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Most published meta‑regression 
analyses based on aggregate data 
suffer from methodological pitfalls: 
a meta‑epidemiological study
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Abstract 

Background:  Due to clinical and methodological diversity, clinical studies included in meta-analyses often differ in 
ways that lead to differences in treatment effects across studies. Meta-regression analysis is generally recommended 
to explore associations between study-level characteristics and treatment effect, however, three key pitfalls of meta-
regression may lead to invalid conclusions. Our aims were to determine the frequency of these three pitfalls of meta-
regression analyses, examine characteristics associated with the occurrence of these pitfalls, and explore changes 
between 2002 and 2012.

Methods:  A meta-epidemiological study of studies including aggregate data meta-regression analysis in the years 
2002 and 2012. We assessed the prevalence of meta-regression analyses with at least 1 of 3 pitfalls: ecological fallacy, 
overfitting, and inappropriate methods to regress treatment effects against the risk of the analysed outcome. We used 
logistic regression to investigate study characteristics associated with pitfalls and examined differences between 2002 
and 2012.

Results:  Our search yielded 580 studies with meta-analyses, of which 81 included meta-regression analyses with 
aggregated data. 57 meta-regression analyses were found to contain at least one pitfall (70%): 53 were susceptible to 
ecological fallacy (65%), 14 had a risk of overfitting (17%), and 5 inappropriately regressed treatment effects against 
the risk of the analysed outcome (6%). We found no difference in the prevalence of meta-regression analyses with 
methodological pitfalls between 2002 and 2012, nor any study-level characteristic that was clearly associated with the 
occurrence of any of the pitfalls.

Conclusion:  The majority of meta-regression analyses based on aggregate data contain methodological pitfalls that 
may result in misleading findings.
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Background
Due to clinical and methodological diversity, clinical 
studies included in meta-analyses often differ in ways 
that lead to differences in treatment effects across stud-
ies [1]. Thus, a simple pooled effect size generally does 
not solely reflect the treatment effect on the outcome of 
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interest, but also the effects of clinical or methodological 
characteristics that are unequally distributed across stud-
ies, and thus, potential effect modifiers. The assessment 
of covariates that are potentially associated with treat-
ment effect is generally recommended, [2, 3] using meta-
regression to explore associations between study-level 
characteristics and treatment effect [3]. However, three 
key pitfalls of meta-regression, if overlooked or ignored, 
may lead to invalid conclusions.

First, in meta-regression on aggregate data, associa-
tions between average patient characteristics and the 
pooled treatment effect do not necessarily reflect true 
associations between the individual patient-level char-
acteristics and treatment effect [4, 5]. The difference 
between associations of treatment effects with aver-
age patient characteristics at group level and true asso-
ciations with individual patient level characteristics 
has been referred to as ecological fallacy or aggregation 
bias [4]. It reflects a logical fallacy in the interpretation 
of observed data, and findings at the group level may be 
either an under- or overestimation of the real associa-
tion between patient-level characteristics and treatment 
effect. Second, meta-regression models can be overfit-
ted if the number of studies per examined covariate is 
low. A consequence of overfitting can be spurious asso-
ciations between covariates and treatment effect due to 
idiosyncrasies of the data [6]. The latest version of the 
Cochrane Handbook suggests a minimum of 10 studies 
per examined covariate in meta-regression, [3] analogous 
to the traditional rule of thumb used to minimize the risk 
of overfitting in logistic and Cox regression models of 
at least 10 events per included covariate [7]. However, a 
recent study suggested that the number of observations 
required per covariate in ordinary least-squares linear 
regression may be considerably lower [6], and it remains 
unclear whether this also partially applies to the case of 
weighted random-effects meta-regression. Third, meta-
regression analyses that regress treatment effects against 
the risk of the analysed outcome observed in included tri-
als are difficult to interpret as the observed risk included 
as a covariate is also incorporated in the expression of the 
treatment effect used as the dependent variable in meta-
regression. Regression to the mean will therefore result 
in an inherent correlation between covariate and depend-
ent variable in meta-regression. In the extreme case of 
the true risk ratio or odds ratio of every trial being equal 
to 1, the introduced correlation can be as pronounced as 
-0.71, [8] even though covariate and treatment effect are 
truly unrelated [4, 9]. Methods to overcome this prob-
lem have been published, but are rarely used [10–13]. 
The primary objectives of this meta-epidemiological 
study were therefore, to determine the frequency of these 
three pitfalls in meta-regression analyses published in the 

medical literature. Due to limited resources and based 
on the publication timing of most methodological litera-
ture on meta-regression analysis, we limited our focus to 
the years 2002 and 2012. The secondary objectives were 
to examine associations between characteristics of jour-
nals, authors and methods with the occurrence of these 
pitfalls, and explore changes over time between 2002 and 
2012.

Methods
Data source
We searched Medline through PubMed using the fol-
lowing search terms: meta-analysis OR systematic[sb], as 
used in previous meta-epidemiological studies [14, 15] to 
search for systematic reviews and meta-analyses. As the 
use of meta-regression analysis is not always reported in 
the title and abstract of publications, we first identified 
meta-analyses in the published medical literature and 
then screened their full-text for meta-regression analy-
ses. We limited our search to the PubMed entry years 
2002 and 2012. We chose 2002 as the comparator year 
for 2012 because most methodological articles address-
ing issues in meta-regression analyses [4, 5, 9, 16] had 
been published before 2002. The search for 2002 reports 
was done in June 2012; the search for 2012 reports was 
done in June 2013 and updated in January 2014. Based 
on a computer-generated sequence of random numbers, 
we identified random samples of reports from 2002 and 
2012.

Study selection
Eligible were all aggregate-level meta-analyses published 
in 2002 and 2012 in which at least one study was a ran-
domised or quasi-randomised controlled trial, which 
reported on a meta-regression analysis [4] examining the 
association between one or several covariates and the 
estimated pooled treatment effect on a clinical outcome. 
Meta-regression analyses were considered irrespec-
tive of whether they related to the primary or secondary 
outcome variables. We excluded meta-regression analy-
ses that did not have between-group comparisons (i.e., 
treatment effect estimates comparing two trial arms on 
a specific outcome) as the dependent variable, and meta-
regression analyses for which results were not reported. 
During the first phase, one reviewer (MG) identified 
all aggregate-level meta-analyses based on titles and 
abstracts, excluding guidelines, network meta-analyses, 
and meta-analyses of individual patient data. A second 
reviewer (BdC) screened a randomly selected sample of 
200 citations for each year. Percent agreement between 
the two screeners was 88% (chance-corrected agree-
ment: kappa, 0.68). During a second phase, one reviewer 
(MG) determined eligibility based on full texts of all 
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aggregate-level meta-analyses, and of all citations, for 
which it was unclear whether they reported on an aggre-
gate-level meta-analysis.

Data extraction
A standardised and piloted data extraction form accom-
panied by a codebook was used for data extraction. We 
determined whether meta-regression analyses included 
at least one of three previously described pitfalls of meta-
regression: (1) ecological fallacy, [4, 5] (2) a high risk of 
overfitting (conceptualized as a meta-regression with 
less than 5 studies per covariate) [3, 6, 7] and (3) inap-
propriate methods to regress treatment effects (assessed 
with binary or continuous outcomes) against the risk 
of the analysed outcome observed in included studies 
[10–13]. We classified meta-regression analysis as sus-
ceptible to ecological fallacy if one or more of the covari-
ates included in the analysis was an average estimate of a 
patient level characteristic such as mean age or propor-
tion of females. We also examined whether authors of 
published reports recognized the limitations associated 
with these pitfalls if their meta-regression analysis was 
susceptible to them. The extraction of these data was 
done independently and in duplicate (MG, SA). Any disa-
greements were resolved by discussion, and consultation 
with a third author (BdC), if needed.

Additional data extraction, done by a single author 
(MG), involved extraction of the following characteris-
tics: the name of the journal and journal characteristics 
(impact factor, type of journal, and appearance on the 
list of core clinical journals on PubMed), affiliation of 
the authors with industry, affiliation of the authors with 
an institute with statistical expertise (mainly biostatis-
tics or epidemiology department), the number of studies 
included in the review, design of the studies included in 
the review and in the meta-regression analysis, whether 
the outcome was continuous or binary, the medical field 
of speciality, and the category of therapy (e.g., drugs, sur-
gery, etc.). For all reports, we used the impact factor in 
the year 2007 (midpoint between 2002 and 2012). Our 
operationalization of these variables is reported in Addi-
tional file 1: Tables A-C.

Analysis
Our sample of 2,404 records per entry year (4,808 total) 
was based on a pilot study of a random sample of 50 
records from 2012, in which we identified 20 (40%) meta-
analyses, 3 of which included a meta-regression analysis 
(6.0%, 95% confidence interval [CI] 2.1 to 16.2%). Assum-
ing that the yield of meta-regression analyses in 2002 
would be about one third of the yield in 2012, we esti-
mated that the yield of meta-regression analyses in the 
total random sample of 4,808 citations would be 192 

(95% uncertainty interval, 66 to 519). Our target sample 
size of 192 would yield 95% confidence intervals ranging 
from 14 to 26% if the prevalence of a potential pitfall was 
20%, and ranging from 43 to 57% if the prevalence of a 
potential pitfall was 50%.

The primary outcome was the proportion of meta-anal-
yses with at least one meta-regression analysis that was 
potentially influenced by one of the 3 assessed methodo-
logical pitfalls in our random samples for the years 2002 
and 2012. Secondary outcomes were the proportion of 
meta-analyses with at least one meta-regression analysis 
with ecological fallacy; the proportion of meta-analyses 
with at least one meta-regression analysis with a high 
risk of overfitting; the proportion of meta-analyses with 
at least one meta-regression analysis with inappropri-
ate methods to regress treatment effects against the risk 
of the analysed outcome observed in included studies; 
and the proportion of meta-analyses with at least one 
meta-regression analysis that recognized the limitations 
when these pitfalls were present. We used Firth’s logistic 
regression to investigate the association between study 
characteristics and the occurrence of pitfalls, using one 
predictor at a time. Firth’s logistic regression model uses 
a penalized maximum likelihood that produces more 
accurate inference in small samples than the standard 
maximum likelihood based logistic regression estima-
tor, and achieves convergence in the presence of separa-
tion with better coverage probability [17, 18]. Odds ratios 
(ORs) and 95% CIs were derived from the models, with 
ORs above 1 indicating that the study characteristic was 
positively associated with a pitfall, and ORs below 1 
indicating a negative association. All analyses were con-
ducted in STATA 13, and 95% CIs were two-sided.

Results
Our search of 2002 and 2012 reports resulted in 7,000 
citations for 2002 and 20,169 citations for 2012 (Fig. 1). 
Out of the random samples of 2,404 reports for each year, 
599 in 2002 and 735 in 2012 were considered to be poten-
tially eligible based on their title and abstract. Full-text 
analysis of these yielded 246 and 334 published reports 
describing aggregate-level meta-analyses that included at 
least one randomized trial in 2002 and 2012, respectively. 
29 and 52 reports published in 2002 and 2012, respec-
tively, were deemed to meet our eligibility criteria (81 
meta-analyses with at least one meta-regression analysis 
in total).

Table  1 presents characteristics of included meta-
analyses with meta-regression by year. Overall, the 81 
meta-analyses included a median of 23 studies (IQR 
13 to 41 studies), with 73 of these (90%) including ≥ 10 
studies. The median journal impact factor was 4.2 (IQR 
2.3 to 6.1). 15 meta-analyses (19%) were published in a 
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Fig. 1  Flow diagram of the study selection process
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general medical journal, and 19 meta-analyses (23%) in 
one of PubMed’s core clinical journals. 38 meta-anal-
yses (47%) examined drug interventions, and 48 (59%) 
used a continuous primary outcome measure. The most 
common medical fields represented were psychiatry 
and psychology (16%), cardiology (12%) and oncology 
(10%), with a wide range of fields making use of meta-
regression analyses (Table  1). Five meta-analyses (6%) 
had authors affiliated with industry, while 35 (43%) had 
authors affiliated with a biostatistics or epidemiology 
department.

Main outcome
Table 2 summarizes the prevalence of the three key pit-
falls of meta-regression-analyses in the years 2002 and 
2012. Overall, we found at least one of the assessed pit-
falls in 70% of included reports (57/81; 95% CI 60% to 
79%) with similar numbers in 2002 (72%, 95% CI 54% to 
85%) and 2012 (69%, 95% CI 56% to 80%). Ecological fal-
lacy was the most common issue, observed in 20 reports 
in 2002 (69%, 95% CI 51% to 83%) and 33 in 2012 (63%, 
95% CI 50% to 75%). A high risk of overfitting was found 
in 6 reports in 2002 (21%, 95% CI 10% to 38%) and 8 in 

Table 1  Characteristics of included studies with meta-regression analysis

There were no important differences in baseline characteristics between the two assessed years

Characteristics Total (N = 81) Year 2002 (N = 29) Year 2012 (N = 52)

Journal characteristics

Journal Impact Factor, median (IQR) 4.2 (2.3–6.1) 4.4 (2.9–5.6) 3.9 (2.0–6.6)

General medical journal 15 (19%) 5 (17%) 10 (19%)

Core clinical journals 19 (23%) 9 (31%) 10 (19%)

Author characteristics

Affiliated with industry 5 (6%) 3 (10%) 2 (4%)

Affiliated with biostatistics or epidemiology depart-
ment

35 (43%) 16 (55%) 19 (37%)

Ten or more of studies 73 (90%) 26 (90%) 47 (90%)

Drug intervention 38 (47%) 15 (52%) 23 (44%)

Type of outcome in meta-regression analysis

Binary 39 (48%) 13 (45%) 26 (50%)

Continuous 48 (59%) 18 (62%) 30 (58%)

Clinical field

Psychiatry & Psychology 13 (16%) 5 (17%) 8 (15%)

Cardiology 10 (12%) 3 (10%) 7 (13%)

Oncology 8 (10%) 1 (3%) 7 (13%)

Infectious disease 7 (9%) 2 (7%) 5 (10%)

Endocrinology & Metabolism 7 (9%) 3 (10%) 4 (8%)

Surgery 6 (7%) 0 (0%) 6 (12%)

General internal medicine 5 (6%) 3 (10%) 2 (4%)

Paediatrics 4 (5%) 2 (7%) 2 (4%)

Nutrition & dietetics 4 (5%) 0 (0%) 4 (8%)

Rheumatology 4 (5%) 3 (10%) 1 (2%)

Miscellaneous 13 (16%) 7 (24%) 6 (12%)

Table 2  Prevalence estimates with 95% confidence intervals of any potential pitfalls in meta-regression-analyses

Pitfall Total (N = 81) Year 2002 (N = 29) Year 2012 (N = 52)

Ecological fallacy 53 (65%, 55 to 75%) 20 (69%, 51 to 83%) 33 (63%, 50 to 75%)

Overfitting 14 (17%, 11 to 27%) 6 (21%, 10 to 38%) 8 (15%, 8 to 28%)

Meta-regression on risk of the analysed 
outcome

5 (6%, 3 to 14%) 2 (7%, 2 to 22%) 3 (6%, 2 to 16%)

Any potential meta-regression pitfall 57 (70%, 60 to 79%) 21 (72%, 54 to 85%) 36 (69%, 56 to 80%)
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2012 (15%, 95% CI 8% to 28%). Inappropriate methods to 
regress treatment effects against the risk of the analysed 
outcome were described in 2 reports in 2002 (7%, 95% CI 
2% to 22%) and 3 in 2012 (6%, 95% CI 2% to 16%). Only 
two out of the 57 meta-analyses with at least one prob-
lematic meta-regression analysis (4%) provided a frank 
discussion of the limitations of meta-regression; in both, 
average patient characteristics were regressed against 
treatment effects, and the limitations of this approach 
were addressed in the discussion section [19, 20].

Characteristics associated with pitfalls
In logistic regression analyses, our results were most 
compatible with no important associations between pub-
lication year, journal characteristics, affiliation of study 
authors, the number of studies included in the review, 
whether the outcome was continuous or binary, category 
of therapy, and a composite of any of the three pitfalls 
(Table  3), or each of the three pitfalls separately (Addi-
tional file 1: Table C).

Discussion
In this meta-epidemiological study based on a random 
sample of 4,808 reports published in 2002 and 2012, we 
found 580 aggregate-level meta-analyses, of which 81 
included at least one meta-regression analysis. Of these 
81 meta-analyses, 57 (70%) were affected by at least 
one of three key pitfalls of meta-regression analyses 
addressed in our study—ecological fallacy, overfitting, 
or inappropriate methods to regress treatment effects 
against the risk of the analysed outcome. This suggests 
that about one out of ten meta-analyses are potentially 
flawed and may report invalid findings. In only two of 
the 57 meta-regression analyses with pitfalls, did authors 

explicitly acknowledge the limitations of their findings 
derived from meta-regression analysis. We found little 
evidence for associations between inappropriate meta-
regression and characteristics of meta-analyses. There 
was inconclusive evidence with regard to the association 
between journal, author, and characteristics of meta-
analyses and the odds of pitfalls of meta-regression. The 
negative association between the prevalence of pitfalls 
in meta-regression analyses and authors affiliated with 
biostatistics or epidemiology department (OR 0.68, 95% 
CI 0.27 to 1.75), although imprecise, is noteworthy. In 
addition, authors with such affiliation were less frequent 
in analyses published in 2012 (37%) than in 2002 (55%). 
This is striking and may reflect an increase in the avail-
ability of software for non-statisticians to conduct meta-
regression analysis. This underlines the importance of a 
collaboration with a statistician experienced in evidence 
synthesis when conducting meta-regression analyses 
[21]. In addition, we did not find evidence for a difference 
when comparing the years 2002 and 2012.

Strengths and limitations
Our meta-epidemiological study has several strengths. 
First, we used a systematic and broad search strategy 
using a validated filter to find systematic reviews and 
meta-analyses. We refrained from using filters specific 
to meta-regression, as many meta-regression analyses 
were not mentioned in titles and abstracts of eligible 
meta-analyses. Second, our use of two random samples 
of meta-analyses from 2002 and 2012 suggests general-
izability of our findings to published meta-analyses with 
meta-regression indexed in PubMed. Third, we con-
ducted a sample size consideration prior to our screen-
ing, which was recently proposed by Giraudeau et al. [22] 

Table 3  Association between any inappropriate meta-regression and review characteristics

Odds ratios are for the comparison of meta-regression analyses with the characteristic as compared to meta-regression analyses without the characteristic. An odds 
ratio of 2.61 for ‘Ten or more studies’ indicates, for example, that the odds of any potential meta-regression pitfall is 2.61 times higher in meta-regression analyses that 
include 10 or more studies as compared with meta-regression analyses that include a lower number of studies

Any potential meta-regression pitfall Yes (n = 57) No (n = 24) Odds Ratio
(95% CI)

Published in 2012 36 (63%) 16 (67%) 0.87 (0.33 to 2.34)

Journal characteristics

Core clinical journals 12 (21%) 7 (29%) 0.64 (0.22 to 1.85)

General medical journals 11 (19%) 4 (17%) 1.13 (0.34 to 3.77)

Impact factor higher than median 29 (51%) 11 (46%) 1.22 (0.47 to 3.11)

Author characteristics

Affiliated with industry 5 (9%) 0 (0%) 5.13 (0.27 to 96.57)

Affiliated with biostatistics or epidemiology department 23 (40%) 12 (50%) 0.68 (0.27 to 1.75)

Ten or more of studies 53 (93%) 20 (83%) 2.61 (0.64 to 10.61)

Drug intervention 28 (49%) 10 (42%) 1.33 (0.52 to 3.44)

Binary outcome variable 25 (44%) 14 (58%) 0.57 (0.22 to 1.47)
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who also provide a relevant framework for this purpose. 
In addition, data extraction was done using a dedicated 
data extraction form, and carried out partly in duplicate 
with discrepancies resolved through discussion and con-
sensus, which minimized data extraction errors.

Our study has limitations. First, the number of meta-
analyses with meta-regression analysis identified in our 
random samples was only 81, and therefore at the lower 
end of what we had expected based on our sample size 
consideration, which in turn has limited our statisti-
cal power to detect associations between pre-specified 
study characteristics and pitfalls. Second, our findings 
on overfitting may underestimate the true frequency of 
this pitfall as the threshold of less than 5 trials per covari-
ate was more conservative than currently suggested in 
the Cochrane Handbook [3]. Third, we only considered 
meta-regression analyses of clinical studies on treatment 
effects, but the same principles and pitfalls also apply to 
meta-analyses of studies with other purposes and designs 
[4]. Forth, the most recent studies included in our analy-
ses were published in 2012. Fifth, we did not investigate 
whether meta-regression analyses were pre-specified in 
the protocol. It is important that meta-regression analy-
ses are pre-specified with as much detail as possible in a 
review protocol to reduce the risk of false-positive con-
clusions [4]. With the ever-growing increase in publica-
tions of review protocols, this would be a feasible and 
important issue to be investigated in a future methodo-
logical study of meta-regression analyses.

Context
To our knowledge, no prior meta-epidemiological 
study has quantified the number of meta-regression 
analyses affected by these pitfalls. The problem of 
ecological fallacy in meta-regression analysis is well 
known [4, 5, 23, 24]. For example, Berlin and col-
leagues [5] showed that meta-regression based on 
aggregate data failed to detect an interaction between 
allograft failure after anti-lymphocyte antibody induc-
tion therapy and elevated panel reactive antibodies in 
patients after renal transplantation, whereas an analy-
sis of individual patient data showed evidence for such 
an interaction. The high prevalence of meta-analyses 
with meta-regression that are subject to the ecological 
fallacy in both 2002 and 2012 suggests that published 
recommendations have had limited impact [2, 4, 25]. 
Common covariates prone to ecological bias were age, 
gender or baseline value of the outcome variable. Valid 
investigations of interactions between treatment effect 
and patient-level characteristics require the analysis 
of individual patient data in at least some of the tri-
als included in a meta-analysis [26]. When some tri-
als have individual patient data available, a Bayesian 

meta-regression approach combining associations 
derived from individual and aggregate level data can be 
used [27]. This method first quantifies the association 
between patient characteristics and treatment effect for 
each type of data separately. It then tests whether the 
association estimated based on individual patient data 
is different from the association based on aggregate 
level data. If the test indicates no difference above and 
beyond chance, the associations can then be combined 
using appropriate weighting.

The minimum number of trials per covariate in meta-
regression analyses required to minimize the risk of 
overfitting is unknown. The Cochrane Handbook sug-
gest a minimum of 10 studies per examined covariate, [3] 
but a recent study suggested a considerably lower num-
ber of observations required per covariate in ordinary, 
unweighted least-squares linear regression [6]. Whether 
this also applies to weighted random-effects meta-regres-
sion models is unclear. Given this uncertainty, we chose 
a cut-off of < 5 studies to identify meta-regression analy-
ses at risk of overfitting. If a cut-off of < 10 studies had 
been used, as suggested in the Cochrane Handbook, the 
prevalence of meta-regression analyses at risk of overfit-
ting would have been 53% (43 out of 81 meta-regression 
analyses, data not shown).

Meta-regression is often used to determine whether 
treatment effects are associated with the underlying 
baseline or population risk using the event rate observed 
in the control group as a surrogate for baseline risk [4, 
9]. This approach is problematic as the observed risk 
included as a covariate is also incorporated in the expres-
sion of the treatment effect. Regression to the mean will 
therefore result in potentially spurious associations [1, 4, 
8, 9]. Advanced methods should be used to overcome this 
problem [10–13].

Much like the decision to conduct a fixed-effect or 
random-effects meta-analysis, the decision to conduct 
a meta-regression analysis should not be based on het-
erogeneity assessments using, for instance, a chi-squared 
test, Cochrane Q, or I-squared [2]. Instead, a meta-
regression analysis should be considered whenever a clin-
ically important variation in treatment effects is observed 
on graphical display or indicated by the tau-squared [28].

Conclusions
Results of the majority of meta-regression analyses based 
on aggregate data may be misleading. A considerable 
body of methodological literature and recommendations 
appear to have had little impact on the use of meta-
regression in the medical literature. Authors, editors and 
peer reviewers need to become more aware of the meth-
odological pitfalls of meta-regression analyses.
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