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CLINICAL AND POPULATION SCIENCES 

Predicting Infarct Core From Computed 
Tomography Perfusion in Acute Ischemia With 
Machine Learning
Lessons From the ISLES Challenge

Arsany Hakim , MD*; Søren Christensen, PhD*; Stefan Winzeck, MSc; Maarten G. Lansberg , MD, PhD;  
Mark W. Parsons , PhD; Christian Lucas, MSc; David Robben , PhD; Roland Wiest, MD; Mauricio Reyes, PhD†;  
Greg Zaharchuk , MD, PhD†

BACKGROUND AND PURPOSE: The ISLES challenge (Ischemic Stroke Lesion Segmentation) enables globally diverse teams to 
compete to develop advanced tools for stroke lesion analysis with machine learning. Detection of irreversibly damaged tissue 
on computed tomography perfusion (CTP) is often necessary to determine eligibility for late-time-window thrombectomy. 
Therefore, the aim of ISLES-2018 was to segment infarcted tissue on CTP based on diffusion-weighted imaging as a 
reference standard.

METHODS: The data, from 4 centers, consisted of 103 cases of acute anterior circulation large artery occlusion stroke who 
underwent diffusion-weighted imaging rapidly after CTP. Diffusion-weighted imaging lesion segmentation was performed 
manually and acted as a reference standard. The data were separated into 63 cases for training and 40 for testing, upon 
which quality metrics (dice score coefficient, Hausdorff distance, absolute lesion volume difference, etc) were computed to 
rank methods based on their overall performance.

RESULTS: Twenty-four different teams participated in the challenge. Median time to CTP was 185 minutes (interquartile 
range, 180–238), the time between CTP and magnetic resonance imaging was 36 minutes (interquartile range, 25–
79), and the median infarct lesion size was 15.2 mL (interquartile range, 5.7–45). The best performance for Dice 
score coefficient and absolute volume difference were 0.51 and 10.1 mL, respectively, from different teams. Based on 
the ranking criteria, the top team’s algorithm demonstrated for average Dice score coefficient and average absolute 
volume difference 0.51 and 10.2 mL, respectively, outperforming the conventional threshold-based method (dice score 
coefficient, 0.3; volume difference, 15.3). Diverse algorithms were used, almost all based on deep learning, with top-
ranked approaches making use of the raw perfusion data as well as methods to synthetically generate complementary 
information to boost prediction performance.

CONCLUSIONS: Machine learning methods may predict infarcted tissue from CTP with improved accuracy compared with 
threshold-based methods used in clinical routine. This dataset will remain public and can be used to test improvement in 
algorithms over time.

Key Words: decision-making ◼ machine learning ◼ reperfusion ◼ stroke ◼ tissue survival ◼ triage
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The DEFUSE 3 (Endovascular Therapy Following 
Imaging Evaluation for Ischemic Stroke 3) and DAWN 
(Clinical Mismatch in the Triage of Wake Up and Late 

Presenting Strokes Undergoing Neurointervention With 
Trevo) trials demonstrated that endovascular treatment 
is highly efficacious in patients seen 6 to 24 hours after 
onset.1,2 Both trials selected patients predominantly using 
computed tomography (CT) perfusion (CTP), and as a 
consequence, CTP-based selection of patients in the late 
time window is now in the American Heart Association 
guidelines.3 These events have spawned a surge in the 
adoption of CTP in centers worldwide. The dynamic CTP 
images acquired by the scanner need postprocessing 
to obtain estimates of the volumes of the infarct core 
and hypoperfused regions. These volumes are then 
used to determine suitability for treatment. Although cur-
rent threshold-based CTP algorithms4–6 are capable of 
identifying patients with a high response to treatment,7 
correspondence of the CTP-derived measurements to 
reference standard diffusion-weighted imaging (DWI) 
lesions is still suboptimal.4 Given the inherent complexity 
of acute ischemic stroke lesion development, data-driven 
machine learning methods could be used to improve the 
estimate of core infarcted tissue.

The ISLES challenge (Ischemic Stroke Lesion Seg-
mentation) was created in 2015 to encourage research-
ers around the world to develop advanced tools for stroke 
lesion analysis.8 ISLES publicly provides standardized, 
high-quality datasets to overcome the limitations of varying 
dataset sizes and heterogeneity in postprocessing, making 
it possible to compare novel approaches in a fair way.9,10 An 
increasing number of teams have participated in this chal-
lenge, which is annually organized in conjunction with the 
international conference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI). Over time, there 
has been intense development in the algorithms used, 
starting from classical machine learning tools and now 
focusing almost exclusively on deep learning techniques.9

Based on the development of clinical trials and com-
munity feedback, the aim of the ISLES 2018 was to 
predict the infarction core based on CTP imaging from 

acute ischemic stroke patients, using DWI-based manual 
segmentation from magnetic resonance imaging (MRI) 
acquired shortly after. This cohort was initially reported 
on by Cereda et al4 using threshold-based method. 
This report summarizes the logistics of the challenge, 
its results in comparison with a commercially available 
threshold-based software for CTP postprocessing, and 
the methods used by teams along with the results of the 
top-performing teams.

METHODS
We point readers toward the publicly available data set, which 
since the challenge in 2018 has already been used in other 
studies,11,12 to encourage more rapid innovation. The data can 
be requested at https://www.smir.ch/ISLES/Start2018.

Patients and Image Acquisition
The patients were part of 2 prospective ischemic stroke tri-
als13,14 diagnosed with acute large artery occlusive ischemic 
stroke without signs of hemorrhage ≤8 hours after last seen 
normal. Ethics approval was obtained from the local institutional 
review board at each center. MRI was acquired within 3 hours 
of CTP. DWI was coregistered to the CTP acquisition by align-
ing both to the Montreal Neurological Institute atlas. The cases 
were previously reported on by Cereda et al4 but exclusively 
using a threshold-based method and without the use of train-
ing/validation splitting. Unlike the Cereda study, tissue regions 
were not excluded if there was evidence of partial reperfusion 
(normally perfused DWI lesions with time to maximum ≤4 s on 
the CTP study), with the goal of making the challenge general-
izable to real-world conditions.

The goal of the challenge was to accurately segment infarct 
core from CTP, which was defined by manual segmentation of 
DWI on subsequent MRI. No treatment occurred between the 
CTP and DWI. The segmentations, which acted as the refer-
ence standard for the challenge, were manually delineated by a 
single investigator, a stroke neurologist with >10 years of expe-
rience, and then subjected to group review until acceptance of 
the delineated lesion by the other group members. All investi-
gators were blinded to baseline perfusion and all other imaging.

In total, datasets from 103 patients presenting with acute 
large artery occlusion anterior circulation ischemic stroke from 
3 US centers and 1 Australian center were used in the chal-
lenge (Table 1). The CTP images were acquired from all 4 
major manufacturers (GE, Philips, Siemens, and Toshiba). More 
details are available in the study by Cereda et al.4

Training and Testing Data Provided
The data were split into 2 groups—training group and test-
ing group—randomized by vendor strata to ensure a balance 
between vendors in the two sets. To test the robustness of the 
algorithms, cases with no lesions were included in the testing 
set. To include a wide range of possible lesions, 40 patients 
were included in the test set for the challenge. In this group, the 
reference standard lesion segmentations were withheld from 
the teams, and the performance of the algorithm was deter-
mined by the organizing committee using predetermined crite-
ria (see below). The remaining 63 cases comprised the training 

Nonstandard Abbreviations and Acronyms

CBF cerebral blood flow
CT computed tomography
CTP computed tomography perfusion
DSC dice score coefficient
DWI diffusion-weighted imaging
HD Hausdorff distance
IQR interquartile range
ISLES Ischemic Stroke Lesion Segmentation
MRI magnetic resonance imaging
VD volume difference
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set, for which the competitors received the CTP images, DWI 
images, and DWI-based segmentations, which allowed them to 
train their models.

Teams were given the following types of training data: (1) 
motion-corrected dynamic CTP source data, which had been 
resampled to a standardized 1-s temporal resolution; (2) post-
processed perfusion maps, that is, cerebral blood flow (CBF), 
cerebral blood volume, mean transit time, and time to maximum, 
calculated by conventional thresholding method (RAPID; iSch-
emaview, Menlo Park, CA). No threshold-based lesion segmen-
tations were provided; (3) DWI lesion segmentation in binary 
form and (4) the DWI images themselves. Of note, noncontrast 
enhanced CT scans were not provided to the teams. For the 
test set, only the CTP raw data and the postprocessed maps 
were provided (ie, no segmentations or DWI images). All images 
were provided at 256×256 in-plane resolution and native slice 
thickness with one exception: Toshiba Aquilion One 320 slice 
data (0.5-mm native resolution) was downsampled to 10-mm 
thickness by volume averaging sets of 20 slices. CTP covered 
from 2.4 to 16 cm in the axial direction depending on hardware 
and prediction of the lesion for each case was performed only 
within this image volume.

Challenge
Organization of the data and assessment of the algorithms 
were the responsibility of an international team of experts 
in artificial intelligence, neurology, and neuroradiology from 
Belgium, Germany, Switzerland, the United Kingdom, and the 
United States, who did not participate in the challenge.

Information about the challenge, its background, and aims 
were published online on the official website of the chal-
lenge (http://www.isles-challenge.org) that included a link to 
the training set, which was used to validate and optimize the 
method used by each participant. Shortly before the 2018 
Medical Image Computing and Computer Assisted Intervention 
conference, the raw CTP data from the test sets were released. 
The teams were asked to run their algorithms and upload their 
segmentation results along with the submission of a short 
abstract describing their algorithmic approach. Finally, the 

results from each participant were compared with the refer-
ence standard manual infarct segmentations, and the teams 
were ranked using predetermined evaluation metrics.

Evaluation Metrics
The following metrics were used for evaluation: the Dice 
score coefficient (DSC), Hausdorff distance (HD), aver-
age and absolute lesion volume difference (VD), precision, 
recall, and average symmetrical surface distance. DSC is 
a measure of overlap between the reference standard on 
DWI and the predicted lesion from CTP, hence it tests the 
resemblance between the two lesions, while HD calculates 
the largest distance between the two contours representing 
the prediction lesion and the reference standard on DWI. 
For more details, the reader is pointed to Winzeck et al9 and 
Maier et al.8 The same metrics were assessed using the sug-
gested parameter (relative CBF, <0.38)4 from the threshold-
based method, using the relative CBF core as the predicted 
infarct core segmentation.

A case-wise approach was used to calculate ranks for 
each team, following the rationale of Maier et al8 as patient 
cases can have different degrees of complexity in predicting 
stroke outcome. DSC was the most important as it combines 
precision and sensitivity. First, DSC, HD, and average sym-
metrical surface distance were calculated for each case, for 
each team, with high DSC and low HD resulting in a high 
rank for an individual case. The mean of these ranks per case 
provided a case-specific rank. Calculating the average of all 
case-specific ranks through all cases for each team resulted 
in the team’s final overall rank.

Statistical Analysis
For each team and for the threshold-based method, the mean 
and SD of DSC, mean absolute VD, precision, and recall were cal-
culated. Furthermore, the HD and average symmetrical surface 
distance from each case were compared to define the best case 
from each team. Wilcoxon signed-rank test (for nonuniformly 
distributed data) was used to compare results among teams. 
Furthermore, based on DSC and absolute VD, the best- and 
worst-performing test cases from the top 5 teams were defined 
and analyzed according to lesion volume and lesion location.

RESULTS
Challenge Characteristics
Demographics of the patients and scanners included 
in the study can be found in Table 1. Median time from 
last seen normal to CTP was 185 minutes (interquartile 
range [IQR], 180–238). Time between completion of CT 
and the start of MRI ranged from 15 to 181 minutes 
(median, 36 minutes). Lesion volume ranged from 0 to 
309 mL (average, 32 mL). In 6 patients, there was no 
diffusion lesion present (ie, zero core volume).

Teams from 15 different countries, as well as multi-
national collaboration teams, were registered. In total, 24 
teams affiliated to research institutes, university hospi-
tals, and industry participated and submitted results on 
all 40 test cases (Table 2).

Table 1. Demographics of the Patient Population

Patient criteria

Mean age, y 68 (SD, 14)

Median baseline NIHSS 16 (IQR, 11–19)

Median time from onset to CT, min 185 (IQR, 180–238)

Median time between completion of CT and start 
of MRI, min

36 (IQR, 25–79; 
range, 15–181)

Scanners and number of patients in training 
group

GE: 16

Philips: 32

Siemens: 2

Toshiba: 13

Scanners and number of patients in testing group GE: 13

Philips: 20

Siemens: 1

Toshiba: 6

CT indicates computed tomography; IQR, interquartile range; MRI, magnetic 
resonance imaging; and NIHSS, National Institutes of Health Stroke Scale.
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Best-Performing Teams for Overall 
Performance
Based on the mean ranking of their performance on 
DSC, HD, and average symmetrical surface distance, 
the winner was Song from East China Normal University 

(team No. 1). He used a deep learning generative adver-
sarial network algorithm in which the CTP data (raw and 
postprocessed maps) were used to create a pseudo-DWI 
image based on a U-net architecture. This pseudo-DWI 
image was compared with the true DWI image using a 
discriminator that attempted to determine whether the 

Table 2. Investigator, Title of the Submitted Abstracts, and Affiliation of the Participating Teams According to the Overall 
Ranking

Team Entrant Title Institution

1 Song 3D Multi-Scale U-Net With Atrous Convolution for Ischemic Stroke 
Lesion Segmentation

Sensetime Research, China

2 Pengbo et al Stroke Lesion Segmentation With 2D Convolutional Neutral Network 
and Novel Loss Function

Beijing University of Technology, China

3 Chen et al Ensembles of Modalities Fused Model for Ischemic Stroke Lesion 
Segmentation

Tencent Jarvis Lab, Shenzhen, China

4 Huang et al StrokeNet: 3D Local Refinement Network for Ischemic Stroke Lesion 
Segmentation

Malong Technologies, China

5 Clerigues et al Ensemble of Convolutional Neural Networks for Acute Stroke Anatomy 
Differentiation

VICOROB Institute, University of Girona, Spain

6 Pinheiro et al V-Net and U-Net for Ischemic Stroke Lesion Segmentation in a Small 
Dataset of Perfusion Data

School of Electrical and Computer Engineering, Univer-
sity of Campinas, Brazil

7 Liang et al A Mix-Weight Modality Densely UNet for Ischemic Stroke Lesion 
Segmentation

School of Computer Science and Engineering, Central 
South University, China

8 Pisov et al Fine-Tuning U-Net for Ischemic Stroke Lesion Segmentation Skolkovo Institute of Science and Technology, Russia

9 Khened et al Fully Automatic Segmentation for Ischemic Stroke Using CT Perfusion 
Maps

Department of Engineering Design, Indian Institute of 
Technology Madras, India

10 Hashemi et al Automatic Segmentation of Ischemic Stroke Lesion Core Based on CT 
Perfusion Using a Deep Fully Convolutional Densely Connected Network

Department of Radiology, Boston Children’s Hospital, 
Harvard Medical School, United States

11 Werner et al Defining a Baseline for ISLES 2018: Applying Good Old Random 
Forest and/or Common Encoder-Decoder-Style CNNs

Department of Computational Neuroscience, University 
Medical Center Hamburg-Eppendorf, DAISYlab Forsc-
hungszentrum Medizintechnik, Hamburg, Germany

12 Zhuo et al Multi-Modal Fusion Network on Ischemic Stroke Lesion Segmentation Tencent Jarvis Lab, Shenzhen, China

13 Su et al Multi-Scale Voxresnet Network Sun Yat-sen University, Guangzhou, China

14 Dolz et al Dense Multi-Path U-Net for Ischemic Stroke Lesion Segmentation in 
Multiple Image Modalities

ETS Montreal, Canada

15 Islam et al Ischemic Stroke Lesion Segmentation Using Adversarial Network Imperial College London, BioMedIA, United Kingdom

Department of Biomedical Engineering, National Uni-
versity of Singapore

16 Xu et al Ischemic Stroke Lesion Segmentation in a Few Seconds Using Fully 
Convolutional Network and Transfer Learning

Huazhong University of Science and Technology, China

17 Miyamoto et al Ensemble Learning With Generative Adversarial Data Augmentation 
for Ischemic Stroke Lesion Segmentation

Research and Development Department, LPixel, Inc, 
Tokyo, Japan

18 Bertels et al Contra-Lateral Information CNN for Core Lesion Segmentation in 
Acute Stroke

KU Leuven, Belgium

19 Tureckova et al ISLES Challenge: U-Shaped Convolutional Neural Network for 3D 
Stroke Lesion Segmentation

Faculty of Applied Informatics, Tomas Bata University, 
Czech Republic

University of Innsbruck, Austria

20 Abulnaga et al Stroke Lesion Segmentation in Perfusion Images Using a Fully Convo-
lutional Neural Network

Massachusetts Institute of Technology, the United States

Philips Research North America, MA, the United States

21 Stimpel et al Multi-Encoding U-Net for Stroke Lesion Segmentation in CT Perfusion 
Data

Pattern Recognition Lab, Friedrich-Alexander University 
Erlangen-Nuremberg, Germany

22 Monteiro et al Modified 2D VNet for Prediction of Stroke Lesion Outcome Segmenta-
tion

University of Lisbon, Portugal

23 Wang et al Intracranial Ischemic Lesion Segmentation via 3D Deconvolutional 
Network Based on the U-Net Architecture

Department of Brain and Cognitive Engineering, Korea 
University, Seoul, South Korea

24 Yang et al Volumetric Adversarial Training for Ischemic Stroke Lesion Segmentation CuraCloud Corporation, Seattle, the United States

More details in the Data Supplement (Abstracts Submitted to the Challenge).
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image presented was the real or pseudo-DWI. The fea-
tures that were useful for making the distinction were fed 
back into the generator to improve its ability to predict 
the pseudo-DWI lesion. Once trained, the pseudo-DWI 
image was segmented using a separate deep learning 
algorithm that had been trained on a large number of 
self-segmented DWI scans.

Team No. 2 (Pengbo et al; Beijing University of 
Technology) used a convolutional neural network utiliz-
ing a 2-dimensional U-net with residual connection as 
the model backbone. To balance the gradients of the 
positive and negative areas in the training phase and 
highlight the stroke lesions, they proposed a novel loss 
function that contains a weight cross-entropy loss and 
generalized Dice score loss. Based on experiments dur-
ing the training phase, this hybrid loss was found to be 
more stable.

Team No. 3 (Chen et al; Youtu Laboratory, Tencent) 
used a 2.5-dimensional framework, based on an ensem-
ble of networks, including U-nets, to extract and fuse 
information from different modalities.

For more details about methods used by each team, 
please see  the Data Supplement or refer to the pro-
ceeding of the challenge.15

Best-Performing Teams for Specific Metrics
The top-ranking team (team No. 1; Song) achieved an 
average DSC of 0.51±0.31 (mean±SD). Several teams 
achieved similar performance (Table 3). This result is 
superior to the DSC achieved with a traditional thresh-
old-based CBF method (0.34±0.29; P<0.001). The 
top-ranking team for average absolute lesion VD was 
team No. 2, Pengbo et al (10.0±10.5 mL). Their results 
on the absolute volume metric compared favorably to 
the threshold-based CBF method (15.3±16.4 mL; 
P=0.002). Figure 1 is a case example showing predic-
tions for infarct core for each of the top 3 teams along 
with the conventional threshold-based method. The 
results of all teams compared with the results obtained 
with a threshold-based CBF method are shown in 
Table 3 and Figures 2 and 3.

Best- and Worst-Performing Cases
From the top 5 teams, 8 cases were identified as the 
best-performing cases, and 9 cases as the worst-per-
forming cases, based on DSC. Twenty cases were identi-
fied as the best cases and 13 cases were identified as 
the worst cases based on absolute VD. Due to the over-
lap between teams, the number of best and worst cases 
was varying in each category.

Dice Score Coefficient
The median DWI volume for the best-performing cases 
was 72.8 mL (IQR, 42.45–103.1), and the median dice 

was 0.86 (IQR, 0.81–0.91); all cases were M1 lesions. 
The median DWI volume for the worst-performing cases 
was 6.7 mL (IQR, 2.8–9), and the median dice was 0.28 
(IQR, 0.2–0.37; Figure I in the Data Supplement). In these 
cases, 66.7% were M1 lesions and 33.3% were M2.

Absolute VD
The median DWI volume from the best-performing cases 
was 7.2 mL (IQR, 3–20.7), and the median absolute VD 
was 2.6 mL (IQR, 0.64–5.06). In these cases, 70% were 
M1 lesions, 15% were M2, and 15% showed no occlu-
sion. The median DWI volume from the worst-performing 
cases was 41.3 mL (IQR, 6.7–76.4), and the median 
absolute VD was 26.41 mL (IQR, 9.36–36.87; Figure II 
in the Data Supplement). In these cases, 92.3% were M1 
lesions, 7.7% were M2, and 15.4% were P1.

DISCUSSION
In this article, we describe the structure and rationale 
of the concluded ISLES 2018 stroke segmentation 
challenge. Many diverse teams throughout the world, in 
industry and academia, participated. The top teams dem-
onstrated significantly better performance than a CBF-
based threshold method (relative CBF, <0.38) that has 
previously been shown to best match DWI volume.4 The 
top teams almost exclusively incorporated deep learning 
methods using convolution neural networks, with a wide 
variety of network architectures, input data, and training 
methods.

Using machine learning algorithms to detect and 
segment abnormal imaging findings, including ischemic 
lesions, is an active research field that has been grow-
ing in recent years.16–18 However, building a satisfac-
tory algorithm is an active process, requiring continuous 
improvement and testing. For this reason, having a well-
characterized data set upon which to test algorithms is 
critical, since it enables the identification of improved per-
formance. Furthermore, having a standardized data set 
enables researchers to directly test their algorithms and 
compare them to the results of other researchers, thus 
accelerating progress on the most promising methods.

For this reason, the ISLES challenge was initiated 
in 2015 to provide a platform with processed data that 
allows a continuous validation of different algorithms in 
a fair manner.10 The images provided are already pre-
processed and annotated by experts in the field, so 
researchers can apply their method directly to the given 
data, generating results that are not affected by pre-
processing steps or processing software. The datasets 
from the 2018 challenge and the previous years are 
available on the challenge website (http://www.isles-
challenge.org) to allow further evaluation and testing 
of new algorithms. During the last several years of the 
challenge, there has been obvious progress in the algo-
rithms used, starting from classical machine learning 
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tools to advanced deep learning techniques. Lessons 
learned from previous ISLES challenges were summa-
rized in the previously published articles (Maier et al8 
and Winzeck et al9).

CT is increasingly being used for acute stroke triage, 
given its lower cost, widespread availability, and only few 
exclusion criteria. Core infarct size is an important pre-
dictor of outcome in acute stroke and represents the 
minimal lesion that can be expected after thrombectomy. 
Its relationship to at-risk or penumbral tissue has been 
used as entry criteria for recent thrombectomy trials in 
the late time window (6–24 hours).1 However, one of the 
disadvantages of CT, in contrast to MRI, is the challenge 
of accurately defining infarction core.19 Different crite-
ria have been proposed over the years to estimate core 
from CTP data, with a threshold of relative CBF <0.38 
of normal tissue being the suggested metric in the soft-
ware used in this study.4 In contrast, DWI is generally 
recognized as a better estimate of irreversibly dam-
aged tissue and serves as a marker of infarct core for 
MRI studies. DWI-based signal hyperintensity was used 

in this study as a reference standard for infarct core, 
which was to be predicted from CTP data acquired at a 
median time difference of 36 minutes. Recent reports of 
trained artificial intelligence algorithms show that they 
can perform well on narrow sets of input data but fail 
when exposed to real-world conditions.20 For this rea-
son, the cases included in this challenge were chosen to 
be widely representative, from multiple institutions and 
scanned on all 4 major CT manufacturers. We addition-
ally included cases in which there was potential reper-
fusion of infarcted tissue—a known challenge for CTP 
prediction. Of note, these regions were excluded from 
the earlier study of this cohort using threshold-based 
method. Thus, the structure of the challenge will reward 
algorithms that can generalize well to different case 
characteristics, which is critical for the clinical use of 
artificial intelligence methods.

Some of the teams showed innovation in their algo-
rithm designs. The top team combined the provided 
raw perfusion data to the processed perfusion maps 
in an integrated network to boost their model and 

Table 3. Results of Each Team Obtained at the Time of Challenge Submission and the Results Obtained From a Threshold-
Based Method, Using Relative Cerebral Blood Flow <0.38

Rank Team Mean DSC (±SD)
Mean absolute 
VD (mL±SD)

Mean precision 
(±SD)

Mean recall 
(±SD)

Best HD obtained 
from a single 
case, mm

Best ASSD 
obtained from a 
single case, mm

1 Song 0.51±0.31 10.24±9.94 0.55±0.36 0.55±0.34 5.68 0.19

2 Pengbo et al 0.49±0.31 10.08±10.58 0.56±0.37 0.53±0.33 7.02 0.15

3 Chen et al 0.48±0.32 10.59±13.16 0.59±0.38 0.46±0.33 5.39 0.17

4 Huang et al 0.47±0.31 11.14±12.74 0.56±0.37 0.49±0.33 7.24 0.15

5 Clerigues et al 0.44±0.31 14.17±14.08 0.45±0.34 0.56±0.34 9.98 0.29

6 Pinheiro et al 0.43±0.32 14.69±16.83 0.50±0.38 0.49±0.34 5.75 0.24

7 Liang et al 0.43±0.3 12.49±15.92 0.54±0.37 0.41±0.3 7.34 0.43

8 Pisov et al 0.43±0.31 13.01±17.01 0.62±0.39 0.40±0.31 7.34 0.18

9 Khened et al 0.43±0.31 17.04±22.29 0.52±0.38 0.44±0.33 5.46 0.29

10 Hashemi et al 0.42±0.31 14.30±15.41 0.48±0.38 0.51±0.35 9.92 0.25

11 Werner et al 0.42±0.3 14.70±14.59 0.52±0.39 0.45±0.32 10.51 0.29

12 Zhuo et al 0.42±0.3 16.68±16.70 0.41±0.33 0.52±0.33 12.00 0.33

13 Su et al 0.40±0.29 23.20±19.72 0.38±0.32 0.58±0.32 12.30 0.45

14 Dolz et al 0.40±0.31 11.86±13.42 0.52±0.36 0.37±0.31 6.35 0.35

15 Islam et al 0.39±0.33 10.90±15.72 0.55±0.4 0.36±0.33 7.78 0.18

16 Xu et al 0.39±0.3 13.23±13.27 0.46±0.36 0.42±0.32 6.35 0.28

17 Miyamoto et al 0.39±0.28 17.02±23.82 0.57±0.41 0.35±0.28 7.02 0.53

18 Bertels et al 0.38±0.3 17.22±16.88 0.47±0.35 0.44±0.34 7.87 0.55

19 Tureckova et al 0.38±0.27 20.66±27.08 0.48±0.38 0.41±0.3 10.69 0.32

20 Abulnaga et al 0.37±0.31 15.41±20.48 0.53±0.4 0.37±0.32 10.43 0.47

21 Stimpel et al 0.36±0.28 16.71±25.17 0.53±0.4 0.34±0.29 7.19 0.50

22 Monteiro et al 0.34±0.3 14.79±16.75 0.53±0.4 0.30±0.29 9.38 0.55

23 Wang et al 0.23±0.25 24.50±44.18 0.44±0.41 0.19±0.23 9.50 0.72

24 Yang et al 0.01±0.01 200.95±211.75 0.00±0.01 0.03±0.12 135.97 35.46

 Threshold-based 
method

0.34±0.29 15.29±16.39 0.46±0.41 0.32±0.26 11.51 0.43

ASSD indicates average symmetrical surface distance; DSC, dice score coefficient; HD, Hausdorff distance; and VD, volume difference.
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improve the prediction of the DWI lesion, as it has also 
been shown in the study by Pinto et al for the stroke 
prediction from MRI data.21 Despite the majority of 
approaches using neural networks of similar architec-
tures, the performance variations indicate the difficulty 
of designing a successful machine learning algorithm 
for stroke lesion segmentation.

Performance differences among teams were observed 
(Table 3), alluding to potential overfitting and lack of 
regularization, stemming from the low sample size of 
the training dataset. Second, we observed that solutions 
having strong heuristics for postprocessing routines (eg, 
hard-coded elimination of a number of isolated objects) 
were also outperformed by solutions where regulariza-
tion was performed implicitly via standard deep learning 
solutions, such as data augmentation and dropout.

Possible causes for poor algorithm performance 
include reperfusion of dead tissue, imperfect registra-
tion between the DWI and CTP which can have a large 
impact on the overlap between very small lesions and 
make it impossible to achieve a high DSC for such cases.

Teams varied in performance in each metric, for exam-
ple, DSC was higher in team 1, but team 2 showed better 
VD, as DSC measures the relative overlap between the 
predicted lesion and the reference standard, whereas the 
VD is not influenced by the amount of overlap. Hence 
these metrics do not measure the same feature, so they 

do not correlate perfectly. In fact, there is a trade-off 
between these two metrics, that is, to obtain an optimal 
DSC, it is often better to allow for oversegmentation.22

The case-based analysis of the best- and worst-
performing cases from the top 5 teams shows that the 
bigger the lesion, the better the DSC but the larger 
the absolute VD. There was no apparent correlation 
between performance and the anatomic or territorial 
location of the lesion.

Previous works aimed to use machine learning for 
stroke lesion segmentation, mostly focusing on MRI 
studies, giving the advantage of higher tissue contrast 
and DWI as a sensitive parameter for infarction core. In 
this study, we show the performance of deep learning 
techniques on CTP with MRI as a reference standard. We 
also show the shift toward more advanced deep learn-
ing techniques such as generative adversarial network. 
Also, the value of using raw perfusion data (not only the 
postprocessed perfusion maps) to reach a more accu-
rate prediction is demonstrated.

The results of this challenge show the advantages of 
applying deep learning in stroke patients. The algorithms 
from top teams compared favorably with the state-of-
the-art CTP postprocessing tool used in clinical practice, 
showing more accurate prediction of infarction core, 
which allows for better decisions regarding use of inva-
sive therapy. Therefore, our results support the necessity 

Figure 1. Case example illustrating a patient with a large left middle cerebral artery infarction as seen on the dice score 
coefficient (DWI; far left).
The estimated infarction core by threshold-based method and by the three top teams is highlighted. Green, true positive; blue, false negative; 
and red, false positive. The results of team 3 show multiple little blue dots (low probability), possibly due to artifacts resulting from a lack of 
regularization of the network or postprocessing.D
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of shifting the conventional stroke workflow toward the 
integration of modern computational algorithms in deci-
sion-making, which will improve stroke care and patient 
management.

There were several limitations to our study. Due 
to the strict criteria of including patients with CTP 
and DWI within 3 hours of each other, the dataset is 
relatively small. This points out the need for differ-
ent centers to collaborate and share data to improve 
the ability of researchers to improve their algorithms. 
Also, the reference standard was defined as diffusion 
restriction on MRI, which was always performed after 
CTP. This may mean that the predictions do not exactly 
match the infarct core at the time of the CTP but rather 
may reflect some degree of lesion growth. Of course, it 
was not technically possible to acquire both modalities 
at the exact same time, and the retrospective nature 
of the dataset precluded randomization of CTP and 
MRI. Another potential limitation is that of spontane-
ous partial reperfusion, which would alter the CTP 
lesion severity and possibly introduce some degree 
of DWI lesion reversal that would render the CTP-to-
DWI relationship much less predictable.23,24 Another 
limitation is the coverage on the z axis. The ISLES 
2018 datasets were acquired in the period 2004 to 
2012, and some scans were, therefore, acquired on 
older systems. While there have not been any major 
breakthroughs in improved contrast-to-noise of CTP, 

scanners generally have increased in terms of brain 
coverage along the patient z axis of CTP over the last 
20 years. Seventy-six of 103 datasets were under 
8-cm coverage along the patient z axis, whereas with 
modern scanners with wider detector arrays, at least 8 
cm is usually imaged. One could speculate that larger 
spatial coverage could provide more context for the 
infarct prediction and potentially improve it. The lim-
ited spatial coverage will also result in lower absolute 
volumetric error than what would have been seen in 
whole-brain studies due to the smaller image volume 
acquired. So absolute volumetric error is biased by low 
coverage in some cases and not likely to indicate per-
formance in a dataset with larger spatial coverage, but 
it still serves to compare between participating groups. 
Finally, the noncontrast CT data were not provided 
to the teams despite being typically available in the 
acute stroke setting. The presence of noncontrast CT 
hypodensity contains useful information about infarct 
core and might have helped the teams with their pre-
dictions. However, some of this information is present 
in the baseline (ie, prebolus arrival) CTP raw images, 
and some of the top-performing teams took advantage 
of this. Also, we did not include CT angiography data, 
given the wide variety of CT angiography methods in 
the cases. Consideration will be given to including 
coregistered noncontrast CT and CT angiography in 
future challenges.

Figure 2. Chart showing the average of dice score coefficient (DSC) for each team compared with the results obtained from the 
threshold-based method.
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CONCLUSIONS
This report summarizes the results of the ISLES 2018 
challenge to predict core infarct lesions using CTP in 
acute large artery occlusive stroke. The top-ranked teams 
used various deep learning convolutional neural network 
approaches, including some state-of-the-art methods such 
as generative adversarial networks. The performance of the 
top groups was significantly better than threshold-depen-
dent, rules-based models. The ISLES 2018 challenge data 
remain publicly available for researchers to improve meth-
ods for automatically segmenting infarct core on CTP.
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