12.11. 2021

.org/10. 48350/ 156487 | downl oaded:

https://doi

source:

REACT: A Solidarity-based Elastic Service Resource Reallocation
Strategy for Multi-access Edge Computing

Alisson Medeiros?, Torsten Braun, Antonio Di Maio® and Augusto Neto”¢

@Institute of Computer Science, University of Bern, Switzerland
b Informatics and Applied Mathematics Department, Federal University of Rio Grande do Norte, Brazil
CInstituto de Telecomunicagoes, Portugal

ARTICLE INFO ABSTRACT

Keywords: The Multi-access Edge Computing (MEC) paradigm promises to enhance network flexibility and
5G scalability through resource virtualization. MEC allows telecom operators to fulfill the stringent and
Multi-access Edge Computing heterogeneous requirements of 5G applications via service deployment at the edge of the mobile
Resource elasticity network. However, current solutions to support MEC struggle to provide resource elasticity since
Auto-scaling MEC infrastructures have limited resources. The coexistence of many heterogeneous services on the
Self-adaptive distributed MEC infrastructure makes the resource scarcity problem even more challenging than it
Virtualization already is in traditional networks. Services need distinct resource provisioning patterns due to their
diverse requirements, and we may not assume an extensive MEC infrastructure that can accommodate
an arbitrary number of services. To address these aspects, we present REACT: a MEC-suppoRted sEIf-
adaptive elAstiCiTy mechanism that leverages resource provisioning among different services running
on a shared MEC environment. REACT adopts an adaptive and solidarity-based strategy to redistribute
resources from over-provisioned services to under-provisioned services in MEC environments. REACT
is an alternative strategy to avoid service migration due to resource scarcity. Real testbed results show
that REACT outperforms Kubernetes’ elasticity strategy by accomplishing up to 18.88% more elasticity
events, reducing service outages by up to 95.1%, reducing elasticity attempts by up to 95.36%, and
reducing over-provisioned resources by up to 33.88%, 38.41%, and 73% for CPU cycles, RAM and
bandwidth resources, respectively. Finally, REACT reduces response time by up to 15.5%.

MEC provides computing resources at the network edges,
allowing telecom operators to fulfill latency requirements for
future applications and offer service delivery at the edge of the
mobile network [8]. One primary problem with MEC is that it
has limited computing and communication resources [9, 10].
This may negatively affect quality of service (QoS) in high
service demand situations, as network or MEC resources
may become insufficient to support them [11]. To maintain
satisfactory QoS in these circumstances, services typically
migrate from overloaded to less loaded MEC servers [12].
However, this approach requires service check-pointing and
restarting for stateful services, which may lead to long service
downtime if the migration process has to transfer a large
amount of data [13, 14].

When resources become scarce, the elasticity mechanism
will not meet the ideal resource allocation of the new service
load. Hence, the elasticity mechanism triggers, in turn, the
time-costly migration procedure, leading to the search for
another cloud or edge server to deploy the target service.
Although the migration will perhaps succeed in meeting the
needed performance at another server, the resulting migration
costs might be too high, e.g., downtime and migration time,
as the whole migration time is extremely time-consuming [3].

Optimal resource provisioning for MEC is an ongoing
challenge [15]. On the other hand, many works in cloud
computing propose new resource-elasticity strategies [16, 17].
However, it is essential to develop elasticity strategies adapted

1. Introduction

The realization of the 5G architecture (including 5G be-
yond approaches, like 6G or Networking 2030) is guided
by novel technologies and new trends in user demands for
modern applications, such as tactile Internet, autonomous
vehicles, immersive media services, eHealth, etc [1]. To
support these new, especially latency-sensitive, applications,
services must be deployed at the network edges [2]. A service
is defined as a virtualized instance of a physical function that
is “cloudified” and placed in cloud hosts or network edges,
e.g., video transcoding, load balancing, content caching, net-
work address translation, etc [3].

Modern applications demand extreme network and com-
puting performance. Their quality depends significantly on
the mobile network infrastructure’s elasticity. Resource elas-
ticity is defined as a system’s ability to adapt to service work-
load fluctuations by adjusting resource configurations and
provisioning close to the demand [4]. Therefore, elasticity
strategies to support stringent and heterogeneous require-
ments imposed by current and upcoming 5G applications
become essential to accelerate their adoption.

Following this trend, telecom operators have adopted
the telco-cloud paradigm [5] to support on-demand MEC re-
source elasticity. In this sense, telecom operators are broadly
redefining their cloud infrastructures following the MEC con-
cept to achieve the requirements of 5G applications [6, 7].

*Corresponding author
%9 alisson.medeiros@inf.unibe.ch (A. Medeiros);
torsten.braun@inf.unibe.ch (T. Braun); antonio.dimaio@inf.unibe.ch (A.D.
Maio); augusto@dimap.ufrn.br (A. Neto)

to MEC since edge servers may run out of resources as service
providers offer more resources for applications as consumer
demand increases [18].

Medeiros et al.: Preprint submitted to Elsevier

Page 1 of 13

State-of-the-art resource elasticity algorithms are reactive,
meaning that the auto-scaling procedure is started only after
the service’s resource usage crosses a predefined threshold.
Some of the most popular reactive elasticity solutions, such as
Amazon EC2, Microsoft Azure, and Google Cloud Platform
(GCP), deploy heuristic auto-scaling schemes, as reactive-
based solution meet cloud demands [16].

For the schemes mentioned above, after an elasticity
request, the elasticity mechanism will fail to provide auto-
scaling procedures when the requested resources are no longer
available in a MEC server. As a result, the reactive model
is likely to produce multiple attempts until it matches the
resource configurations that suit the new service load.

We define the time needed for the auto-scaling procedure
to converge and find a suitable resource allocation as elasticity
attempt window. During the elasticity attempt window, the
service will suffer from quality degradation due to resource
saturation until matching optimal new resource patterns. The
situation becomes critical in MEC when resources become
scarce, where current reactive models are efficient under
resource availability conditions.

We argue that, due to the limited resource characteristics
of MEC, its resources must be enhanced to support 5G ap-
plication deployments through resource elasticity strategies
that consider both MEC resource limitations and 5G appli-
cation requirements. Thus, we assume that over-provisioned
resources must exist in virtualized MEC servers that support
multi-tenancy, preventing virtual entities, i.e., containers, vir-
tual machines, from being provisioned whenever their load
changes. However, it will lead to low-efficiency usage of
MEC and increase deployment costs. Based on this, our re-
search focuses on proposing a heuristic elasticity solution
tailored to MEC systems, capable of overcoming resource
scarcity and resource over-provisioning in these systems.

We propose the MEC-suppoRted sElf-adaptive elAstiC-
iTy (REACT), a new auto-scaling strategy that addresses the
previously described weaknesses of reactive approaches em-
ploying a solidarity-based elasticity algorithm. REACT is an
alternative strategy to avoid service migration due to resource
scarcity. Namely, we propose that telecom operators can re-
allocate network and MEC resources from over-provisioned
services and redistribute them to under-provisioned services
while keeping all services running on the same server. RE-
ACT distinguishes itself from reactive elasticity solutions in
three ways: (i) optimal auto-scaling of both network-level
and compute-level virtual resources at network edges under
resource scarcity conditions; (ii) efficient resource allocation
of over-provisioned resources from a set of donor services to
scale-up demanding recipient services; and (iii) self-adaptive
auto-scaling, which reduces the elasticity attempt window
during the scarcity of MEC resources.

REACT can be implemented for several use cases. We
highlight two use cases and how REACT could work around
their problems. 1. Mobility-induced services: During users’
mobility, latency-sensitive services are forced to be migrated
through MEC servers. Thus, MEC servers must avoid block-
ing of service migration, which can occur due to MEC re-

source scarcity. Besides, it contributes to service QoS degra-
dation in mobility environments since the edge server selec-
tion can disregard an optimal edge server due to its workload.
MEC servers must meet all service migration requests to
ensure the deployment of mobility-induced strategies in re-
al-edge environments. REACT can address this problem
through its solidarity approach. REACT could guarantee that
latency-sensitive services would obtain resource reservations
in MEC servers during these service migrations, classifying
these services as priority services, i.e., recipient services, and
the other services implemented in the MEC infrastructure
as donor services. 2. Service billing: The pay-as-you-go
model has been implemented in cloud computing and will be
incorporated during edge deployments. The more resources
are used, the more the tenant has to pay. In this case, over-pro-
visioned resources can increase the price paid to host services
and applications both on the cloud and at the edge. REACT
can work around this problem by over-provisioned resource
optimization. REACT uses over-provisioned resources to
support new auto-scaling requests rather than requesting new
resource allocations to the cloud or edge provider. It can then
prevent tenant’s expenses from increasing in edge computing.

The rest of this paper is structured as follows. Section 2
presents the most relevant related works, highlighting their
strengths and shortcomings. Section 3 presents the system
model. Section 4 details REACT’s architecture and opera-
tion. Section 5 presents an experiment setup used to evaluate
REACT’s performance. Section 6 evaluates the experimental
results and comments them. Finally, Section 7 summarizes
the article’s findings.

2. Related Work

Several studies [4, 16, 17] have investigated alternative
approaches for resource elasticity in cloud computing and
they conclude that the scarcity of resources cannot nega-
tively impact services running on large cloud providers, e.g.,
Amazon EC2, Azure, GCP. Compared to large-scale cloud
systems, a MEC server can provide lower communications
delay between user and server, but it also comes with less
resources than cloud infrastructures. The scarcity of MEC re-
sources may affect service performance because some under-
provisioned services might need to be migrated to another
MEC server, introducing service-restart delays in some cases.

One of the most popular container orchestration tools
used by network operators to support cloud computing is Ku-
bernetes'. The massive infrastructure investments by network
operators drive the move to Kubernetes, enabling container-
ization in the cloud and at the edge network to afford 5G
MEC services based on lightweight virtualization deploy-
ments. The Kubernetes architecture consists of a logical
master node, which can deploy a variable set of applica-
tion containers called pods on a group of nodes. In order
to allocate system resources to the running services, Kuber-
netes follows the auto-scaling principle, which proposes to
reactively increase or decrease the resources allocated to the

Thttp://kubernetes.io

Medeiros et al.: Preprint submitted to Elsevier

Page 2 of 13

service according to its current demand. One way in which
Kubernetes can adjust the resources allocated to a service is
by increasing or decreasing the resources associated to each
pod, through a module named Vertical Pod Autoscaler (VPA).
The VPA estimates every pod’s resource utilization and, if
their current workloads go beyond a threshold, it restarts the
resource-intensive services granting them a more suitable
amount of resources. If resources are not available on the
current server, where the service is already deployed, the
VPA redeploys the service to another server. One drawback
of restarting or migrating the pod is that stateful context in-
formation must be copied between two replicas (in case of a
make-before-break approach) or at least stored and reloaded
(in case the server does not allow the creation of another pod
before tearing down the old one). While Kubernetes uses
migration in case of scarce resources, REACT tries to reallo-
cate over-provisioned resources to avoid service migration.
Hence, Kubernetes’ auto-scaling policy reduces the resource
allocation efficiency under resource scarcity conditions be-
cause it triggers several resource-reallocation rounds.

Due to resource limitations imposed by MEC servers
compared to large-scale cloud providers, a few works have
investigated resource elasticity in edge networks [19]. For
example, Yuan et al. [20] propose a scheme to serve the time-
varying demand for resource capacity from mobile services.
The proposed solution deploys online Virtual Network Func-
tion (VNF) scaling, which realizes an on-demand resource
allocation in MEC infrastructures. Wang et al. [21] propose a
framework to manage edge nodes and an auto-scaling mecha-
nism for resource provisioning in edge nodes, which is based
on three stages, i.e., handshaking, deployment, and termina-
tion. Righi et al. [22] present the Elastic-RAN model, which
proposes multi-level and adaptable resource elasticity for
Cloud Radio Access Networks. Adaptivity refers to the elas-
ticity level in which physical machines and their resources
are provisioned as close as possible to the current process-
ing needs. Authors in [23] have proposed an auto-scaling
algorithm to minimize costs and deal with unbalanced cluster
load caused by resource expansion, i.e., scale-up, and the data
reliability caused by resource scale-down. The work in [24]
proposes a VM-scaling algorithm to Distributed Enterprise
Information Systems, which optimally detects the most ap-
propriate scaling conditions using performance-models of
distributed applications based on SLA-specified performance
constraints. Naha et al. [25] developed resource allocation
and provisioning algorithms by using resource ranking and
provisioning of resources in a hybrid and hierarchical fashion
to address the problem of satisfying deadline-based dynamic
user requirements in fog computing. These works focus on
QoS maintenance at MEC infrastructures. However, they
always consider available resources to support the required
elasticity demand. Kumar et al. [17] claim that SLA viola-
tions need to be detected in the resource provisioning process
when resource elasticity issues on cloud and edge servers
happen. This can occur under resource scarcity conditions,
hence, jeopardizing QoS and Quality-of-Experience (QoE).

Li et al. [26] propose a scheduling optimization mecha-

nism for improving consistency maintenance in edge environ-
ments. The mechanism is based on a two-level scheduling
optimization scheme. If the edge data center does not have
enough resources to complete, it will migrate the service to a
centralized cloud data center. Castellano et al. [27] proposed
DRAGON, a distributed resource assignment and orches-
tration algorithm that seeks optimal partitioning of shared
resources between different applications running over a stan-
dard edge infrastructure. The evaluation allowed testing the
algorithm behavior after the hosting resources have been sat-
urated, even running a low number of applications. The work
in [28] has proposed an auction-based resource allocation
and provisioning mechanism, which produces a map of ap-
plication instances in edge computing, namely Edge-MAP.
Edge-MAP considers users’ mobility and the limited com-
puting resources available in edge micro-clouds to allocate
resources to bidding applications. Edge-MAP can reallocate
resources to adapt to the dynamic network conditions. Guo
et al. [29] recommend an on-demand resource provisioning
mechanism based on load estimation and service expenditure
(over-provisioned resources) for edge cloud. The mechanism
uses a neural network model to estimate the resource demand.
However, before releasing the node resources, the user data
on the node need to be migrated to other working nodes to
ensure service continuity. Sarrigiannis et al. [30] proposed
a VNF lifecycle management through an online scheduling
algorithm, where the VNFs are orchestrated, e.g., instanti-
ated, scaled, migrated, and destroyed, based on the actual
VNF traffic. Authors also proposed an experimental eval-
uation based on the implementation of a MEC-enabled 5G
platform. The assessment aimed to maximize the number
of served users in MEC by taking advantage of the online
allocation of edge resources without violating the applica-
tion SLAs. Akhtar et al. [31] proposed the management of
chains of application functions over multi-technology edge
networks. This work provides solutions to resource orches-
tration and management for applications over a virtualized
edge computing infrastructure.

Most of the aforementioned works trigger service migra-
tion in resource scarcity situations, which can affect QoS and
QoE [3]. Migrating a service has several drawbacks, such
as increased latency, traffic congestion and network usage
costs, due to the data transferred between remote hosts. In
the real world, where multiple network operators manage
the infrastructure, migrating a service may take longer than
expected because mobile network operators must agree to
exchange the service across heterogeneous platforms.

The aforementioned works show that only a few studies
in the literature have investigated resource elasticity in MEC,
and those who do are characterized by a set of common limi-
tations, detailed hereafter. Firstly, resource elasticity models
do not consider the resource scarcity of MEC in their de-
sign. Secondly, most related works frequently trigger service
migration procedures. Finally, most related works do not
optimize MEC resources utilization, resulting in a long elas-
ticity attempt window. In this paper, we aim to tackle these
three limitations arising from previous works by proposing

Medeiros et al.: Preprint submitted to Elsevier

Page 3 of 13

Table 1

Comparison of related works towards optimal MEC-tailored
elasticity. Legend: 1=Constrained capacity, 2=Successful auto-
scaling, 3=Elasticity attempts, 4=Self-adaption.

Solutions Requirements
(References) 1 2 3 4

Kubernetes VPA
Yuan et al. [20]
Wang et al. [21]

Righi et al. [22]
Chunlin et al. [23]
Antonescu et al. [24]
Naha et al. [25]

Li et al. [26]
Castellano et al. [27]
Tasiopoulos et al. [28]
Guo et al. [29]
Sarrigiannis et al. [30]
Akhtar et al. [31]
REACT (present work)

AR N NN Y T N N N NN
AR N NN

REACT: a self-adaptive elasticity mechanism as a heuristic
solution tailored to MEC resource scarcity conditions.

Based on the literature review, we identify that new ap-
proaches need to evolve to tackle resource elasticity among
MEC systems while meeting the stringent requirements of
5G applications. This imposes a set of challenges when car-
rying out elasticity strategies in large-scale MEC scenarios
since it cannot accommodate a high density of resource elas-
ticity requests. Thus, it becomes even more problematic by
directly affecting 5G applications’ performance. Although
MEC servers have computing power, with the increase of
users, its limited computing power is gradually overloaded,
which cannot guarantee the QoS of particular applications.
The challenge consists of designing an optimal resource elas-
ticity mechanism to support 5G application requirements.

We claim that MEC characteristics, e.g., resource limi-
tation, lead to the adoption of optimal self-scaling solutions,
affording QoS and resource-constrained awareness to keep
5G applications always better served by the underlying MEC
facilities [32]. The list of requirements we claim for an opti-
mal solution of a MEC-tailored elasticity mechanism includes
the following requirements to be met:

1. Provisioning capacity in MEC environments;

2. Capacity to provide auto-scaling whenever the service
needs more resources, employing an enhanced elastic-
ity attempt window to respond to new loads;

3. Successful auto-scaling under resource scarcity condi-
tions and decreasing the number of unsuccessful elas-
ticity attempts;

4. Deploying a self-adaptive approach to tackle the issues
that widely-used reactive auto-scaling solutions raise.

Table 2
Notations and symbols.

Symbol Explanation

S Set of services running on the MEC server.
i-th service € S.

Workload of the i-th service.

Resource allocation of the i-th service.
Resource over-provisioning of the i-th service.
Server background workload.

MEC server load.

Auto-scaling for a service s in the MEC server.
Set of service monitoring metrics.

Monitoring metric of service s;, where h; € 6.
Recipients list.

Donors list.

Recipient service, where r € R.

Donor service, where d € D.

A function that represents the donation from
a donor service d to a recipient service r.
Committed service threshold.

Service donating threshold.

SRS

2

>

T AU TS OOw

e

=
Y

Table 1 compares the main characteristics of the related
works concerning the aforementioned requirements and shows
that none of the considered solutions can support all our
claimed requirements towards optimal auto-scaling. Moti-
vated by the limitations of the reactive approaches of related
works, we propose the REACT solidarity-based elasticity
strategy, as described in the next section.

3. System Model

The considered MEC infrastructure consists of a set of
interconnected MEC servers, each of them offering different
computing and memory resources to a set of running services,
each having distinct and specific resource requirements. We
assume that each MEC server’s workload is modeled as a
quadruple representing only four types of available resources:
computation, communication, main memory, and permanent
memory, whose amounts do not change over time. Since
REACT redistributes resources among the services running
on a single MEC server, we restrict our scope to a set .S of
running service instances on a single MEC server. We assume
that the time in the system is divided into equal intervals
called time slots, and the system produces a service resource
reallocation during each time slot. REACT operates within a
single time slot, so we assume that all the symbols introduced
hereafter are related to a certain time slot k € N.

We define the server background load o € [0, 1]* as
a quadruple that represents the resource load on the MEC
server unrelated to running user services, e.g., OS overhead,
scheduling, background and monitoring processes, which
cannot be auto-scaled. We define the MEC server load & as
the sum of the background load @ and the total amount of
resources allocated to all services running on MEC server.
Equivalently, & = w + leil a;. It is worth noting that Vk €
N,0 < & < 1, as the sum of the allocated resources for the

Medeiros et al.: Preprint submitted to Elsevier

Page 4 of 13

List of recipient services
1

List of donor services
|

4 N\
a W ae@
Wi (1) Wi 2 a; (N) Ta(N)
: Ta (@) Ta (@
wi (N)
Te (N)
Tc2
T @) . Te (@) ¢
c(@ Te (N)
w; (N
Wi (1) Wi @) o
Iy I I'n dl d2 dN

Figure 1: System model

services and the background processing on the MEC server
can never exceed its maximum resource capacity.

MEC servers’ resource utilization can be classified into
three categories: light, medium, and heavy utilization. A
MEC server is under light utilization if its £ < 7;, where
7; € [0, 1]. Similarly, a MEC server is under heavy utilization
ifits & > 7, where 7, € [0, 1]. If 7; < & < 7y, then the MEC
server is under medium utilization. z; and 7, represents 30%
and 95% of the MEC server’s capacity, respectively. The
low and high thresholds will determine the when REACT
will trigger its solidarity approach. We consider that a MEC
server is in a resource scarcity condition when its & > 0.95.

Every service s; € S running on the system is character-
ized by a set of parameters, detailed hereafter. The workload
of service s; is indicated with w; € [0, 114, a quadruple in
which each element represents the ratio between the service’s
current load and the MEC server’s capacity for a specific re-
source type. The resource allocation of service s; is indicated
with a; € [0, 1]*, a quadruple in which each element repre-
sents the ratio between the amount of resources allocated
for service s; and the MEC server’s capacity for a specific
resource type. The resource over-provisioning of service s;
is defined as o; = a; — w;, a quadruple in which each element
represents the ratio between the amount of over-provisioned
resources for service s; and the MEC server’s capacity for a
specific resource type.

REACT classifies every service as either donor service
or recipient service. A donor service d is defined as an over-
provisioned service that is willing to transfer part of its cur-
rently unused resources to other services that need them. A
recipient service r is defined as a service that is currently
under-provisioned and close to run out of resources, which is
willing to accept resources from other donors.

REACT’s solidarity approach considers that a set of re-
cipients r, under resource scarcity conditions, are eligible
for receiving resources from other over-provisioned donors
d that run on the same MEC server. Donors scale-down
parts of their over-provisioned resources to scale-up recipi-
ents. As long as services have residual resources, REACT
remains able to auto-scale recipients and avoid Service-Level

Agreement (SLA) violations. The computation performed by
REACT to decide the amount of over-provisioned resources
to transfer from a set of donors d to each recipient r is called
donation.

The committed service threshold T (s;) is the minimum
amount of resources needed by the service s; to honor its
SLAs. We define the service donating threshold as T,(s;) =
a; — T.(s;) as the maximum amount of resources that service
s; can donate. T;(d) quantifies the part of the donor’s over-
provisioned resources o4, aiming to scale-down donors and
scale-up recipients. The expression for T, is designed so that
a donor d cannot donate more resources than what its SLA
allows it, when w,; < T.(d). Figure 1 shows the thresholds

w;, T., and T, for each service in the system, where each
variable is used to represent recipients r or donors d in the
solidarity-based model.

Let us define g as a decision binary variable, where g €
{0, 1}, assumes value 1 to perform scale-up and O to perform
scale-down. The resource type that will be scaled up/down
is denoted by y € {y1,72,73.74}. The share of resources
that will be scaled up/down is denoted as z € [0, 1). The
auto-scaling function for a service s; represents the amount
of resources that the service will either receive or donate, and
is denoted as f(s;,7;.4,2) =y - (1 + (2q — 1)z).

The total amount of resources exchanged in a donation
from a set of donors D’ C D to a specific recipient r € R
for a specific resource type y can be defined as u(r,D’,y) =
Ve P (s, 7,0, Td(s)). If the donation process involves a
set of recipients R’ C R and a set of donors D’ C D, then the
amount of exchanged resources can be computed as:

D us D+ Y Bsr.0,14(9)) (1)

SER’ sED’/

The donation for a specific recipient r occurs until the sum
of scale-down resources from a set of donors d > T, (r) - 1.3
The value of z for the i-th r in each donation procedure is set
to 30%. Each donation adds 30% more resources than the cur-
rent w, in time slot k. We scale-up each T,,(r) by 30% to avoid
new donation requests in a short time period. According to

Medeiros et al.: Preprint submitted to Elsevier

Page 5 of 13

our analysis and the thresholds practices adopted in [33], we
chose 30% as the threshold. It mitigates the over-provisioning
and improves the time window in which the service will need
another auto-scaling procedure. On the other hand, the value
of z for the i-th d is set to its T;. Hence, for any donation
procedure, the property Y . T (s) > T,,(r) - 1.3 holds. It
is noted that each T,,(r) is updated via y. Thus, Equation 1
minimizes the over-provisioned resources in MEC servers
and maximize resource utilization. We want to maximize
resource utilization as long as we can satisfy the elasticity
demands and do not violate SLAs.

Let us define h; = (w;, a;, 0;) as the monitoring metrics
of the i-th service, i.e., the current values for its workload
w;, allocated resources a;, and over-provisioned resources
o0;. Each service monitoring metric A; uses y to denote the
types of resources for a service s;, e.g., CPU, RAM, storage,
and bandwidth. We can then define é as the set of service
workloads deployed in a generic MEC server, where h; € 4.
A MEC server uses 6 to obtain the full service status informa-
tion, then 6 = Y, h;, assuming that the server must check
each service serially. In the considered scenario, we assume
that the value of ¢ is updated periodically. The frequency with
which 6 is updated significantly influences REACT’s behav-
ior, as service monitoring is a crucial measure to determine
whether the solidarity-based approach should be triggered.
Table 2 lists the key parameters of the system model.

4. REACT

This section describes the principles of REACT, its ar-
chitecture and how it operates, including the solidarity-based
elasticity algorithm and its complexity analysis.

4.1. REACT Architecture

The efficiency behind an elasticity mechanism depends
on the auto-scaling function. As edge services’ requirements
change over time, MEC servers will experience workload
fluctuations. These workload fluctuations may result in ei-
ther service over- or under-provisioning. When the load
decreases, the most widely adopted reactive mechanisms will
take some time to provide scale-down actions. On the other
hand, auto-scaling mechanisms will scale-up and cause over-
provisioning when the load increases. If resources are scarce,
it will cause under-provisioning. The over-provisioning strat-
egy reserves more resources than those needed by the service
at a specific moment in time, aiming to avoid disruptions,
if the service requires an unexpectedly high amount of re-
sources to support its operations in the future.

Over-provisioning demands careful deployment to pre-
vent the inefficient resource allocation. However, in situ-
ations where over-provisioned resources are low, reactive
auto-scaling solutions tend to trigger several elasticity rounds
until matching resource patterns to meet the new service work-
load, which increases the elasticity attempt window. Even
though this strategy will ensure that SLAs are not violated, it
might reserve resources for services, which in turn may never
use them. This would lead to inefficient MEC resource usage
and unnecessary costs for the user to benefit from those MEC

> REACT
! !
M .
° Open vSwitch
n T
i v v v
t
° [Service 1 Service 2 Servicen]
' f z 7
i |
n
g Docker daemon

MEC Server

Figure 2: REACT Architecture

resources that do not positively impact the application’s QoS.
In under-provisioning, the allocated resources for a given ser-
vice are less than the current load demand, which can cause
SLA violations and service resizing penalties.

REACT provides an auto-scaling algorithm to efficiently
reallocate resources among different services running on
MEC servers under scarce resources. REACT solves the typ-
ical problems of reactive schemes, e.g., several auto-scaling
rounds during resource scarcity situations, by re-orchestrating
both networking and computational MEC resources. The
main novelty of REACT, compared to other reactive resource
elasticity mechanisms, is its solidarity-based resource reallo-
cation, which defines how some resources are seized from a
set of donors and transferred to a set of recipients when the
system enters a resource-depletion state.

REACT’s solidarity-based elasticity takes advantage of
services’ resource over-provisioning to offer enhance auto-
scaling capability towards MEC efficient resource usage. In
contrast, reactive solutions suffer from over-provisioning by
needing successive attempts until matching the required re-
source amounts to the new service load when resources be-
come scarce. It is worth noting that REACT can apply its
solidarity scheme only if the MEC server is running over-
provisioned services while the available resources in the sys-
tem become scarce. REACT aims at mitigating the service
degradation due to the unavailability of resources in MEC
servers and at improving system efficiency by reducing over-
provisioned resources. This resource reduction can also de-
crease the economical costs sustained by the user, since cloud
systems provide resources based on a pay-as-you-go pricing.

REACT is implemented as part of the auto-scaling com-
ponent’s logic without MEC architectural changes, e.g., the
need for adding new components, interfaces, and protocols.
Its solidarity-based model can be deployed in any platforms
that support auto-scaling mechanisms, making REACT an
agnostic solution to MEC servers. Figure 2 presents the RE-
ACT architecture, where REACT uses its solidarity algorithm
to provide resource reallocation and a monitoring system to
check both MEC and service workloads. Furthermore, RE-
ACT uses both Docker and Open vSwitch APIs to reallocate
computing and network resources between services.

Medeiros et al.: Preprint submitted to Elsevier

Page 6 of 13

Start ‘

‘ Enable solidarity scheme

+
Critical

Check
resource
status

IDLE Yes

Alert
v

Admission

Control Create_donor_list()

J

Create_recipient_list() ’

Figure 3: Conditions to enable the REACT solidarity approach.

REACT classifies a server’s load into three conditions:
safe, alert, and critical. ~Safe and critical conditions are
mapped to 7; and 7, respectively. The alert condition is
enabled when the MEC server load £ is between 80% and
95% of the MEC server’s capacity. If the system is in safe
conditions, REACT does not operate because services can be
deployed immediately. When the system is in alert or critical
condition, REACT takes preventive measures to reallocate
resources and avoid that the system enters or remains in a crit-
ical condition. Figure 3 illustrates the conditions for enabling
the solidarity approach in a state diagram.

REACT groups services into a donor list D and a recipi-
ent list R, respectively. REACT adds a service s; to the donor
list if its workload w; < T,(s;). The donor list and the recipi-
ent list are sorted from the smallest to the largest available
residual resources and resource demands. REACT constantly
maintains the recipient list and the donor list if the server
reaches an alert or critical condition. Each donation involves
a single recipient and one or more donors: after REACT cal-
culates how many resources a single recipient needs, it will
scale-down one or more donors and subsequently scale-up
the recipient to fulfill its resource needs. REACT will start a
donation process until either the R or the D is empty.

4.2. REACT Operation

On a generic MEC server, the REACT algorithm runs on
a set of services S. First, REACT gathers the infrastructure
and service monitoring data, e.g., CPU, RAM, storage, in-
coming and outgoing bandwidth, to create and maintain the
recipient list R and the donor list .S. We implement R and D
as self-balancing binary search trees, i.e., AVL tree, aiming
to optimize the solidarity auto-scaling algorithm. To access
n service monitoring metrics 4 REACT uses 6. Then, both
lists are inspected to meet the highest-priority services that
experience resource bottlenecks. After this, REACT calcu-
lates the details of the service donations and update the new
a, and a4, respectively, in R and D. The next step is to update
the service thresholds in both R and D lists deployed at the
local MEC server. It can be implemented through virtualiza-
tion platform used to host the service components, e.g., Xen,
KVM, Docker Swarm, Kubernetes, OpenVZ.

Algorithm 1: Recipient and donor service selection

Input: service_list

Output: R, D
1 Function ServiceSelection(service_list):
2 Function InsertAVL(root, node)
3 for s in service_list do
4 if w, > T,.(s) then InsertAVL(R, s)
5 L else InsertAVL(D, s)

Algorithm 2: Solidarity-based auto-scaling

Input: service_list
Output: R, D
1 Function SolidarityAutoScaling():

2 Function MECMonitoring(d, £): Start 6 and &
3 while & > 7,% do

4 R, D « ServiceSelection(service_list)
5 Function InOrder(R):

6 if R is NULL then return

7 InOrder(R — left)

8 Function ReverseOrder(D):

9 if D is NULL then return

10 ReverseOrder(D — right)

1 required_donation < 1.3 - ay
12 if w, < T,(D) then

13 T; < ap —T.(D)

14 L donation(R, D, T;)

15 else

16 T,; < ap — Wy

17 L donation(R, D, T;)

18 Function Remove (D)

19 if donations > required_donation

then return

20 ReverseOrder (D — left)
21 InOrder(D — right)

Algorithm 1 identifies services that are facing resource
bottlenecks, i.e., R. Also, it defines the function InsertAVL (root,
node) to insert nodes in an AVL tree (line2). Based on this
algorithm, R and D lists are created and maintained by Algo-
rithm 1. A service is classified as R if its workload wg > T.(s)
(line 4). Algorithm 1 identifies services that can be part of
the donation process provided by REACT. A potential D can
be identified by inspecting service workload w, < T.(s)
(line 5). In the end, R and D are already sorted according
to the resource needs and the number of residual resources
available, respectively. Algorithm 1 is triggered before a crit-
ical resource condition has been reached and then after the
solidarity scheme is enabled.

Algorithm 2 is triggered as an infinite loop. Each iteration
of Algorithm 2 requires getting the service and MEC monitor-
ing metrics (line 2). Critical conditions can be identified by
checking the MEC load (line 3). Every time a critical resource

Medeiros et al.: Preprint submitted to Elsevier

Page 7 of 13

condition has been reached, the REACT approach is enabled.
REACT builds and maintains both R and D through Algorithm
1 (line 4). Inlines 5 and 8, the REACT algorithm defines func-
tions InOrder(root) and ReverseOrder(root) to recursively it-
erate over R and D, respectively. On one hand, InOrder (root)
traverses the left subtree, visits the root, and traverses the right
subtree. On the other hand, ReverseOrder (root) traverses the
right subtree, visits the root, and traverses the left subtree.
Line 11 gets the required donation from a set of R. In lines
12 and 15, the algorithm gets the value of T;(d). In lines 13
and 16, Equation (1) is used to re-orchestrate R and D. After
the donation of T,(d), the donor d is removed from D using
function Remove (D) in line 17. The recursive function in line
8 is either triggered until the required donation is reached or
when D is empty (line 18).

To prove the feasibility of implementing the REACT
solidarity approach in real-time MEC servers, we provide
a detailed algorithm complexity analysis. To give an accu-
rate analysis, let us assume that: (i) n services are running
on MEC server; (ii) n services are classified as donor (D)
and recipient (R) services; and (iii) on average, the REACT
solidarity scheme consists of 30% of R and 70% of D.

Although n services are iterated/searched in line 3 with
complexity O(n), lines 4 and 5 use AVL tree insertion function
InsertAVL(root, node), which has time complexity O(log n).
Since lines 4 and 5 of Algorithm 1 are not nested, we can
derive that Algorithm 1 has time complexity O(n log n).

Algorithm 2 gets MEC and service monitoring metrics
in line 2 through function MECMonitoring(é, &), which has
time complexity O(n). Algorithm 2 uses a while loop in line
3 to enable the REACT solidarity model, where in each it-
eration the MEC workload ¢ is updated. Line 4 has time
complexity O(nlog n) as it uses Algorithm 1. Within func-
tion InOrder(R), in line 8, the function ReverseOrder(D) has
time complexity O(d) as it recursively iterates over D. Within
function ReverseOrder (D), in line 17 the function Remove (D)
performs O(1) as it already uses ReverseOrder (D) to find the
node. Then, Remove (D) removes the donor d from D and per-
forms the AVL rotations when needed. As R and D have a
linear relationship with n and based on ReverseOrder (D) and
Remove (D) algorithm analysis, which are nested and within
function InOrder(R), in line 5 the function InOrder(R) has
time complexity On?) as it takes O@) to recursively iter-
ates over R, resulting int the product O(r) - O(d) - O(1) for
searching in R, D, and removing from D, respectively.

For both In0rder(R) and ReverseOrder(D), the compar-
isons during the search in each iteration, including unsuccess-
ful search, are limited by the height of the AVL tree, which is
O(log n). As InOrder(R) and ReverseOrder (D) have to search
all nodes, then both perform O(n). InsertAVL(root, node)
requires O(log n) to lookup a service, plus a maximum of
O(log n) retracing levels on the way back to the root, which
takes O(log n). Remove (D) follows the same pattern of func-
tion InsertAVL(root, node), which also has time complexity
O(log n) [34]. However, as it is used within ReverseOrder (D),
it already knows where the node is, just requiring O(1) to
remove the node and perform the AVL rotations.

As MECMonitoring(), ServiceSelection(), and InOrder()
are not nested, the function SolidarityAutoScaling() has time
complexity O(n?). We conclude that the REACT algorithm
performs (n?) resource reallocation operations.

5. Experiment Setup

To assess their impact in handling elasticity events, both
Kubernetes and REACT adopt the same elasticity approach
to scale-up/down resources of MEC services. When a ser-
vice reaches the resource utilization threshold of 70%, both
mechanisms scale-up by 30% of the current service resource
allocation. Otherwise, when the current service resource
usage is < 30%, they perform a scale-down of 20% of the
allocated resources. These thresholds are commonly used in
other approaches and considered as good practices for cloud
computing [33]. If the vertical elasticity cannot be achieved
successfully, Kubernetes will ignore the elasticity event. In
contrast, REACT triggers the solidarity elasticity mode.

To denote a MEC-like testbed, we design the testbed
configuration as described in Figure 4. The auto-scaling
schemes have been implemented in an Openstack-based cloud
platform, consisting of three Dell power edge servers, two
external Dell PowerVault md3800i that provide disk space
of 20.6 TB in RAID 5, and a network backbone with 48x10
GbE-T ports and 80 Gbit /s backbone connection.

We represent edge servers as virtual machines deployed
on our MEC infrastructure. Each edge server uses Ubuntu
server 18.0.4.4 as an operating system, with 8 vCPUs and
16GB RAM. Moreover, Docker (version 19.03.8) and Open
Virtual Switch (OVS) (19.03.8) are used for the software stack.
Furthermore, a monitoring stack composed by Prometheus?
and cAdvisor? technologies are used to book VM and container-
level resource usage and performance. Prometheus provides
the node exporter to get the VM monitoring metrics, and cAd-
visor gets the container monitoring metrics. Edge services
are deployed to run in Docker containers, whereas the OVS
provides a virtualized network infrastructure interconnecting
the participating MEC and cloud servers.

The auto-scaling solutions used in the experiments, i.€.,
REACT and Kubernetes VPA, leverage the Docker and OVS
APIs to scale up/down computing, i.e., vCPUs, RAM, and
network, i.e., bandwidth, resources, respectively. This auto-
scaling mechanism provides functions to automatically sets
the container resource. These functions are request and limits.
It uses the requests and limits functions to control CPU and
memory resources. VPA seeks to reduce the overhead of
setting resource requests and limits for containers and im-
prove cluster resource usage. The main features of VPA are:
(i) reduce the request value for containers whose resource
usage is consistently lower than the requested amount; (ii)
increase request values for containers that consistently use
a high percentage of resources requested; and (iii) automati-
cally set containers’ resource limit values based on request
ratios specified as part of the container template/blueprint.

Zhttps://prometheus.io/docs/introduction/overview/
3https://github.com/google/cadvisor

Medeiros et al.: Preprint submitted to Elsevier

Page 8 of 13

Service
Deployment

Core Network

Service
\ Deployment
\ Ao R
User
applications

Figure 4: The testbed deployment for REACT and Kubernetes experiments.

The Kubernetes VPA algorithm has only CPU and RAM
built-in manageable resources by design. We focus on the
limits function to ensure that a container’s resource threshold
never exceeds. Also, we provide an elasticity policy to trig-
ger network elasticity events when the resource utilization
reaches 80% of reserved resources. We apply the Poisson
distribution results in the OVS, where we allocate different
bandwidth demands for each service. This feature is incor-
porated into Docker containers through OVS, where we set
virtual tunnels for each container’s virtual interface. Further-
more, we set QoS egress and ingress traffic shaping policies
to ensure bandwidth limitations for each service deployed
within Docker containers.

A set of 100 services is deployed in the edge server, in-
cluding edge analytic services, Internet of Things (IoT) ser-
vices, and video services to provide dynamic behavior in
a real environment. The edge server has 16 GB RAM, 8
vCPUs, and a 5 Gbit /s link. The client arrival times are mod-
eled by a Poisson process for both REACT and Kubernetes.
The elasticity time windows and service parameters such as
workload, resource allocation, and over-provisioning are also
modeled by a Poisson distribution.

We define the elasticity time window as the time required
to trigger service elasticity events, i.e., an elasticity event
is triggered at time slot k£ and in time slot k + 1 another
elasticity event is triggered. Then, the workload variations
are triggered according to the elasticity time window. In total,
1000 elasticity events are generated based on each service’s
Poisson distribution. Lastly, in our evaluation, we consider
that 1 vCPU represents 1024 CPU cycles per second. We use
the docker flag --cpu-shares to control the CPU allocation
priority.

To validate the approach presented in this paper, we imple-
mented a REACT prototype, available at [35] as open-source.
The workload generated based on Poisson distribution al-
lowed us to test both REACT and Kubernetes algorithm per-
formance after the MEC resources became scarce. All tests
have been repeated along with 1000 elasticity events. Both
REACT and Kubernetes are evaluated using the following
Key Performance Indicators (KPI):

1. Elasticity events accomplishment measures both mech-
anisms’ performance to accept elasticity events under
resource scarcity conditions. Thus, auto-scaling re-
quests can be denied if no resources are available.

2. Cumulative Distribution Function (CDF) shows the
cumulative acceptance ratio’s behavior along with KPI
1 in the experiment. It shows how REACT can handle
more auto-scaling requests than Kubernetes by using
its service donation approach.

3. Service outages measure the negative impact on ser-
vices when resources become scarce. Moreover, this
KPI shows how services could be either terminated or
migration could be enabled due to scarcity of resources.

4. Elasticity attempts are related to the algorithmic ca-
pacity to calculate new elasticity enforcement during
resource scarcity conditions. If no resources are avail-
able, a single auto-scaling request will count as one
elasticity attempt. The mechanisms will then attempt to
respond to the auto-scaling request until resources be-
come available, while elasticity attempts are counted.

5. Residual resource behavior (over-provisioned) shows
how over-provisioned resources are allocated during
the experiments. Based on this, it is possible to un-
derstand how resource allocation could be enhanced
whenever MEC resources become scarce. Besides, it
identifies how service billings can be minimized while
providing better MEC resource usage.

6. The time response measures both mechanisms’ perfor-
mance to calculate and perform auto-scaling events.

6. Performance Evaluation

REACT and Kubernetes acceptance elasticity events rates
(KPI 1) have been evaluated by measuring the number of
events accepted after the hosting resources are saturated. Ac-
cepted events are related to both mechanisms’ capacity to
accomplish elasticity events, e.g., given an elasticity request,

Medeiros et al.: Preprint submitted to Elsevier

Page 9 of 13

(=2
o

| REACT
B Kubernetes

a
o
*

Y
o

XX
K

R
%
K&

&
0050
Ko

w
o

4
[

.,
X

<3

o

s
35
o2}

5
%
%%
P
3¢

x

5%
%!

N
o

Accepted Elasticity Events

o —

10

CPU RAM Bandwidth

Figure 5: Impact of REACT and Kubernetes mechanisms to
accomplish elasticity events throughout the testbed.

\ \
REACT
Kubernetes

1.0 {

o
©

o
o

o
'S

Acceptance ratio

o
[\

i
60 75 90 105 120 135 150

Resource units (CPU, RAM, bandwidth)

o
=}

Figure 6: Acceptance ratio of elasticity events.

the mechanism can provide the auto-scaling provisioning ac-
tion. In particular, Figure 5 shows the total accepted elasticity
events by each resource type, i.e., CPU, RAM, and bandwidth.
Kubernetes achieved an acceptance rate of 80’177 events.
Based on this, 33.34%, i.e., 26’733, of the events were ded-
icated for CPU resources, 31.89%, i.e., 25’568 events, for
RAM resources, and 34.77%, i.e., 27’876, for network re-
sources. On the other hand, REACT achieved an acceptance
rate of 98’848 elasticity events, where 33.56%, i.e., 33’168
events, for CPU resources, 33.02%, i.e., 32’644 events, for
RAM resources, and 33.42%, i.e., 33’036 events, for network
resources. REACT has accepted 18’671 more events than
Kubernetes, which means a performance gain of 18.88% com-
pared to Kubernetes. It is worth mentioning that the present
evidence relies on REACT’s capacity to accommodate more
elasticity events through its solidarity approach.

We show the acceptance ratio of elasticity events in Fig-
ure 6 through a CDF (KPI 2). Also, Figure 6 combines all ac-
ceptance probability values, i.e., CPU, RAM, and bandwidth,

REACT
Kubernetes

[2)]
x
T

Service Outages
w A
~ ~
T T

BrTIK XXX

Bandwidth

Figure 7: Influence of REACT and Kubernetes elasticity mech-
anisms in the testbed concerning service outages.

and shows the cumulative probability of the elasticity events
accepted by REACT and Kubernetes. REACT has a higher
acceptance ratio due to its knowledge of over-provisioned
resources. This feature avoids rejection events and increases
the acceptance events ratio.

In containerization-based Docker, CPU is a compressible
resource; that is, containers can be throttled by the Linux
kernel CPU scheduler if the requested amount is exceeded or
the node is overloaded. Once a container reaches the limit, it
will continue running. However, the operating system will
throttle it and keep restricting it from using the CPU. On the
other hand, it is important not to allow a running container to
consume too much of the host machine’s memory. By defini-
tion, RAM is a non-compressible resource. Once a container
reaches the memory limit, it will be terminated because of
the Out of Memory (OOM) problem, which means that the
container’s service will be killed. The same behavior occurs
in REACT since Docker provides container virtualization
for services. Kubernetes was designed to maintain the avail-
ability of the entire system. When the system goes into the
over-committed state, the Kubernetes may decide to kill a set
of pods to restore system stability. Generally, if a pod uses
more resources than requested, that pod becomes a candidate
for termination. On the other hand, REACT will try to use
the residual service resources through its solidarity approach
to minimize service outages and reduce service migration.

Figure 7 compares solutions in terms of service outages
(KPI 3) during the experiments. A total of 19’626 service
outage events were accomplished by Kubernetes’ VPA mech-
anism, where 34.28%, i.e., 6’728 events, for CPU, 38.81%,
i.e., 77616 events, RAM, and 26.91%, i.e., 5’282 events, for
bandwidth. Based on 1’000 elasticity events, in average,
7.616 services were affected by the OOM problem, which
means that at least 8 services would have needed to be mi-
grated to another server, totaling 8% of all services deployed.
Furthermore, in average, 6.73% of CPU and 5.28% of RAM
service resources were affected by the lack of resources. On
the other hand, REACT accomplished 955 service outage

Medeiros et al.: Preprint submitted to Elsevier

Page 10 of 13

160 ‘ :
Kubernetes REACT
140 CPU u
" RAM
P 120 . Bandwidth B
=]]] u
dE) 100 |- = - " m 1 8 "
£ . T
3 80] ‘ 1 - | |
S
3 60 2 ‘
K}
W 40
20
|
0
0 200 400 600 800 1000

Elasticity Events

Figure 8: Elasticity attempts accomplished in the testbed as a
consequence of the REACT and Kubernetes mechanisms.

8k :
|% REACT

| Kubernetes

~
=

(3] [=2]
= -
*
—

Residual Resources
N w H
x - x
e
o — -

2
o

%-{a

Bandwidth

CPU RAM

Figure 9: Effect in the residual resources led by REACT and
Kubernetes elasticity mechanism on the testbed.

events, equivalent to 4.85% of the total service outage events
accomplished by Kubernetes. This means a reduction of ap-
proximately 95.15%, i.e., 18’671, of service outage events.
For CPU, RAM, and bandwidth resources, REACT detected
293, 540, and 122 service outage events. With REACT, in av-
erage, 0.54% of services were affected by the OOM problem.
Atleast 1 service would need to be migrated to another server,
totaling 1% of all services. This fact indicates a reduction of
87.5% fewer services affected by the OOM problem than the
Kubernetes. These findings support the notion that REACT
is less influenced by the OOM problem and, consequently,
by the inforced service migration. This implies that REACT
is associated with smooth service interruption and prevents
more services from becoming terminated or migrated.
Figure 8 shows the performance of both REACT and
Kubernetes when the edge server achieves resource satura-
tion, employing the averaging elasticity attempts analysis
(KPI 4). When this state is reached, the schemes cannot

12k

I
REACT
Kubernetes|
10k
(]
[
L
=
o
(7]
& 8k .
©
=]
T
)
[]
14 6k |l
4k : : : :
0 200 400 600 800 1000

Experiment events

Figure 10: Cumulative residual resources behavior led by RE-
ACT and Kubernetes elasticity mechanism in the testbed.

serve all service elasticity requests. Then they try to provide
elasticity actions based on available resources in the edge
server. REACT makes use of the over-provisioned resources.
During the resource scarcity situation, Kubernetes achieved
243’456 elasticity attempts, and 34.01% , i.e., 82’811 at-
tempts, of these events were dedicated for CPU resources,
39%, i.e., 94’949 attempts, for RAM resources, and 26.9%,
i.e., 65’696 attempts, for bandwidth resources. However, RE-
ACT achieved 11°280 elasticity attempts, reducing 95.36%,
i.e., 232’176 attempts, compared to Kubernetes elasticity
attempts. REACT’s mechanism distinguishes itself from
the Kubernetes by needing fewer resource re-orchestration
rounds to adapt to new loads of services during the scarcity
of resources. It chooses a better resource configuration based
on all services’ workload and can accomplish more elasticity
events than Kubernetes.

We also examined the residual resources (KPI 5) for both
REACT and Kubernetes. Figure 9 shows the behavior of the
residual resources of the mechanisms during the experiment
events. Figure 9 sketches the cumulative residual resources
units. Kubernetes achieved an average of 2.41 vCPUs cores,
residual CPU cycles, 4’985 MB of residual RAM, and 1’404
Mbps of residual bandwidth units. On the other hand, RE-
ACT achieved an average of 1.60 residual CPU cycles, 3’070
MB of residual RAM units, and 1’025 Mbps of residual
bandwidth units. In this way, REACT performed an average
gain of 33.88% of CPU residual resources, 38.41% of RAM
residual resources, and 73% of residual bandwidth resources
compared to Kubernetes mechanism.

REACT’s solidarity algorithm provides scale-down ac-
tions on residual resources of the donor list. Figure 10 out-
lines the residual resource behavior on the elasticity events in
the two experiments. Therefore, REACT calculates the ratio
between the currently used resources and the total resources
reserved for each donor chosen. Then, REACT calculates
the final amount of resources to shrink from the residual re-
sources of the selected donor. REACT allows more efficient

Medeiros et al.: Preprint submitted to Elsevier

Page 11 of 13

400
EEEEE REACT

350 | XY Kubernetes| |

w
o
o
T
1

N
a
o
T
1

Time (milliseconds)
N
o
o
T
1

-
o
o
T
|

a
o
—

{ A
1t e 1
) | EEE
| | mmmm;

Elasticity events Elasticity attempts

Total time

Figure 11: Processing time that REACT and Kubernetes take
in the testbed to accomplish elasticity events.

use of over-provisioning resources by using them more effi-
ciently via the solidarity-based mechanism. REACT takes
advantage of over-provisioning, it does not prevent it. The
more over-provisioning the MEC services have, the more
REACT can make the solidarity approach feasible.

Finally, to evaluate our REACT processing time, we com-
pared the time needed to provide the elasticity actions and
the time to provide the elasticity attempts when a resource
scarcity situation is reached since both REACT and Kuber-
netes need to perform restricted actions to meet the current
elasticity demand.

Figure 11 shows the average time to process an elasticity
request. Figure 11 also outlines the average processing time
to accomplish elasticity events and elasticity attempts. Since
Kubernetes performs fewer elasticity actions than REACT, its
average processing is 49 ms, while REACT achieved 268 ms
due to the solidarity actions. Regarding the elasticity attempt
window, Kubernetes has an average of 320 ms compared to
19 ms of the REACT algorithm, considering that both mech-
anisms will try to perform elasticity events when resources
become scarce. Lastly, the total average processing time,
including elasticity events and elasticity attempt window, for
Kubernetes is 369 ms, while REACT achieved 311 ms. RE-
ACT obtained gains in terms of processing time of 15.5%
compared to Kubernetes. Indeed, the processing time is short,
considering the order of magnitude of milliseconds. Hence,
we demonstrate that REACT provides a response time as low
as the Kubernetes algorithm.

To summarize the evaluation, REACT compared to Ku-
bernetes has the following improvements: (i) REACT is more
agile than Kubernetes, having the ability to accommodate
more elasticity events; (ii)) REACT provides more resource re-
allocation procedures whenever the resources become scarce;
(iii) REACT degrades fewer services, allowing services to
remain active longer or prevent the service migration; and,
(iv) REACT takes advantage of service over-provisioning,
enhancing the residual resources of services.

7. Conclusion

This paper proposes REACT, a self-adaptive elasticity
solution that handles resource scarcity in MEC environments.
REACT uses a solidarity approach to provide resource real-
location of residual resources to prevent undesirable service
degradation due to the scarcity of MEC resources. REACT
can minimize the harmful effects of service migration while
keeping more services running over the same MEC server.
We provided a detailed description of REACT, including the
solidarity approach, the system model, and the REACT algo-
rithm. Our evaluation assesses both REACT and Kubernetes’
performance on a real testbed. Testbed results demonstrate
better performance of REACT over Kubernetes in terms of
accomplishing up to 18.88% more elasticity events, reducing
service outages by up to 95.1%, reducing elasticity attempts
by up to 95.36%, and reducing over-provisioned resources by
up to 33.88%, 38.41%, and 73% for CPU cycles, RAM and
bandwidth resources, respectively. Finally, REACT reduced
response time by up to 15.5%

References

[1] 5G PPP Architecture Working Group. View on 5G Architecture -
Version 3.0. Technical report, 5G PPP, 02 2020.

[2] Imtiaz Parvez, Ali Rahmati, Ismail Guvenc, Arif I Sarwat, and Huaiyu
Dai. A survey on low latency towards 5g: Ran, core network and
caching solutions. IEEE Communications Surveys & Tutorials, 20(4):
3098-3130, 2018.

[3] Hadeel Abdah, Joado Paulo Barraca, and Rui L Aguiar. Qos-aware
service continuity in the virtualized edge. IEEE Access, 7:51570—
51588, 2019.

[4] Tao Chen, Rami Bahsoon, and Xin Yao. A survey and taxonomy of self-
aware and self-adaptive cloud autoscaling systems. ACM Computing
Surveys (CSUR), 51(3):1-40, 2018.

[5] 5G-PPP Software Network Working Group. From webscale to telco,
the cloud native journey. Technical report, 5G PPP, 07 2018.

[6] Sami Kekki, Walter Featherstone, Yonggang Fang, Pekka Kuure, Alice
Li, Anurag Ranjan, Debashish Purkayastha, Feng Jiangping, Danny
Frydman, Gianluca Verin, et al. MEC in 5G networks - ETSI White
Paper No. 28. Technical report, ETSI, June 2018.

[7] 5G-PPP Software Network Working Group. Cloud native and 5g
verticals services. Technical report, 5G PPP, 02 2020.

[8] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny

Dutta, and Dario Sabella. On multi-access edge computing: A survey

of the emerging 5g network edge cloud architecture and orchestration.

IEEE Communications Surveys & Tutorials, 19(3):1657-1681, 2017.

Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala,

Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P Jue.

All one needs to know about fog computing and related edge computing

paradigms: A complete survey. Journal of Systems Architecture, 98:

289-330, 2019.

[10] Quoc-Viet Pham, Fang Fang, Vu Nguyen Ha, Md Jalil Piran, Mai Le,
Long Bao Le, Won-Joo Hwang, and Zhiguo Ding. A survey of multi-
access edge computing in 5g and beyond: Fundamentals, technology
integration, and state-of-the-art. [EEE Access, 8:116974-117017,
2020.

[11] Cheol-Ho Hong and Blesson Varghese. Resource management in
fog/edge computing: a survey on architectures, infrastructure, and
algorithms. ACM Computing Surveys (CSUR), 52(5):1-37, 2019.

[12] Fei Zhang, Guangming Liu, Xiaoming Fu, and Ramin Yahyapour. A
survey on virtual machine migration: Challenges, techniques, and open
issues. IEEE Communications Surveys & Tutorials, 20(2):1206-1243,
2018.

[13] Zeineb Rejiba, Xavier Masip-Bruin, and Eva Marin-Tordera. A survey

[9

—

Medeiros et al.: Preprint submitted to Elsevier

Page 12 of 13

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

on mobility-induced service migration in the fog, edge, and related
computing paradigms. ACM Computing Surveys (CSUR), 52(5):1-33,
2019.

Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B
Letaief. A survey on mobile edge computing: The communication
perspective. IEEE Communications Surveys & Tutorials, 19(4):2322—
2358, 2017.

Francesco Spinelli and Vincenzo Mancuso. Towards enabled industrial
verticals in 5g: a survey on mec-based approaches to provisioning and
flexibility. IEEE Communications Surveys & Tutorials, 2020.

Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle. Elasticity
in cloud computing: State of the art and research challenges. /IEEE
Transactions on Services Computing, 11(2):430-447, 2018.

Mohit Kumar, SC Sharma, Anubhav Goel, and SP Singh. A compre-
hensive survey for scheduling techniques in cloud computing. Journal
of Network and Computer Applications, 2019.

Felipe S Dantas Silva, Marcilio OO Lemos, Alisson Medeiros, Au-
gusto Venancio Neto, Rafael Pasquini, David Moura, Christian Rothen-
berg, Lefteris Mamatas, Sand Luz Correa, Kleber Vieira Cardoso, et al.
Necos project: Towards lightweight slicing of cloud federated infras-
tructures. In 2018 4th IEEE Conference on Network Softwarization
and Workshops (NetSoft), pages 406-414. IEEE, 2018.

Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. Re-
source management approaches in fog computing: a comprehensive
review. Journal of Grid Computing, pages 1-42, 2019.

Quan Yuan, Xinsheng Ji, Hongbo Tang, and Wei You. Toward latency-
optimal placement and autoscaling of monitoring functions in mec.
IEEE Access, 8:41649—41658, 2020.

Nan Wang, Blesson Varghese, Michail Matthaiou, and Dimitrios S
Nikolopoulos. Enorm: A framework for edge node resource manage-
ment. /EEE transactions on services computing, 2017.

Rodrigo da Rosa Righi, Leandro Andrioli, Vinicius Facco Rodrigues,
Cristiano André da Costa, Antonio Marcos Alberti, and Dhananjay
Singh. Elastic-ran: an adaptable multi-level elasticity model for cloud
radio access networks. Computer Communications, 142:34-47, 2019.
Chunlin Li, Hezhi Sun, Yi Chen, and Youlong Luo. Edge cloud
resource expansion and shrinkage based on workload for minimizing
the cost. Future Generation Computer Systems, 101:327-340, 2019.

Alexandru-Florian Antonescu and Torsten Braun. Simulation of sla-
based vm-scaling algorithms for cloud-distributed applications. Future
Generation Computer Systems, 54:260-273, 2016.

Ranesh Kumar Naha, Saurabh Garg, Andrew Chan, and Sudheer Ku-
mar Battula. Deadline-based dynamic resource allocation and pro-
visioning algorithms in fog-cloud environment. Future Generation
Computer Systems, 104:131-141, 2020.

Chunlin Li, Chengyi Wang, and Youlong Luo. An efficient scheduling
optimization strategy for improving consistency maintenance in edge
cloud environment. The Journal of Supercomputing, pages 1-28, 2020.
Gabriele Castellano, Flavio Esposito, and Fulvio Risso. A distributed
orchestration algorithm for edge computing resources with guarantees.
In IEEE INFOCOM 2019-1EEE Conference on Computer Communi-
cations, pages 2548-2556. IEEE, 2019.

Argyrios G Tasiopoulos, Onur Ascigil, Ioannis Psaras, and George
Pavlou. Edge-map: Auction markets for edge resource provisioning.
In 2018 IEEE 19th International Symposium on" A World of Wireless,
Mobile and Multimedia Networks"(WoWMoM), pages 14-22. IEEE,
2018.

Jingjing Guo, Chunlin Li, Yi Chen, and Youlong Luo. On-demand
resource provision based on load estimation and service expenditure
in edge cloud environment. Journal of Network and Computer Appli-
cations, 151:102506, 2020.

Toannis Sarrigiannis, Kostas Ramantas, Elli Kartsakli, Prodromos-
Vasileios Mekikis, Angelos Antonopoulos, and Christos Verikoukis.
Online vnf lifecycle management in an mec-enabled 5g iot architecture.
IEEE Internet of Things Journal, 7(5):4183-4194, 2019.

Nabeel Akhtar, Ibrahim Matta, Ali Raza, Leonardo Goratti, Torsten
Braun, and Flavio Esposito. Managing chains of application functions
over multi-technology edge networks. IEEE Transactions on Network

[32]

[33]

[34]

[35]

and Service Management, 2021.

Hanieh Alipour, Yan Liu, and Abdelwahab Hamou-Lhadj. Analyzing
auto-scaling issues in cloud environments. In Proceedings of 24th
Annual International Conference on Computer Science and Software
Engineering, CASCON ’14, page 75-89, USA, 2014. IBM Corp.
Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. A
review of auto-scaling techniques for elastic applications in cloud
environments. Journal of grid computing, 12(4):559-592, 2014.
Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

Alisson Medeiros. REACT Prototype, 2020. URL https://bitbucket.
org/alissonpmedeiros/elasticity/src/master/.

% Alisson Medeiros is a Ph.D. candidate at the Com-
munication and Distributed Systems (CDS) group,
| Institute of Computer Science, University of Bern,
Switzerland. He received his MSc from the Federal
University of Rio Grande do Norte (UFRN), Brazil,
and got his BSc in computer science at the State
" University of Paraiba, Brazil. His research interest
includes resource management and orchestration of
Cloud/Fog/Edge Computing systems.

Antonio Di Maio is a postdoctoral researcher in
mobile networks with the Communication and Dis-
tributed Systems (CDS) group at the University of
Bern, Switzerland. He obtained his PhD degree
in Computer Engineering from the University of
Luxembourg in 2020, with a thesis on routing and
content dissemination in software-defined vehicular
“ networks. His current research interests fall within
the areas of network modeling, scheduling, routing,
and channel access.

Torsten Braun is currently director at the Institute
of Computer Science, University of Bern, where
he has been a full professor since 1998. He got the
Ph.D. degree from University of Karlsruhe (Ger-
many) in 1993. From 1994 to 1995, he was a guest
scientist at INRIA Sophia-Antipolis (France). From
1995 to 1997, he worked at the IBM European Net-
working Centre Heidelberg (Germany) as a project
leader and senior consultant. He has been a vice
president of the SWITCH (Swiss Research and Ed-
ucation Network Provider) Foundation from 2011
to 2019. He has been a Director of the Institute
of Computer Science and Applied Mathematics at
University of Bern between 2007 and 2011, and
since 2019.

Augusto Neto is Associate Professor at the
Informatics and Applied Mathematics Depart-
ment(DIMAp) of the Federal University of Rio
Grande do Norte(UFRN), member of the Instituto
de Telecomunicacdes (Aveiro, Portugal), researcher
of the National Council for Technological and Sci-
entific Development (CNPq), and leader of the Re-
search Group on Future Internet Service & Appli-
cations(REGINA), working mainly in the fields of
Computer Networks and Distributed Systems. He
got his Ph.D. at the University of Coimbra (2008),
and coordinates/participates in research projects
funded by national and international development
agencies.

Medeiros et al.: Preprint submitted to Elsevier

Page 13 of 13

https://bitbucket.org/alissonpmedeiros/elasticity/src/master/
https://bitbucket.org/alissonpmedeiros/elasticity/src/master/

	1

