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Abstract: (1) Introduction and Aim: The aim of this study is to investigate the prognostic value, in 

terms of response and survival, of CT-based radiomics features for patients with HCC undergoing 

drug-eluting beads transarterial chemoembolization (DEB-TACE). (2) Materials and Methods: Pre-

treatment CT examinations of 50 patients with HCC, treated with DEB-TACE were manually 

segmented to obtain the tumor volumetric region of interest, extracting radiomics features with 

TexRAD. Response to therapy evaluation was performed basing on post-procedural CT 

examination compared to pre-procedural CT, using modified RECIST criteria for HCC. The 

prognostic value of texture analysis was evaluated, investigating the correlation between radiomics 

features, response to therapy and overall survival. Three models based on texture and clinical 

variables and a combination of them were finally built; (3) Results: Entropy, skewness, MPP and 

kurtosis showed a significant correlation with complete response (CR) to TACE (all p < 0.001). A 

predictive model to identify patients with a high and low probability of CR was evaluated with an 

ROC curve, with an AUC of 0.733 (p < 0.001). The three models built for survival prediction yielded 

an HR of 2.19 (95% CI: 2.03–2.35) using texture features, of 1.7 (95% CI: 1.54–1.9) using clinical data 

and of 4.61 (95% CI: 4.24–5.01) combining both radiomics and clinical data (all p < 0.0001). (4) 

Conclusion: Texture analysis based on pre-treatment CT examination is associated with response to 

therapy and survival in patients with HCC undergoing DEB-TACE, especially if combined with 

clinical data. 
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1. Introduction 

Hepatocellular carcinoma (HCC) is mainly associated with chronic liver disease and 

it is the fifth most common malignant tumor worldwide and the second leading cause of 

cancer-related mortality [1]. Transarterial chemoembolization (TACE) is the first line 

treatment for HCC at intermediate stage of disease, according to the Barcelona Clinic Liver 

Cancer (BCLC) staging system, but it was recently demonstrated to be an effective 

procedure at any HCC stage [2]. Nowadays, according to the European Association for 

the Study of the Liver (EASL) guidelines, TACE is also widely accepted as a neoadjuvant 

therapy before liver transplantation to downstage the tumor burden [3]. 

There are two different TACE techniques. Conventional TACE (cTACE) is the most 

common modality performed worldwide and it employs lipiodol suspension and gelatine 

sponge particles. It is also possible to perform TACE with drug-eluting beads (DEB-

TACE). Currently, there is no scientific evidence to demonstrate the superiority of one 

technique over the other in terms of tumor response, survival, safety and cost-

effectiveness [2,4]; nevertheless, TACE outcomes are mainly assessed with imaging such 

as computed tomography (CT) and magnetic resonance imaging (MRI) and this is the 

aspect that most studies are focused on [5]. 

Radiomics is an advanced analysis method which can be applied on CT, MRI and 

other imaging techniques, allowing to extrapolate quantitative features from regions or 

volumes of interest (ROI/VOI) in diagnostic images [6]. Application of radiomics in 

oncology for tumor characterization, response assessment, prediction of response to 

therapies and survival prediction has been widely investigated in the literature with good 

results, including in HCC [7]. 

As far as the prediction of response to treatments in HCC is concerned, radiomics has 

been applied on CT and MRI pre-treatment images in some studies, identifying specific 

radiomic features that were significantly correlated with response to surgery [8], 

radiofrequency ablation [9], chemotherapy with Sorafenib [10] and TACE combined with 

Sorafenib sistemic therapy [11]. Some radiomic features were also demonstrated to be 

valuable predictive factors of response to TACE as a single HCC treatment and most of 

them were based on MRI [12–15]. Furthermore, Kim et al. [16] identified a combined score 

model integrating clinical data and texture analysis, with a good predictive value on 

survival after cTACE. 

The purpose of this study was to assess long term outcomes of DEB-TACE in a single 

center population and to investigate whether pretreatment CT-based radiomics features 

are associated with response and survival. 

2. Materials and Methods 

2.1. Patient Population 

Patients that underwent treatment with DEB-TACE for radiologically confirmed (LI-

RADS 5) [17] HCC in our center between 2009 and 2014 were reviewed. We included only 

patients treated with DEB-TACE instead of cTACE because they were much more 

numerous in our series, allowing a more homogeneous study. Since its introduction, we 

preferred DEB-TACE over C-TACE due to its lower sistemic effects. Inclusion criteria 

were: (a) Treatment of HCC with DEB-TACE as a first line of treatment; (b) treatment with 

DEB-TACE as a second line treatment only when previous treatment was performed at 

least 12 months earlier and concerned different lesions that were treated only with 

percutaneous thermal ablation; (c) pre and triphasic contrast (arterial, portal, delayed) CT 

scan performed at least 60 days before treatment; and (d) pre and triphasic contrast CT 

scan performed within 3 months after treatment. Exclusion criteria were: (a) non-suitable 

target lesions for segmentation; (b) presence of portal thrombosis or extra-hepatic disease; 

(c) lack of availability of clinical information or survival data; and (d) not HCC-related 

death causes. Applying these criteria, out of the initially 96 recruited patients, 50 were 
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finally selected. Demographic and clinical data of the included population are shown in 

Table 1. 

Table 1. Baseline Patient Characteristics. 

Characteristic Value 

Age Years, mean ± SD 70 ± 9 

Sex 
m 42 (84%) 

f 8 (6%) 

Albumin g/dL, mean ± SD 3.6 ± 0.4 

Bilirubin mg/dL, mean ± SD 1.3 ± 0.5 

AFP ng/mL, mean ± SD 345 ± 751 

BCLC stage 

A 26 (52%) 

B 22 (44%) 

C 2 (4%) 

Child-Pugh 
A 36 (72%) 

B 14 (28%) 

Maximum Diameter  mm, mean ± SD 42 ± 21 

n° of lesions 

1 30 (60%) 

2 10 (20%) 

3+ 10 (20%) 

2.2. CT Acquisition and Evaluation 

CT examinations before and after treatment were performed by using a 256-slice CT 

(Brilliance iCT 256, Philips Healthcare, Eindhoven, Netherlands), with a tube voltage of 

120 kVp. 

All CT scans were performed in a cranio-caudal direction, with the patient in a supine 

position. Dynamic scans were performed using a bolus-tracking software program, with 

the placement of a 150 HU-threshold region-of-interest (ROI) within the abdominal aorta 

at the level of the celiac tripod. All CT examinations included a pre-enhanced phase, a 

parenchimal arterial phase acquired 15 s after reaching the threshold of the ROI, a portal 

venous phase 70 s after the threshold and a later phase after 180 s. 

Response to therapy evaluation was performed by two radiologists in consensus, 

with 5 and 12 years of experience in the field of interventional radiology, and was based 

on a post-procedural CT examination performed within 3 months from the treatment and 

compared to pre-procedural CT, using modified RECIST (mRECIST) criteria for 

hepatocellular carcinoma [18], identifying as possible results progressive disease (PD), 

stable disease (SD), partial response (PR) or complete response (CR). 

2.3. Texture Analysis 

One radiologist and one resident in consensus manually segmented the tumor 

volumetric region of interest (VOI) on axial portal phases of the pre-treatment CT images, 

always considering the arterial phase to compare the geometrical shape of the lesion. 

(Figure 1) Radiomics features were extracted from the obtained VOIs and analyzed with 

TexRAD, a proprietary software algorithm (TexRAD Ltd, Somerset, England, United 

Kingdom).The spatial scale filter (SSF) value was altered between 0 and 6, extrapolating 

CT intensity features of three different sizes: fine (between 0 and 2 mm), medium (between 

3 and 4 mm) and coarse (between 5 and 6 mm). Then, the following histogram parameters 

were extracted with every filter: mean, standard deviation, mean value of positive pixels 

(MPP), skewness, entropy, and kurtosis. In the final analysis, 18 features were extracted 

and analyzed. 
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Figure 1. Segmentation process and spatial scale filters (SSF) application. 

2.4. Treatment Modality 

The treatment was performed with selective catheterization of the tumoral feeding 

arteries and injection of DC Bead™ microspheres 100–500 µm (Boston Scientific) 

associated to 50 to 150 mg of doxorubicin, depending on the tumor size and 

vascularization, until a complete blockage of the flow of tumor feeding branches was 

achieved. Procedures were performed by three interventional radiologists with more than 

5 years of experience. The angiographic suit was equipped with a flat panel image 

intensifier, Digital Innova 2000 (GE, New York, NY, USA). According to the operator 

preference, a 3DCT was performed simultaneously in order to improve the identification 

of target tumor vessels. 

2.5. Statistical Analysis 

A normality test was performed on all continuous variables. Continuous variables 

were expressed as medians and standard deviation, while categorical variables were 

expressed as counts and percentages. 

Univariate analysis was performed for radiomics and clinical features using an 

independent T-test for variables with a normal distribution, and a Mann–Whitney U test 

for non-normally distributed variables. 

A Pearson chi-squared test was used for categorial variables. 

Continuous variables were dichotomized around an optimal cut-off via ROC using 

the Youden index. 

A logistic regression with a forward stepwise selection and a bootstrap internal 

validation was used to construct the model to predict treatment response, and model 

performance was evaluated using ROC curves. Survival models were constructed using 

multivariate Cox regression analysis and Kaplan–Meier survival analysis. A p value of 

0.05 was considered statistically significant. 

The software BM SPSS Statistics for Windows, Version 24.0 (IBM Corp., Armonk, NY, 

USA) was used for the statistical analysis. 
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3. Results 

3.1. Patient Characteristics 

The mean patient age of the 50 patients was 70 ± 9 years, and the majority were male 

(n = 42; 84%). Average weight was 69.9 ± 10.4 Kg. Most patients were BCLC stage A (n = 

26) by the time of the procedure, the rest were BCLC stage B (n = 22) or C (n = 2). Child-

Pugh class liver function was mostly A (n = 36.72%), the rest was class B. Ten patients 

presented ascites at the time of the procedure. Mean albumin level was 3.6 ± 0.4 g/dL, 

mean bilirubin value was 1.3 ± 0.5 mg/dL, mean INR 1.21 ± 0.1 and mean α-fetoprotein 

level was 345 ± 751 ng/mL. A total of 30 patients (60%) had a single lesion, whilst 10 

patients had 2 lesions and 10 patients had more than 2 lesions, with a maximum of 10 

lesions in a single patient. The mean lesion size was 42 ± 20 mm. Sixteen patients were 

previously treated with thermal ablation and 10 patients had lesion within the Milan 

criteria but were not considered fit for surgery. 

Population characteristics are shown in Table 1. 

3.2. Treatment Effectiveness and Overall Survival 

At post-TACE contrast enhanced CT, 22 (44%) patients showed a CR, while 20 (40%) 

had a PR, 6 (12%) showed a SD and 2 (4%) suffered from a PD. Mean OS was 934 days, 

and 8 patients were censored when conducting the analysis due to being alive at the 

endpoint of 1825 days (5 years). Treatment response revealed a significant correlation with 

OS (Log Rank Test, p = 0.002) with a mean OS of 1032 days for CR, 694 days for PR, 129 

days for SD and 227 days for PD (Table 2). 

Table 2. TACE Treatment Response. 

Category n° and Percentage OS (Mean, Days) 

CR 22 (44%) 1032 

PR 20 (40%) 694 

SD 6 (12%) 129 

PD 2 (4%) 227 

CR—complete response; PR–partial response; SD—stable disease; PD–progressive disease. 

3.3. Variables and Association with Response to TACE 

After univariate analysis, texture analysis features showing a significant correlation 

with CR were standard deviation (p = 0.002), entropy, skewness, MPP and kurtosis (p < 

0.001). ROC curves were performed to identify cut-offs for these variables (Table 3), and 

after dichotomization, a multivariate logistic regression analysis with stepwise forward 

selection and Bootstrap internal validation was performed. Optimal cut-offs of significant 

variables in the model (entropy, skewness, MPP and kurtosis) with OR identified in the 

multivariate analysis were used to construct a score to identify two classes of patients with 

a high and low probability of obtaining a CR after TACE (Table 4). Performance of the 

model was evaluated using an ROC curve (AUC 0.733, p < 0.001, Figure 2). 
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Figure 2. Clinical variables, radiomic features and combined clinical and radiomic features model performance in 

evaluating OS. 

Table 3. ROC Curves for Radiomics Features. Association with CR. 

Radiomic Feature AUC Cut-Off  p Value 

Skewness 0.713 ≤0.14 <0.001 

Entropy 0.621 ≤4.78 <0.001 

Kurtosis 0.614 ≤−0.059 <0.001 

MPP 0.561 ≤48.189 <0.001 

SD 0.544 ≤35.659 0.002 

MPP—mean of positive pixel; SD—standard deviation. 

Table 4. Logistic Regression with Bootstrap Validation for Radiomics Features Association 

with Treatment Response. 

   95% C.I. EXP(B) 

 p Value Exp(B) Lower Upper 

Skewness 0.001 3.936 3.120 4.966 

Entropy 0.001 1.992 1.455 2.727 

Kurtosis 0.001 1.692 1.367 2.094 

MPP 0.001 1.958 1.574 2.436 

SD 0.998 0.999 0.726 1.376 

Model Performance Hosmer–Lemeshow Goodness-of-fit 

Likelihood Log −2 
R-Square Cox 

and Snell 

R-Square 

Nagelker

ke 

Chi-square df p value 

2069.452  0.147 0.204 13.211 8 0.105 

3.4. Development of the Radiomic, Clinical Survival and Combined Model 

We considered the survival time as the response variable and performed an 

univariable analysis, identifying significant radiomics and clinical variables. Next, 

continuous variables were dichotomized via ROC curves, identifying optimal cut-off 

values using the Youden index, and are showed in Table 5. A Multivariate Cox regression 

analysis was performed using texture and clinical features alone and in combination, as 

shown in Tables 6–8. Significant variables from the multivariate analysis were used to 

build three different scores by the linear combination with beta coefficients resulting from 

the multivariate Cox regression models. When looking at the model developed using both 

clinical variables and radiomic features, an age older than 55 years, female sex, albumin 

serum levels ≤3.4 g/dL, birilubin serum levels ≤1.7 mg/dL, AFP levels <400 ng/mL, a single 

lesion, a maximum axial diameter of the target lesion ≤46 mm and the BCLC and Child–

Pugh stage were used from the former, and a mean >10.59, entropy ≤4.8, skewness ≤0.02 

and MPP >45.82 from the latter. Patients were then stratified into two classes using the 

median value of each score model, and correlation of models with overall survival was 



Diagnostics 2021, 11, 956 7 of 11 
 

 

assessed using Kaplan–Meier analysis. Survival differences between the groups were 

calculated as hazard ratios (HRs) for each model by use of log-rank tests. In the radiomics 

score model (Figure2, the median survival of the high-risk group was 602 days, and that 

of the low-risk group was 1111 days, yielding an HR of 2.19 (95% CI: 2.03–2.35) (p < 0.0001). 

In the clinical model (Figure 2), the median survival of the high-risk group was 370 days, 

and that of the low-risk group was 1111 days, yielding an HR of 1,7 (95% CI: 1.54–1.9) (p 

< 0.0001). In the combined score model (Figure 2), the median survival of the high-risk 

group was 387 days, whereas that of the low-risk group was 1285 days, with an HR of 4.61 

(95% CI: 4.24–5.01) (p < 0.0001). 

Table 5. Univariate analysis of radiomics and clinical variables for OS. 

Variable AUC Cut-Off p Value 

Mean 0.609 >10.59 <0.001 

Entropy 0.538 ≤4.8 <0.001 

Skewness 0.547 ≤0.02 <0.001 

MPP 0.552 >45.82 <0.001 

Age. per year 0.545 >55 years <0.001 

Sex-female   <0.001 

Albumin. g/dL 0.707 ≤3.4 g/dL <0.001 

Birilubin. mg/dL 0.559 
≤1.7 

mg/dL 
<0.001 

AFP. ng/mL  <400 ng/mL <0.001 

Single lesion 0.654  <0.001 

Maximum Diameter. mm 0.589 ≤46 mm <0.001 

BCLC stage A   <0.001 

Table 6. Cox regression analysis—radiomic feature association with OS. 

 Univariate Multivariate 95% C.I. EXP(B) 

 p Value p Value Exp(B) Lower Upper 

Mean <0.001 <0.001 1.646 1.510 1.795 

Entropy <0.001 <0.001 0.778 0.721 0.841 

Skewness <0.001 <0.001 0.799 0.744 0.859 

MPP <0.001 <0.001 0.737 0.676 0.803 

MPP—mean of positive pixel. 

Table 7. Cox regression analysis—clinical variable association with OS. 

 Univariate Multivariate 95% C.I. EXP(B) 

 p Value p Value Exp(B) Lower Upper 

Age  <0.001 < 0.001 1.766 1.433 2.177 

Sex <0.001 <0.001 0.019 0.014 0.026 

Albumin <0.001 <0.001 0.058 0.050 0.067 

Bilirubin <0.001 <0.001 1.359 1.165 1.585 

AFP <0.001 <0.001 6.671 5.817 7.650 

n° <0.001 <0.001 0.253 0.212 0.303 

Maximum Diameter <0.001 <0.001 0.327 0.270 0.397 

BCLC A <0.001 <0.001 0.131 0.095 0.180 

BCLC B <0.001 <0.001 0.282 0.188 0.423 

Child–Pugh A <0.001 <0.001 1.512 1.274 1.794 

AFP—α Feto Protein; BCLC—Barcelona Clinic Liver Cancer. BCLC stage C was excluded from the 

model due to collinearity. 
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Table 8. Cox regression analysis—combined radiomic features and clinical variable association 

with OS. 

 Univariate Multivariate 95% C.I. EXP(B) 

 p Value p Value Exp(B) Lower Upper 

Mean <0.001 0.001 1.186 1.072 1.313 

Entropy <0.001 <0.001 1.351 1.241 1.471 

Skewness <0.001 <0.001 0.663 0.612 0.718 

MPP <0.001 0.006 0.875 0.796 0.963 

Age  <0.001 <0.001 2.203 1.787 2.717 

Sex <0.001 <0.001 0.027 0.020 0.036 

Albumin <0.001 <0.001 0.052 0.044 0.060 

Bilirubin <0.001 <0.001 1.347 1.158 1.568 

AFP <0.001 <0.001 7.569 6.552 8.745 

n° <0.001 <0.001 0.227 0.191 0.272 

Maximum Diameter <0.001 <0.001 0.249 0.204 0.303 

BCLC A <0.001 <0.001 0.136 0.098 0.188 

BCLC B <0.001 <0.001 0.228 0.152 0.343 

Child–Pugh A <0.001 <0.001 1.733 1.458 2.059 

MPP—mean of positive pixel; AFP—α Feto Protein. BCLC—Barcelona Clinic Liver Cancer BCLC 

stage C was excluded from the model due to collinearity. 

4. Discussion 

This study assessed the feasibility of radiomics in the prediction of response and 

survival to DEB-TACE for patients with HCC. 

Data of texture analysis extracted from TextRad software (entropy, skewness, MPP 

and kurtosis) were able to identify two groups of patients with a different probability of 

response to treatment, evaluated with the mRECIST criteria, respectively with a low and 

a high probability of obtaining a complete response, corresponding with a better outcome 

and survival. Moreover, the model built to evaluate the radiomics data association with 

survival was able to identify two groups of patients with different median survival times 

(1111 vs. 602 days) as shown in the Kaplan–Meier graphic: an HR of 2.19 (95% CI: 2.03–

2.35) (p < 0.0001) while the model built with the only clinical data yield an HR of 1.7 (95% 

CI: 1.54–1.9) (p < 0.0001) and a median OS of 1111 vs. 370 days. In the end, we combined 

both the radiomics and clinical models to construct a combined model that provided an 

even better estimation of survival time (median OS of 1285 vs. 387 days) with an HR of 

4.61 (95% CI: 4.24–5.01) (p < 0.0001). 

The most significant texture parameters associated with treatment outcome were 

entropy, skewness and kurtosis. In particular, kurtosis was statistically lower in patients 

with a better response; elevated values of kurtosis describe the pixel histogram to be more 

peaked or pointier than a Gaussian distribution, meaning that patients’ nodules with a 

better prognosis might have more regular nodular architecture reflected in a more 

homogeneous pixel distribution. On the other hand, ROI asymmetry is expressed by 

skewness and these values showed the higher heterogeneity in patients with a worse 

prognosis. A tumor a with high textural heterogeneity often has a poor prognosis and 

hence can negatively affect survival [19,20]. Even the entropy which is another 

manifestation of higher tumor heterogenicity showed lower values in patients with a 

better prognosis. This result is in line with the previously published paper by Cozzi et al. 

[21] in which the entropy was found to be an independent predictor of OS in patients with 

advanced HCC undergoing systemic therapy with sorafenib. 

Regarding clinical variables, our study revealed that different variables, such as 

Child–Pugh score, α-fetoprotein level, HCC size and number were significant in the 

clinical score model, according with existing studies [22,23]. 
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As was recently reported, those models with a better performance are those in which 

radiomic features are computed with clinical data [16,24,25]. Our combined model 

confirmed the radiomic pretreatment CT features together with clinical variables, and 

could be a good prognostic biomarker of the overall survival of patients suffering of HCC 

treated with DEB-TACE. 

Texture analysis has been introduced in medical oncologic imaging as a noninvasive 

imaging biomarker with the aim to extract quantitative parameters from images to 

provide an objective characterization of the lesions [26]. Several studies have already 

tested this approach on different neoplasms and in particular on lung cancer, showing 

some interesting results in the discrimination of malignancy in pulmonary lesions [26–

28]. Moreover, texture analysis is being demonstrated to be a potential biomarker for the 

prediction of response to treatments and therapy [21]. In particular regarding HCC, Kim 

et al. first reported the prognostic value of a model based on pre-treatment CT-Texture 

analysis with better performance when combining clinical and radiomic variables. The 

authors reported excellent results of the model based on a second-order texture analysis 

and in evaluating survival after cTACE. In our study, however, pre-treatment CT-texture 

analysis was evaluated using a first-order statistical analysis with the well-known Texrad 

software and to evaluate patients treated with DEB-TACE in terms of survival but also in 

terms of response to treatment. In our view, lipiodol embolization could lead to post 

treatment CT interpretation pitfalls due to the high attenuation of the lipiodol itself. This 

pitfall may be overcome with the use of drug-eluting beads that do not influence the 

postoperative scans in terms of CT density. Moreover, our study demonstrated that 

texture analysis is significantly associated with response to DEB-TACE evaluated with the 

mRECIST criteria (model ROC curve (AUC 0.733, p < 0.001). 

This study has some inevitable limitations. Firstly, the population sample is limited; 

however, it concerns a very specific treatment, and comes from a single center only. 

Secondly, due to in consensus reading, there is lack of inter-reader agreement analysis. 

Thirdly, the use of a first-order statistical analysis allowed a simpler prediction model, 

and the identified cut-off values for the relevant parameters might be different in a 

different clinical scenario due to the lack of external validation or an internal validation 

cohort. 

Nevertheless, our results are encouraging and confirm the prognostic value of 

Texture analysis in the pretreatment evaluation of response and survival to DEB-TACE 

for HCC, especially when combined with clinical data. This information may be useful to 

gain a more precise personalized oncologic approach that is mainly based on outcome 

predictions and personalized treatment than “one-fits-all” blanket treatments. 

Further studies with a prospective design are required to further investigate the role 

of texture analysis in this scenario. Moreover, this is also a call for all radiologists and 

interventional radiologists towards a standardization of pre- and post-treatment imaging 

and data collection and towards high quality data registries [29]. Machine learning is 

already an everyday tool and we need to implement it for the benefit of our patients. 
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