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HIGHLIGHTS:
- Optimal positioning of the microphones is impractical.
- Deep learning can be used to virtually sense microphone signals.
- Virtual microphone signals can significantly improve the speech
quality.
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10 Abstract

1 The cocktail party effect refers to the human sense of hearing’s ability to pay
12 attention to a single conversation while filtering out all other background
13 noise. To mimic this human hearing ability for people with hearing loss,
1 scientists integrate beamforming algorithms into the signal processing path
15 of hearing aids or implants’ audio processors.

16 Although these algorithms’ performance strongly depends on the number
17 and spatial arrangement of the microphones, most devices are equipped with
18 a small mumber of microphones mounted close to each other on the audio
19 processor housing.

20 We ineasured and evaluated the impact of the number and spatial ar-
a1 rangement of hearing aid or head-mounted microphones on the performance
2 of the established Minimum Variance Distortionless Response beamformer in
23 cocktail party scenarios. The measurements revealed that the optimal micro-
2+ phone placement exploits monaural cues (pinna-effect), is close to the target

» signal, and creates a large distance spread due to its spatial arrangement.
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2 However, this microphone placement is impractical for hearing aid or
7 implant users, as it includes microphone positions such as on the forehead. To
28 overcome microphones’ placement at impractical positions, we propose a deep
20 virtual sensing estimation of the corresponding audio signals. The results
s of objective measures and a subjective listening test with 20 participants
a1 showed that the virtually sensed microphone signals significantly improved
» the speech quality, especially in cocktail party scenarios with low signal-to-
;3 noise ratios. Subjective speech quality was assessed using a 3-alternative
s forced choice procedure to determine which of the presented speech mixtures
35 was most pleasant to understand.

36 Hearing aid and cochlear implant (CI) users might benefit from the pre-
s sented approach using virtually sensed microphone signals, especially in noisy

s environments.

s Keywords: artificial intelligence, selective hearing, neural network,
w0 beamformer, hearing aid, cochlear implant
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List of acronyms

SNR signal-to-noise ratio

BSS blind source separation
ASC acoustic scene classification
RTF relative transfer function
STFT short-time Fourier transform

ISTFT  inverse short-time Fourier transform
SI-SDR.  scale-invariant speech to distortion ratio
SDR speech to distortion ratio

STOI short-time objective intelligibility
PESQ perceptual evaluation of speech quality
CI cochlear implant

MVDR minimum variance distortionless response
BCP Bern cocktail party

ILD interaural level difference

HRTF  head related transfer function

ReLU rectified linear unit

GUI graphical user interface
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s 1. Introduction

2 Following a conversation in a noisy setting is difficult. In literature, this
s3 phenomenon is referred to as the cocktail-party problem. It describes an
s acoustic scenario, where multiple speech and noise sources with different in-
s tensities and directions of incidence overlap [1]. For normal-hearing persons,
s the auditory system can handle conflicting sounds and focus on a specific
w conversation [2, 3]. In hearing aids or CI audio processors, this separation
s of the conversational partner from a noise tangle is the goal of sophisticated
» beamforming algorithms [4, 5, 6, 7].

50 It is well known that the signal quality of beamforming algorithms in-
s1 creases with the number of available input microphones and their position-
2 ing with respect to the target source [8, 9, 10, 11, 12, 13]. Using numerical
3 experiments, Feng et al. [8] showed that the microphone positions play an
s« essential role in the overall performance of beamforming algorithms. Jones
ss et al. [14] further showed for CI users that the microphone position at the
ss ear canal versus behind the ear led to more detailed interaural level differ-
sv ence (ILD) information due to the frequency transformations of the pinna
ss [15, 16]. In the specific case of unilateral CI users, it was demonstrated that
so an additional microphone positioned at the contralateral ear led to increased
s speech understanding in noise [17, 13, 18].

61 Since many conversations are held face to face [19], it is reasonable to as-
62 sume that additional microphones in positions other than the contralateral
&3 ear canal, e.g., on the forehead, may further improve speech understanding.
& However, the additional placement of microphones on the head is impractical

e from the perspective of a hearing aid or CI user. One way of circumventing
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6 this limitation may be to place the microphones virtually rather than phys-
o7 ically. The results of several virtual microphone sensing approaches suggest
6s that estimating an additional microphone signal using information from the
s available microphones may improve the speech quality in a cocktail party
70 scenario [20, 21, 22]. The microphone array used to record the reference sig-
7 nals was similar in the studies and consisted of 2 microphones positioned in a
72 straight line at a distance of 4 cm [20, 21] or 3 cm [22] from each other. To gen-
73 erate virtual microphone signals, the phase was linearly interpolated [20, 21]
7+ or extrapolated [22] using measurements of the real microphone signals. In
s Denk et al. [23], functions transformed the sound pressure at a microphone
7 positioned on a hearing aid to the pressure measured at the open eardrum.
77 The basis for the determination of these functions were the relative transfer
78 functions (RTFs) between the microphones, which in turn were determined
7o by head related transfer functions (HRTFs) measurements using frequency
g0 sweeps in an anechoic chamber. Also using frequency sweeps, Corey et al.
a1 [24] measured and evaluated impulse responses of 160 microphones spread
&2 across the body and affixed to wearable accessories. Their results suggest
ss that microphone arrangements with large spatial distance spread across the
ss body provided the best signal-to-noise ratio (SNR) values. Unlike micro-
s phones positioned on the head, the geometric arrangement of microphones
s placed on clothing may change according to posture. Likely, the quality of
&7 a beamforming algorithm defined for a specific microphone geometry suffers
s from the continually changing microphone geometries in everyday life [25].

89 The tremendous progress in the field of machine learning leads to the

o expectation that in the future, the RTFs between microphones can be de-
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o1 termined purely data-driven, i.e., without prior knowledge of the specific
e measurement setup. As a result, beamforming algorithms could be tuned
o3 to individual array geometries by simply providing sufficient reference data
w from the wearer without the need for anechoic chambers or knowledge of
s the sound sources’ positions. In the Mic2Mic publication [26] it was demon-
o strated that even with unlabeled and unpaired data, audio signals between
o different microphone domains could be translated. Based on the results, an
e additional virtual microphone at the head of a hearing aid or CI user gen-
o erated or learned solely by data-driven rules seems like a realistic scenario.
w0  However, regardless of whether the microphones are placed virtually or phys-
1 ically on a subject’s head, little is known about how their positioning affects
102 beamforming.

103 To continue the discussion, the first objective of this work was to system-
s atically investigate the speech signal quality in complex acoustic scenarios
s with varying head-mounted microphone arrangements and a minimum vari-
s ance distortionless response (MVDR) beamformer as introduced by Souden
w7 et al. [10]. Based on these measurements, virtual microphone signals at spe-
ws cific positions were estimated using a deep neural network. Finally, subjec-
o tive listening tests were conducted to investigate to what extent the virtually

o sensed microphone signals could improve the speech signal quality.
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w1 2. Methods

2 2.1. Linear observation model

13 In this work, recordings from M = 16 microphones attached to a human
s head were used. Each of the ¢ = 1... M microphone signals y;(t) recorded
us varying acoustic cocktail party scenarios at time t. In the following, the
ue cocktail party mixtures are described as the summation of the target speech

u7  source s;(t) and the noise w;(t) at microphone i:

yz(t) = G/Z‘S(t — 7'1‘) + wl(t)

118 where 7; represents the time-delay of arrival and a; is the amplitude mod-
o ulation depending on the geometric arrangement of the microphones under
120 the assumption of anechoic conditions. The noise w;(t) is assumed to be
11 uncorrelated with the signal s;(¢).

122 To enhance the perception of the target speech sources, the signals at each
123 microphone can be combined using ”beamforming” techniques. In this study,
12a - we used the widely studied MVDR beamformer [27, 28], which is introduced

125 in the following section.

e 2.2. MVDR beamforming

127 The MVDR beamformer minimizes the power of the beamformed signal
s while preserving the target signal, under the constraint of no distortion in the
19 target signal [10]. The MVDR is a filter-and-sum beamformer and as such
10 it applies different phase weights h;(f) to the ¢ input microphone channels

1 in order to steer the main lobe of the directivity pattern to the direction of
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12 the target signal. The phase weights, or filters, are obtained in the frequency

133 domain using [29]:

1
R
1 Where I is the identity matrix and G(f) can be obtained by G(f) =
s DL (f)Pobs(f) with A(f) = trace(G(f)) — M [30, 10]. The spatial covari-

noise

href(f) = [hl,ref(f)y--'7hM7ref(f)]T (G(f) _IMXM) €ref (1)

135 ance matrices ® can be computed by using time-frequency masks [29, 31, 32,
137 33]. However, in this work we focus on the impact of additional microphone
135 channels on the MVDR beamformers performance and extract ®, % (f),
139 Pops(f) and Pearger(f) from the noise, observation and target recordings.

140 The standard unit vector of the reference microphone e, is selected by a

w1 maximum a posteriori expected SNR estimation. The reference microphone

w2 is chosen based on ref = argmiax SNR o5, [29] and:

F—1q4 H
SNRpost,r N ZJ;?_OlhTH(f)(btarget(f)hr(f).
S0 B () @uoise (f) R (f)

Thus, the reference channel or microphone depends on h,.(f), which is

the M-dimensional filter response (see Eq. 1) at the discrete frequency in-
dex f = 0,....F — 1, when e, is set to e,. After the filters h,.;(f) are
computed, the beamformed output 2, ; is obtained by using the short-time

Fourier transforms (STFTSs) y; . of the microphone signals y;(t):

M
Ztf = Z Pigres () Yit.s
i=1

143 For the MVDR beamformer, the input signals were down-sampled to
s 8kHz and a Blackman window was applied [34]. Subsequently, an STFT

us  (size = 256 and shift = 128) was performed. To reconstruct the signal, an

9



Journal Pre-proof

us inverse short-time Fourier transform (ISTFT) with the overlapadd strategy
7 was applied. The herein used MVDR beamformer to evaluate the benefits
s of virtual microphone signals is just one application scenario. Theoretically,
1o any multi-channel speech-enhancement algorithm could have been used to

10 assess the benefits of virtually sensed microphone signals.

1 2.53. Data

152 The Bern cocktail party (BCP) dataset is tailored to this work, as it
153 contains multi-microphone recordings of hearing aid or CI users in cocktail
15a party scenarios [35]. For the recordings, 12 loudspeakers (Control 1 Pro,
155 JBL, Northridge, USA) were aligned horizontally in a circle at the height
15 of the ears (1.2 m) in an acoustic chiamber [36, 37, 13]. For this work, we
157 used the acoustic scenarios captured with 16 microphones (ICS-40619, TDK,
158 Tokyo, Japan) attached to a head and torso simulator (Brel & Kjeer, Type
159 4128, Neerum, Denmark) (see Figures 1 and 2).

2(6) 3(7)

Figure 1: Placement of the 16 microphones used for cocktail party scenario recordings.
The IDs refer to the microphone signals assignment in the multi-channel recording audio
files [35]. Numbers in brackets refer to the contralateral (here: right side) assignment of
the microphones. The sagittal plane is defined by a straight line between microphones 10

and 13 (front and back). A numeric description can be found in Table 1.

10
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Table 1: Assignment of the 16 microphone positions to their respective IDs.

Microphone ID  Microphone position

{1} Left audio processor. Facing forward.

{2} Left audio processor. Facing to the top / forward.
{3} Left audio processor. Facing to the top / backward.
{4} Left audio processor. Facing back.

{5} Right audio processor. Facing forward.

{6} Right audio processor. Facing to the top / forward.
{7} Right audio processor. Facing to the top / backward.
{8} Right audio processor. Facing backward.

{9} Right temple.

{10} Front.

{11} Left temple.

{12} Left transmission coil.

{13} Back.

{14} Right transmission coil.

{15} Left Ear. Entry of the ear canal.

{16} Right Ear. Entry of the ear canal.

11
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wo 2.3.1. Test dataset

161 The results of this work were computed with an excerpt of 2400 samples
12 from the BCP dataset [35]. The duration of each sample was 1.5 s, resulting
163 in a total test dataset duration of 1h. The samples were randomly chosen
16« under the constraint, that a majority of the recordings contain a target source
165 azimuth inside the field of view (i.e., £45°), as this represents the most
s natural listening scenario [38] (see Figure 3). All samples were randomly
167 selected from an SNR distribution which covered conversational speech levels
e with 1 to 3 competing speakers and varying background noise types and
1o intensities. The distribution of the audio mixture on the 12 output channels
o covered scenarios of spatially separated and non-separated speech and noise
1 sources. The samples or audio mixtures had a mean SNR value of 1.2 dB

12 with a standard deviation of 10.9 dB.

w3 2.3.2. Training dataset

174 For the training and validation of the deep neural network 65h (78404
s audio samples with 3s duration each) were randomly selected from the head
e and torso simulator recordings of the BCP dataset [35], excluding the test
177 dataset (see Section 2.3.1). Ninety percent of the samples were used for
178 training and 10% for validation. Because of the large size of the training and

o validation dataset, no cross-validation was performed.

12
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Figure 2: Euclidean distances in millimeters between the microphones for the head and

torso simulator measurements [35].

270°

180°

Figure 3: Circular histogram of the frequency of occurrence of spatial source directions
in relation to the head and torso simulator azimuth. The audio files were were selected
such that the directional distribution assumes a von-Mises distribution with g = 0.0 and

k= 1.1[35].

13
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o 2.4. Fwvaluation of microphone channel configurations

181 Various microphone channel configurations were evaluated by adding or
122 omitting microphone channels with respect to a reference microphone chan-
153 nel configuration, as explained in detail later (Section 3, Tables 3-6). The
1w results were computed by providing the MVDR beamformer [10] with the
15 target and noise spatial covariance matrices ® of the audio mixtures from
15 the corresponding microphone configurations.

187 The reference microphone configurations were selected to cover reasonable
18 microphone inputs of hearing aid devices or audio processors. Care was also
189 taken to ensure that all microphones in the unilateral reference microphone
o configurations could technically be connected to the audio processor using an
01 existing cable such as from the CI transmission coil to the audio processor.

192 To cover realistic use cases regarding the benefits of different microphone
103 configurations, the results were divided into 4 categories rather than pre-
104 senting all possible microphone channel combinations: subsets of unilateral
105 CI microphone configurations (see Table 3), unilateral CI microphone con-
s figurations with additional ipsilateral microphones (Table 4), unilateral CI
17 microphone configurations with additional contralateral microphones (Table
ws  5), symmetric bilateral CI configurations with additional microphones (Table
we 6). An overview of all measured microphone configurations can be found in
20 Table 2.

201 For the evaluation of the microphone configurations (i.e., real recordings
20 and virtually sensed microphone channels), the following objective speech
203 quality metrics were assessed: perceptual evaluation of speech quality (PESQ)

200 [39], short-time objective intelligibility (STOI) [40] and scale-invariant speech

14
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Table 2: Overview of all measured microphone configurations.

Unilateral microphone configurations Bilateral microphone configurations

{1} {1, 2,3, 4,9}

{2} {1,2,3, 4,14}

{3} {1,2,3, 4,16}

{4} {1,2,3,4,5,6,7, 8

{10} {1,2,3,4,5,6, 7,810}
{11} {1,2,3,4,5,6,7,8 13}
{12} {1,2,3,4,5.6.7,8.9, 11}
{13} {1,2,3,4,56,7,8,9,10, 11, 12, 13, 14, 15, 16}
{15} {1,2,3,4,5.6, 7,8, 15, 16}
{1, 2} {2.3,9}

{1,2, 3,4} (2,3, 14}

{1,2, 3,4, 10} {2, 3, 16}

{1, 2,3, 4, 11} {27 3, 6, 7}

{1,2,3, 4,12} {2, 3,6, 7,10}

{1,2, 3, 4,13} {2,3,6,7, 13}

{1,2,3, 4,15} {2,3,6,7,9, 11}

{1, 3} {2,3,6,7,15, 16}

{1, 4} {2, 3,10, 13, 16}

{2.3}

{2, 3,10}

{2, 3, 11}

{2,3, 12}

{2, 3,13}

{2, 3, 15}

{2, 4}

{3. 4}

15
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205 to distortion ratio (SI-SDR) [41]. The PESQ metric models the speech qual-
206 ity as perceived by human listeners. Analysis of speech-audio with the PESQ
207 metric usually ranges from 1.0 (high distortion) to 4.5 (no distortion) [39].
206 The values of STOI range from 0.0 (no word correctly understood) to 1.0
200 (all words correctly understood) and highly correlate with the intelligibility
20 of degraded speech signals [40]. The SI-SDR metric defines the energy ratio
a1 between the clean target signal and the acoustic distortions in decibel (dB).
22 It is a slightly modified version of speech to distortion ratio (SDR), making
213 it insensitive to power rescaling of the estimated signal [41].

214 For testing within a group of microphone configurations, the Friedman
215 test was used (see Sections 3.1 and 3.2). To find the configurations that dif-
a6 fered significantly after the Friedman test has rejected the null hypothesis, a
27 post-hoc Nemenyi test was perfornmed. In Section 3.3, two sets of paired sam-
a8 ples were compared to each other with the two-sided Wilcoxon signed-rank
210 test (no multiple testing). The significance level was chosen with a = 0.05

»o for all statistical tests.

o 2.5. Virtual sensing of a microphone channel

22 The virtual sensing approach aimed to improve the speech quality in cock-
223 tail party scenarios by providing the beamformer with additional, virtually
24 sensed, microphone signals. In this work, the estimation of the virtual micro-
»s phone signals was realized by a purely data-driven deep learning approach
26 on the raw-audio mixture without preprocessing [42].

227 Most applications of deep neural networks in the domain of audio signal
28 processing address the enhancement of speech signals by separating a target

29 source (speech) from a mixture of interfering noise sources [43]. In the work

16
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20 presented here, however, no source separation was performed, but rather, in
2 a transferred sense, a denoising of the reference signal, as explained in the
2 following: Let the audio signal captured from a microphone inside the ear
213 canal of the left ear be the reference signal and the audio signal inside the
24 ear canal of the right ear the target signal. By trying to match the signal of
25 the left ear to the right ear or denoise the left ear, we hypothesize that the
236 network implicitly learns the RTF between the two microphone signals or, in
27 other words, the "noise” to remove from the audio signal of the left ear. As
238 a result, the network tries to virtually sense the right ear’s audio input by
239 using the signal of the left ear. To evaluate the quality of the virtually sensed
20 microphones, spatial covariance matrices ® with and without virtually sensed
21 microphone signals were provided as input for the MVDR beamformer [10].
a2 The results were compared with the same metrics and statistics as with the
23 real microphones measurements (see Section 2.4).

244 In this study, two microphone signals were used as reference signals, and
us  three additional microphone signals were virtually sensed. The 2 reference
26 signals consisted of the microphones {2, 3} and were chosen because their
27 spatial arrangement corresponds to that of a conventional CI audio proces-
2 sor (see Figure 1 or Table 1). Motivated by the results of the head-mounted
20 microphone measurements, the microphone on the forehead ({10}), the back
20 ({13}) and inside the ear canal of the contralateral ear ({16}) were chosen
51 as target signals for the virtual sensing approach. In the remainder of the
22 manuscript, virtual channels are indicated by the subscript v. The resulting
23 microphone configuration ({2, 3, 10,, 13,, 16,}) provided the advantages

2 as explained in the Discussion (Section 4.1): a high spatial spread of the

17
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255 microphone signals [44], proximity to the target signal, and frequency trans-

26 formations by the pinna and head shadow [15].

57 2.5.1. Deep neural network architecture for the virtual sensing approach

AN a—

—_—
[21 46077] 3264 6464128 128128 256 256 256 512 512512 1024
<

I == N a7 ) ) ~ y
= ‘ 32 64 64 64 128 128128 256 256 256 512 512 512 512 512 1024 1024
— — =i
1D Convolution + 1D Trans. Conv. + Skip + 1D Con_wolution +
Group Norm + Group Norm + Crop + Clamping output to [-1,1]
RelLU RelLU Concatenate (not while training)

Figure 4: The proposed deep neural network architecture for the virtual sensing of addi-
tional microphone chanmnels based on the work of Stoller et al. [42]. The numbers below the
blocks describe the input channel size of the following convolution. Shown is an example
for the estimation of the microphone signal on the forehead ({10}) with the measurement
data of 2 microphones as positioned in conventional cochlear implant (CI) audio processors
(microphones {2, 3}). The network’s input and output data blocks denoted with ”[A, B]”
describe the number of channels (A) and the number of samples (B). For an illustration

of the microphone placement, please see Figure 1.

258 The network architecture followed the U-Net adaption for end-to-end au-
20 dio source separation in the time-domain [42]. The neural network operation
»0 on the raw-waveform in the time domain allowed to model the phase infor-

1 mation of the audio signal, thus avoiding complex phase recovery algorithms

18
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22 [45, 46]. The well known U-Net structure is composed as a convolutional
23 autoencoder, and as such, consists of an encoder (contracting path), a bot-
26 tleneck, and a decoder (expanding path) [47]. A diagram of our network’s
s architecture implementation is shown in Figure 4.

266 In the encoder, an increasing number of higher-level features on coarser
7 time scales were calculated, allowing the modeling of long-term dependen-
%8 cies in the audio signal. Our implementation of the encoder consisted of
w0 D levels, with each level working on half the time resolution and twice the
20 number of feature maps as the previous one. In the bottleneck, the model
on was forced to learn a compression of the input data, containing only the
2 relevant information (latent space) to construct the virtual microphone sig-
o3 nal. The latent-space representation of the bottleneck layer was passed to
o the decoder, which tried to learn a mapping of the input data to match the
s desired virtual microphone signal. The decoder was the mirror image of the
26 encoder and also consisted of 5 levels. Each level worked on double the time
o7 resolution and half the number of feature maps as the previous level. Based
ais on the results of initial tests, transposed convolutions were used for the up-
279 sampling process. Each convolution was followed by group normalization,
20 and a rectified linear unit (ReLU) activation function [48, 19]. By introduc-
21 ing the skip connections in the encoder-decoder architecture, the encoder’s
22 high-level features were concatenated with the local features computed dur-
23 ing the upsampling block of the decoding. The result of this concatenation
e were multi-scale features that were fed in the output layer of the network
25 |47, 42]. The output of the last convolutional layer was the estimation of the

286 virtually sensed microphone signal.

19
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267 The receptive field of the model was chosen to work with 2.1s (46077
23 samples), which provided an output vector with the desired test size of 1.5
260 (33797 samples).

200 Since no implicit zero padding was performed in the convolution oper-
201 ation, the neural network’s output sample size was smaller than the input
22 sample size. Avoiding zero-padding allowed the convolutions to be performed
203 in the correct audio context. As a result, audio artifacts in the results could
24 be minimized, and the temporal continuity of the audio signal was better

205 preserved [42].

26 2.5.2. Network training

207 To train the deep virtual sensing network, we extracted measurement
20 data from the two reference channels ({2, 3}) and the microphone channel to
200 be estimated. Due to the large size of the BCP training dataset (see Section
w0 2.3.2), no data augmentation was necessary. In accordance with the original
sn Wave-U-Net implementation [42], the audio data of the BCP dataset [35]
s was downsampled to 22.05kHz. For evaluating the network’s performance,
03 the absolute differences between the actual value and the predicted value (L4
3¢ loss) wereused. To update the network weights iteratively based on training
s data, we applied the ADAM optimizer [49] with the default decay rates of
w06 B = 0.9, B = 0.999 and a batch size of 16 [42]. Instead of monotonically
s decreasing the learning rate, cyclical learning rates [50] were used with upper
;s and lower boundaries of 0.0002 and 0.00001, respectively. Early stopping was
30 performed after 10 epochs with only minimal improvement on the validation
a0 loss. Afterward, the best model was fine-tuned with lower learning rate limits

s (0.000001 to 0.00001) and a batch size of 8, again until 10 epochs without

20
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sz improvement on the validation loss. The fine-tuned network was further used
sz to predict the virtual channels. The test dataset to evaluate the virtually
sie sensed microphone channels consisted of 2400 samples, which included the
a5 audio files described in Section 2.3.1. Care was taken to ensure that none of
316 the test samples were used to validate or train the network.

317 Since each virtual channel was estimated on a separate network, the net-
a8 works were trained one after the other. The training time was reduced by
50 successively using the previously trained network as a starting-point (trans-
2o fer learning) [51]. All computations were performed with the open-source

s machine learning framework PyTorch version 1.6.0 [52].

2 2.5.3. Subjective listening tests

323 Twenty normal hearing participants (6 female, 14 male, mean age in years
2 = 29.8, SD = 3.6) performed a subjective listening test to evaluate the benefit
»s  of the virtually sensed microphone signals on the speech quality. The test
16 was performed in a quiet environment, and stimuli were presented via high
w7 definition insert earphones (Triple Driver, 1 More Inc. San Diego, CA) at
»s the most comfortable loudness levels as selected by the subjects.

329 The questions of the subjective evaluation were twofold. First, we asked
10 the subjects whether the signal processing applied by the MVDR beamformer
s lead to overall improved speech quality. Second, it was evaluated whether the
s beamformed signal based on the reference channels ({2, 3}) with additional
s virtual channels ({10y}, {13,}, {16,}) outperforms the beamformed signal
s without virtual channels available, i.e. only the measured channels {2, 3}
135 were used (see Figure 1 or Table 1 for a transcription of the channel IDs).

336 To answer these questions, the participants were asked to listen to 3 audio
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s mixtures, all based on the same recording but either

338 e Beamformed based on the reference channels with additional virtual

channels ({2, 3} + {10,}, {13,}, {16,})

3

@
©

340 e Beamformed based on the reference channels only ({2, 3})
341 e The non-beamformed recording of the channels {2, 3}
32 The 3 audio mixtures were randomly assigned to 3 buttons on a graphical

a3 user interface (GUI). Since the beamformer’s task was to enhance the speech
s quality for a predefined target signal, a fourth button on the GUI labeled
us " Target Signal” played back a recording of the corresponding target speech
us signal without interfering background noise. Finally, the participants’ task
wr was to select from the 3 audio mixtures the one in which the target signal
us  was most comfortable to understand. Before the test started, trial runs were
uo conducted until the participants confirmed that they understood the test
30 procedure.

351 During the test and the trial runs, the participants were allowed to hear
32 the 4 audio files (1 target signal and 3 audio mixtures) as many times as de-
33 sired. The test stimuli consisted of 60 audio mixture quartets of 1.5 seconds
0 length perfile, ensuring that each file contained the utterance of at least one
355 word. “All audio mixtures were taken from the pool of the 2400 test files
356 described in Section 2.3 with distribution proportions as shown in Figure 3.
7 Evaluation of the presented audio files took about 20 minutes; no feedback
s was given during or after the test. After evaluating 30 of the 60 audio files, a
30 pause of 3 minutes was taken during which the GUI was disabled. To mini-

30 mize order bias, the 2 stimuli blocks that were evaluated before and after the
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1 pause were counter-balanced within the participants. The subjective listen-
2 ing evaluation was designed in accordance with the Declaration of Helsinki,
33 written informed consent was obtained from all participants.

364 A Kruskal-Wallis test was used to determine if the frequency of choices
35 within the 3 response options differed significantly from each other. After the
36 Kruskal-Wallis test has rejected the null hypothesis, a post-hoc Nemenyi test
37 was performed to investigate which of the response distributions differed sig-
s nificantly from each other. To determine whether the response distributions
w0 differed significantly from the chance level of the test (33 %), a chi-square
s test was applied. The significance level was chosen with o = 0.05 for all

s statistical tests.
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sz 3. Results

sz 3.1. MVDR beamforming with unilateral channel configurations

374 Table 3 shows the PESQ, STOI and SI-SDR. performances of unilateral
w5 single microphone configurations compared to the performance with the ref-
we erence configuration, i.e. a CI audio processor equipped with 4 microphones
sz placed on top of the housing. For the PESQ and SI-SDR metric, the per-
sis formances with single microphones were significantly worse than with the
w0 4-channel reference configuration (all p = 0.001)." The same was observed
s for STOI (p = 0.001) except for the microphones {1, 4} and {2, 4} (both
31 p=0.9). In all 3 metrics, the microphones that were facing the front (front
32 {10}, left temple {11}, forward facing (audio processor) {1}, see Figure 1
33 or Table 1) achieved the best results; whereas the performance differences
s between channels {10} and {11} were not statistically significant in terms of
s PESQ and SI-SDR (p = 0.608, p = 0.9) but for STOI (p = 0.001). Between
s the microphones {1} and {2} the metrics PESQ, STOI and SI-SDR did not
w7 differ significantly (p = 0.408, p = 0.9, p = 0.115) (a significance-matrix
;s showing the results of the post-hoc Nemenyi tests for Table 3 can be found
3 in the Appendix (Figures A.1-A.3)).

300 When the same 4-channel reference configuration (microphones {1, 2, 3,
;1 4}) was extended by the aforementioned ipsilateral single microphone signals,
3 again the front-facing microphones {10} and {11} (see Figure 3) provided the
303 greatest benefit (see Table 4). The performance differences for all metrics
3« when channel {10} (front) was added did not differ significantly from the
ws performance differences when channel {11} (left temple) was added to the

w6 reference configuration (PESQ: p = 0.792, STOL: p = 0.736, SI-SDR: p = 0.9)
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27 (a significance-matrix showing the results of the post-hoc Nemenyi tests for
:s Table 4 can be found in the Appendix (Figures A.4-A.9)).

399 Since many CI audio processors record signals from 2 microphones posi-
wo tioned on top of the housing, the performance of different spatial arrange-
w1 ments of 2 microphones placed on the audio processor compared to the 4-
w2 channel reference configuration (microphones {1, 2, 3, 4}) was investigated
w03 and is shown in Table 3. The arrangement with the largest spatial distance
a4 between the 2 microphones, namely the microphones on top of the audio pro-
aws cessors facing the front and back ({1, 4}), achieved the best performance (see
ws Figure 2 for a microphone distance matrix). The statistical analysis showed
w7 that the performance differences of the microphones {1, 4} did not differ sig-
ws nificantly for PESQ and STOI from the results compared to the microphones
w0 on the audio processor facing the top and the back ({2, 4}) to the reference
a0 configuration (p = 0.668, p = 0.9). Both 2 channel microphone configura-
an tions did not differ significantly from the 4 channel reference configuration in
sz terms of STOI (both p=10.9). For the SI-SDR metric, the differences when
a3 adding {1, 4} did not differ statistically significantly from any of the tested
se 2 channel configurations (all p = 0.9).

415 The arrangement with the smallest inter-microphone distance (micro-
ns phones {2, 3}, see Figures 1 and 2), which is related to the conventional
a7 microphone positions of CI audio processors, achieved the lowest scores in
ss 2 (STOI and SI-SDR) of the 3 evaluated objective metrics, even though for
a0 SI-SDR the differences of this configuration did not differ significantly from
20 any of the tested 2 channel configurations (all p = 0.9). For the metrics PESQ

s21 and STOI no significant differences in the performances between the micro-
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a2 phones {2, 3}, {1, 2} or {1, 3} were observed (PESQ: p = 0.721, p = 0.601,
23 STOL p=0.884, p = 0.134). Table 4 shows the impact on the PESQ, STOI
22 and SI-SDR metrics when additional ipsilateral, including those on the sagit-
s tal plane, microphones were added to the the conventional microphone ar-
26 rangement ({2, 3}). The extension of the microphone arrangement ({2, 3})
27 with forward facing microphones (front {10} or left temple {11}) provided
w8 the greatest benefit. For none of the 3 tested metrics did the performance
29 between adding the front ({10}) or left temple ({11}) microphone to the
a0 conventional microphone arrangement differ significantly (PESQ: p = 0.067,

w STOI: p = 0.678, SI-SDR: p = 0.251).
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Table 3: Values represent the mean difference in the performance of the unilateral cochlear
implant (CI) microphone configurations compared to the mean performance of the refer-
ence channel configuration including channels positioned on the sagittal plane (see Figure
1). The best result for each metric is marked in bold. All performance differences were sta-
tistically significant compared to the reference channel performance, except those marked

with 7.

Metric

Microphone IDs PESQ STOI SI-SDR

Ref: {1,2, 8 4} 1.77 048 . -29.07

{1} -028 -0.06 -2.95
{2} -0.28 -0.06 -3.13
{3} 029 -0.06 -3.13
{4} -031 -0.07 -3.32
{10} -0.24 -0.03 277
{11} -025 -004  -2.65
{12} -030 -0.07 -3.24
{13}  -035  -0.08 -3.52

{15} -029 -0.06  -3.19

{1,2}  -0.17  -0.03 -1.25
{3,4}  -0.13 -0.02 -0.86
{1,3y  -0.15 -0.03 -0.97
{1,4} -0.08 -0.01f -0.77
{2,3}  -0.16 -0.03 -1.32
{2,4}y  -0.09 -0.01 -0.89
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Table 4: Values represent the mean difference in the performance of unilateral cochlear im-
plant (CI) microphone configurations when additional ipsilateral, including sagittal plane,
microphones were added (see Figure 1). The performance difference is calculated in rela-
tion to the mean performance of the reference channel configuration. The best result for
each metric is marked in bold. All performance differences were statistically significant

compared to the reference channel performance, except those marked with 17,

Metric

Microphone IDs PESQ STOI SI-SDR

Ref: {1,2 8 4y 177 048  -29.07

Ref. + {10} _~ 0.18  0.04 0.69
Ref. + {11} ~ 0.20  0.04 0.59
Ref. + {12} 002 <0.01 0.14t
Ref. + {13} 011  0.03 0.64

Ref.+ {15} 001 <0.01f  -039f

Ref.: {2, 8 1.61 045  -30.38

Ref. + {10} 022  0.06 1.38
Ref. + {11}  0.23  0.06 1.10
Ref. + {12} 012  0.03 0.81
Ref. + {13} 015  0.04 0.92
Ref. + {15} 003 <0.01 0.30
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w2 3.2. MVDR beamforming with bilateral channel configurations
433 Table 5 shows the PESQ, STOI and SI-SDR performances when addi-

sa tional bilateral microphones were added to the input signals of an unilateral
35 CI audio processor equipped with 4 microphones placed on top of the housing
s (microphones {1, 2, 3, 4}, see Figure 1 or Table 1). When a single contralat-
37 eral microphone was added, it was not the microphone closest to the target
s source (microphone {9}, temple) that provided the greatest benefit in terms
a0 of the human perception-related objective metrics PESQ and STOI, but the
so contralateral ear canal microphone {16}. Compared to adding channels {9}
s or {14} (temple or contralateral CI transmiission coil), the improvement of
w2 the PESQ and STOI metrics were significantly better when adding the con-
a3 tralateral ear-canal microphone (all p'= 0.001) (a significance-matrix show-
as ing all results of the post-hoc Nemenyi test for Table 5 can be found in the
ss  Appendix (Figures A.10-A.15)). However, in terms of SI-SDR, the input
15 from the microphone on the contralateral CI transmission coil (microphone
w7 {14}) achieved the best SI-SDR values and even outperformed the micro-
us  phone configuration compared to an additional contralateral 4-channel CI
wo audio processor. All differences in SI-SDR with the contralateral transmis-
a0 sioncoil microphone ({14}) compared to {9} (contralateral temple), {16}
i1 (contralateral ear canal) and Ref. ch. + {5, 6, 7, 8} were not statistically
w2 significant (p = 0.362, p = 0.802, p = 0.409). Since the cable connection
i3 between the CI transmission-coil and the audio processor could theoretically
s be exploited to transmit audio signals, a unilateral microphone configuration
55 was also used as a reference, which included the coil signal ({12}) in addi-

w6 tion to the 4 microphones on the audio processors. The results showed in
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»s7 Table 5 did differ only marginally and non significantly between the refer-
s ence configuration with the CI transmission coil ({1, 2, 3, 4, 12}) and the
0 reference configuration without the CI transmission coil microphone ({1, 2,
w0 3, 4}). The small benefit of adding microphone {12} to the reference channel
w1 configuration is also indicated by the results of Table 4.

462 An analysis of the results with a reference microphone configuration based
w3 on the conventional spatial microphone arrangement in CI audio processors
a4 (microphones {2, 3}, see Figure 1 or Table 1), lead to similar conclusions
a5 as with the 4-channel microphone configuration described above (see Table
w6 D). Again, the overall result of a single additional microphone positioned
w7 at the contralateral ear-canal {16} was best, but only with respect to STOI
we and PESQ. For the PESQ metric, the performance with an additional mi-
w0 crophone positioned in the contralateral ear canal differed non-significantly
s compared to the performance with an additional microphone on the temple
m ({9}) (p=10.763). In terms of SI-SDR, the microphones on the contralateral
a2 side which were close to the sagittal plane (temple {9} and transmission coil
ws {14}) outperformed the contralateral ear-canal microphone {16} when added
we  to the microphone configuration {2, 3} (p = 0.006, p = 0.9). An additional,
ws identical, bilaterally connected processor with 2 microphones ({6, 7}) yielded
as  significantly better values in all metrics than adding the single microphones

s shown in Table 5 (see Appendix Figure A.13-A.15 for p-values).
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Table 5: Values represent the mean difference in the performance of unilateral cochlear
implant (CI) microphone configurations when additional contralateral microphones were
added (see Figure 1). The performance difference is calculated in relation to the mean
performance of the reference channel configuration. The best result for each metric is
marked in bold. All performance differences were statistically significant compared to the

reference channel performance.

Metric

Microphone IDs PESQ STOI SI-SDR

Ref.: {1, 2, 8, 4} 1.77 0.48 -29.07

Ref. + {9} ~ 012  0.03 0.41
Ref. + {14} 0.16  0.03 0.80
Ref. + {16}  0.19  0.04 0.42
Ref. + {5,.6,7,8%  0.30  0.05 0.61

Ref.: {2, 3} 1.61 045  -30.38

Ref. + {9} 018  0.04 1.30
Ref. + {14} 019  0.04 1.28
Ref. + {16} 021  0.05 1.13

Ref. + {6,7}  0.26  0.06 1.44
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478 When a bilateral CI processor microphone configuration was taken as a
mo reference (microphones {1, 2, 3, 4, 5, 6, 7, 8}, see Table 6), adding a micro-
0 phone to the front ({10}) provided more benefit than adding a microphone
w1 facing the back ({13}) (PESQ and STOI: p = 0.001), but for SI-SDR not
s statistically significant (p = 0.515) (a significance-matrix showing all results
a3 of the post-hoc Nemenyi test for Table 6 can be found in the Appendix (Fig-
s ures A.16-A.21)). The single front microphone achieved even similar and
s statistically not significantly differing STOI and SI-SDR values compared
s to the performance when adding 2 microphones at the left and right tem-
w7 ple ({9,11}) (both metrics p = 0.9). For PESQ however, the performance
ss with the additional 2 temple microphones ({9,11}) differed statistically sig-
s nificant compared to the additional microphone facing to the front ({10})
w0 (p=0.001). Adding the signals of the two in-ear microphones ({15, 16}) to
a1 the bilateral CI processor microphone configuration (microphones {1, 2, 3, 4,
w2 5, 6,7, 8}) did not provide any benefit, not even if only 2 bilateral ({2, 3, 6,
w3 T7}) instead of 4 ({1, 2,3, 4, 5, 6, 7, 8}) bilateral processor microphones were
sa used as a reference microphone configuration. The full 16-channel micro-
w5 phone configuration achieved the statistically significant best PESQ scores
ws (all p=10.001). However, in terms of STOI and SI-SDR the performance did
a7 barely, and for SI-SDR non significantly, differ compared to the 8-channel ref-
w8 erence microphone configuration. Again, as with the unilateral 4-microphone
w0 CI audio processor configuration, adding the transmission-coil microphone
so0 signals ({12, 14}) to the bilateral microphone configurations ({1, 2, 3, 4, 5,
s0 6, 7,8} or {2, 3, 6, 7}) did barely and statistically not significant influence

so2  the performance metrics shown in Table 6.
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Table 6: Values represent the mean difference in the performance of bilateral cochlear
implant (CI) microphone configurations when additional microphones were added (see
Figure 1). The performance difference is calculated in relation to the mean performance
of the reference channel configuration. The best result for each metric is marked in bold.
All performance differences were statistically significant compared to the reference channel

performance, except those marked with ”17.

Metric

Microphone IDs PESQ STOI SI-SDR

Ref.: {1, 2, 3, 4, 5, 6, 7, 8 2.07 0.54 -28.46

Ref. + {10} 0.11  0.01 0.02f
Ref: + {9, 11} 0.12  0.02 0.11
Ref.+ {15, 16}  -0.01  -0.01 -0.56

Ref+ {13} 0.05  0.01 0.061
Ref. + {9, 10, 11,12, 13, 14, 15,16}  0.19  0.01  -0.61f

Ref.: {2, 3,6, 70 1.87  0.51  -28.94

Ref. + {10} 0.16  0.03 0.49
Ref. + {13} 011  0.02 0.20
Ref. + {9, 11}  0.22  0.04 0.81
Ref. + {15,16}  0.04 <0.01  -0.39
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si3 3.3. Virtual sensing of microphone channels

504 The bar graphs in Figure 5 compare the performance in PESQ, STOI
ss and SI-SDR (see Methods Section 2.4) between virtually sensed microphone
so6 signals and actually measured microphone signals placed at the same position
s on the head, i.e. the front ({10}), the back ({13}) and at the entry of the
ss right external auditory canal ({16}) (see Figure 1 or Table 1). For all 3
s0 objective speech quality metrics tested, adding virtually sensed microphone
si0  signals to the input signals of the MVDR beamformer resulted in a significant
suu  improvement compared to the performance with microphone signals as used
sz in conventional CI audio processors ({2, 3}) (p < 0.001).

513 The mean benefit in performance when additional virtual/measured mi-
siu crophone signals were used for beamforming was 0.24/0.34 units for PESQ),
sis 0.06/0.07 units for STOI, and 1.17/1.25 dB for SI-SDR. For the PESQ and
sis S 1Ol metrics, the performance between the virtually sensed microphone sig-
sz nals and the measured microphones signals differed significantly (p < 0.001).
s In terms of SI-SDR, no significant difference between the two configurations
s.9 were observed (p = 0.998).

520 An analysis of the performance of the neural networks with respect to each
sz of the estimated channels {16}, {13} and {10} showed that the mean benefit
s» when an additional virtual/measured microphone signal was used for beam-
s forming was 0.154/0.211, 0.114/0.149, 0.178/0.219 for PESQ, 0.049/0.052,
s 0.028/0.032, 0.042/0.048 for STOI, and 1.000/1.057, 0.938/0.877, 1.493/1.377
25 for SI-SDR. For the metrics PESQ and STOI the differences in performance
s26 between the additional virtually estimated microphone and the measured mi-

s27 crophone were significant (all p < 0.001). For SI-SDR, the differences were
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s significant only with respect to microphone channel {10} (p = 0.027), but not
s20 for the channels {13} and {16} (p = 0.244, p = 0.309). The on average bad
s results for channel {16}, meaning the largest difference between the benefit
su  of additional virtual/measured microphone signals, and the best results for
s channel {10} were also reflected in the validation losses of the trained net-
s33 works. For channel {16}, {13} and {10}, the best L;-losses on the validation
s set were 2.1 x 1074, 1.5 x 107% and 1.4 x 107, respectively.

PESQ STOIl SI-SDR (dB)
2.000- 0.530- -28.91-
1.932- 0.516 -1 -29.16-
1.864 - 0.502- F -29.41 -
1.796- 0.488-15 20.66 -
1.728- 0.474 - 29.91-
Ref. channels
performance 1:660 ‘3 n 0.460 = + 30.16 - .
5353 £3 6% £3 €%
wao gE w g EE w8 g
& E &3 L e &3 2e &3

Figure 5: Comparison of overall perceptual evaluation of speech quality (PESQ), short-
time objective intelligibility (STOI) and scale-invariant speech to distortion ratio (SI-SDR)
scores between 3 different microphone channel configurations used as input signals for
the minimum variance distortionless response (MVDR) beamforming algorithm [10]: 1)
Reference channel configuration according to the conventional microphone placement on CI
audio processors (microphone IDs {2, 3}) (bold letters); 2) Reference channel configuration
with additional measured (real) microphones (microphone IDs {2, 3} + {10, 13, 16}) (dark
grey bar); 3) Reference channel configuration with additional virtually sensed microphones
(microphone IDs {2, 3} + {10, 13y, 16,}) (light grey bar). The dataset used to evaluate
the microphone channel configurations consisted of 2400 cocktail party audio samples, as
described in Section 2.3. Please see Figure 1 or Table 1 for a description of the microphone

IDs.
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s35 3.3.1. Subjective listening tests

536 Figure 6 shows that the participants preferred the audio mixture that
s37 - was beamformed using the additional virtual channels (Mean=65%, SD=8%)
s33  compared to a beamformed signal generated using only the microphones as
s placed in CI audio processors (Mean=23%, SD=4%). This difference in
s selection frequency was statistically significant with p < 0.001.

541 The non-beamformed signal was rarely selected as the signal that was
s2» easiest to understand (Mean=13%, SD=7%). The beamformed signal based
ss3 - on the reference channel only and the beamformed signal based on additional
saa - virtual channels differed significantly to the non-beamformed audio mixture
sss  selection frequency (p = 0.002, p < 0.001).

546 For all of the presented signal configurations, the distribution of the fre-
sev quency of choices differed significantly from the chance level of the test (all
ss p < 0.001).

549 To investigate if the subjects’ choice of the signal most comfortable to
sso0 understand was dependent on the SNR of the original or raw audio mixture,
ss1. the SNRs of the corresponding raw audio mixtures were compared. It was
ss2 observed that the subjects preferred the beamformed signal with additional
ss3 virtual channels if the SNRs of the raw audio mixture were low (Mean=2.4,
sss. SD=9.3) compared to the raw audio mixtures’ SNRs when the beamformed
ss5 signal based on the reference channels only was selected (Mean=>5.2, SD=8.0,
sss p = 0.001). The SNRs of the raw audio mixtures when the non-beamformed
ss7  signal was selected (Mean=2.1, SD=9.2) was not significantly different from
sss the SNRs of the raw audio mixtures when the beamformed signal with addi-

ss0 tional virtual channels was selected (p = 0.987). However, it was significantly
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oo different from the SNRs of the raw audio mixtures when the beamformed sig-

s nal based on the reference channels was chosen (p = 0.029).

100

80 1

60 -

401

Frequency (%)

0 v T T
No beamforming Ref.ch. Ref. ch. + Virt. ch.
Beamforming input channels

Figure 6: Violin plots [53] of the frequency of choices in the subjective listening test. The
data represents the choices for the non-beamformed signal, the beamformed signal with
the measured reference channel configuration as input channels (microphone IDs {2, 3})
and the beamformed signal with additional virtually sensed microphone signals as input
channels (microphone IDs {2, 3} + {10y, 13y, 16, }) (see Figure 1 or Table 1). The dashed
horizontal line indicates the chance level of the test. The probability of observations
taking a given value (Frequency (%)) is indicated by the violin’s width, while each violin
is normalized to have the same area. The thick black bar in the center of the violin
represents the interquartile range. The thin black line extended from it represents the

95% confidence intervals, and the white dot represents the median.
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se2 4. Discussion

563 Herein, we presented a comprehensive comparison of different head-mounted
ssa  microphone configurations and their effect on the output of an MVDR beam-
ses forming algorithm. The results showed that microphone positions, such as
sss  placing a microphone on the forehead, would be desirable for better speech
ss7 understanding. Since these microphone positions are not practicable in real-

ses  ity, we proposed and evaluated a purely data-driven virtual sensing technique.

soo  4.1. Association of the speech quality and the microphone positioning

570 Our measurements of varying head-moutited microphone arrangements in
s cocktail party scenarios confirmed that the performance of beamforming algo-
s.2 - rithms and thus the speech quality improves with additional microphone sig-
s nals [44]. Single-microphone speechi-enhancement algorithms can only exploit
su temporal and spectral information cues, whereas multi-microphone beam-
s;s  formers can additionally exploit the spatial information of the sound sources
ss |10, 44].

577 However, a-high number of microphones alone does not necessarily lead
ss 1o a better speech quality [10]. In the case of bilaterally placed microphones
so (Table 6), we observed saturation in terms of speech signal enhancement
ss0  with additional microphones that were placed close to the reference micro-
ss1 phones. In particular, the SI-SDR metric showed that noise from additional
ss2 microphone signals can dominate compared to the redundant information
se3 in the audio signal used for speech enhancement. As also shown by Corey
s et al. [24], the microphone arrangement’s spatial diversity played a signifi-

sss cant role in the quality of the acoustic beamforming. The herein performed
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sss measurements confirmed this finding since no improvements were observed
ss7 when additional microphones were placed at a distance of about 5cm to the
ses reference microphones. It was assumed that even for low frequencies, these
ss9 microphones were too closely spaced to provide inter-microphone information
s for the beamforming algorithm [24]. Besides, the microphones’ distance was
s too small for an effect of the acoustic head shadow [15]. With the same rea-
s2  soning, the slightly worse result of the unilateral, conventional microphone
so3 configuration ({2, 3}) and the good result of the arrangement with the largest
se inter-microphone distance (front and back facing {1, 4}) compared to other
sos 2-channel microphone arrangements on the audio processor can be argued.

506 Although adding a microphone with a high Euclidean distance to the ref-
so7 erence microphone configuration is a good rule of thumb to improve acoustic
se  beamforming, other microphone positioning factors, such as exploiting the
s0 acoustic head shadow [15], may be just as important. In the unilateral con-
s0 figuration (see Table 4), we observed that the proximity to the most likely
so1 target source with an additional microphone on the temple ({2, 3}+{11})
62 was more important than the spatial diversity of the microphones with an
s0s additional microphone placed on the back of the head ({2, 3}+{13}). In
s« addition to the proximity to the target signal and the microphone distance,
ss our measurements confirmed that the pinna’s directional frequency trans-
ss formation provided relevant information for improving the quality of the
oo beamforming algorithm [15, 54, 16]. We observed that the most useful ad-
ss ditional contralateral microphone was neither the one closest to the target
s00 signal ({11}, temple) nor the one with the highest Euclidean distance to the

s reference microphone configuration ({14}, CI transmission coil). It was the
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s contralateral microphone placed in the ear canal facing away from the target

o2 signal ({16}).

o3 4.2. Virtual sensing of head-mounted microphone signals

614 In this work, we presented and evaluated a method for virtual sensing
615 of microphone signals to improve the speech quality of hearing aid and CI
616 Users in noisy environments. The proposed methodology enabled to capture
617 microphone signals at positions on the head, including but not limited to
sis  the forehead, where a physical placement of microphoiies is impractical. Our
610 Objective measurements showed, that adding strategically positioned virtual
s20 microphones on the head significantly improved the speech quality compared
o1 to the speech quality as obtained with a microphone arrangement found in
622 conventional CI audio processors. This result was also confirmed in human
623 listening tests using a 3-alternative forced-choice procedure with the task of
s selecting the speech mixture that was most comfortable to understand.

625 In addition to the general assumption that adding microphone signals
e to hearing aid applications can increase the performance of beamforming
s algorithms [44], we hypothesized and confirmed that replacing real micro-
o8 phone signals with virtual microphone signals can also increase beamformer
20 performance. In contrast to the work presented in [22, 21, 20|, our entirely
630 data-driven approach showed that explicit knowledge of the real microphone’s
631 positioning might not be necessary to enhance the speech quality with vir-
632 tual microphone channels. The mathematical reasoning for the success of
s13 our deep learning-based approach is the subject of ongoing research [55, 56].
634 In the measurements with the reference microphone configuration accord-

e ing to conventional CI audio processors ({2, 3}), we observed that an addi-
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636 tional microphone on the forehead produced similar improvements in speech
s37 quality as an additional microphone placed at the entry of the contralateral
633 ear canal. However, due to the poor estimation of the contralateral ear sig-
630 nal by the neural network, a higher benefit was obtained with the virtual
s0 microphone channel estimating the signal at the forehead. Therefore the
e1  estimation of optimal microphone positions for neural network-based beam-
sz forming approaches requires further investigation.

643 The subjective feedback of the 20 participants significantly showed that
s the additional virtual microphone signals were preferred, especially in cock-
ess tail party scenarios with low SNRs. On the other hand, the participants’
e choices also showed that in low SNRs scenarios, the MVDR beamforming,
e7 either with real or real and additional virtual channels, might degrade the
ss  subjective speech signal quality instead of enhancing it. This finding con-
s0 firmed that although MVDR beamformers aim to keep the target signal
sso undistorted [7], there was a trade-off between noise reduction and speech

st signal distortion [10].

62 4.3. Limatations and outlook

653 Although the virtually sensed microphones significantly improved the
esa  speech quality within this study, further research is needed before the method-
65 ology c¢an be used in hearing aids or CI audio processors.

656 Due to the input data size of 2 seconds, the delay of the proposed net-
es7  work architecture is too long to be applicable in a real hearing aid application.
ess  However, this paper’s main objective was to demonstrate a proof of concept
60 for purely data-driven virtual channel estimations in hearing aids or Cls.

e0 Tackling the problem of latency and neural network complexity in online
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ssr  speech enhancement is ongoing research [57, 58, 59, 60] with promising re-
2 sults and input frame lengths as little as 2ms [60]. Future research should
63 investigate whether the significant reduction in network time delay required
ea for an application in hearing devices affects the performance of the presented
65 approach. In addition to progress in reducing the computational costs, sub-
e stantial progress is continuously being made in other areas of speech signal
s7 enhancement with artificial neural networks relevant for the methodology of
ss this work, such as in blind source separation (BSS) [61, 62, 63], acoustic
s0 scene classification (ASC) [64, 65, 66], domain shift {26, 67] and the usage of
e0 loss functions to optimize the parameters of the network based on the human
s perception of speech [68, 59]. The results of Drude et al. [63] indicated, that
ez the benefit of the presented approach when using estimated coherence matri-
o3 ces may be different from the benefit achieved with the oracle matrices. For
era computational time reasons, no sophisticated optimization of the presented
o5 network’s architecture was performed. Further research may investigate the
o6 optimal number and size of hidden layers for the presented approach.

677 Our approach follows a two-step procedure to estimate a virtual micro-
ers  phone channel that is used as an additional input to the beamformer. We
eo chose this procedure to improve the compatibility with existing beamform-
e0 ing technology in current devices. However, the entire approach could be
es1 replaced by an end-to-end single-network artificial intelligence solution for
62 hearing devices.

683 One of the biggest challenges of the presented methodology to be ap-
e« plicable in a real-world application will be to ensure the robustness of the

ses network’s predictions in acoustic environments with high reverberation [69,
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sss 70,71, 72]. In the context of this work, the first step in this direction would be
s7 the use of more challenging acoustic training data, for example, by simulating
sss conditions with higher reverberation [73] or the use of dynamically moving
es0 sound sources [36, 74]. Another possibility would be to record acoustic sce-
s0 mnarios using a portable microphone array [75]. In a real-world application,
s1 this data could be collected as part of an audiological fitting routine. In
62 both cases, whether the data was simulated or recorded in real environments
e3 for each subject, the additional recordings and the personalization of the
sa network through transfer learning would most likely increase the robustness
e0s of applied neural network solutions [76]. To account for the different head
e geometries and thus varying inter-microphone features, the information of
o7 3D head scans as provided in Fischer et al. [35] could be fed into a neural
s network architecture that allows metadata injection.

699 Although the speech quality may improve by applying the proposed mea-
700 sures, binaural cues would still be discarded, resulting in a low spatial quality
7 of the perceived sounds [15]. It remains unclear whether the findings of this
702 study will also hold for current state-of-the-art beamformers with binaural
703 output. To preserve the binaural cues and thus improve the spatial qual-
70¢ ity of the MVDR beamforming algorithm [10], adaptations such as those
s proposed by Marquardt et al. [77] or Marquardt and Doclo [78] could yield

76 improvements in this regard while still enhancing the speech quality [79].

27 5. Conclusions

708 In this work, real and virtual microphone signals were combined as in-

00 put for an MVDR beamformer to investigate the effects on speech quality
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7o for hearing aid or CI users in cocktail party scenarios. The measurements
m  with respect to the number and spatial arrangement of real microphones in-
72 dicated that, optimally, microphones should be placed as close as possible
ns  to the target source, encode monaural cues, and produce a large distance
na spread by their spatial arrangement. In reality, however, it is inconvenient
75 to place the microphones according to these criteria. To overcome this prob-
n6 lem, virtual microphone signals were estimated using a deep neural network
n7 - without explicit knowledge of the spatial microphone arrangement. The re-
ns sults of 3-alternative forced choice subjective listening tests and objective
7o speech quality metrics suggest that hearing aid or CI users might benefit
=0 from virtually sensed microphone signals, especially in challenging cocktail

=1 party scenarios.

= Appendix A. Additional Figures

3 Please see appendix A.pdf for significance-matrices of the post-hoc Ne-

724 menyi tests concerning the data in Tables 3-6.
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