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Abstract

Recent research shows that congruent outcomes are more rapidly (and incongruent less rapidly) detected when individuals
receive optimistic rather than pessimistic cues, an effect that was termed optimism robustness. In the current voxel-based
morphometry study, we examined whether optimism robustness has a counterpart in the brain structure. The partici-
pants’ task was to detect two different letters (symbolizing monetary gain or loss) in a visual search matrix. Prior to each
onset of the search matrix, two different verbal cues informed our participants about a high probability to gain (optimistic
expectancy) or lose (pessimistic expectancy) money. The target presented was either congruent or incongruent with these
induced expectancies. Optimism robustness revealed in the participants’ reaction times correlated positively with gray matter
volume (GMV) in brain regions involved in selective attention (medial visual association area, intraparietal sulcus), emphasiz-
ing the strong intertwinement of optimistic expectancies and attention deployment. In addition, GMV in the primary visual
cortex diminished with increasing optimism robustness, in line with the interpretation of optimism robustness arising from a
global, context-oriented perception. Future studies should address the malleability of these structural correlates of optimism
robustness. Our results may assist in the identification of treatment targets in depression.
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Introduction Optimistic outlooks have been shown to be intimately linked
with attention deployment (Segerstrom, 2001; Raila et al., 2015;
Peters et al., 2016). Concretely, recent research demonstrated

dynamic bidirectional influences between optimistic expectan-

Some people remain optimistic even in the face of severe
challenges, while others turn toward pessimism and give

up. An optimistic outlook ensures motivation and, hence,
the pursuit of important goals (Aspinwall and Taylor, 1992;
Carver et al.,, 2010; Dricu, Kress, and Aue, 2020). Beyond its
motivational impact, the positive anticipation of one’s future
has been shown to accompany mental and physical health
(Vickers and Vogeltanz, 2000; Rasmussen et al., 2009; Garrett
et al., 2014; Hevey et al., 2014). Thus, investigation of the nature
and foundations of robust optimistic future expectancies is
strongly indicated.

cies and selective attention to positive stimuli. On one hand,
an optimistic state may act as a predisposition for a positive
attention bias, expressed by attentional shifts to positive cues
in the environment. Supportive evidence for causal expectancy
influences on attention deployment is revealed in behavioral,
functional magnetic resonance imaging (fMRI) and eye tracking
data (Kress et al., 2018; Singh et al., 2020). Hence, an optimistic
outlook affects how we perceive and attend to our surroundings.
On the other hand, selective attention to positive stimuli may,
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in turn, evoke an optimistic bias (Kress and Aue, 2019). Such a
dynamic interplay between optimism and attention bias may,
thus, spark an upward spiral of positivity (Garland et al., 2010)
that is supportive of mental and physical health.

Notably, individuals appear to be particularly sensitive to
optimistic cues in their environment. This claim is based on the
observation that optimistic expectancies exert stronger influ-
ences on attention deployment than pessimistic expectancies
do—a phenomenon that should ultimately stabilize optimistic
expectancies and was hence termed optimism robustness (Kress
et al., 2018). Specifically, cues suggesting a desirable future out-
come (i.e. gain of money) yielded greater reaction time (RT)
differences to incongruent vs congruent outcomes (i.e. losses vs
gains) in a visual search task than did cues suggesting unde-
sirable future outcomes (i.e. loss of money; (Kress et al., 2018;
Singh et al.,, 2020)). It therefore appears that the optimism-
eliciting cues were more effective in facilitating the detection of
rewarding targets (and impeding the detection of punishing tar-
gets) than were the pessimism-eliciting cues in facilitating the
detection of punishing targets (and impeding the detection of
rewarding targets). Furthermore, visual attention (as measured
by eye tracking) unfolded somewhat differently for optimistic vs
pessimistic cues (Kress et al., 2018); Whereas incongruent trials
were characterized by slowed initial fixation of the target in the
visual search task for both optimistic and pessimistic cues com-
pared with that in congruent trials, this effect was significantly
stronger for the optimistic cues.

Moreover, such cue-dependent congruency effects were
observed not only in the initial orienting to the target stim-
uli but also during more controlled attentional processes (i.e.
attention maintenance). For instance, individuals maintained
their visual attention longer on targets that disconfirmed pes-
simistic expectancies than on those that disconfirmed opti-
mistic expectancies [(Kress et al., 2018); experiment 2]. Such dif-
ferential visual attention to incongruent vs congruent informa-
tion may ultimately lead to a robust stabilization of optimistic
future expectancies. If undesirable information (e.g. losing
money after having expected to gain money) is more readily
avoided than desirable information (e.g. gaining money after
having expected to lose money), this will induce or increase
an already existent bias, shifting an individual’s expectancies
continuously to the optimistic direction.

Consistent with this picture, an fMRI study (Singh et al., 2020)
revealed stronger neural activity differences between incongru-
ent and congruent trials in the case of optimistic than in the case
of pessimistic cues—in particular in the dorsal anterior cingulate
cortex (dACC), medial frontal gyrus, medial orbitofrontal cortex
and inferior parietal lobule—which is in line with the hypothesis
of the brain’s salience and executive control networks mediat-
ing causal expectancy influences on visual attention (Kress and
Aue, 2017). Notably, these data demonstrate that incongruency
leads to especially strong neural processing following optimistic
expectancies, suggesting that individuals do not simply ignore
information that contradicts their initial optimism. Instead, the
ensemble of available fMRI and eye tracking data (Segerstrom,
2001; Peters et al., 2016; Kress et al., 2018; Singh et al., 2020)
suggests that the importance of such conflicting evidence is
downregulated by withdrawing visual attention from this evi-
dence. Visual avoidance or maintenance would thus function as
an emotion regulation strategy [cf. (Aldao et al., 2010; Aue et al.,
2013b)].

These observations can be harmonized with research on
belief updating (Sharot et al., 2011; Garrett and Sharot, 2014;
Kuzmanovic et al., 2015) that revealed the limited capacity of

humans to integrate unfavorable new information into future
expectancies but easy adjustment of expectancies in response
to favorable new information. Specifically, humans are resistant
to adapting their future beliefs to information that suggests that
they have initially been too optimistic and that they should in
fact adapt those beliefs to the pessimistic direction. At the same
time, they are willing to update future beliefs when they are con-
fronted with evidence that suggests that they have initially been
too pessimistic and are justified in shifting their expectancies to
the optimistic direction.

The described findings in the optimism-attention domain
(Kress et al., 2018; Singh et al., 2020) may in fact constitute impor-
tant cognitive mechanisms that support belief updating asym-
metries. If participants are presented with new information
(represented by the targets in the optimism-attention domain),
they can differentially attend to those pieces of information,
thereby shaping the updating of their future-directed beliefs
(i.e. expectancies). Notably, however, the studied phenom-
ena are not interchangeable. Whereas the phenomena investi-
gated in the current manuscript and earlier studies (Kress et al.,
2018; Singh et al., 2020) concern the neurocognitive processes
related to attentional processes following the (dis)confirmation
of expectancy states (which could be interpreted as representing
beliefs), the belief updating the literature considers how those
beliefs change when feedback is given. Therefore, the focus
of the present study (as in our previous research) lies in the
precursors of the belief update phenomenon.

Whereas most participants in previous studies (Kress et al.,
2018; Singh et al., 2020) that investigated optimistic and pes-
simistic expectancy influences on attention deployment were
characterized by optimism robustness (i.e. greater sensitivity
to optimistic compared with pessimistic cues), there were also
individual differences in the strength of optimism robustness
displayed. These individual differences may be associated with
personality measures of optimism bias [i.e. comparative opti-
mism; (Kress et al., 2018)], pointing to the possibility of a stable
trait being at the basis of both comparative optimism and opti-
mism robustness. If optimism robustness is as prominent as
prior studies suggest, it may even have structural manifestations
in the human brain. Brain anatomy is more stable than neural
activity and therefore can be assumed to reflect trait character-
istics better than fluctuating neural activity does. It may further
inform about the underlying mechanisms of optimism robust-
ness and provide possible treatment targets of related disorders
(e.g. depression). Beyond that, the investigation of structural
in addition to functional brain correlates of optimism robust-
ness may help in determining similarities and divergences with
highly similar constructs such as trait optimism or belief updat-
ing. In fact, recent research suggests that such differentiation
between concepts is possible. For instance, the investigation
of brain anatomy has a considerable diagnostic value in that it
can distinguish psychiatric conditions with overlapping behav-
ioral signatures (e.g. schizophrenia and bipolar disorder) and
may ultimately enable the determination of the gravity of a
psychiatric condition (Scarpazza and De Simone, 2016).

In the current investigation, we hence tested whether brain
anatomy is associated with optimism robustness. We predicted
optimistic expectancies to trigger orientation of attention to
confirmatory evidence in the environment (i.e. rewards that jus-
tify the initial optimism) and to neglect information that is at
odds with them. Hypotheses regarding anatomical associations
of optimism robustness were inspired by a recent neurophysi-
ological model on the optimism-attention interplay (Kress and
Aue, 2017), on one hand, and—due to missing precedence in
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the structural area—related fMRI research (Singh et al., 2020),
on the other hand. Accordingly, gray matter volume (GMV)
in the salience and executive control networks, as well as in
visual areas, was predicted to play a fundamental role in opti-
mism robustness. Because of the proposed intertwinement of
optimism robustness and belief updating asymmetry, addi-
tional hypotheses may be derived from voxel-based morphom-
etry (VBM) research on belief updating. Specifically, Chowdhury
and colleagues (Chowdhury et al., 2014) investigated GMV in
older and younger participants and found that increased belief
updating asymmetry in older adults arose because of their lim-
ited capacity to integrate undesirable information into their
expectancies. Moreover, the strength of such reduced capac-
ity to adjust expectancies following undesirable information in
older adults correlated positively with GMV in the dACC.

Whether GMV in these areas plays a role in optimism robust-
ness remains to be determined. Hence, the current study
addressed two major questions. First, we wanted to examine
whether individuals who are particularly sensitive to optimistic
rather than pessimistic cues (and thus present greater optimism
robustness) differ in brain anatomy from those who are less
sensitive to these cues. To this aim, we performed a whole-
brain VBM analysis to investigate the association of GMV with
optimism robustness (derived from the participants’ RTs). Sec-
ond, as little is known about the (potential) overlap of more
stable structural and more fluctuating functional aspects in the
brain [even outside the area of optimism; (Segall et al., 2012;
Sui et al., 2014; Calhoun and Sui, 2016)], we tested whether
identified structural correlates of optimism robustness involve
specific functional aspects. Anatomical characteristics are the
basis for functional changes and interregional communication,
and so brain anatomy can be expected to support or comple-
ment the observed functional changes. It is hence worthwhile
exploring the association of structure and function. Therefore,
we also examined whether neural activity in the areas iden-
tified by the structural VBM analysis was related to optimism
robustness.

To investigate these aims, we examined the gray matter (GM)
characteristics of a sample that we previously examined for fMRI
and behavioral optimism robustness indexes (Singh et al., 2020).
The participants’ task in this study was to detect two different
letters (one symbolizing monetary gain and the other monetary
loss) as rapidly and as accurately as possible in a visual search
matrix. Prior to each onset of a visual search matrix, differ-
ent verbal cues informed the participants about their chances
to gain (optimistic expectancy) or lose (pessimistic expectancy)
money. The target presented could thus be either congruent or
incongruent with these induced expectancies.

Materials and methods
Participants

Participants were 50 (19 male) healthy students of the University
of Bern, aged 18-39 years (M = 25.06 years, s.d. =4.68 years). They
had normal or corrected-to-normal vision. Exclusion criteria
comprised neurological and mental disorders, MRI contraindica-
tions, use of psychoactive substances, color blindness [assessed
with Ishihara plates; (Ishihara, 1987)] and left handedness. As
a group, participants taking part in the present study were
characterized by slight dispositional optimism [Life Orientation
Test-Revised (Scheier et al.,, 1994); M=22.56, s.d.=3.78, on a
scale from 7 to 35], high satisfaction with their lives [Satisfaction
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With Life Scale (Diener et al., 1985); M=26.16, s.d.=6.21, on a
scale from 5 to 35], low trait anxiety [State-Trait Anxiety Inven-
tory (Scheier et al., 1994); M =36.02, s.d. =7.60, on a scale from 20
to 80] and absence of depression [Beck Depression Inventory-II
(Beck et al., 1996); M =5.08. s.d. =4.31, on a scale from 0 to 63].

Participants were informed that they would be able to end
the experiment at any time and gave written informed con-
sent. All procedures met the guidelines of the Declaration of
Helsinki and were approved by the Swiss Ethics Committee
on research involving humans in the canton Bern, Switzerland
(https://swissethics.ch/en/ethikkommissionen). Participation in
the study was reimbursed with either course credits or 25 Swiss
francs/h. In addition, participants received an extra 5 Swiss
francs, representing their gain from the gambling task (see
Procedure for details).

Experimental paradigm

The experimental paradigm simulated a gambling task consist-
ing of 256 trials in which optimistic, pessimistic and ambiguous
expectancies were induced experimentally and gain or loss tar-
gets had to be detected in a visual search phase (Figure 1).
Expectancies were induced by three different cues. Participants
were told that the cue ‘gain 90%’ (‘loss 90%’) signaled a 90%
likelihood of a gain (loss) target appearing in a subsequently
depicted visual search matrix. As a result of the need to include
a sufficiently high number of incongruent trials for data analy-
sis, the actual probability was 67% instead of 90% (leaving the
remainder of the gain 90% and loss 90% trials for incongru-
ent cue-target combinations). Because the majority of outcomes
were congruent with the prior presented cues, the cues main-
tained a significant degree of predictability. To minimize distrust
in the cues, we further told our participants that the computer
randomly selected a target from a pool of 100 targets [compris-
ing 90 gain (loss) and 10 loss (gain) targets for the 90% gain (loss)
cues] and that, for this reason, their personal expectancy value
might differ from the average value displayed by the cues. The
third cue was an ambiguous condition with maximum uncer-
tainty and was included for reasons unconnected to the current
manuscript. Because this cue differed in terms of valence, pre-
dictability and complexity from the two other cues, it will not be
considered here.

Stimuli presented in the visual search phase comprised eight
green and red ‘L's and ‘T’s that were displayed on a circle. The
target stimuli were a green ‘L’ (representing monetary gain for
one half of the participants and loss for the other half) and a
red ‘T’ (reverse representation). Any target stimulus was dis-
played with equal frequency in any of the eight locations on the
circle.

Procedure

Upon their arrival, participants signed a written informed con-
sent form. They then read the experimental instructions that
described the study as a gambling task and performed six prac-
tice trials before being comfortably positioned in an MRI scanner
(3 Tesla MAGNETOM Prisma Scanner; Siemens, Erlangen, Ger-
many). A projector based on Liquid Crystal Displays (PT-L711E,
Panasonic, Kadoma, Japan) enabled the visual projection of the
stimuli onto a screen in front of the scanner, which in turn was
viewed through a mirror mounted to the scanner’s head coil.
The experiment was programed with e-prime 2.0 Professional
(Psychology Software Tools, Sharpsburg, PA, USA), on the basis
of a similar task used to examine the influence of expectancy
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Fig. 1. Schematic representation of an experimental trial. At the beginning of each trial, a fixation cross was presented for 2-3 s. Next, participants saw a cue that
induced an optimistic expectancy (gain 90%; ‘Gewinn 90%’ in German), a pessimistic expectancy (loss 90%) or an ambiguous expectancy (gain loss 50% and loss gain
50%). This was followed by another fixation cross of 2-3 s and a visual search task (searching for green-colored ‘L in the depicted case). Participants had 2.5 s to indicate
whether the target had been depicted on the left or the right side of the screen. Finally, another fixation cross was displayed for 0-2 s, ensuring an overall trial length

of 10 s.

variations on attention in the negative affect domain (Aue et al.,
2013a, 2016, 2019).

At the beginning of each trial, participants were told that
their chance of winning or losing would be 50 or 90%, as manip-
ulated by the visual cues presented (see Experimental Paradigm
for further details and Figure 1 for a schematic representation
of an experimental trial). Afterward, they had to search for a
target stimulus (e.g. green L or red T) in a visual search array
containing seven distractors (red Ls and green Ts) in addition to
the target. For half of the participants, 25 cents was added to
their starting amount of 5 Swiss francs when they saw a green
L and 25 cents was subtracted when they saw a red T, for the
other half, it was the reverse. The participants’ task was to indi-
cate as quickly and accurately as possible whether the target
stimulus had been presented on the left or on the right side
of the screen by choosing to press one of two different buttons
of a button box that was connected to a response box outside
the scanner (Lumina LP400, Cedrus Corporation, San Pedro, CA).
Letting participants indicate the part of the screen in which the
deviant stimulus is shown (rather than whether the deviant tar-
get signals a gain or a loss) rules out the explanation that motor
processes (i.e. response preparation) influence the relationship
between expectancies and attention.

The task consisted of 256 experimental trials, of which 128
were congruent (64 trials with gain targets preceded by the gain
90% cue; 64 trials with loss targets preceded by the loss 90% cue),
64 were incongruent (32 trials with gain targets preceded by the
loss 90% cue; 32 trials with loss targets preceded by the gain 90%
cue), and 64 were ambiguous (32 trials with gain targets pre-
ceded by the ambiguous gain loss 50% cue; 32 trials with loss
targets preceded by the gain loss 50% cue). These trials were
presented in four sessions of 64 trials each, allowing for short
pauses between sessions. The frequencies of specific cue-target
combinations were comparable across sessions. Because of the
identical numbers of presentations of gain and loss targets in
the experiment, our participants gained and lost 32 Swiss francs
and ended up with their starting amount of 5 Swiss francs. In
a last step, our participants completed different questionnaires

(e.g. regarding affect and personality characteristics) and were
subsequently debriefed and paid.

Structural and functional MRI acquisition

All participants had undergone an MRI, and data were acquired
with a 3 Tesla Siemens scanner (MAGNETOM Prisma, Erlan-
gen, Germany) via a 64-channel head coil at the Inselspital,
University Hospitals Bern, Switzerland. The structural MRI
(sMRI) sequence consisted of a 3D magnetization-prepared rapid
gradient-echo sequence. The sequence parameters included
repetition time (TR)=2300ms, echo time (TE)=2.98ms,
inversion time (TI)=900ms, flip angle=9°, and matrix size =
160 x 256 x 256, with isotropic voxel resolution =1 mm?>. Func-
tional volume registration relied on a T2*-weighted multiband
echo-planar imaging (EPI) sequence with a 48-slice whole-
brain coverage (slice thickness =2mm, 0.5 mm gap, interleaved
slice order, TR=1000ms, TE=30ms, flip angle=280°, field of
view =192 x 192 mm, matrix size=96x96, voxel size=2x2x
2.5mm, PAT mode GRAPPA, acceleration factor 2, multiband
factor = 3).

Data analysis

Behavioral data analysis. Attention orientation represented
the dependent variable and was assessed by measuring RTs
to the target stimuli in the visual search matrix. Only cor-
rect responses (~92.6% of all responses) were considered.
We expected that our participants’ RTs would reveal opti-
mism robustness, which implies that optimistic (i.e. gain)
expectancies are more effective in guiding visual attention
than pessimistic (i.e. loss) expectancies are. The more effec-
tive a cue is, the more strongly it should affect the par-
ticipants’ behavior in congruent (speeded responding) and
incongruent (slowed responding) trials. Accordingly, we pre-
dicted a greater difference in RTs between gain and loss tri-
als that were preceded by optimistic (gain 90%) cues than
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between gain and loss trials that were preceded by pessimistic
(loss 90%) cues.

To test for the existence of optimism robustness in our
behavioral data, we calculated differences in average RTs
between incongruent and congruent experimental trials sep-
arately for optimistic (Diffopgmisticcue = RT_OptimisticCue_Loss
Target - RT_OptimisticCue_GainTarget) and pessimistic
(Diffpessimisticcue = RT_PessimisticCue_GainTarget — RT_Pessimis
ticCue_LossTarget) cues. Support for the optimism robust-
ness hypothesis would be revealed if Diffoyumisticcue >
Diffpegsimisticcue- The hypothesis was tested with a pairwise t test.
The alpha level of our statistical tests was set to 0.05 (one-tailed)
and the reported effect size was Cohen’s d, denoted by d. In addi-
tion, we performed an analysis of variance on our RT data (see
Supplementary Analysis).

SMRI data analysis: VBM. All data analysis was performed
with SPM12 (www.fil.ion.ucl.ac.uk) via a MATLAB 2017b envi-
ronment (developed by The MathWorks, Inc.). We used UBELIX
(www.ubelix.ch), the cluster services from the University of
Bern, Switzerland, for parallel data processing. At first, raw MRI
images of the participants (DICOM) were converted into NIfTI
format. This was followed by a visual inspection of the images to
check for severe motion artifacts and then manually performed
AC-PC alignment (anterior-posterior commissure). None of the
images suffered any major motion artifacts that might ham-
per the successive processes. Native T1-weighted images were
further segmented into different brain tissue classes, including
GM, white matter (WM) and cerebrospinal fluid (CSF) through
unified segmentation (Ashburner and Friston, 2005). The GM
and WM images were used to create a study-specific brain tem-
plate in Montreal Neurological Institute (MNI) space by using
diffeomorphic anatomical registration through exponential Lie
algebra or DARTEL toolbox (Ashburner, 2007). Subsequently,
native GM images were normalized to the MNI space with a
voxel resolution of 1 mm?, while preserving for GM tissue vol-
ume in each voxel (modulated). Finally, normalized modulated
GM images were smoothed by using a Gaussian kernel of [2 2 2]
mm full width at half maximum (FWHM), resulting in an overall
smoothing of [4.5 4.3 4.4] mm.

For statistical analysis using general linear models,
we performed a multiple regression analysis with six regressors
(RT_OptimisticCue_GainTarget, RT_OptimisticCue_LossTarget,
RT_PessimisticCue_GainTarget, RT_PessimisticCue_LossTarget,
RT_AmbiguousCue_GainTarget and RT_AmbiguousCue_Loss
Target) and three covariates of no interest [age, sex and total
intracranial volume (TIV =GMyume + WMyotume + CSFyolume)]-
Our primary contrast of interest for the VBM analysis
included optimism robustness ([RT_OptimisticCue_LossTarget —
RT_OptimisticCue_GainTarget] -  [RT_PessimisticCue_Gain
Target - RT_PessimisticCue_LossTarget] or simply Diffopsimisticcue
— Diffpessimisticcue)- We incorporated a GM binary mask as an
explicit mask, so as to confine the findings to this brain tis-
sue. All statistical models were estimated, and results were
obtained for both positive and negative correlations at a voxel-
level of P<0.005 and a cluster level of P<0.05 family-wise
error corrected. This led to a minimum suprathreshold clus-
ter size of k=322 voxels. We used the Automated Anatomical
Labeling atlas (Tzourio-Mazoyer et al., 2002) to quantify the
suprathresholded findings and named it with its anatomical
location(s).
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To further investigate the origins of the identified GMV-
behavior associations related to optimism robustness, we con-
ducted post hoc region of interest (ROI) analyses. Specifi-
cally, we extracted GMV for all clusters revealed and per-
formed Pearson product moment correlation coefficients (con-
trolled for TIV) with the substituents of Diffo,imisticcue, Namely,
(i) RT_OptimisticCue_LossTarget and (i) RT_Optimistic
Cue_GainTarget. Similarly, we determined Pearson corre-
lations with the substituents of Diffpeggimisticcue, namely,
(iii) RT_PessimisticCue_GainTarget and (iv) RT_PessimisticCue_
LossTarget. In addition, we performed sub-VBM analyses for
(combinations) of these constituents of optimism robustness (cf.
Supplementary Table S1).

Link of sMRI results with fMRI neural activity scores. fMRIdata
preprocessing was also performed with SPM 12 and comprised
slice-time correction (middle slice as reference), unwarping
and spatial realignment (fourth-degree b-spline interpolation).
Retrospective noise correction with the Functional Image Arti-
fact Correction Heuristic Package [FIACH; (Tierney et al., 2016)]
was performed in R (Team, 2013). FIACH also permitted the
calculation of six principal components of physiological noise
(likely related to cardiac and respiratory responding). In a next
step, the functional data were co-registered to the individ-
ual anatomical images and, then, normalized to the standard
space of the MNI EPI template and spatially smoothed with
an isotropic three-dimensional Gaussian filter with an FWHM
of 6mm.

In our statistical analyses, we applied the general linear
model implemented in SPM 12 and modeled event-related per-
cent signal changes (PSCs) separately for each participant. The
first-level model included the following regressors: Optimistic-
Cue, PessimisticCue, AmbiguousCue (expectancy phase; dura-
tion: 0 s); OptimisticCue_GainTarget; OptimisticCue_LossTarget;
PessimisticCue_LossTarget; PessimisticCue_GainTarget; Ambi-
guousCue_GainTarget and AmbiguousCue_LossTarget (target
phase; duration: 0 s). The model also accounted for RT influ-
ences on neural activity: For each of the six target phase regres-
sors, participants’ standardized RTs were entered as parametric
modulators of the hemodynamic response. In addition, the first-
level model included one regressor for participants’ errors, six
movement parameters of the realignment procedure, six phys-
iological noise parameters identified by FIACH (all regressors of
no interest) and a constant covariate representing the session-
specific mean over scans. The model further comprised a high-
pass filter of 128 s to remove low-frequency drift of the scanner
and first-order auto-regressive corrections for auto-correlation
between scans.

To investigate whether GMV correlates of optimism robust-
ness involve functional aspects, we extracted the fMRI neural
activity (in PSC) scores for the clusters we identified in the VBM
analysis for optimism robustness. Analogous to the behavioral
data, we calculated Diffoytmisticcue (PSC_OptimisticCue_Loss
Target - PSC_OptimisticCue_GainTarget) and Diffpessimisticcue
(PSC_PessimisticCue_GainTarget - PSC_PessimisticCue_Loss
Target). Extracted neural activity scores for Diffopumisticcue —
Diffpessimisticcue (2Verage across all voxels constituting the clus-
ters identified in our VBM analysis) in each participant were
correlated with RT scores for optimism robustness by using
Pearson product moment correlation coefficients. In addition,
we extracted the four task-related neural activity scores
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Fig. 2. Depiction of RTs in the current experiment. Error bars depict standard
errors. Optimistic cue = gain 90%, pessimistic cue =1loss 90%.

(PSC_OptimisticCue_LossTarget, PSC_OptimisticCue_GainTar-
get, PSC_PessimisticCue_GainTarget, PSC_PessimisticCue_
LossTarget) making up the optimism robustness score and
performed a paired t test contrasting Diffoyimisticcue With
Diffpegsimisticcue Within participants. By this means, we tested
whether there were any task-related within-participant fMRI
effects related to optimism robustness (that are not necessarily
correlated with the participants’ RTs).

Results
Behavioral data

Consistent with our optimism robustness hypothesis, optimistic
expectancies more strongly affected our participants’ RTs in the
visual search phase than did pessimistic expectancies—indexed
by a greater difference between incongruent and congruent tri-
als for gain cues (Diffoptimisticcue: M =483 ms, SE =52 ms) than for
loss cues (Diffpesgimisticcue: M =267 ms, SE=60ms), t(49)=2.76,
P=0.004, d =0.39 (Figure 2). Supplementary Analysis 1 displays,
in addition, the results of an analysis of variance conducted on
our participants’ RTs to provide more detailed information on
RTs related to the individual task conditions.

sMRI data: VBM

Whole-brain VBM: association of GMV with optimism robust-
ness expressed in RTs. We identified two clusters located in the
medial visual association area and the intraparietal sulcus in
which GMV was positively associated with optimism robustness
(Table 1, upper part, and Figure 3A-B). Post hoc ROI analyses and
sub-VBM analyses for the specific sub-conditions that, together,
form the phenomenon of optimism robustness (Supplementary
Table S1) were subsequently conducted to determine the origins
of the effects observed. These additional analyses revealed that
the effects arose because of differences in RTs between incon-
gruent and congruent targets following optimistic cues. Faster
responding to gains following optimistic expectancies, in par-
ticular, were associated with higher GMV in the medial visual
association area and the intraparietal sulcus.

Moreover, GMV in five additional clusters revealed negative
associations with optimism robustness (Table 1, lower part, and
Figure 3C-F). Two of those clusters centered in the right and
left anterior insula (the latter extending substantially into the

Table 1. VBM GMV findings: association with optimism robustness

Correlation with Correlation with Correlation with

Correlation with

Association with

LossTarget r (P)

RT_PessimisticCue

RT_PessimisticCue
GainTarget r (P)

RT_OptimisticCue
GainTarget r (P)

RT_OptimisticCue
LossTarget r (P)

neural activity r (P)

Anatomical region

Cluster size (k)

MNIxyz

T-max

Positive correlation between GMV and optimism robustness

-0.35 (0.011) -0.12 (0.409) -0.09 (0.519) -0.08 (0.585)

R Medial visual association 0.12 (0.411)

14 -79 33 384

4.61

area (extrastriate cortex)

R Intraparietal sulcus

Negative correlation between GMV and optimism robustness

-0.47 (0.001) -0.23 (0.113) -0.20 (0.168) -0.02 (0.869)

-0.06 (0.555)

38 -36 44 364

4.25

P

-0.13 (0.365
~0.11 (0.439
-0.10 (0.502
-0.12 (0.414
-0.09 (0.521

-0.39 (0.006)
-0.38 (0.006)
0.19 (0.197)
-0.23 (0.102)
-0.37 (0.008)

~0.16 (0.260)
-0.25 (0.085)
0.26 (0.067)
0.01 (0.952)
0.05 (0.706)

-0.30 (0.040)
-0.31 (0.031)

-0.40 (0.004)

R Insula
L Insula

1153
765
1211

8
-2
11

12
15
-72

37
-38

4.36
4.41
5.31

-0.48 (0.0004)
0.01 (0.959)

-0.27 (0.062)

-0.43 (0.002)

0.42 (0.003)
-0.12 (0.393)
-0.12 (0.393)

R Primary visual cortex

17

——

dACC
dACC

413
391

25
25

29
11

4.53
4.04

Bold: P<0.05. Right column: Pearson product moment correlation coefficients for the association between optimism robustness (as revealed in RTs) and average neural activity within the areas identified by our VBM analysis.

left, R=right.

L
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Fig. 3. VBM GMV findings for positive (red-yellow color bar) and negative (blue-light blue color bar). All findings are overlaid on a normalized averaged skull-extracted
brain template created from the participant cohort and presented from a sagittal view. (a) Right medial visual association area, (b) right intraparietal sulcus, (c) right

insula, (d) right primary visual cortex, (e and f) dACC.

putamen), two others in the dACC and one in the right pri-
mary visual cortex. Post hoc analyses for the two insula and the
two dACC ROIs showed that, descriptively, higher GMV in these
areas was associated with faster response, especially for the loss
targets. Supplementary Table S1 reveals that the difference in
RTs between gain and loss targets following optimistic cues was
significantly associated with GMV in the two insula clusters,
whereas this was not the case when targets had been preceded
by pessimistic cues. In contrast, post hoc VBM analyses con-
ducted for the dACC did not yield any significant effect. Finally,
a higher GMV in the right primary visual cortex was associated
with differential responding to gains and losses following opti-
mistic cues (Supplementary Table S1). Faster responding to gains
following optimistic expectancies, in particular, was associated
with lower GMV in this area.

Link with fMRI neural activity scores. To test whether areas
in which GMV varied as a function of optimism robustness
also involved functional correlates with optimism robustness,
we calculated Pearson product moment correlation coefficients
between optimism robustness (measured by our participants’
RTs) and neural activity in the clusters that we had identified in
our VBM analysis. Table 1 (right column) shows that none of the
regions displayed both anatomical and functional associations
with optimism robustness.

We further tested whether there were any task-related
within-participant fMRI effects related to optimism robustness.
Regions identified by our VBM approach did not reveal any neu-
ral activity difference between congruency effects related to
optimistic vs pessimistic cues (contrast of PSC_OptimisticCue_
LossTarget - PSC_OptimisticCue_GainTarget with PSC_
PessimisticCue_GainTarget - PSC_PessimisticCue_LossTarget),
as calculated within participants (Supplementary Table S2). Cor-
respondingly, overall, there was no indication that the neural
activity in the regions identified in our VBM analysis was related
to optimism robustness.

Discussion

In our model on optimism-attention interplay (Kress and Aue,
2017), we postulate that optimistic expectancies drive attention
selectively to rewarding evidence in the environment. Previ-
ous research (Kress et al.,, 2018; Singh et al., 2020) has shown
that such priming effects of expectancies on attention are
generally stronger for optimistic than pessimistic content. This
phenomenon, according to which individuals are more sensitive
to optimistic than to pessimistic cues (Kress et al., 2018; Singh
etal., 2020), has been termed optimism robustness. With the cur-
rent study, we aimed at identifying brain structural correlates
of optimism robustness. To address this aim, we conducted a
whole-brain VBM analysis, regressing GMV by optimism robust-
ness in a visual search task that was developed to measure
selective visual attention. From our model (Kress and Aue, 2017)
and earlier functional findings (Singh et al., 2020), we predicted
that GMV in the salience and executive control networks, as well
as in visual areas, would play a fundamental role in optimism
robustness.

In line with this hypothesis, our VBM analysis yielded two
clusters—located in the medial visual association area and the
intraparietal sulcus—in which GMV was positively correlated
with optimism robustness. Specifically, GMV in both regions
was negatively associated with RT for gain targets following
optimistic cues; thus, individuals who displayed particularly
fast responses to gains that confirmed their initial optimistic
expectancies had a higher volume in the medial visual associ-
ation area and the intraparietal sulcus. Both regions have been
shown to be key to selective visual attention (Booth et al., 2003;
Behrmann et al., 2004; Hahn et al., 2008; Aue et al., 2013b; Salo
et al., 2017). Together, these data corroborate that optimism
robustness assessed in our study reflects enhanced selective
attention. Such an interpretation is supported by earlier eye
tracking data (Kress et al., 2018), which revealed that (i) individ-
uals more strongly orient toward evidence that confirms their
initial optimism than to evidence that confirms their initial
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pessimism, and (ii) they in addition maintain their attention
more strongly on evidence that justifies their initial optimism.

We also observed, consistent with this interpretation of
selective visual attention, that the volume of the primary visual
cortex correlated negatively with optimism robustness, which
again was mostly due to the optimism cue-gain target condition
subcomponent. In other words, the larger the optimism robust-
ness phenomenon, the smaller the volume of the primary visual
cortex. This region has been linked with, among other things,
the generation of mental images: a larger visual cortex thickness
predicts mental imagery precision [e.g. (Bergmann et al., 2016b)],
and a larger visual cortex surface predicts visual perception
acuity [e.g. (Song et al., 2015)]. Interestingly, the interindivid-
ual variability in the size of the primary visual cortex reflects
a trade-off between sensitivity to visual details and susceptibil-
ity to visual context in the perception of the same visual feature
(Song et al., 2013): A larger primary visual cortex ensures local,
detail-oriented perception (e.g. high visual discrimination of fine
details), whereas a smaller cortex (as in our finding for optimism
robustness) predisposes to global, context-oriented perception,
making individuals more prone to visual illusions and biases
[e.g. (Muckli, 2010; Patten et al., 2017)], likely via low weight-
ing or ignorance of prediction errors (Clark, 2013; Aitken et al.,
2020). Specifically, context-oriented perception exaggerated by a
small visual cortex prioritizes, among other things, prior expec-
tations of the incoming stimulus (Khan and Hofer, 2018). When
certainty about an upcoming stimulus is high (e.g. prior expec-
tation of a gain in an optimistically cued trial), the magnitude of
the prediction error is minimal when the actual stimulus is iden-
tical to the expectation (i.e. gain), but the magnitude increases
when the stimulus deviates from the expectation (i.e. loss)
(Den Ouden et al., 2012). A small primary visual cortex might
prevent such details (i.e. predicting errors) from being inte-
grated into future expectancies. Correspondingly, a small pri-
mary visual cortex may not generate the optimism robustness
phenomenon per se, but it likely exaggerates it by overweighing
an already influential prior expectation.

Moreover, other anatomical findings for the primary visual
cortex suggest that visual working memory storage varies as a
positive function of its GMV [e.g. (Bergmann et al., 2016a)]. One
may therefore speculate that those individuals who displayed
particularly strong optimism robustness in our study may have
been characterized by reduced working memory capacity or
engagement, thereby allowing for a greater shift toward an opti-
mistic outlook. In particular, reduced involvement of working
memory could facilitate the neglect of pessimistic cues, which is
consistent with our observation of positive correlations between
GMV in the primary visual cortex and RTs in both pessimistic
cue conditions (Table 1). Consistent with such an interpreta-
tion, the calcarine gyrus has also been reported to be involved
in belief updating (Kuzmanovic et al., 2016). The study authors
reported that greater updating was affiliated with decreasing
activity in the calcarine gyrus, especially in response to negative
feedback (i.e. feedback suggesting that one should shift one’s
future expectancies to the pessimistic direction).

In line with our hypotheses based on the optimism-attention
interplay model (Kress and Aue, 2017), we further found two
areas of the salience network (Doucet et al., 2019) to be impli-
cated in optimism robustness, namely, two clusters in each
of the dorsal anterior insula (in one case extending into the
putamen) and the dACC. However, while one would be inclined
to claim greater optimism robustness for highly salient expe-
riences (supposedly indexed by greater GMV in the salience
network), we observed the opposite [cf., (Singh et al., 2020)]:

GMV in the anterior insula and dACC correlated negatively with
the extent of optimism robustness displayed. Post hoc analy-
ses revealed that, descriptively, higher GMV in these regions
corresponded with faster responding, especially in the loss tar-
get conditions. Sub-VBM analyses revealed GMV in the insula
to vary significantly as a function of differences for gain vs
loss targets following optimistic expectancies (but not pes-
simistic cues). Detecting threat and punishment in the environ-
ment is one of the putative functions of the salience network
(McMenamin et al., 2014), and the detection and perception of
threat and punishment in the environment correlate with larger
volumes (Carlson et al., 2012) and higher activation of the ACC
(Bishop et al., 2004). A lower sensitivity of the salience network
to threat and punishment, in particular while having optimistic
expectancies, could prompt individuals to become more opti-
mistically biased, and a larger GMV within the salience network
might counteract optimism robustness.

Consistent with such an interpretation, research on a highly
related concept, comparative optimism (the degree to which
we are overly optimistic for ourselves compared with the opti-
mism we display for others), has shown that anterior insular
activity indexes the degree to which negative outcomes are con-
sidered to apply to the self (Blair et al., 2013). Together with the
demonstration of the anterior insula being involved in aware-
ness (in particular of negative information) (Knutson and Greer,
2008; Craig and Craig, 2009), these findings on the insula hence
support the idea that optimism robustness varies as a nega-
tive function of the degree to which negative future events are
considered (Dricu et al., 2020)—especially when being in an opti-
mistic state. Expressed differently, optimism robustness may
rely on restricted awareness of undesirable future happenings.
Such an interpretation is fully in line with our observation of
reduced visual attention (as measured with eye tracking) to
undesirable outcomes (Kress et al., 2018) in another sample that
faced the exact same experimental paradigm that we used in
the current research [see (Peters et al., 2016), for similar obser-
vations]. In sum, participants with particularly small-sized key
regions within the salience network were prone to display opti-
mism robustness. Our sub-VBM analyses suggest that this effect
may, in particular, be attributed to the negative correlation
between RTs for the optimistic cue-loss target condition and
GMV in the insula (Supplementary Table S1; at the same time,
these analyses do not provide information regarding specific
origins of the dACC effects).

Together, therefore, our data speak to two major processes
beinginvolved in optimism robustness: (i) the capacity to rapidly
process and respond to expected rewards (special status of
the optimistic cue-gain target condition), which is likely most
strongly linked with GMV in areas involved in selective atten-
tion and global, context-driven processing, and (ii) the capacity
to process unexpected punishments or hindrances (special sta-
tus of the optimistic cue-loss target condition), which may be
best indexed by GMV in brain regions that have been shown to
be involved in salience estimations and awareness of negative
outcomes.

It may further seem surprising that we did not find any over-
lap between our structural and functional (Singh et al., 2020)
findings. In particular, the previously published functional data
revealed increased activity in the salience and executive con-
trol networks to correlate with increasing levels of optimism
robustness, suggesting that disconfirmed optimistic expectan-
cies were not simply ignored. A possible explanation for this
inconsistency is that the structure-function relationship does
not necessarily follow a one-to-one mapping, because structures
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only partially determine the blood-oxygen-level-dependent sig-
nal of fMRI (Park and Friston, 2013; MiSi¢ et al., 2016; Batista-
Garcia-Ramé and Fernandez-Verdecia, 2018). Furthermore, the
link between volume and activity is not straightforward (Segall
et al., 2012), reflected in the observation that some areas
are characterized by positive associations between functional
and structural aspects, others by negative associations, and
still others by no association and that sMRI and fMRI yield
complementary information (Sui et al., 2014; Calhoun and
Sui, 2016).

In fact, the extent of neural activity is only one aspect that
possibly relates to variations in GMV. Another aspect regards
connections with other areas in the brain. For instance, we
found that social optimism bias (i.e. the degree to which we are
optimistically biased for those we identify with or those we like)
varied as a function of the functional connectivity between the
visual cortex and the human reward system, although none of
these regions displayed isolated activity related to social opti-
mism bias (Aue et al., 2012). Accordingly, future investigations
may apply graph theory (Kaiser, 2011; Korgaonkar et al., 2014;
Ueda et al., 2018; Pang et al., 2019) to identify WM connections for
the different areas identified in our current VBM analyses. Such
an approach may reveal important insights into the structural
characteristics of optimism robustness. We might, for instance,
learn that interregional communication between the key areas
identified in our present analyses plays an important role in
optimism robustness. Interestingly, cortical-subcortical struc-
tural connectivity analyses that identify areas involved in belief
updating (Moutsiana et al., 2015) yielded results (i.e. related to
insula/putamen) that partially converged with our VBM opti-
mism robustness findings, which may point to an overlap of the
two concepts under investigation. The exact degree of overlap
remains to be determined by the application of similar measures
and analyses to both data sets.

Finally, several specificities of the experimental paradigm
used merit consideration. Telling our participants that the opti-
mistic and pessimistic cues would correctly predict the targets
on an average of 90% of all cases could potentially be a limita-
tion. In order to ascertain a sufficiently high number of valid
incongruent trials (and, simultaneously, an acceptable study
length), in reality, the cues correctly predicted the targets in
only 67% of all cases. Although this discrepancy may have led
to some distrust in the cues, we believe that it does not ques-
tion the validity of our experimental paradigm because (i) we
informed our participants that the computer would randomly
select trials from a pool of trials with an overall 90% contin-
gency between optimistic and pessimistic cues, on one hand,
and the gain and loss targets, on the other hand; (ii) even
with this value being reduced to 67%, the cues still had pre-
dictive power; (iii) experimental instructions on proportions can
be more efficient in influencing behavior than real proportions
(Entel et al., 2014) and, finally, (iv) behavioral data correspond-
ing to the type of paradigm that we used in the current analyses
repeatedly revealed that the cues substantially affect attention
deployment (Aue et al., 2013a, 2016, 2019; Kress et al., 2018).
Together, these considerations strongly argue against our cues
having been ineffective (i.e. distrusted). In addition, we may be
criticized for not having included an adequate neutral baseline
condition. This is because our ambiguous (not considered) third
cue condition differed from the optimistic and pessimistic cue
conditions in valence, complexity and degree of predictability.
Future studies on optimism robustness should add a suitable
baseline condition that permits an interpretation of effects in
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absolute terms (i.e. facilitatory optimistic cue effects and/or
suppressive pessimistic cue effects).

Summary and conclusions

The current study findings demonstrate that greater sensitiv-
ity to optimistic than to pessimistic cues in the environment is
associated with GMV in the human brain. Our findings further
promote the picture of optimism robustness being a result of
selective turning toward those pieces of evidence in the world
that support one’s positive view of the future. Consequently,
structural correlates of optimism robustness may ensure an ori-
entation to rewards in the environment, which stabilizes an
optimistic outlook, thereby boosting mental health. Specifi-
cally, we found optimism robustness to be related to increased
GMV in areas involved in selective attention (the medial visual
association area and the intraparietal sulcus), reflective of the
strong intertwinement of optimistic expectancies and atten-
tion deployment (Kress and Aue, 2017). In addition, GMV in
the primary visual cortex diminished with increasing levels of
optimism robustness, which is in line with (i) the idea of a
trade-off between sensitivity to details and susceptibility to con-
text in perception, the latter predisposing for positive cognitive
biases (such as optimism robustness), and (ii) the interpreta-
tion of reduced working memory being at the basis of optimism
robustness. Reduced working memory capacity may permit an
individual to rely on default responding, favoring optimistic
over pessimistic tendencies. Whether biased memory processes
indeed mediate the link between expectancies and attention
should be addressed in future research.

All of the aforementioned effects arose because RTs to gains
following optimistic cues varied most strongly as a function of
GMV. In addition, we observed decreasing GMV in the salience
network (namely, the anterior insula and the dACC) with
increasing levels of optimism robustness, which arose because
GMV in those structures correlated negatively with RTs for the
processing of loss targets. Subanalyses for the insula pointed
to a specific status of the optimistic cue-loss target condition,
which describes the need to process unexpected loss and correct
overly optimistic expectancies. In sum, therefore, the strongest
determinants of the effects we observed were related to (i) the
ability to process and respond to expected gains (condition opti-
mistic cue—gain target; attention areas) and (ii) the capability to
process and respond to unexpected losses (condition optimistic
cue—loss target; salience and awareness areas).

Future research needs to address how malleable the associ-
ation between optimism robustness and GMV is. For instance,
individuals with depression are typically characterized by
reduced optimism (Carver and Gaines, 1987; Giltay et al., 2006;
Peleg et al., 2009), and diverse types of training have been devel-
oped to strengthen positive outlooks (Fresco et al., 2009; Sharot
et al., 2012; Reivich et al., 2013; Seligman et al., 2007; Kress and
Aue, 2019). It will be compelling to examine whether GMV in
the areas that we identified here changes as training-induced
optimism robustness increases, particularly so in clinical pop-
ulations (e.g. individuals with depression). Neuroplasticity after
training has been shown in the area of (negative) attention bias
(Aday and Carlson, 2017), demonstrating that structural corre-
lates of biased stimulus processing do not condemn people to
see the world around them in either negative or positive hues.

As compromised optimistic outlooks constitute a key char-
acteristic of depression, the identification of morphological
correlates of optimism robustness and its subcomponents in
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healthy individuals may provide important information for
potential toeholds in the therapeutical context. Because our
study revealed that structural correlates of optimism robustness
rely on two subcomponents of optimism robustness (capacity to
process and respond to expected rewards and capacity to pro-
cess and respond to unexpected losses after initial optimism),
it will be interesting to investigate whether training that tar-
gets specific brain structures will have selective effects on these
subcomponents. Ultimately, such an approach might help in
the development of individualized training, the goal being to
modify critical subcomponents of the optimism robustness con-
cept. Hence, individuals who display troubles in the pursuit of
expected gains (compared with their peers) would require differ-
ent training than would individuals whose problems originate
in the discouragement arising from problematic processing of
unexpected losses.
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