of tex-
tures in colorectal cancer histology (Kather et al., 2016). The instance
digits60000_100_784 is based on the images from the MNIST database
of handwritten digits (LeCun et al., 1998). The number of features
for both instances corresponds to the resolution (28x28 pixels) of the
images. The third instance KDD145751_100_74 is based on the KDD
protein homology dataset (KDD, 2004), which is a popular dataset for
testing clustering methods (e.g., Bachem et al. 2016). The objects of
this instance correspond to protein sequences that are described by
74 different features. For each of these high-dimensional instances, we
determined weights and capacities following the procedure described
above. The number of clusters to be found was selected arbitrarily
to be 𝑝 = 10 for the small-scale instance cancer5000_10_784 and
𝑝 = 100 for the medium- and large-scale instances digits60000_100_784
nd KDD145751_100_74. We generated these instances with the aim
f assessing whether the proposed matheuristic can also deal with
nstances that comprise more than two features.

Note that the instances from the literature and the instances gener-
ted here all consider a given capacity that is the same for all objects.
owever, Mulvey and Beck (1984), for example, considered the more
eneral case in which any two objects 𝑖 and 𝑖′ may have different

capacities, i.e., 𝑄𝑖 ≠ 𝑄𝑖′ . The proposed matheuristic is implemented
such that it can also deal with this more general case.

The generated medium- and large-scale instances, as well as the
generated high-dimensional instances, can be downloaded from https:
//github.com/phil85/GB21-MH.

5.2. Selection of control parameters

The proposed matheuristic has several parameters that can control
the trade-off between solution quality and running time. The goal of
this subsection is to provide guidelines on how to select values for these
control parameters.

We recommend to perform three runs of the global optimization
phase due to the random initialization (𝜈𝑠𝑡𝑎𝑟𝑡 = 3). The size of the
subproblems in the local optimization phase should be determined
based on the performance of the mathematical programming solver.
Currently, state-of-the-art solvers can generally cope quite well with

𝑡𝑎𝑟𝑔𝑒𝑡
problems that include up to 200 objects. We therefore chose 𝑛 =

https://github.com/phil85/GB21-MH
https://github.com/phil85/GB21-MH
https://github.com/phil85/GB21-MH


Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann

t
m
t
p
t

Table 4
Overview of instances.

ID Name 𝑛 𝑝 𝑛
𝑝

𝑚 Source
Sm

al
l-s

ca
le

1 SJC1 100 10 10.0 2 Lorena and Senne (2003)
2 SJC2 200 15 13.3 2 Lorena and Senne (2003)
3 SJC3a 300 25 12.0 2 Lorena and Senne (2003)
4 SJC3b 300 30 10.0 2 Lorena and Senne (2003)
5 SJC4a 402 30 13.4 2 Lorena and Senne (2003)
6 SJC4b 402 40 10.1 2 Lorena and Senne (2003)
7 p3038_600 3,038 600 5.1 2 Lorena and Senne (2004)
8 p3038_700 3,038 700 4.3 2 Lorena and Senne (2004)
9 p3038_800 3,038 800 3.8 2 Lorena and Senne (2004)

10 p3038_900 3,038 900 3.4 2 Lorena and Senne (2004)
11 p3038_1000 3,038 1,000 3.0 2 Lorena and Senne (2004)
12 fnl4461_0020 4,461 20 223.1 2 Stefanello et al. (2015)
13 fnl4461_0100 4,461 100 44.6 2 Stefanello et al. (2015)
14 fnl4461_0250 4,461 250 17.8 2 Stefanello et al. (2015)
15 fnl4461_0500 4,461 500 8.9 2 Stefanello et al. (2015)
16 fnl4461_1000 4,461 1,000 4.5 2 Stefanello et al. (2015)

M
ed

iu
m

-s
ca

le

17 XMC10150_100 10,150 100 101.5 2 This paper
18 XMC10150_1000 10,150 1,000 10.2 2 This paper
19 XMC10150_2000 10,150 2,000 5.1 2 This paper
20 FNA52057_100 52,057 100 520.6 2 This paper
21 FNA52057_1000 52,057 1,000 52.1 2 This paper
22 FNA52057_2000 52,057 2,000 26.0 2 This paper

La
rg

e-
sc

al
e

23 SRA104814_100 104,814 100 1,048.1 2 This paper
24 SRA104814_1000 104,814 1,000 104.8 2 This paper
25 SRA104814_2000 104,814 2,000 52.4 2 This paper
26 LRA498378_100 498,378 100 4,983.8 2 This paper
27 LRA498378_1000 498,378 1,000 498.4 2 This paper
28 LRA498378_2000 498,378 2,000 249.2 2 This paper

H
ig

h-
di

m
en

-
sio

na
l 29 cancer5000_10_784 5,000 10 500.0 784 This paper

30 digits60000_100_784 60,000 100 600.0 784 This paper
31 KDD145751_100_74 145,751 100 1,457.5 74 This paper
200. To avoid investing an inordinate amount of time on proving
the optimality of the solution found for a subproblem in the local
optimization phase, we recommend to impose a time limit 𝜏𝑙𝑜𝑐𝑎𝑙 = 300.

To devise promising values for the remaining control parame-
ers, we conducted the following parameter tuning: we applied the
atheuristic to a subset of nine test instances with different values for

he control parameters 𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝑙, and 𝑖𝑛𝑖𝑡. The selected instances com-
rise three small-, three medium- and three large-scale instances. For
he three control parameters, we tested the values 𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = {5, 10, 20},
𝑙 = {10, 50, 100} and 𝑖𝑛𝑖𝑡 = {𝑘-means++, capacity-based}. For each
instance and each combination of parameter values (3 × 3 × 2 = 18
combinations), we ran the proposed matheuristic with a total running
time limit of 𝜏𝑡𝑜𝑡𝑎𝑙 = 3,600 seconds for each run.

The results of this parameter tuning are summarized in Table 5.
We report for each combination of parameter values the average rel-
ative gap between the objective function value of the feasible solution
found and the objective function value of the best feasible solution
found among all tested combinations of parameter values. Bold values
indicate the best results among all tested combinations of parameter
values for the small-scale instances (columns three to five) and for the
medium- and large-scale instances (columns six to eight). Based on
these results, we determined the parameter setting presented below in
Table 6 for the main computational experiment.

5.3. Experimental design

We compared the performance of the proposed matheuristic with
the performance of the state-of-the-art approach for the CPMP pre-
sented by Stefanello et al. (2015). Since the implementation of this
approach is not publicly available, we reimplemented it according to
the description given in the paper. We also report results for an exact
approach based on the binary linear program formulation presented
by Lorena and Senne (2004) and a mathematical programming solver.
We implemented all three approaches in Python 3.7, and we used the
9

Gurobi Optimizer 8.1 as a mathematical programming solver with the
default settings if not stated otherwise. Our implementation is publicly
available on https://github.com/phil85/GB21-MH. Our computations
were performed on an HP workstation with an Intel(R) Xeon(R) Silver
4114 CPU (2.20 GHz) with ten cores and 128 GB of RAM. For the
proposed matheuristic, we used the parameter values that are listed
in Table 6. For the matheuristic of Stefanello et al. (2015), we used
the default parameter values proposed in their paper. We ran each
approach for each tested instance three times, and for each run, we
imposed a running time limit of 3,600 seconds.

5.4. Numerical results

First, we compared the three approaches in terms of solution qual-
ity and their suitability for different problem sizes. These results are
summarized in Table 7 for the small-scale instances and in Table 8 for
the medium-scale, the large-scale, and the high-dimensional instances.
We refer to the proposed matheuristic as GB21MH, to the matheuristic
proposed by Stefanello et al. (2015) as SAM15MH and to the exact
approach based on the binary linear program formulation presented
by Lorena and Senne (2004) as LS04BLP. Bold values indicate the best
results among all tested approaches. In the first five columns of both
tables, we list the characteristics of the instances. In the sixth column
of Table 7, we report the objective function value of the best known
solution reported by Stefanello et al. (2015) (OFVSAM15), and in the
sixth column of Table 8, we report the objective function value of
the best feasible solution found among all tested approaches within
the prescribed time limit (OFVBEST). In the seventh column of both
tables, we report the best lower bound on the objective function value
obtained with the exact approach based on the binary linear program
formulation (OFVLB). Finally, in the last six columns of both tables, we
report for each tested approach the relative gap between the objective
function value of the best feasible solution found over the three runs
and the reported value for OFVSAM15 and OFVBEST, respectively, as
well as the total required running time for the run in which the

best feasible solution has been found. Additionally, we provide some

https://github.com/phil85/GB21-MH


Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann

S

p
p
t
m
d
d
a

t
t
a
o
p
h
c

S
q
i
t
p
f
v
t
a
I
p
r

f
m
s
o
f
t
p
e
t

Table 5
Results for varying values of parameters 𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑙, and 𝑖𝑛𝑖𝑡.

Small-scale Medium- and Large-scale

Method 𝑖𝑛𝑖𝑡 𝑙 = 10 𝑙 = 50 𝑙 = 100 𝑙 = 10 𝑙 = 50 𝑙 = 100

𝑘-means++ 𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 5 0.141 0.100 0.160 1.164 0.786 0.811
𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10 0.154 𝟎.𝟎𝟖𝟓 0.145 6.360 0.745 0.766
𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 20 0.095 0.192 0.337 6.927 0.779 0.788

capacity-based 𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 5 0.159 0.238 0.383 0.493 0.437 0.449
𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10 0.118 0.220 0.365 𝟎.𝟏𝟒𝟏 0.142 0.161
𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 20 0.093 0.157 0.302 0.404 0.383 0.377
Table 6
Parameter values used for the proposed matheuristic.

Parameter Phase Description Value

𝜈𝑠𝑡𝑎𝑟𝑡 Global Number of runs of global optimization phase 3
𝑖𝑛𝑖𝑡 Global Initialization method to determine the initial

set of fixed medians
𝑘-means++ (𝑛 < 5,000)
capacity-based (𝑛 ≥ 5,000)

𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Global Initial number of nearest medians to which an
object can be assigned

10

𝜏 𝑙𝑜𝑐𝑎𝑙 Local Time limit for solving formulation (M-L) [sec] 300
𝑛𝑡𝑎𝑟𝑔𝑒𝑡 Local Target number of objects in initial subset 200
𝑙 Local Number of nearest objects to each median to be 50 (𝑛 < 5,000)

considered as potential new medians 10 (𝑛 ≥ 5,000)

𝜏 𝑡𝑜𝑡𝑎𝑙 Both Time limit on total running time [sec] 3,600
e
q

p
f
t
S
r
(
(
t
t
w
i
s
t
b
s
o
b
a
t
T
c
b
m

6

a
t

2
o
t
(
w
p
p

further statistics to assess the robustness of the approaches GB21MH and
AM15MH in the Tables B.1 and B.2 in Appendix B.

In contrast to the two tested approaches from the literature, the pro-
osed matheuristic found feasible solutions for all instances within the
rescribed time limit. For the small-scale instances, the new matheuris-
ic matched the performance of the other approaches, and for the
edium- and large-scale instances, the new matheuristic consistently
elivered the best feasible solutions. Additionally, for the high-
imensional instances, the proposed matheuristic performed best
mong all tested approaches.

The approach SAM15MH could not find a feasible solution for the
hree largest instances because the computation of all pairwise dis-
ances exceeded the memory of the used workstation. We tested the
pproach SAM15MH also with an extended running time limit. It turns
ut that the benchmark approach cannot find better solutions than the
roposed matheuristic even if we extend the running time limit to 10
ours. For the instance SRA104814_2000, for example, the relative gap
ould be reduced from 9.56% to 5.84%.

Next, we compared the two heuristic approaches GB21MH and
AM15MH with respect to the ability to find good first feasible solutions
uickly. These results are summarized in Table 9 for the small-scale
nstances and in Table 10 for the medium-scale, the large-scale, and
he high-dimensional instances. The first six columns of both tables
rovide information analogously to Tables 7 and 8. In the following
our columns, we report the relative gap between the objective function
alue of the best first feasible solution found over the three runs and
he reported value for OFVSAM15 and OFVBEST, respectively, as well
s the required running time to find the best first feasible solution.
n the last column, we report the speed-up factor between the pro-
osed matheuristic and the benchmark approach regarding the required
unning time to find the best first feasible solution.

With only one exception, the proposed matheuristic devised first
easible solutions with lower objective function values than the bench-
ark approach. Furthermore, the proposed matheuristic required sub-

tantially less running time to devise the first feasible solution for most
f the tested instances. For some instances, the proposed matheuristic
ound the first feasible solution approximately 135 times faster than
he benchmark approach. The ability of the proposed matheuristic to
rovide good first feasible solutions quickly might be valuable, for
xample, for clustering problems where 𝑝 is not known in advance. If
his is the case, the proposed matheuristic can be run multiple times,
10

c

ach time with another value of 𝑝, since each run can be performed
uickly.

Finally, we highlight the importance of the two phases of the
roposed matheuristic. Fig. 3 depicts the improvement of the best
easible solutions in terms of the objective function value over time for
he proposed matheuristic and, as a reference, also for the approach
AM15MH. Each subfigure reports the results for the first of the three
uns for one of the following three exemplary instances: fnl4461_1000
small-scale), FNA52057_1000 (medium-scale) and LRA498378_1000
large-scale). Note that in the third subfigure, no results are shown for
he approach SAM15MH since no feasible solution has been found for
his instance. For small-scale instances, the majority of the running time
as spent in the local optimization phase, during which substantial

mprovements to the solution quality can be achieved. For medium-
cale instances, both phases consume a similar amount of running
ime. While the best feasible solution can be improved quickly at the
eginning, no further improvements can be attained after spending
ome time in the global optimization phase. At this point, the local
ptimization phase starts, during which substantial improvements can
e achieved by locally reoptimizing the best feasible solution obtained
t the end of the global optimization phase. For large-scale instances,
he entire running time is spent in the global optimization phase.
he first feasible solution is devised fairly quickly, particularly when
onsidering the large number of objects to be clustered. Then, the
est feasible solution is consecutively improved until the prescribed
aximum running time has elapsed.

. Capacitated centered clustering problem

In this section, we show that the proposed matheuristic can also be
pplied to other variants of capacitated clustering problems, such as
he capacitated centered clustering problem (CCCP).

The CCCP differs from the CPMP as follows (Negreiros and Palhano,
006). The cluster centers must correspond to the geometric center
f the objects assigned to the clusters and are not selected among
he objects themselves. Like the CPMP, the CCCP is NP-hard as well
e.g., Chaves et al. 2018). Compared to the extensive literature dealing
ith the CPMP, only a few papers have considered the CCCP. The
roblem was first discussed by Negreiros and Palhano (2006), who
roposed an approach comprising two phases that are based on a
onstruction heuristic and variable neighborhood search heuristic. Most



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann
Table 7
Best feasible solutions for CPMP instances from the literature.

ID Name 𝑛 𝑝 𝑚 OFVSAM15 LS04BLP SAM15MH GB21MH

OFVLB Gap [%] CPU [s] GapMIN [%] CPU [s] GapMIN [%] CPU [s]

Sm
al

l-s
ca

le

1 SJC1 100 10 2 17,288.99 17,288.99 0.00 22.85 0.00 6.08 0.00 3.94
2 SJC2 200 15 2 33,270.94 33,269.51 0.00 74.26 0.00 11.34 0.00 4.78
3 SJC3a 300 25 2 45,335.16 45,335.16 0.00 174.18 0.00 28.21 0.00 30.57
4 SJC3b 300 30 2 40,635.90 40,635.90 0.00 46.34 0.00 14.84 0.00 31.04
5 SJC4a 402 30 2 61,925.51 61,925.51 0.00 482.06 0.00 42.71 0.15 59.52
6 SJC4b 402 40 2 52,458.02 52,458.02 0.00 154.00 0.00 24.18 0.17 32.87
7 p3038_600 3,038 600 2 122,711.17 121,596.38 0.73 limit 0.03 limit 0.04 limit
8 p3038_700 3,038 700 2 109,677.30 108,679.98 0.93 limit 0.03 limit 0.04 limit
9 p3038_800 3,038 800 2 100,064.94 99,089.87 1.67 limit 0.03 limit 0.03 limit

10 p3038_900 3,038 900 2 92,310.09 91,258.33 0.26 limit 0.05 2,608.49 0.02 limit
11 p3038_1000 3,038 1,000 2 85,854.05 85,102.19 0.15 limit 0.05 1,010.10 0.04 limit
12 fnl4461_0020 4,461 20 2 1,283,536.73 220,323.41 45.45 limit 0.44 1,193.97 0.28 limit
13 fnl4461_0100 4,461 100 2 548,909.01 212,458.56 47.44 limit 2.13 limit 0.55 limit
14 fnl4461_0250 4,461 250 2 335,888.87 197,570.01 54.79 limit 1.02 limit 0.46 limit
15 fnl4461_0500 4,461 500 2 224,662.49 172,895.18 53.57 limit 0.23 limit 0.39 limit
16 fnl4461_1000 4,461 1,000 2 145,862.38 138,569.83 38.50 limit 0.03 limit 0.10 limit

Average 15.22 0.25 0.14

(limit) Time limit of 3,600 seconds reached
Table 8
Best feasible solutions for CPMP instances introduced in this paper.

ID Name 𝑛 𝑝 𝑚 OFVBEST LS04BLP SAM15MH GB21MH

OFVLB Gap [%] CPU [s] GapMIN [%] CPU [s] GapMIN [%] CPU [s]

M
ed

iu
m

-s
ca

le

17 XMC10150_100 10,150 100 2 181,472.17 – – limit 1.85 limit 𝟎.𝟎𝟎 limit
18 XMC10150_1000 10,150 1,000 2 46,617.10 – – limit 13.48 limit 𝟎.𝟎𝟎 limit
19 XMC10150_2000 10,150 2,000 2 27,670.82 – – limit 26.37 limit 𝟎.𝟎𝟎 limit
20 FNA52057_100 52,057 100 2 2,099,669.49 – – limit 1.82 limit 𝟎.𝟎𝟎 limit
21 FNA52057_1000 52,057 1,000 2 629,746.16 – – limit 6.46 limit 𝟎.𝟎𝟎 limit
22 FNA52057_2000 52,057 2,000 2 410,025.26 – – limit 12.55 limit 𝟎.𝟎𝟎 limit

La
rg

e-
sc

al
e

23 SRA104814_100 104,814 100 2 4,769,940.01 – – limit 3.44 limit 𝟎.𝟎𝟎 limit
24 SRA104814_1000 104,814 1,000 2 1,482,994.81 – – limit 6.10 limit 𝟎.𝟎𝟎 limit
25 SRA104814_2000 104,814 2,000 2 1,009,192.64 – – limit 9.56 limit 𝟎.𝟎𝟎 limit
26 LRA498378_100 498,378 100 2 103,567,233.39 – – limit – limit 𝟎.𝟎𝟎 limit
27 LRA498378_1000 498,378 1,000 2 30,384,292.98 – – limit – limit 𝟎.𝟎𝟎 limit
28 LRA498378_2000 498,378 2,000 2 21,151,169.63 – – limit – limit 𝟎.𝟎𝟎 limit

H
ig

h-
di

m
en

-
sio

na
l 29 cancer5000_10_784 5,000 10 784 4,900,310.28 4,745,521.58 6.21 limit 0.00 2,128.11 0.09 1,201.89

30 digits60000_100_784 60,000 100 784 94,814,027.62 – – limit 1.80 limit 𝟎.𝟎𝟎 limit
31 KDD145751_100_74 145,751 100 74 149,117,569.40 – – limit 7.21 limit 𝟎.𝟎𝟎 limit

Average (without instances 26–28) 7.55 0.01

(–) No feasible solution/lower bound found within 3,600 seconds; (limit) Time limit of 3,600 seconds reached
Table 9
Best first feasible solutions for CPMP instances from the literature.

ID Name 𝑛 𝑝 𝑚 OFVSAM15 SAM15MH GB21MH Speed-up

GapMIN [%] CPU [s] GapMIN [%] CPU [s]

Sm
al

l-s
ca

le

1 SJC1 100 10 2 17,288.99 74.50 0.89 𝟏𝟐.𝟓𝟓 𝟎.𝟏𝟒 6.52
2 SJC2 200 15 2 33,270.94 54.65 0.86 𝟏𝟐.𝟏𝟗 𝟎.𝟎𝟗 9.22
3 SJC3a 300 25 2 45,335.16 43.30 0.87 𝟏𝟐.𝟗𝟐 𝟎.𝟏𝟐 6.94
4 SJC3b 300 30 2 40,635.90 46.76 0.87 𝟏𝟓.𝟔𝟕 𝟎.𝟏𝟕 5.06
5 SJC4a 402 30 2 61,925.51 52.18 0.93 𝟏𝟏.𝟕𝟑 𝟎.𝟏𝟗 4.94
6 SJC4b 402 40 2 52,458.02 35.06 0.92 𝟏𝟏.𝟖𝟗 𝟎.𝟏𝟐 7.36
7 p3038_600 3,038 600 2 122,711.17 74.42 𝟏.𝟐𝟔 𝟏𝟔.𝟕𝟎 4.16 0.30
8 p3038_700 3,038 700 2 109,677.30 78.95 𝟏.𝟏𝟕 𝟏𝟗.𝟏𝟐 6.80 0.17
9 p3038_800 3,038 800 2 100,064.94 84.94 𝟏.𝟏𝟖 𝟐𝟏.𝟒𝟕 9.56 0.12

10 p3038_900 3,038 900 2 92,310.09 85.42 𝟏.𝟏𝟖 𝟐𝟔.𝟓𝟔 35.38 0.03
11 p3038_1000 3,038 1,000 2 85,854.05 89.42 𝟏.𝟐𝟎 𝟐𝟒.𝟑𝟓 7.65 0.16
12 fnl4461_0020 4,461 20 2 1,283,536.73 59.16 1.35 𝟏𝟐.𝟓𝟒 𝟏.𝟎𝟐 1.33
13 fnl4461_0100 4,461 100 2 548,909.01 59.80 1.35 𝟏𝟑.𝟎𝟗 𝟏.𝟐𝟓 1.08
14 fnl4461_0250 4,461 250 2 335,888.87 67.49 𝟏.𝟑𝟗 𝟏𝟏.𝟔𝟗 2.48 0.56
15 fnl4461_0500 4,461 500 2 224,662.49 72.45 𝟏.𝟒𝟐 𝟏𝟑.𝟓𝟔 2.20 0.65
16 fnl4461_1000 4,461 1,000 2 145,862.38 80.27 𝟏.𝟒𝟖 𝟏𝟔.𝟏𝟎 4.78 0.31

Average 66.17 1.14 15.76 4.76
11



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann

r
k
p
T
s

s
c
c
f
t

Table 10
Best first feasible solutions for CPMP instances introduced in this paper.

ID Name 𝑛 𝑝 𝑚 OFVBEST SAM15MH GB21MH Speed-up

GapMIN [%] CPU [s] GapMIN [%] CPU [s]

M
ed

iu
m

-s
ca

le

17 XMC10150_100 10,150 100 2 181,472.17 59.84 3.45 𝟏𝟎.𝟒𝟎 𝟎.𝟐𝟔 13.22
18 XMC10150_1000 10,150 1,000 2 46,617.10 96.33 3.62 𝟐𝟕.𝟕𝟐 𝟏.𝟓𝟗 2.27
19 XMC10150_2000 10,150 2,000 2 27,670.82 126.45 3.96 𝟒𝟑.𝟎𝟓 𝟑.𝟑𝟒 1.18
20 FNA52057_100 52,057 100 2 2,099,669.49 78.02 78.27 𝟏𝟐.𝟒𝟑 𝟏.𝟕𝟖 43.95
21 FNA52057_1000 52,057 1,000 2 629,746.16 76.47 80.03 𝟏𝟏.𝟐𝟒 𝟕.𝟕𝟓 10.33
22 FNA52057_2000 52,057 2,000 2 410,025.26 94.33 82.35 𝟐𝟎.𝟕𝟐 𝟏𝟖.𝟓𝟗 4.43

La
rg

e-
sc

al
e

23 SRA104814_100 104,814 100 2 4,769,940.01 71.44 350.67 𝟏𝟐.𝟔𝟒 𝟐.𝟓𝟗 135.22
24 SRA104814_1000 104,814 1,000 2 1,482,994.81 77.86 345.51 𝟏𝟏.𝟓𝟏 𝟏𝟖.𝟏𝟏 19.08
25 SRA104814_2000 104,814 2,000 2 1,009,192.64 79.44 347.77 𝟏𝟒.𝟎𝟗 𝟑𝟐.𝟗𝟓 10.56
26 LRA498378_100 498,378 100 2 103,567,233.39 – – 𝟒𝟕.𝟔𝟓 𝟐𝟓.𝟗𝟐 –
27 LRA498378_1000 498,378 1,000 2 30,384,292.98 – – 𝟖𝟗.𝟔𝟐 𝟏𝟐𝟖.𝟏𝟗 –
28 LRA498378_2000 498,378 2,000 2 21,151,169.63 – – 𝟏𝟎𝟒.𝟗𝟒 𝟐𝟎𝟏.𝟕𝟒 –

H
ig

h-
di

m
en

-
sio

na
l 29 cancer5000_10_784 5,000 10 784 4,900,310.28 29.34 17.85 𝟐𝟐.𝟕𝟑 𝟑.𝟎𝟔 5.83

30 digits60000_100_784 60,000 100 784 94,814,027.62 13.48 2,247.98 𝟒.𝟗𝟐 𝟔𝟒.𝟓𝟎 34.85
31 KDD145751_100_74 145,751 100 74 149,117,569.40 22.02 1,758.51 119.05 𝟐𝟓.𝟑𝟔 69.33

Average (without instances 26–28) 68.75 443.33 25.87 14.99

(–) No feasible solution found within 3,600 seconds
Fig. 3. Improvement of the best feasible solution over time.

ecently, Chaves et al. (2018) proposed an adaptive biased random-
ey genetic algorithm with a clustering search, and Baumann (2019)
resented a matheuristic based on the well-known 𝑘-means algorithm.
hese two approaches devised numerous new best-known solutions for
tandard test instances from the literature.

The matheuristic proposed in this paper can be applied to the CCCP
ince a given feasible solution to an instance of the CPMP can be
onverted into a feasible solution to an instance of the CCCP that
omprises the same objects and that prescribes the same capacity limit
or all clusters. For each cluster of the feasible solution to be converted,
he selected medians must be replaced by the geometric centers of the
12
Table 11
Best feasible solutions for CCCP instances.

ID Name 𝑛 𝑝 OFVBKS GB21MH

OFVMIN GapMIN [%] CPU [s]

1 SJC1 100 10 17,359.75 17,363.47 0.02 3.94
2 SJC2 200 15 33,181.65 33,425.61 0.74 4.78
3 SJC3a 300 25 45,354.29 45,470.41 0.26 30.57
4 SJC3b 300 30 40,660.55 40,839.40 0.44 31.04
5 SJC4a 402 30 61,931.60 62,030.00 0.16 64.22
6 SJC4b 402 40 52,202.48 52,551.74 0.67 41.10
7 p3038_600 3,038 600 126,172.76 123,477.60 −2.14 limit
8 p3038_700 3,038 700 113,462.26 111,083.58 −2.10 limit
9 p3038_800 3,038 800 105,352.33 101,738.90 −3.43 limit

10 p3038_900 3,038 900 97,319.54 94,285.58 −3.12 limit
11 p3038_1000 3,038 1,000 89,896.55 87,390.20 −2.79 limit
12 fnl4461_0020 4,461 20 1,282,694.80 1,286,767.42 0.32 limit
13 fnl4461_0100 4,461 100 560,148.77 551,405.33 −1.56 limit
14 fnl4461_0250 4,461 250 348,101.42 337,433.96 −3.06 limit
15 fnl4461_0500 4,461 500 237,491.70 225,789.57 −4.93 limit
16 fnl4461_1000 4,461 1,000 159,672.99 148,551.56 −6.97 limit

Average −1.72

(limit) Time limit of 3,600 seconds reached

Table A.1
Overview of tested cluster-selection procedures.

First median Shape of selection

Random Unused capacity Ball-shaped Queue-shaped

Procedure 1: ✓ ✓

Procedure 2: ✓ ✓

Procedure 3: ✓ ✓

Procedure 4: ✓ ✓

assigned objects. The objective function value is then calculated as the
total distance between the newly computed cluster centers and their
assigned objects.

The first 16 instances used in our computational experiment for the
CPMP are also often analyzed in the literature dealing with the CCCP.
For these instances, we converted the best feasible solutions obtained
by using the proposed matheuristic into feasible solutions of the CCCP
by applying the procedure described above. In Table 11, in the first
four columns, we list the characteristics of these instances. In the next
column (OFVBKS), we list the objective function values of the best-
known solutions reported by Chaves et al. (2018) and Baumann (2019).
Finally, in the last three columns, we report the objective function
value of the best feasible solution found for the CCCP by the proposed

MIN
matheuristic (OFV ), the relative gap between the reported value for



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann
Table A.2
Results for tested cluster-selection procedures.

ID Name OFVBEST Procedure 1 Procedure 2 Procedure 3 Procedure 4

GapMIN [%] GapAVG [%] GapMIN [%] GapAVG [%] GapMIN [%] GapAVG [%] GapMIN [%] GapAVG [%]

17 XMC10150_100 181,237.62 𝟎.𝟎𝟎 𝟎.𝟐𝟑 0.33 0.37 0.31 0.39 0.13 0.38
18 XMC10150_1000 46,617.10 1.83 2.23 0.79 0.92 1.36 1.83 𝟎.𝟎𝟎 𝟎.𝟑𝟎
19 XMC10150_2000 27,670.82 2.43 2.74 0.58 0.96 2.45 3.02 𝟎.𝟎𝟎 𝟎.𝟐𝟒
20 FNA52057_100 2,099,669.49 0.00 0.33 0.01 0.33 0.01 0.34 𝟎.𝟎𝟎 𝟎.𝟑𝟏
21 FNA52057_1000 629,346.32 𝟎.𝟎𝟎 𝟎.𝟐𝟓 0.34 0.59 0.29 0.58 0.11 0.34
22 FNA52057_2000 410,025.26 0.27 0.79 0.31 0.66 0.55 0.82 𝟎.𝟎𝟎 𝟎.𝟑𝟕

Average 0.75 1.10 0.39 0.64 0.83 1.17 0.04 0.32
Table B.1
Further statistics for CPMP instances from the literature.

ID Name 𝑛 𝑝 𝑚 OFVSAM15 SAM15MH GB21MH

GapAVG [%] GapSD [%] GapAVG [%] GapSD [%]

Sm
al

l-s
ca

le

1 SJC1 100 10 2 17,288.99 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.15 0.21
2 SJC2 200 15 2 33,270.94 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎
3 SJC3a 300 25 2 45,335.16 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.05 0.07
4 SJC3b 300 30 2 40,635.90 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.12 0.12
5 SJC4a 402 30 2 61,925.51 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.32 0.12
6 SJC4b 402 40 2 52,458.02 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.25 0.06
7 p3038_600 3,038 600 2 122,711.17 𝟎.𝟎𝟑 𝟎.𝟎𝟎 0.11 0.07
8 p3038_700 3,038 700 2 109,677.30 𝟎.𝟎𝟑 𝟎.𝟎𝟎 0.08 0.03
9 p3038_800 3,038 800 2 100,064.94 𝟎.𝟎𝟑 𝟎.𝟎𝟎 0.11 0.07

10 p3038_900 3,038 900 2 92,310.09 𝟎.𝟎𝟓 𝟎.𝟎𝟎 0.07 0.05
11 p3038_1000 3,038 1,000 2 85,854.05 𝟎.𝟎𝟓 𝟎.𝟎𝟎 0.12 0.08
12 fnl4461_0020 4,461 20 2 1,283,536.73 0.95 0.70 𝟎.𝟔𝟐 𝟎.𝟐𝟓
13 fnl4461_0100 4,461 100 2 548,909.01 2.33 𝟎.𝟏𝟕 𝟎.𝟖𝟎 0.30
14 fnl4461_0250 4,461 250 2 335,888.87 1.37 0.25 𝟎.𝟔𝟐 𝟎.𝟏𝟐
15 fnl4461_0500 4,461 500 2 224,662.49 𝟎.𝟐𝟓 𝟎.𝟎𝟐 0.51 0.08
16 fnl4461_1000 4,461 1,000 2 145,862.38 𝟎.𝟎𝟑 𝟎.𝟎𝟎 0.14 0.04

Average 0.32 0.07 0.25 0.10
Table B.2
Further statistics for CPMP instances introduced in this paper.

ID Name 𝑛 𝑝 𝑚 OFVBEST SAM15MH GB21MH

GapAVG [%] GapSD [%] GapAVG [%] GapSD [%]

M
ed

iu
m

-s
ca

le

17 XMC10150_100 10,150 100 2 181,472.17 3.99 1.52 𝟎.𝟐𝟓 𝟎.𝟐𝟔
18 XMC10150_1000 10,150 1,000 2 46,617.10 16.51 2.40 𝟎.𝟑𝟐 𝟎.𝟐𝟐
19 XMC10150_2000 10,150 2,000 2 27,670.82 27.21 1.10 𝟎.𝟐𝟒 𝟎.𝟐𝟎
20 FNA52057_100 52,057 100 2 2,099,669.49 2.46 0.56 𝟎.𝟑𝟏 𝟎.𝟑𝟗
21 FNA52057_1000 52,057 1,000 2 629,746.16 8.39 1.68 𝟎.𝟐𝟔 𝟎.𝟏𝟗
22 FNA52057_2000 52,057 2,000 2 410,025.26 12.75 𝟎.𝟐𝟔 𝟎.𝟑𝟕 0.33

La
rg

e-
sc

al
e

23 SRA104814_100 104,814 100 2 4,769,940.01 5.14 1.24 𝟎.𝟐𝟐 𝟎.𝟏𝟔
24 SRA104814_1000 104,814 1,000 2 1,482,994.81 6.75 0.49 𝟎.𝟎𝟒 𝟎.𝟎𝟑
25 SRA104814_2000 104,814 2,000 2 1,009,192.64 10.90 1.46 𝟎.𝟏𝟖 𝟎.𝟐𝟐
26 LRA498378_100 498,378 100 2 103,567,233.39 – – 𝟎.𝟖𝟒 𝟎.𝟔𝟏
27 LRA498378_1000 498,378 1,000 2 30,384,292.98 – – 𝟎.𝟏𝟐 𝟎.𝟎𝟗
28 LRA498378_2000 498,378 2,000 2 21,151,169.63 – – 𝟎.𝟎𝟒 𝟎.𝟎𝟔

H
ig

h-
di

m
en

-
sio

na
l 29 cancer5000_10_784 5,000 10 784 4,900,310.28 0.38 0.39 𝟎.𝟏𝟑 𝟎.𝟎𝟓

30 digits60000_100_784 60,000 100 784 94,814,027.62 2.21 0.30 𝟎.𝟏𝟒 𝟎.𝟏𝟎
31 KDD145751_100_74 145,751 100 74 149,117,569.40 9.94 3.04 𝟎.𝟏𝟓 𝟎.𝟏𝟏

Average (without instances 26–28) 8.89 1.20 0.22 0.19

(–) No feasible solution found within 3,600 seconds
OFVMIN and the reported value for OFVBKS, as well as the total required
running time. For the six smaller instances, the proposed matheuristic
provides solutions with small gaps to the best-known solutions reported
in the literature. For nine of the ten larger instances, we were able to
find new best-known solutions even though the proposed matheuristic
was not specifically designed for the CCCP.

7. Conclusions

In this paper, we considered the capacitated 𝑝-median problem
(CPMP). For this problem, we proposed a matheuristic that is specif-
ically designed for instances with a large number of objects. In a
computational experiment, the proposed matheuristic consistently out-
performed the state-of-the-art approach for the CPMP on medium- and
13
large-scale instances while matching the performance for small-scale
instances. Furthermore, we showed that the proposed matheuristic can
also be applied to related capacitated clustering problems such as
the capacitated centered clustering problem (CCCP). For the largest
problem instances of the CCCP tested in this paper, the proposed
matheuristic was able to find new best-known solutions.

We suggest the following directions for future research. The pro-
posed matheuristic can be adapted to problems with additional side
constraints, such as lower bounds on the capacities of the clusters
or must-link and cannot-link constraints as in Baumann (2020). Since
the proposed approach is based on binary linear programming, such
additional side constraints can easily be incorporated. Moreover, the

proposed problem decomposition strategies can be applied to related



Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann
problems such as the capacitated 𝑝-center problem (CPCP), which
differs from the CPMP only with respect to the objective function
(Kramer et al., 2019). Instead of minimizing the total distance between
the objects and their assigned medians, the maximum distance over all
assignments of objects to medians is minimized.

CRediT authorship contribution statement

Mario Gnägi: Conceptualization, Methodology, Software, Data cu-
ration, Visualization, Writing - original draft. Philipp Baumann: Con-
ceptualization, Methodology, Validation, Supervision, Project adminis-
tration, Writing - review & editing.

Appendix A. Analysis of different cluster-selection procedures

We tested four different cluster-selection procedures for the local
improvement phase. The cluster-selection procedures are summarized
in Table A.1. The procedures differ with respect to the selection of
the first cluster, and the selection of the remaining clusters. The first
cluster is either selected randomly or based on the largest amount
of unused capacity. The remaining clusters are either determined by
iteratively selecting the cluster whose median is nearest to the median
of the cluster selected at last, or by selecting the clusters represented
by the nearest medians to the median of the first cluster. While the
former procedure results in queue-shaped cluster selections, the latter
procedure results in ball-shaped cluster selections. For this analysis,
we used the medium-scale instances since we expected the effect of
different cluster-selection procedures to be large for these instances.
For each of these instances and each cluster-selection procedure, we
ran the proposed matheuristic three times with a total running time
limit of 𝜏𝑡𝑜𝑡𝑎𝑙 = 3,600 seconds for each run, and we used the default
parameter values provided in Table 6.

The results of this analysis are summarized in Table A.2. In the first
two columns, we list the number and name of the instances. In the
third column, we report the objective function value of the best feasible
solution found among all tested cluster-selection procedures (OFVBEST).
In the last eight columns, we report for each cluster-selection procedure
the relative gap between the objective function value of the best
feasible solution found over the three runs and the reported value for
OFVBEST, as well as the average relative gap between the objective
function value of the feasible solutions found over the three runs and
the reported value for OFVBEST. From these results, we concluded that
the fourth procedure performs best among all tested procedures. We
therefore implemented this procedure in our matheuristic presented in
Section 4.2.

Appendix B. Further statistics of computational experiment

In Tables B.1 and B.2, we provide further statistics for the results of
our computational experiment. The first six columns of both tables pro-
vide information analogously to Tables 7 and 8. In the last four columns
of both tables, we report the average and the standard deviation over
the three runs of the relative gaps between the objective function value
of the best feasible solutions found and the reported value for OFVSAM15

and OFVBEST, respectively.

References

Ahmadi, S., Osman, I.H., 2004. Density based problem space search for the capacitated
clustering 𝑝-median problem. Ann. Oper. Res. 131 (1–4), 21–43.

Ahmadi, S., Osman, I.H., 2005. Greedy random adaptive memory programming search
for the capacitated clustering problem. European J. Oper. Res. 162 (1), 30–44.

Arthur, D., Vassilvitskii, S., 2007. 𝑘-means++: The advantages of careful seeding. In:
Gabow, H. (Ed.), Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, Philadelphia, Pennsylvania USA, pp. 1027–1035.

Avella, P., Boccia, M., Salerno, S., Vasilyev, I., 2012. An aggregation heuristic for large
scale 𝑝-median problem. Comput. Oper. Res. 39 (7), 1625–1632.
14
Bachem, O., Lucic, M., Hassani, S.H., Krause, A., 2016. Approximate 𝑘-means++ in
sublinear time. In: Schuurmans, D., Wellman, M. (Ed.), Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, Phoenix, Arizona USA, pp. 1459–1467.

Baldacci, R., Hadjiconstantinou, E., Maniezzo, V., Mingozzi, A., 2002. A new method
for solving capacitated location problems based on a set partitioning approach.
Comput. Oper. Res. 29 (4), 365–386.

Baumann, P., 2019. A binary linear programming-based 𝐾-means approach for the
capacitated centered clustering problem. In: Wang, M., Li, J., Tsung, F., Yeung,
A. (Eds.), 2019 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), Macau, pp. 382–365.

Baumann, P., 2020. A binary linear programming-based 𝐾-means algorithm for clus-
tering with must-link and cannot-link constraints. In: 2020 IEEE International
Conference on Industrial Engineering and Engineering Management (IEEM), pp.
324–328.

Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching.
Commun. ACM 18 (9), 509–517.

Boccia, M., Sforza, A., Sterle, C., Vasilyev, I., 2008. A cut and branch approach for the
capacitated 𝑝-median problem based on Fenchel cutting planes. J. Math. Model.
Algorithms 7 (1), 43–58.

Brimberg, J., Mladenović, N., Todosijević, R., Urošević, D., 2019. Solving the capaci-
tated clustering problem with variable neighborhood search. Ann. Oper. Res. 272
(1–2), 289–321.

Carrizosa, E., Guerrero, V., Morales, D.R., 2018. On mathematical optimization for the
visualization of frequencies and adjacencies as rectangular maps. European J. Oper.
Res. 265 (1), 290–302.

Ceselli, A., Righini, G., 2005. A branch-and-price algorithm for the capacitated 𝑝-median
problem. Netw.: Int. J. 45 (3), 125–142.

Chaves, A.A., de Assis Correa, F., Lorena, L.A.N., 2007. Clustering search heuristic for
the capacitated 𝑝-median problem. In: Corchado, E., Corchado, J., Abraham, A.
(Eds.), Innovations in Hybrid Intelligent Systems. Springer, pp. 136–143.

Chaves, A.A., Gonçalves, J.F., Lorena, L.A.N., 2018. Adaptive biased random-key
genetic algorithm with local search for the capacitated centered clustering problem.
Comput. Ind. Eng. 124, 331–346.

Deng, Y., Bard, J.F., 2011. A reactive GRASP with path relinking for capacitated
clustering. J. Heuristics 17 (2), 119–152.

Díaz, J.A., Fernandez, E., 2006. Hybrid scatter search and path relinking for the
capacitated 𝑝-median problem. European J. Oper. Res. 169 (2), 570–585.

El-Alfy, E.-S.M., 2007. Applications of genetic algorithms to optimal multilevel design
of MPLS-based networks. Comput. Commun. 30 (9), 2010–2020.

Erkut, E., Bozkaya, B., 1999. Analysis of aggregation errors for the 𝑝-median problem.
Comput. Oper. Res. 26 (10–11), 1075–1096.

Espejo, I., Puerto, J., Rodríguez-Chía, A., 2021. A comparative study of different
formulations for the capacitated discrete ordered median problem. Comput. Oper.
Res. 125, 105067.

Fleszar, K., Hindi, K.S., 2008. An effective VNS for the capacitated 𝑝-median problem.
European J. Oper. Res. 191 (3), 612–622.

Gnägi, M., Strub, O., 2020. Tracking and outperforming large stock-market indices.
Omega 90, 101999.

Hansen, P., Brimberg, J., Urošević, D., Mladenović, N., 2009. Solving large 𝑝-median
clustering problems by primal–dual variable neighborhood search. Data Min.
Knowl. Discov. 19 (3), 351–375.

Jánošíková, L., Herda, M., Haviar, M., 2017. Hybrid genetic algorithms with selective
crossover for the capacitated 𝑝-median problem. CEJOR Cent. Eur. J. Oper. Res.
25 (3), 651–664.

Kather, J.N., Weis, C.-A., Bianconi, F., Melchers, S.M., Schad, L.R., Gaiser, T., Marx, A.,
Zöllner, F.G., 2016. Multi-class texture analysis in colorectal cancer histology. Sci.
Rep. 6, 27988.

KDD, 2004. KDD cup 2004, protein homology dataset. Website. https://www.kdd.org/
kdd-cup/view/kdd-cup-2004/Data. (Accessed: 2020-02-27).

Koskosidis, Y.A., Powell, W.B., 1992. Clustering algorithms for consolidation of
customer orders into vehicle shipments. Transp. Res. B 26 (5), 365–379.

Kramer, R., Iori, M., Vidal, T., 2019. Mathematical models and search algorithms for
the capacitated 𝑝-center problem. INFORMS J. Comput. To appear.

Landa-Torres, I., Del Ser, J., Salcedo-Sanz, S., Gil-Lopez, S., Portilla-Figueras, J.A.,
Alonso-Garrido, O., 2012. A comparative study of two hybrid grouping evolutionary
techniques for the capacitated 𝑝-median problem. Comput. Oper. Res. 39 (9),
2214–2222.

LeCun, Y., Cortes, C., Burges, C.J.C., 1998. The MNIST database of handwritten digits.
Website.http://yann.lecun.com/exdb/mnist/index.html. (Accessed: 2019-12-20).

Lorena, L.A.N., Senne, E.L.F., 2003. Local search heuristics for capacitated 𝑝-median
problems. Netw. Spat. Econ. 3 (4), 407–419.

Lorena, L.A., Senne, E.L., 2004. A column generation approach to capacitated 𝑝-median
problems. Comput. Oper. Res. 31 (6), 863–876.

Mai, F., Fry, M.J., Ohlmann, J.W., 2018. Model-based capacitated clustering with
posterior regularization. European J. Oper. Res. 271 (2), 594–605.

Maniezzo, V., Mingozzi, A., Baldacci, R., 1998. A bionomic approach to the capacitated
𝑝-median problem. J. Heuristics 4 (3), 263–280.

Medaglia, A.L., Villegas, J.G., Rodríguez-Coca, D.M., 2009. Hybrid biobjective evolu-
tionary algorithms for the design of a hospital waste management network. J.
Heuristics 15 (2), 153.

http://refhub.elsevier.com/S0305-0548(21)00095-2/sb1
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb1
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb1
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb2
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb2
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb2
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb4
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb4
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb4
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb10
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb10
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb10
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb10
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb10
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb12
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb12
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb12
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb12
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb12
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb15
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb15
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb15
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb15
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb15
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb16
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb16
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb16
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb17
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb17
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb17
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb18
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb18
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb18
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb19
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb19
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb19
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb21
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb21
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb21
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb22
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb22
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb22
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb23
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb23
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb23
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb23
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb23
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb25
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb25
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb25
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb25
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb25
https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb27
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb27
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb27
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb28
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb28
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb28
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb29
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb29
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb29
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb29
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb29
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb29
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb29
http://yann.lecun.com/exdb/mnist/index.html
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb31
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb31
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb31
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb32
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb32
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb32
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb33
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb33
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb33
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb34
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb34
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb34
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb35
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb35
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb35
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb35
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb35


Computers and Operations Research 132 (2021) 105304M. Gnägi and P. Baumann
Mulvey, J.M., Beck, M.P., 1984. Solving capacitated clustering problems. European J.
Oper. Res. 18 (3), 339–348.

Negreiros, M., Palhano, A., 2006. The capacitated centred clustering problem. Comput.
Oper. Res. 33 (6), 1639–1663.

Osman, I.H., Ahmadi, S., 2007. Guided construction search metaheuristics for the
capacitated 𝑝-median problem with single source constraint. J. Oper. Res. Soc. 58
(1), 100–114.

Osman, I.H., Christofides, N., 1994. Capacitated clustering problems by hybrid
simulated annealing and tabu search. Int. Trans. Oper. Res. 1 (3), 317–336.

Pirkul, H., 1987. Efficient algorithms for the capacitated concentrator location problem.
Comput. Oper. Res. 14 (3), 197–208.

Puerto, J., Rodríguez-Madrena, M., Scozzari, A., 2020. Clustering and portfolio selection
problems: A unified framework. Comput. Oper. Res. 117, 104891.

Reinelt, G., 1991. TSPLIB. Website. http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/index.html. (Accessed: 2019-12-20).

Ríos-Mercado, R.Z., Álvarez Socarrás, A.M., Castrillón, A., López-Locés, M.C., 2021.
A location-allocation-improvement heuristic for districting with multiple-activity
balancing constraints and 𝑝-median-based dispersion minimization. Comput. Oper.
Res. 126, 105106.
15
Rohe, A., 2013. VLSI collection. Website. http://www.math.uwaterloo.ca/tsp/vlsi/
index.html. (Accessed: 2019-12-20).

Scheuerer, S., Wendolsky, R., 2006. A scatter search heuristic for the capacitated
clustering problem. European J. Oper. Res. 169 (2), 533–547.

Senne, E.L., Lorena, L.A., 2000. LagrangeAn/surrogate heuristics for 𝑝-median prob-
lems. In: Laguna, M., Gonzalez-Velarde, J. (Eds.), Computing Tools for Modeling,
Optimization and Simulation. Springer, pp. 115–130.

Stefanello, F., de Araújo, O.C., Müller, F.M., 2015. Matheuristics for the capacitated
𝑝-median problem. Int. Trans. Oper. Res. 22 (1), 149–167.

Ushakov, A.V., Vasilyev, I., 2019. A computational comparison of parallel and
distributed 𝐾-median clustering algorithms on large-scale image data. In:
Bykadorov, I., Strusevich, V., Tchemisova, T. (Eds.), International Conference on
Mathematical Optimization Theory and Operations Research. Ekaterinburg, Russia,
pp. 119–130.

Yaghini, M., Karimi, M., Rahbar, M., 2013. A hybrid metaheuristic approach for the
capacitated 𝑝-median problem. Appl. Soft Comput. 13 (9), 3922–3930.

Zhou, Q., Benlic, U., Wu, Q., Hao, J.-K., 2019. Heuristic search to the capacitated
clustering problem. European J. Oper. Res. 273 (2), 464–487.

http://refhub.elsevier.com/S0305-0548(21)00095-2/sb36
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb36
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb36
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb37
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb37
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb37
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb38
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb38
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb38
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb38
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb38
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb39
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb39
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb39
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb40
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb40
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb40
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb41
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb41
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb41
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb43
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb43
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb43
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb43
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb43
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb43
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb43
http://www.math.uwaterloo.ca/tsp/vlsi/index.html
http://www.math.uwaterloo.ca/tsp/vlsi/index.html
http://www.math.uwaterloo.ca/tsp/vlsi/index.html
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb45
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb45
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb45
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb46
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb46
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb46
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb46
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb46
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb47
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb47
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb47
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb48
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb48
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb48
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb48
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb48
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb48
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb48
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb48
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb48
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb49
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb49
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb49
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb50
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb50
http://refhub.elsevier.com/S0305-0548(21)00095-2/sb50

	A matheuristic for large-scale capacitated clustering
	Introduction
	Capacitated p-median problem
	Description of the problem
	Illustrative example

	Literature review
	Exact approaches
	Classic heuristics
	Metaheuristics
	Matheuristics

	Proposed matheuristic
	Global optimization phase
	Local optimization phase
	Search for nearest neighbors using k-d trees
	Illustrative example

	Computational experiment
	Test set
	Selection of control parameters
	Experimental design
	Numerical results

	Capacitated centered clustering problem
	Conclusions
	CRediT authorship contribution statement
	Appendix A. Analysis of different cluster-selection procedures
	Appendix B. Further statistics of computational experiment
	References


