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Abstract Pion–kaon (πK ) pairs occur frequently as final
states in heavy-particle decays. A consistent treatment of πK
scattering and production amplitudes over a wide energy
range is therefore mandatory for multiple applications: in
Standard Model tests; to describe crossed channels in the
quest for exotic hadronic states; and for an improved spec-
troscopy of excited kaon resonances. In the elastic region,
the phase shifts of πK scattering in a given partial wave
are related to the phases of the respective πK form fac-
tors by Watson’s theorem. Going beyond that, we here con-
struct a representation of the scalar πK form factor that
includes inelastic effects via resonance exchange, while ful-
filling all constraints from πK scattering and maintaining
the correct analytic structure. As a first application, we
consider the decay τ → KSπντ , in particular, we study
to which extent the S-wave K ∗

0 (1430) and the P-wave
K ∗(1410) resonances can be differentiated and provide an
improved estimate of the CP asymmetry produced by a
tensor operator. Finally, we extract the pole parameters of
the K ∗

0 (1430) and K ∗
0 (1950) resonances via Padé approx-

imants,
√
sK ∗

0 (1430) = [1408(48) − i 180(48)] MeV and
√
sK ∗

0 (1950) = [1863(12) − i 136(20)] MeV, as well as the
pole residues. A generalization of the method also allows us
to formally define a branching fraction for τ → K ∗

0 (1430)ντ

in terms of the corresponding residue, leading to the upper
limit BR(τ → K ∗

0 (1430)ντ ) < 1.6 × 10−4.

1 Introduction

At low energies, the πK S-wave of isospin 1/2 is character-
ized by the interplay of low-energy theorems induced by the
chiral structure of QCD [1,2] and a relatively close-by pole
located deep in the complex plane called the κ or K ∗(700)

[3–8]. The properties of the κ cannot be described by a sim-
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ple Breit–Wigner (BW) model, but require the proper con-
sideration of the analytic structure, most conveniently imple-
mented in the framework of dispersion relations. Given that
the πK S-wave effectively stays elastic well beyond 1 GeV,
with the first excited resonance, the K ∗

0 (1430), still predom-
inantly coupling to the πK channel, the κ properties are thus
largely encoded in the S-wave phase shift, although the full
dispersive analysis involves other partial waves as well as the
crossed reaction ππ → K̄ K [3,7,9]. While πK scattering
thus serves as the simplest probe of the strangeness sector
of the QCD spectrum, its impact extends far beyond, with
more complicated processes such as γ K → πK [10], K�4

decays [11], D-meson decays such as D → ππK [12,13],
or even reactions involving nucleons [14,15] depending on
πK amplitudes as input.

Moreover, the same principles of unitarity and analyt-
icity upon which modern analyses of πK scattering are
based imply a relation to the corresponding form factors.
In the crossed reaction ππ → K̄ K this connection deter-
mines scalar meson [16] and nucleon [17] form factors via
a coupled-channel T -matrix, while the πK form factors of
a given partial wave are directly related to the respective
πK scattering amplitudes via Watson’s theorem [18], which
states that the phases coincide in the elastic region. The S-
and P-wave πK form factors are relevant for analyses of
K�3 [19–21] and τ → KSπντ decays [22–26], where the τ

spectrum probes the region of parameter space in which an
elastic approximation no longer applies. Extensions of the
simple Omnès representation [27] are thus required. For the
P-wave, inelastic effects are typically included in resonance
chiral theory (RChT) [28] via the K ∗(1410), providing an
extended parameterization of the phase shift to be used in
the Omnès factor or by feeding the corresponding ampli-
tudes into a unitarization scheme such as the N/D method
[29,30]. The latter is hard to handle, however, since it is dif-
ficult to prevent its high-order polynomials from generating
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unphysical poles [31]. Moreover, for the S-wave, the effect
of inelasticities in τ → KSπντ is usually neglected apart
from a generous variation of the unknown phase of the form
factor, leading to an Omnès representation that, besides con-
straints from the Callan–Treiman low-energy theorem [32–
36], essentially involves a subtracted version of the elastic
solution.

Extending the applicability range of form factor parame-
terizations by an improved treatment of inelastic effects has
become increasingly pressing in recent years. First, the size
of the CP asymmetry in τ → KSπντ generated by a ten-
sor operator was shown to be solely determined by inelas-
tic effects [37], due to a cancellation of the elastic con-
tribution that follows from Watson’s theorem. In addition,
control over inelastic effects would be required to describe
D → πK�ν� [38] and future measurements of B → πK�ν�

or B → πK��, or as subamplitudes for the calculation of
heavy-meson Dalitz plots, which are often described in a
simplified manner in terms of πK form factors [39–43]. For
the latter application, the amplitudes are described by the
same form factors if the impact of hadronic spectator parti-
cles is neglected, and in this case variants of the scalar form
factor have been constructed that include inelastic effects by
a coupled-channel treatment of πK and η′K [41].

Also in the hunt for exotic hadrons, controlled πK ampli-
tudes are very valuable. For example, at Belle and LHCb the
Zc(4430) was discovered in the reaction B → ψ ′πK in the
ψ ′π subsystem [44,45]. The signal became visible through
the observation that the πK amplitudes in the crossed chan-
nel were not able to describe the ψ ′π distribution. Since in
such crossed amplitudes the individual partial waves inter-
fere with each other, a high control especially of their phases
is mandatory. Finally, to get access to the spectrum of kaon
resonances and in particular their pole parameters, employ-
ing amplitudes consistent with analyticity and unitarity is
necessary.

In this paper, we propose a parameterization for the S-
wave πK form factor that has the proper low-energy behavior
and at the same time allows for an inclusion of resonances and
inelasticities at higher energies. We follow the strategy from
Ref. [46] (originally proposed in Ref. [47] for the pion vector
form factor), describing inelastic effects via resonances akin
to the isobar model, but in such a way that at low energies the
elastic Omnès parameterization is reproduced and the cor-
rect analytic structure remains preserved. Accordingly, we
assume that the inelastic contributions can be understood as
proceeding via resonances, as supported by the phenomeno-
logical success of the isobar model. The analogous repre-
sentation derived in Ref. [46] then allowed for an analysis
of the complete kinematic range of the Bs → J/ψππ and
Bs → J/ψ K̄ K spectra, extending the previous high-quality
description in a restricted range of ππ and K̄ K invariant

masses [48]. In particular, the properties of the higher S-
wave resonances could be extracted.

In this work, we first establish a similar formalism for the
πK system, see Sect. 2, with the input from πK scattering
data discussed in Sects. 3 and 4 . As applications, we consider
the τ → KSπντ spectrum in Sect. 5, including an improved
prediction for the CP asymmetry produced by a tensor oper-
ator, and extract the resonance parameters of K ∗

0 (1430) and
K ∗

0 (1950) in Sect. 6, where the residue describing the cou-
pling to the weak current allows us to formally define the
branching fraction for τ → K ∗

0 (1430)ντ . Our conclusions
are given in Sect. 7.

2 Formalism

As mentioned above, we aim at a parameterization of the πK
isospin-1/2 S-wave scattering amplitude that at low energies
matches smoothly onto elastic πK scattering given by the
input phase shift δ0, and at the same time allows for the inclu-
sion of resonances and inelastic channels, most importantly
the η′K channel, at higher energies – the ηK channel turns
out to largely decouple. Thus, in the energy range we study,
two channels are sufficient and we therefore present the for-
malism in a two-channel formulation, although an extension
to more channels is straightforward. To derive an expression
for the T -matrix that fulfills the mentioned criteria, we start
from the Bethe–Salpeter equation, which in matrix form in
channel space reads

Ti f = Vi f + VimGmmTm f , (1)

where Vi f ∈ R denotes the interaction potential between the
initial channel i and final channel f and Gmm denotes the
loop operator, which provides the free propagation of the
intermediate particles of channel m. For two-particle states,
its discontinuity is given by discGmm = 2iρm , where ρm
denotes the two-body phase space in channel m,

ρm(s) =
λ

1
2

(
s,

(
m(m)

i

)2
,
(
m(m)

j

)2
)

16πs
, (2)

where λ is the Källén function

λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc). (3)

To proceed we follow the general concepts of the so-called
two-potential formalism [49], which calls for splitting the
scattering potential V into two pieces,

V = V0 + VR. (4)

This allows for a corresponding splitting of the T -matrix

T = T0 + TR, (5)

123



Eur. Phys. J. C           (2021) 81:420 Page 3 of 17   420 

where T0 fulfills the Bethe–Salpeter equation that has V0 as
input, T0 = V0 + V0GT0. As will be demonstrated below, the
explicit form of V0 is never needed: all quantities necessary
to express the full scattering T -matrix and the scalar form
factor can be calculated from the scattering phase shift δ0

directly. T0 fixes the low-energy behavior of the model, while
TR incorporates the high-energy resonant behavior via VR. In
the case of πK scattering studied here, we assume T0 to be
purely elastic. The additional channel couples through the
resonance exchange in TR only. We may therefore write

T0 =
( 1

ρ1
sin δ0eiδ0 0

0 0

)
. (6)

Clearly, the assumption that all higher channels couple via
resonances introduces some model dependence, which, how-
ever, is backed by phenomenology [50–52]. We furthermore
define the vertex function Ω = 1 + T0G. Its discontinuity is
given by

disc Ωi f = 2i(T ∗
0 )imρmΩm f , (7)

which matches that of an Omnès function [27] calculated
from T0. Thus we can express Ω via a dispersion integral
over the input phase δ0,

Ω =
(

Ω11 0
0 1

)
, Ω11 = exp

(
s

π

∫ ∞

sth

dz
δ0(z)

z(z − s)

)
. (8)

Note that in order to render the integral well defined, the
phase δ0 needs to be continued up to infinite energies. How
this is done in practice is discussed below. Plugging Eqs. (4)
and (5) into Eq. (1), one finds after some algebra the defining
equation for tR,

tR = VR + VRΣ tR, (9)

which is related to TR via TR = ΩtRΩT. The so-called
dressed loop operator or self energy Σ = GΩ incorporates
the effects contained in T0 into the propagation of the two-
meson states as demanded by unitarity. It can be expressed
as a once-subtracted dispersion integral

Σi j (s) = s

2π i

∫ ∞

sth

dz
discΣi j (z)

z(z − s)
, (10)

with its discontinuity given by

disc Σi f = Ω
†
imdiscGmmΩm f . (11)

The subtraction constant is reabsorbed into the potential VR.
Such manipulations are justified as the formalism has not
made any assumptions about the form of VR besides it being
real and having poles at the bare resonance masses M̃(r). The
simplest parameterization of this kind is

V R(s)i j = −
∑

r

g(r)
i g(r)

j

s − M̃2
(r)

, (12)

where the g(r)
i denote the bare couplings of the resonance r to

channel i . The bare parameters introduced here should not be
confused with the physical parameters introduced in Sect. 6.
To reduce the impact of VR at lower energies, the potential
is subtracted at some properly chosen point s0, resulting in

VR(s)i j = V R(s)i j − V R(s0)i j

=
∑

r

g(r)
i

s − s0(
s − M̃2

(r)

) (
s0 − M̃2

(r)

)g(r)
j . (13)

Solving Eq. (9) for tR, the full scattering T -matrix is given
by

T = T0 + TR = T0 + Ω [1 − VRΣ]−1 VRΩT, (14)

with VR as defined in Eq. (13).
We can further parameterize the πK production mecha-

nism by adapting the P-vector formalism of Ref. [53] (see
also the resonance review of Ref. [54]). The scalar form fac-
tor fs(s) is then expressed as

( fs)i = Mi + TimGmmMm, (15)

where M is some properly chosen source term. Under the
assumption that M does not contain any left-hand cuts, plug-
ging Eq. (14) into Eq. (15) yields

fs(s) = Ω(s) [1 − VR(s)Σ(s)]−1 M(s), (16)

where M is now a reparameterized source term, which can
be written as

Mi =
kmax∑

k=0

c(k)i sk −
∑

r
g(r)
i

s − s0(
s − M̃2

(r)

) (
s0 − M̃2

(r)

)α(r). (17)

The coefficients c(k)
i and the resonance couplingsα(r) depend

on the source. A method to generalize the formalism to also
allow for left-hand cuts is provided by the Khuri–Treiman
formalism [55]. For a recent calculation of this kind where
the amplitudes of Ref. [46] were employed, see Ref. [56].

3 Scattering data and input phase

Most of the data on πK scattering were obtained in the 1970s
and 1980s.1 Various experiments [58–62] obtained data for
the phase shift of the isospin-3/2 wave in the elastic regime
from kaon–nucleon reactions using protons, neutrons, and
deuterons with K±π± in the final states. The isospin-1/2
wave, however, can only be measured in combination with

1 New πK scattering data are planned to be taken by a neutral-kaon-
beam experiment at Jefferson Lab [57].
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the isospin-3/2 wave, so that we mainly focus on the combi-
nation of both, which in terms of the T -matrices is expressed
by

T̂i f = ρi

(
T

1
2 + T

3
2 /2

)

i f
. (18)

Studies of the reaction K− p → K−π+n performed in Ref.
[63] resulted in data for argument and modulus of this isospin
combination in the πK channel up to about 2.5 GeV, which
we use to fix the free parameters of the resonance potential.

For the low-energy phase shift δ0 we use the results
obtained in Ref. [64]. Using forward dispersion relations to
constrain the parameters, in that work the authors found a
parameterization of the isospin-1/2 and -3/2 waves up to
1.6 and 1.8 GeV, respectively. In the elastic regime it is based
on a conformal expansion of the phase shifts, while inelas-
tic background and resonance contributions are modeled by
products of functions consistent with unitarity. For the input
phase δ0 we reduce the parameterization to be purely elas-
tic. In addition, we remove the resonance contributions from
the parameterization of the phase above the ηK threshold, as
higher resonances will be included via the resonance poten-
tial VR. Thus, we use the parameterization provided in Ref.
[64] as the input phase δ0 below the ηK threshold, and set
the parameters G1 and G2 to zero in the resonance terms S1

r
and S2

r of Eq. (16) in Ref. [64] above. This procedure makes
a small cusp at the ηK threshold more visible (cf. Fig. 1).
Since T0 needs to be known in the full energy range and δ0

formally even up to infinite energies to allow one to evaluate
the Omnès integral of Eq. (8), the phases needs to be contin-
ued smoothly up to high energies. We force them to approach
integer multiples of π , employing

δ0(s) = L − (
L − δ0(sm)

)
exp

(
− (s−sm)δ′

0(sm)

L−δ0(sm)

)
(19)

for s > sm. Here L denotes the asymptotic limit of the phase
shift and δ′

0(s) its derivative dδ0(s)/ds. As the isospin-3/2
wave is purely elastic over a wide energy range and contains
no resonances, which would be exotic due to their quantum
numbers, the phase shift can simply be guided towards 0 as

T
3
2

R = 0.
As shown in Fig. 1, the available data for the isospin-

3/2 wave of Refs. [58–62] are not mutually consistent,
but the parameterization of Ref. [64] describes them quite
decently. As data are only available up to 1.72 GeV, we
choose

√
sm = 1.75 GeV as a matching point for the isospin-

3/2 wave. The isospin-1/2 wave on the other hand is guided
towards π above

√
sm = 1.52 GeV as only the κ resonance

below the ηK threshold remains to be described by the input
phase. The final results do not depend on the exact value of
the matching energy sm, as long as it is chosen in this range.

Fig. 1 Isospin-1/2 and -3/2 phase shifts including their high-energy
extension. The latter is compared to the data from Bakker et al. [58],
Cho et al. [59], Estabrooks et al. [60], Jongejans et al. [61], and Linglin
et al. [62]

The resulting input phase shifts for the isospin-1/2 and -3/2
components are shown in Fig. 1 as well.

4 Fit to scattering data

We aim at a description of the scattering data from the πK
threshold up to 2.5 GeV. In this energy range the particle data
group (PDG) reports, besides the κ , two more resonances in
the S-wave, K ∗

0 (1430) and K ∗
0 (1950) [54]. We thus allow

for two resonances in the resonance potential. Using a two-
channel setup, incorporating the πK and η′K channels, the
model has a total of 6 free real parameters in VR: 4 cou-
pling constants and 2 masses. Following Ref. [3], we assume
that the ηK channel effectively decouples from πK . This
assumption is confirmed by the analysis of Ref. [64], which
finds the πK system elastic up to 1.6 GeV. Moreover, we
checked that an inclusion of the ηK channel yields no signif-
icant difference of our results: the largest relative difference
between a fit using a two-channel and three-channel model
is about 0.5% for the argument and 0.9% for the modulus.
Furthermore, the fit finds values consistent with zero for the
couplings of the resonances to the ηK channel.

Figure 2 shows the result of the combined fit of argument
and modulus to the data set of Ref. [63], with the corre-
sponding parameters given in Table 1. The model is able to
reproduce the data well up to about 2.3 GeV. The subtrac-
tion point of the potential s0 is fixed to the ηK threshold with
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Fig. 2 Results for the combined fit of argument and absolute value of
T̂ , defined in Eq. (18), with 1σ uncertainty band to the corresponding
data of Aston et al. [63]. We furthermore show the results of Peláez and
Rodas (2016) [64] for comparison, which by the authors are quoted to
be valid up to the dash-dotted line at 1.6 GeV, and the newer results
of Peláez and Rodas (2020) [7]. We moreover show the low-energy

amplitude (T̂0)i f = ρi
(
T

1
2

0 + T
3
2

0 /2
)
i f and the resonance part of the

model (T̂R)i f = ρi
(
T

1
2

R

)
i f independently

Table 1 Parameters of the combined fit of argument and absolute value
of T̂ , defined in Eq. (18), to the corresponding data of Ref. [63] as shown
in Fig. 2

Parameter Value

g(1)
1 (GeV) 2.898(29)

g(1)
2 (GeV) −0.25(35)

g(2)
1 (GeV) 2.14(17)

g(2)
2 (GeV) 7.70(64)

M̃(1) (GeV) 1.5708(33)

M̃(2) (GeV) 2.133(36)

#data points 112

#variables 6

χ2 370.8

χ2/#d.o.f. 3.50

s0 = (MK + Mη)
2. This choice is supported by fits where

s0 was treated as a free parameter. Using a subtraction at
s0 = 0 as in the ππ analyses of Refs. [46,47] turns out to be
insufficient to dampen the low-energy contributions of the
resonance potential, as the πK threshold lies much higher
than the ππ threshold. With our choice for s0, however, the
full result matches the low-energy input closely below the ηK

Fig. 3 Elasticities η of the πK isospin- 1
2 wave extracted from Peláez

and Rodas (2016) [64], Peláez and Rodas (2020) [7], and our model.
The dashed blue line denotes the end of the range of validity of the
analysis from Ref. [64] at 1.6 GeV

threshold, as it should. The fit demonstrates that the coupling
of the K ∗

0 (1430) to the η′K channel is small and within errors
consistent with zero, while the K ∗

0 (1950) couples strongly
to η′K .

The resulting reduced χ2 of about 3.5 seems rather unsat-
isfactory. However, comparing the data of Ref. [63] to the
results of other groups such as Ref. [60] reveals that there
are large discrepancies between the different data sets. Espe-
cially in the low-energy regime up to the opening of the ηK
threshold, a lot of data points differ by multiple standard
deviations between the two sets. A combined fit of argument
and modulus to both data sets more than doubles the reduced
χ2, strongly indicating that some systematic uncertainties are
underestimated – see also the related discussion in Ref. [64].
Hence, considering the modest quality of the data the fit per-
forms quite decently. One could also try to extend the model
to higher energies by adding an additional K ∗

0 resonance.
However, this would require reliable data up to even higher
energies, while we already cover the energy ranges of pro-
cesses of interest such as τ → KSπντ and B → J/ψπK .

Figure 3 shows the elasticity η of the isospin-1/2 ampli-
tude that results from the fit, compared to that of the analysis
of Ref. [64]. One sees that our model is purely elastic up to
1.5 GeV. At higher energies, η starts to decrease in a way
consistent with Ref. [64], although some deviations become
visible.

5 Application to τ decays

As an application of the parameterization of the scalar
form factor constructed based on the scattering input fixed
in the preceding sections, we now focus on the reaction
τ− → KSπ

−ντ , to improve the description of the spectrum
measured by the Belle collaboration [65] in the energy region
where inelastic effects in the scalar form factor become rele-
vant. In particular, we will study to which extent the excited
S- and P-wave resonances K ∗

0 (1430) and K ∗(1410) can be
separated and provide an improved estimate of theCP asym-
metry produced by a tensor operator.
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Table 2 Input quantities entering Eq. (21)

Quantity Value References

GF (10−5 GeV−2) 1.1663787(6) [66]

Sτ
EW 1.0194 [67–69]

|Vus | f+(0) 0.2165(4) [54,70]

δK τ
EM −0.15(20)% [26]

5.1 Decay rate and form factor parameterization

The differential decay rate can be parameterized by

dΓ

d
√
s

= cΓ

s

(
1 − s

m2
τ

)2 (
1 + 2

s

m2
τ

)
qπK

×
⎛

⎝q2
πK | f̄+|2 + 3Δ2

πK

4s
(

1 + 2 s
m2

τ

) | f̄0|2
⎞

⎠ , (20)

where ΔπK = M2
K − M2

π , the prefactor is given by

cΓ = G2
Fm

3
τ

96π3 Sτ
EW

(|Vus | f+(0)
)2(1 + δK τ

EM

)2
, (21)

with the constants listed in Table 2, and

qπK = λ1/2
(
s, M2

π , M2
K

)

2
√
s

(22)

is the center-of-mass momentum of the πK pair.
The actually measured events N in an experimental setting

in a bin at
√
s then emerge from the decay rate as

N = cN
dΓ

d
√
s

:= λ

cΓ

dΓ

d
√
s
, (23)

with cN some constant depending on the experimental setup.
Here we assume the experimental binning to be chosen in
such a way that the differential decay rate can be considered
constant with respect to its uncertainty within one bin. For
simplicity we combine all prefactors in the fits and define
λ = cN × cΓ , which remains a free parameter of the fit.

In the parameterization (20) the form factors are defined
by the matrix elements

〈K̄ 0(pK )π−(pπ )|s̄γ μu|0〉 = (pK − pπ )μ f+(s)

+ (pK + pπ )μ f−(s),

〈K̄ 0(pK )π−(pπ )|s̄u|0〉 = ΔπK

ms − mu
f0(s), (24)

where

f−(s) = ΔπK

s

(
f0(s) − f+(s)

)
. (25)

The Ward identity ensures the common normalization
f+(0) = f0(0) of vector and scalar form factors f+(s) and

f0(s), which has been removed in the reduced form

f̄+(s) = f+(s)

f+(0)
, f̄0(s) = f0(s)

f+(0)
. (26)

With πK S-wave scattering fixed as discussed in the pre-
vious section, the scalar form factor can be calculated via
Eq. (16) as f̄0(s) = ( fs)1. In principle, the vector form fac-
tor could also be described in a similar formalism, but for the
present application we will employ a conventional parame-
terization from RChT [22–26], whose phase serves as input
for an Omnès representation with three subtractions

f̄+(s) = exp

[
λ′ s

M2
π

+ 1

2

(
λ′′ − λ′2)

(
s

M2
π

)2

+ s3

π

∫ ∞

sth

dz

z3

δ1(z)

(z − s)

]
. (27)

Here, one subtraction constant was fixed by f̄+(0) = 1, and
the other two are related to the slope parameters of the form
factor, which can be determined independently from K�3

decays. We choose them to be fixed by the central values
of the results from Ref. [26], λ′ = 25.621(405) × 10−3 and
λ′′ = 1.2221(183) × 10−3. As these parameters were not
readjusted to the τ decay studied here, they impose an addi-
tional constraint on the small-s behavior of the form factors,
to which the τ spectrum is less sensitive. We have checked
that the sum rules of Ref. [26] for λ′, λ′′, which depend on
the P-wave fit parameters, remain well fulfilled in the fit, but
otherwise will not propagate the corresponding uncertainties
further, given that our focus lies on the inelastic part of the τ

spectrum.
The phase δ1 in Eq. (27) is parameterized as arg( f̂+) with

f̂+ a RChT model for the form factor in terms of two reso-
nances K ∗(892) and K ∗(1410) and a mixing parameter β,
given as

f̂+(s) = M̃2
K ∗(892) − κK ∗(892) H̃πK (0) + βs

D
(
M̃K ∗(892), Γ̃K ∗(892)

)

− βs

D
(
M̃K ∗(1410), Γ̃K ∗(1410)

) , (28)

with

D
(
M̃R, Γ̃R

) = M̃2
R − s − κRRe H̃πK (s) − i M̃RΓR(s) (29)

and

ΓR(s) = Γ̃R
s

M̃2
R

(
ρ1(s)

ρ1(M̃2
R)

)3

,

κR = 1

64π2

Γ̃R

M̃R

3FK Fπ
(
ρ1(M̃2

R)
)3 . (30)
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Further,

H̃πK (s) = H(s) − 2Lr
9s

3FK Fπ

= sMr (s, μ) − L(s)

FK Fπ

(31)

is the πK loop function in chiral perturbation theory (ChPT)
with H(s) as defined in Ref. [34], where the chiral scale
μ was fixed to μ = MK ∗(892)0 = 895.55 MeV [54]. Explicit
expressions for Mr (s, μ) and L(s) can be found in Ref. [71]
as well as for H̃πK (0) = HπK (0) in Ref. [34]. Note that
the mass M̃R and width Γ̃R parameters are bare parameters
and do not correspond to physical masses and widths. The
parameters for K ∗(892) and K ∗(1410) are initially set to
the results of Ref. [26], but are then allowed to vary within
2σ for M̃K ∗(892) and Γ̃K ∗(892), 5σ for M̃K ∗(1410), 1.5σ for
Γ̃K ∗(1410), and 10σ for β, although β < 0 is still enforced.
These parameter ranges were chosen in such a way that the
shape of the generated πK P-wave scattering phase shift
remains phenomenologically viable.

Since we employ a two-channel formalism for the S-wave,
the parameters to be adjusted to the τ decay data are the
normalization constants c(0)

1 and c(0)
2 , potentially to be sup-

plemented by higher terms in the polynomial for the source
term, as well as source–resonance couplings α(1) and α(2)

to the two resonances. Due to the normalization f̄0(0) = 1,
given by the Ward identity, f+(0) = f0(0), the constant term
c(0)

1 is implicitly fixed by f̄0(0) = ( fs)1(0) = 1. Furthermore
the normalization of the η′K scalar form factor is fixed from
matching to the corresponding expression from U (3) ChPT
at s = 0, which, with the standard single η–η′ mixing angle,
is larger than the πK scalar form factor by a factor of

√
3 at

leading order, resulting in ( fs)2(0) = M2(0) = √
3, which

implicitly fixes c(0)
2 . Higher-order corrections tend to reduce

this result [72], however, as we will find, the sensitivity of the
data to the η′K channel is limited, so that the leading-order
estimate is sufficient for our purposes.

Higher polynomials in the source term have the potential
to improve the description of the scalar form factor in the τ

decay region, at the cost of changing its high-energy behav-
ior. We therefore investigate the influence of a linear term in s
proportional to c(1)

1 for the πK channel. For the η′K channel
on the other hand, this did not prove necessary as already the
leading-order constant is poorly determined in the fit. Fur-
thermore, our phase description of the S-wave does not only
include the K ∗

0 (1430) resonance, which is perfectly within
the decay region, but also the K ∗

0 (1950) resonance, which
lies significantly above the τ mass. Hence it is to be expected
that the corresponding source-term coupling α(2) is difficult
to constrain via the τ decay data. Accordingly, we will con-
sider fit variants in which the K ∗

0 (1950) source-term coupling
is set to zero for this decay. Note that this does not remove
the K ∗

0 (1950) resonance completely from our model, as the
phase still contains the full information about all resonances.

This is a distinct feature of this construction, reflecting the
built-in unitarity constraints.

Finally, we introduce a further restriction into our fit-
ting routine: the Callan–Treiman low-energy theorem [32–
36] constrains the scalar πK form factor below threshold at
s = ΔπK to

f̄0(ΔπK ) = FK

Fπ

+ ΔCT , (32)

where ΔCT is a very small correction. To implement this
condition we introduce an additional term to the χ2 sum
weighted by ΔCT , given as

χ2 → χ2 +
(

f̄0(ΔπK ) − (FK /Fπ ) − ΔCT

ΔCT

)2

. (33)

We takeΔCT = −5.6 × 10−3 from Ref. [35], which includes
isospin breaking and corrections up to next-to-next-to-
leading order. For the ratio of the decay constants we use
FK /Fπ ∼ 1.195 [73].

5.2 Fit results

We consider the four fit variants presented in Table 3.
As indicated, we distinguish between fits with and without
the K ∗

0 (1950) source-term coupling α(2) as well as with and

without a linear term in s proportional to c(1)
1 in the source

term of the scalar form factor. The parameters of the scalar
resonances are kept fixed to their values determined in the fit
to the scattering data. As all fits are in agreement with each
other and of similar quality, Fig. 4 shows the results only of
Fit 3, together with the efficiency-corrected and background-
subtracted events as measured by Belle [65] as well as the
separate contributions from the vector and scalar form fac-
tor, respectively. For all fits we excluded the data points 5, 6,
and 7, following Refs. [23,24,26,74]. The inclusion of these
points would increase the χ2/#d.o.f. by 0.15–0.2 without
any significant shift in the fit parameters, suggesting a con-
flict with the general principles on which our fit function
is based. Since the experimental uncertainties included in
the fit (and shown in Fig. 4) are only statistical, this is likely
due to an unaccounted-for systematic effect. The relative dif-
ferences between the various fits as well as the comparison
to two of the original Belle BW parameterizations [65] are
displayed in Fig. 5, which are normalized to the result of
Fit 3. “Belle 1” corresponds to a BW description including
K ∗

0 (700), K ∗(892), and K ∗(1410), and “Belle 2” contains
K ∗

0 (700), K ∗(892), and K ∗
0 (1430). With their BW frame-

work, Belle was only able to describe the structure around
1.4 GeV either by the vector K ∗(1410) or by the scalar
K ∗

0 (1430) resonance, but not by both at the same time.
The τ decay spectrum is highly dominated by the vector

form factor and the K ∗(892) resonance, making other com-
ponents of the decay rate difficult to separate. However, it
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Table 3 Parameters of the fits of theoretical events N , defined in
Eq. (23), to efficiency-corrected and background-reduced events for
τ− → KSπ

−ντ [65] including the additional constraint of Eq. (33)

with different combinations of fixed α(2) and c(1)
1 parameters. As the

outcome of all fits is quite close, only Fit 3 is shown exemplarily in
Fig. 4, while we display the comparison between the fits in Fig. 5

Parameter Fit 1 Fit 2 Fit 3 Fit 4

λ 0.753(11) 0.7440(94) 0.7617(87) 0.746(11)

α(1) (GeV) −0.35(26) −0.28(21) 0.035(40) −0.42(19)

α(2) (GeV) 1.9(1.3) −4.3(3.9) 0 (fixed) 0 (fixed)

c(1)
1 (GeV−2) 0 (fixed) −0.65(34) 0 (fixed) −0.25(11)

M̃K ∗(892) (MeV) 943.71(57) 943.26(53) 944.04(52) 943.40(54)

Γ̃K ∗(892) (MeV) 67.15(88) 66.46(82) 67.61(80) 66.69(82)

M̃K ∗(1410) (MeV) 1355(34) 1381(39) 1354(15) 1357(24)

Γ̃K ∗(1410) (MeV) 205(100) 205(100) 229(22) 176(35)

β −0.032(16) −0.029(12) −0.0418(48) −0.0251(75)

#data points 97+1 97+1 97+1 97+1

#variables 8 9 7 8

χ2 93.1 87.4 97.7 89.4

χ2/#d.o.f. 1.03 0.98 1.07 0.99

Fig. 4 Example result Fit 3 for the fit of theoretical events N , defined
in Eq. (23), to efficiency-corrected and background-reduced events
for τ− → KSπ

−ντ of Ref. [65] including the additional constraint of
Eq. (33). In addition, we show the scalar form factor (SFF) and vector
form factor (VFF) components separately

is known that a description in terms of the K ∗(892) reso-
nance alone is not sufficient, as also found by Belle [65].
In our analysis, we find meaningful fits of the decay spec-
trum, despite the strong overlap between the K ∗

0 (1430) and
K ∗(1410) resonances. With information on the K ∗

0 (1430)

resonance entering via the πK S-wave phase shift, the fit to
the spectrum allows us to determine the mass parameter of
the K ∗(1410) at the level of 30 MeV, so that the combination
of scattering data and the τ spectrum permits some discrim-
ination between the S- and P-wave resonances even without
additional differential information (see below). As expected,
the influence of the K ∗

0 (1950) resonance in the decay region

Fig. 5 Comparison of the different fit results presented in Table 3 as
well as two BW parameterizations “Belle 1” and “Belle 2” [65] – which
include K ∗

0 (700), K ∗(892), and K ∗(1410), or K ∗
0 (700), K ∗(892), and

K ∗
0 (1430), respectively – all normalized by Fit 3

is very small and the fit results with and without K ∗
0 (1950)

source-term coupling are nearly indistinguishable in terms
of the decay spectrum, as reflected by the large uncertainties
on α(2) in Fits 1 and 2. The linear term in the source term
c(1)

1 , on the other hand, improves the fit more substantially
and does not come out consistent with zero. However, as the
fit quality is already sufficient without it, we cannot claim
conclusive evidence for the necessity of a linear term either.
At the current level of precision, we thus conclude that the
four fit variants are essentially equivalent.

Examining the underlying scalar and vector form factors,
as shown in Figs. 6 and 7 , respectively, the advantages of our
parameterization in comparison to the BW approach become
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Fig. 6 Scalar form factor f̄0 (top: modulus, bottom: phase) with the
parameters of the fit results of Table 3

Fig. 7 Vector form factor f̄+ (top: modulus, bottom: phase) with the
parameters of the fit results of Table 3

evident. By construction, the phase of the scalar form factor
coincides with the scattering phase up to the η′K thresh-
old. As only the absolute value of the form factor enters into
Eq. (20), the measurement cannot fix its phase directly, but
it is determined implicitly in accord with the unitarity condi-
tion, a constraint clearly violated by the BW parameteriza-
tions, see Fig. 6. Furthermore, contrary to the BW model, our
representation fulfills the Callan–Treiman low-energy theo-
rem up to at least 0.5%, which corresponds to less than 10%
of ΔCT.

The vector form factor comes out close to the results of
Ref. [26], from where its parameterization originates, with
small differences in the inelastic region due to the use of our
improved parameterization of the scalar form factor. The con-
straints on λ′ and λ′′ using the K�3 input from Ref. [26] are
still fulfilled up to at least 0.5%. The result is also relatively

close to the BW parameterization, which works well as long
as the K ∗(892) resonance dominates. However, unitarity vio-
lation still occurs in the threshold region due to unphysical
imaginary parts, and the phase differs considerably as soon
as the K ∗(1410) resonance becomes relevant.

Comparing the four fits, differences emerge starting
around the η′K threshold. The phase of Fit 3 largely fol-
lows the elastic input phase, in Fit 2 still a sharp drop-off
occurs, while in Fits 1 and 4 no such effect is visible. This
behavior is mirrored in the modulus, almost reaching zero in
Fit 3 and a pronounced minimum in Fit 2. Further, the results
of Fits 1 and 3, which do not involve a slope parameter c(1)

1 ,
tend to have a smaller scalar form factor in the τ decay region
and a slightly lower bare mass for the K ∗(1410) in the vector
form factor. On the other hand, Fits 2 and 4, including a slope
c(1)

1 , have more freedom to increase the scalar form factor at
lower energies, which results in a slightly higher K ∗(1410)

bare mass and a smaller value of λ. Asymptotically, the scalar
form factors without slope fall off like 1/s for high energies,
as expected from perturbative QCD [75,76], while those with
a slope approach a constant; again, the τ spectrum is not suf-
ficient to differentiate. In fact, the scalar form factors beyond
the η′K threshold are not well constrained at all, as that region
is already strongly suppressed by phase space in the decay
spectrum and the data points have large uncertainties. This
is the reason why Fits 3 and 4 are much better behaved when
extrapolated beyond the energy region probed in the τ decay,
since without setting α(2) = 0 the fit function can extend to
large values before the asymptotic behavior sets in. Finally,
one finds that all scalar form factors still generate resonant
structures above the τ decay region, even if the source-term
couplings are set to zero: as we already remarked above, uni-
tarity demands that the underlying phase still contain infor-
mation about all resonances.

Since the scalar resonance K ∗
0 (1430) and the vector reso-

nance K ∗(1410) occupy the same energy region, ultimately
additional data beyond the spectrum are required to better
determine their parameters. One such observable that sepa-
rates vector and scalar components is the forward–backward
asymmetry [77,78]

AFB(s) =
∫ 1

0 dz
[

dΓ
dz (z) − dΓ

dz (−z)
]

∫ 1
0 dz

[
dΓ
dz (z) + dΓ

dz (−z)
]

= −2Re ( f0 f ∗+)ΔπKqπK
√
s

| f0|2Δ2
πK + 4

3 | f+|2q2
πK

(
2s2

m2
τ

+ s
) , (34)

where z denotes the cosine of the πK helicity angle. The
quantity AFB(s) can potentially be measured at Belle II [78].
We show the predictions corresponding to the four fits in
Fig. 8. As expected, the different fits are quite distinct above
the η′K threshold due to the different phase motion, allowing
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Fig. 8 Forward–backward asymmetry as defined in Eq. (34) for the
four fit results as given in Table 3

one to distinguish among them once data on AFB(s) become
available.

Finally, by integrating over Eq. (20) and normalizing with
respect to the total τ decay width Γτ = 2.267(4) × 10−3 eV
[54], we can calculate the branching ratio of τ → KSπντ for
the different fits:

BR(τ → KSπντ )

∣∣∣
Fit 1

= 4.334(66)(25) × 10−3,

BR(τ → KSπντ )

∣∣∣
Fit 2

= 4.390(48)(26) × 10−3,

BR(τ → KSπντ )

∣∣∣
Fit 3

= 4.284(35)(25) × 10−3,

BR(τ → KSπντ )

∣∣∣
Fit 4

= 4.377(49)(26) × 10−3,

(35)

where the first error refers to the statistical uncertainty prop-
agated from the fit parameters and the second one to the
normalization, see Table 2. In this way, we do not make an
attempt to extract the absolute normalization from the τ data,
but rather perform a consistency check with the K�3 data.
Moreover, we do not propagate the systematic uncertainties
incurred indirectly when using K�3 input for the subtraction
constants λ′ and λ′′, nor the uncertainties on the S-wave phase
as given in Table 1, which are expected to be negligible in
this application as they only become relevant above the τ

mass.
Since we cannot give preference to any particular fit vari-

ant, we quote the average over all four versions as central
value and assign the spread as systematic uncertainty

BR(τ → KSπντ ) = 4.35(6)st(3)norm(7)sys × 10−3

= 4.35(10) × 10−3. (36)

This result lies 2σ above the original Belle result
BR(τ → KSπντ )|[65] = 4.04(13) × 10−3, but agrees with

the more recent BR(τ → KSπντ )|[79] = 4.16(8) × 10−3 as
well as the PDG average BR(τ → KSπντ )|[54] = 4.19(7)×
10−3 at the level of 1.5σ . We thus conclude that the branch-
ing fraction extracted by combining the shape as measured
in the Belle spectrum with the normalization from K�3

decays comes out consistent with the direct measurement
in τ decays.

5.3 CP asymmetry

The CP asymmetry in τ → KSπντ is defined as

Aτ
CP = Γ

(
τ+ → π+KS ν̄τ

) − Γ
(
τ− → π−KSντ

)

Γ
(
τ+ → π+KS ν̄τ

) + Γ
(
τ− → π−KSντ

) . (37)

In the Standard Model, it is dominated by indirect CP vio-
lation, leading to the prediction [54]

Aτ
CP = AL = Γ

(
KL → π−�+ν�

) − Γ
(
KL → π+�−ν̄�

)

Γ
(
KL → π−�+ν�

) + Γ
(
KL → π+�−ν̄�

)

= 3.32(6) × 10−3, (38)

which is in conflict with the 2012 measurement by the BaBar
collaboration [80]

Aτ,exp
CP = −3.6(2.3)(1.1) × 10−3. (39)

Including small corrections related to the KS reconstruction
[81], this amounts to a 2.8σ tension.

As pointed out in Refs. [82,83], due to the absence of a
scalar–vector interference there are limited options to pro-
duce an effect with physics beyond the Standard Model
(BSM), the only remaining option being a tensor–vector
interference. Estimates for its size then depend on the tensor
form factor defined by

〈K̄ 0(pK )π−(pπ )|s̄σμνu|0〉 = i
pμ
K pν

π − pν
K pμ

π

MK
BT (s),(40)

based on which the CP asymmetry takes the form [37]

Aτ,BSM
CP = Im cT

Γτ BR(τ → KSπντ )

×
∫ m2

τ

sπK

ds′κ(s′)| f+(s′)||BT (s′)|
× sin

(
δ+(s′) − δT (s′)

)
, (41)

where sπK = (Mπ + MK )2, δT (s) is the phase of BT (s),

κ(s) = G2
F |Vus |2Sτ

EW
q3
πK

(
m2

τ − s
)2

32π3m2
τ MK

√
s
, (42)

and Im cT is the imaginary part of the tensor Wilson coeffi-
cient. The key observation made in Ref. [37] is that Watson’s
theorem implies δ+(s) = δT (s), so that the strong phase due
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to the K ∗(892) cancels in Eq. (41), with the remaining inelas-
tic effect due to the K ∗(1410) suppressed by two orders of
magnitude. A simple BW estimate was used to argue
∣∣Aτ,BSM

CP

∣∣
[37] � 0.03|Im cT |, (43)

which, together with limits on Im cT from the neutron electric
dipole moment and D–D̄ mixing, was sufficient to exclude
this explanation of the BaBar measurement (39).

The estimate (43) was subsequently revisited in Refs.
[84–86], mostly in the framework of RChT, including the
suggestion in Ref. [86] to constrain the tensor form factor
using large-Nc arguments [87]. As another application of the
improved treatment of the scalar form factor and, in conse-
quence, the vector form factor as extracted from the τ spec-
trum, we now turn to a refined evaluation of Eq. (41).

While the normalization is determined from lattice QCD,
BT (0) = 0.686(25) [88], to constrain the phase of the tensor
form factor beyond the elastic region, we need information
about the coupling of the K ∗(1410) to the tensor current
relative to its vector-current coupling, which in the parame-
terization (28) is contained in β. As pointed out in Ref. [86],
such a constraint can be extracted from the large-Nc pattern
derived in Ref. [87],

ξn = f TVn
fVn

→ (−1)n
1√
2
, (44)

for the ratio of tensor over vector coupling constants for the
nth excitation of a vector meson. For the ground state n = 0
one has [89]

f TK ∗(892)

fK ∗(892)

= BT (0)
MK ∗(892)

2MK
∼ 0.62, (45)

indeed close to 1/
√

2. Denoting the tensor analog of β by γ ,
these arguments lead to

γ = − MK ∗(892)

MK ∗(1410)

β ∼ −0.63β, (46)

which would change to

γ = −
√

2MK

BT (0)MK ∗(1410)

β ∼ −0.73β (47)

if the lattice-QCD number (45) were used for the K ∗(892),
but the asymptotic value 1/

√
2 for the K ∗(1410). In the fol-

lowing, we will thus use the estimate γ = −0.7β, discarding
the (unlikely) possibility of the opposite sign [87], in which
case the CP asymmetry would be even further suppressed.

Averaging over the four fit variants given in Table 3, with
β → γ for the tensor form factor, we obtain

Aτ,BSM
CP = −0.034(11)(7)(5) Im cT

= −0.034(14) Im cT , (48)

where the uncertainties refer to the systematic effects when
including c(1)

1 , α(2), and a 30% large-Nc uncertainty assigned
to the tensor phase, respectively. The final result thus nicely
confirms the simple estimate of Eq. (43).

6 Pole extraction

Resonances manifest themselves as poles on the unphysi-
cal Riemann sheets of the S- or, equivalently, the T -matrix.
The pole position in the complex plane, sR, is conventionally
parameterized in terms of a mass parameter MR and a width
parameter ΓR via

√
sR = MR − i

ΓR

2
. (49)

For resonances distorted by threshold effects or overlapping
resonances, the value of ΓR neither agrees with the visible
width nor can it be directly related to the lifetime of the state.
Moreover, for these cases and broad resonances, MR and ΓR

can deviate significantly from the corresponding BW param-
eters, which are model- and reaction-dependent quantities.

As T0 has a complicated analytic structure due to left-hand
cuts, which cannot be deduced from the phase shift alone, an
analytic continuation to other Riemann sheets is not feasi-
ble. However, as T -matrix and form factor are smooth func-
tions when moving across a cut from the physical Riemann
sheet to the connected unphysical sheet, we can use Padé
approximants to determine the nearest pole on the neighbor-
ing unphysical sheet.

Assuming that an amplitude F(s) is analytic inside the
disc Bδ(s0) around some expansion point s(N )

0 except for one
simple pole, we can expand F(s) according to Montessus’
theorem as

PN
1 (s, s0) =

∑N
n=0 a

(N )
n

(
s − s(N )

0

)n

1 + b(N )
(
s − s(N )

0

) , (50)

with a(N )
n , b(N ) ∈ C. This enables us to extract the resonance

lying closest to the expansion point s0. The pole position s(N )
R

and corresponding residueR(N ) of the Padé approximant are
given by

s(N )
R = − 1

b(N )
+ s(N )

0 ,

R(N ) =
N∑

n=0

(−1)n
a(N )
n

b(N )n+1
. (51)

For a more detailed introduction into the applications of Padé
theory, see Refs. [90–92].

To determine the parameters a(N )
n and b(N ), we fit Padé

approximants to the scattering matrix T11 and the form fac-
tor ( fs)1. As both T11 and ( fs)1 contain the same pole, the
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parameter b(N ) is the same, while the a(N )
n coefficients are

allowed to be different in the two fits. Note that in the present
study the energy range of the form factor is limited by the
τ mass, such that the parameters of the K ∗

0 (1950) resonance
are fixed by the T -matrix only. Furthermore, the K ∗

0 (1430)

resonance is located in close proximity to the η′K thresh-
old, in such a way that the expansion of Eq. (50) needs to be
modified. To include the non-analyticities of the two closest
relevant thresholds, in Ref. [91] it was proposed to perform
the expansion not in s, but in the conformal variable

ω(s) =
√
s − sth

1 −
√
sth

2 − s
√
s − sth

1 +
√
sth

2 − s
, (52)

with sth
1 and sth

2 denoting the lower and upper threshold,
respectively. This transformation maps the first and adjacent
unphysical Riemann sheet to a unit circle in ω without intro-
ducing any unphysical discontinuities, allowing for a better
convergence of the Padé series. As the main decay channel
of the K ∗

0 (1430) is πK , we set sth
1 = (MK + Mπ )2 and

sth
2 = (MK + Mη′)2.

The systematic uncertainty originating from the Padé
approximant is estimated by

Δ(N )
sys =

∣∣∣∣

√
s(N )

R −
√
s(N−1)

R

∣∣∣∣ . (53)

The statistical uncertainty is obtained via a bootstrap analysis
by varying the underlying amplitudes within their respective
1σ uncertainties. The resulting uncertainties are then added
in quadrature,

Δ
(N )
total =

√
Δ2

st + Δ
(N )
sys

2
. (54)

For any given value of N , the extracted pole position in gen-
eral still depends on the expansion point s(N )

0 . Hence we first

calculate the Padé approximants for a wide range of s(N )
0

values. For appropriate values of s(N )
0 the extracted pole sta-

bilizes. We therefore choose that value of s(N )
0 for each N

that minimizes Δ
(N )
sys . Furthermore, resonance couplings and

branching ratios to πK can be calculated via the residue R,
which can be expressed in terms of the T -matrix

lim
s→sp

(s − sp)Ti j = −Ri j . (55)

For the normalization of the channel coupling g̃R
j of a reso-

nance R to channel j we choose the convention given in the
resonance review of Ref. [54]

g̃R
j = Ri j/

√
Ri i , (56)

corresponding to a partial width ΓR→i defined by

ΓR→i = |g̃R
i |2
MR

ρi

(
M2

R

)
. (57)

Fig. 9 Uncertainty regions Δ
(N )
sys as defined in Eq. (53) for the optimal

value of s0 on the pole position of the K ∗
0 (1950)

Table 4 Results of Padé extractions at N = 5 for the K ∗
0 (1950)

including statistical (first bracket) and systematic uncertainties (second
bracket)

√
s(5)

R (MeV) 1863(11)(4) − i 136(19)(4)

Δ
(5)
sys (MeV) 4

√
s(5)

0 (GeV) 1.86

mod
(
g̃
K ∗

0 (1950)

πK

)
(GeV) 4.32(35)(8)

arg
(
g̃
K ∗

0 (1950)

πK

)
−0.20(3)(1)

ΓK ∗
0 (1950)→πK (MeV) 184(19)(4)

ΓK ∗
0 (1950)→πK /Γtot 0.70(7)(2)

Note that only for narrow, non-overlapping resonances, these
partial widths sum up to the resonance width ΓR defined in
Eq. (49).

For the K ∗
0 (1950), Fig. 9 illustrates a clear convergence

of the pole position for increasing orders N of the Padé
series, which is truncated at N = 5. The extracted pole cor-
responds to a mass of 1863(11)(4) MeV and a decay width
of 272(38)(8) MeV, as shown in Table 4. According to the
PDG, the K ∗

0 (1950) still needs confirmation and is quoted
with a mass of 1945(22) MeV and a width of 201(90) MeV
[54]. However, this average is based only on the analysis of
Ref. [63], where the data are fit using a simple BW distribu-
tion with an energy-dependent width and a linear background
term in a limited energy range including the K ∗

0 (1950). A
comparison to the other results listed by the PDG is shown
in Fig. 10. Both Refs. [93,94] are based on the data from
Ref. [63]. Reference [93] uses a K -matrix formalism includ-
ing πK , η′K , and a generalized multimeson channel. The
authors find, similarly to our analysis, a state with compara-
ble width but a significantly smaller mass in comparison to
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Fig. 10 Extracted pole position of the K ∗
0 (1950) in comparison to the

works of Aston et al. [63], Anisovich and Sarantsev [93], and Zhou and
Zheng [94]

Ref. [63]. Using a BW ansatz with constant width, improved
by incorporating some of the left- and circular-cut contribu-
tions via a dispersion integral, Ref. [94] finds a K ∗

0 (1950)

mass and width similar to Ref. [63], which should probably
be expected given that the left-hand cut contribution should
not influence the 1.9 GeV mass region significantly.

We find a partial width to πK of 184(19)(4) MeV, result-
ing in a branching fraction of 0.70(7)(2). This is slightly
larger than the results obtained in Ref. [63] with 0.52(8)(12)

and the estimate in Ref. [94] quoting a branching fraction of
0.6, however, still compatible within uncertainties. As the
statistical uncertainties become most significant at higher
energies, they dominate the total uncertainty.

In the case of the K ∗
0 (1430) resonance, the Padé fits prove

less stable than for the K ∗
0 (1950). According to Montessus’

theorem, to ensure convergence of the Padé series, the ampli-
tude F(s) needs to be known in a compact subset of the disc
Bδ(s0). Therefore, the Padé approximants should, in princi-
ple, also be fixed off the real axis. However, for this procedure
we observe large statistical uncertainties on the coefficients
of the polynomial as well as the pole parameters, which are
likely induced by the nearby branch-point singularity of the
η′K threshold. Alternatively fixing the Padé approximants
solely on the real axis dramatically improves the stability
of the fit. Although the fit then has less information on the
gradient in the complex plane, we still find a good agree-
ment of this fit to the amplitude even off the real axis on
the physical sheet. Furthermore, this Padé series reproduces
T -matrix and form factor on the real axis, which is the only
part fixed by experimental data, particularly well. We still
observe an unusual fluctuation of the extracted pole position,
especially for small orders N of the Padé approximants, as
seen in Fig. 11. However, for N ≥ 6 the theoretical uncer-

Fig. 11 Uncertainty regions Δ
(N )
sys as defined in Eq. (53) for the optimal

value of s0 on the pole position of the K ∗
0 (1430)

Fig. 12 Extracted pole position of the K ∗
0 (1430) in comparison to

Peláez et al. [5], Lees et al. [95], Bugg (2010) [96], Bonvicini et al.
[97], Bugg (2006) [98], Zhou and Zheng [94], Zeng et al. [99], Aitala
et al. [100], Anisovich and Sarantsev [93], and Aston et al. [63]

tainty begins to stabilize, with Δ
(N )
sys being consistent with

the value of N = 6. Since the N = 7 and N = 8 ellipses
do not fully overlap and the uncertainty of N = 8 is even
larger than that of N = 7, we use parameters and uncertain-
ties derived from N = 6 as our final outcome; see Table 5.
This results in a mass of 1408(4)(47) MeV and a decay width
of 360(14)(96) MeV. The comparison to other values listed
by the PDG is shown in Fig. 12.

Although we use the elastic formalism of Ref. [64] as
input, we obtain a somewhat larger decay width for the
K ∗

0 (1430) than the one extracted in Ref. [5], although the
difference is not significant. It might be related to the fact
that our fits of the phase shifts start to deviate from those of
Ref. [64] in the energy range of the K ∗

0 (1430), see Fig. 2. As
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Table 5 Results of Padé extractions at N = 6 for the K ∗
0 (1430)

including statistical (first bracket) and systematic uncertainties (second
bracket)

√
s(6)

R (MeV) 1408(4)(47) − i 180(7)(47)

Δ
(6)
sys (MeV) 47

√
s(6)

0 (GeV) 1.36

mod
(
g̃
K ∗

0 (1430)

πK

)
(GeV) 4.96(14)(78)

arg
(
g̃
K ∗

0 (1430)

πK

)
0.06(1)(4)

ΓK ∗
0 (1430)→πK (MeV) 304(8)(42)

ΓK ∗
0 (1430)→πK /Γtot 0.87(2)(11)

Table 6 Results for the K ∗
0 (1430) residue and the corresponding

τ → K ∗
0 (1430)ντ branching fraction, in comparison to the literature.

The limit is given at 95% confidence level
∣∣Cus

K ∗
0 (1430)

∣∣ (GeV) BR(τ → K ∗
0 (1430)ντ )

Fit 1 0.23(4) 0.31(11) × 10−4

Fit 2 0.37(8) 0.78(38) × 10−4

Fit 3 0.11(2) 0.07(3) × 10−4

Fit 4 0.31(5) 0.55(20) × 10−4

Other theoretical determinations

Ref. [101] 0.37 0.79 × 10−4

Ref. [41] 0.28 0.45 × 10−4

Experiment

Ref. [102] < 0.93 < 5 × 10−4

illustrated in Fig. 11, the Padé analysis is quite stable with
respect to the width of the K ∗

0 (1430), which gives some confi-
dence in the rather large value of ΓK ∗

0 (1430) extracted here. For
the partial width to πK we find a value of 304(8)(42) MeV,
corresponding to a branching fraction of 0.87(2)(11). Within
uncertainties this is consistent with the value obtained in Ref.
[63], 0.93(4)(9).

Finally, the coupling of a scalar resonance R to the s̄γ μu
current is again determined in a model-independent way in
terms of its residue Cus

R , which can be extracted from the
scalar form factor near the pole sR according to

f̄0(s) =
√

2

3

g̃R
πKC

us
R

sR − s
, (58)

where the coefficient has been chosen to ensure that Cus
R

matches the conventions of Refs. [41,101]. The results for
Cus
K ∗

0 (1430)
for our Fits 1–4 are given in Table 6, compared to

literature values from Refs. [41,101,102]. We stress that Cus
R

is the unambiguous observable that describes the resonance
properties, which only for narrow resonances corresponds
to a physical branching fraction. However, to facilitate the
comparison of different conventions, it is useful to formally

define branching fractions by the narrow-width relation, even
for resonances as broad as the σ [103,104]. In the case of the
s̄γ μu current the decay width for τ → Rντ for an S-wave
resonance R in the narrow-width approximation reads

Γ (τ → Rντ ) = 6π2cΓ Δ2
πK

M4
R

(
1 − M2

R

m2
τ

)2∣∣Cus
R

∣∣2
, (59)

where the factor BR(R → πK ) for the branching frac-
tion should be added if R is only reconstructed in the πK
channel. This form can be extracted from Eq. (20) by insert-
ing Eq. (58), identifying the square of the propagator with
π/(MRΓR)δ(s − M2

R), where ΓR is connected to sR via
Eq. (49) and the limit ΓR → 0 is formally assumed, and
finally expressing |g̃R

πK |2 by the resonance width defined in
Eq. (57) (see Refs. [105–107] for more details, to identify
the ρ contribution in the pseudoscalar decays P → ππγ

and crossed reactions). In addition, Eq. (59) includes a factor
3 to account for all Kπ decay channels of the K ∗

0 (1430).
Table 6 shows that the residues extracted from the fits to

τ → KSπντ scatter around the literature values from other
theoretical investigations. We deduce from our analysis an
upper limit for the τ → K ∗

0 (1430)ντ branching fraction,
BR(τ → K ∗

0 (1430)ντ ) < 1.6 × 10−4 (at 95% confidence
level), that improves the literature value [54,102] by a factor
3. The difference of our findings to those of Refs. [41,101]
can be traced back to their more rigid parameterization of the
scalar form factor, which in both cases is determined once the
input T -matrix is specified. In our case, when the coupling
to the K ∗

0 (1950) or a linear term in the source are admitted,
the fit to the τ spectrum implies a larger scalar form fac-
tor than in the most constrained Fit 3, which translates into a
larger residue. A more reliable extraction of |Cus

K ∗
0 (1430)

| from

τ → KSπντ would thus require more precise data, ideally
on the forward–backward asymmetry to allow for a better
separation of the S- and P-wave components. Such data actu-
ally exist for B → Kππ decays [41], but at the expense of
additional hadronic uncertainties due to the presence of the
spectator pion.

7 Conclusions

In this paper we presented a parameterization of the scalar
πK form factor that extends into the inelastic region, assum-
ing that the main inelastic effects proceed via the K ∗

0 (1430)

and K ∗
0 (1950) resonances. Technically, this is achieved by

combining an Omnès description in terms of the πK phase
shift, valid in the elastic region, with a potential ansatz that
incorporates (bare) resonance poles. The formalism, here
employed for two channels, ensures that the result respects
all constraints from analyticity and unitarity. In particular,
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Watson’s theorem in its domain of validity is fulfilled by
construction. We then collected the required input to deter-
mine the S-wave πK T -matrix from state-of-the-art analyses
of πK scattering, leading to a parameterization of the scalar
form factor valid up to 2.3 GeV.

As a first application, we considered the τ → KSπντ

spectrum, especially its part above 1 GeV that is domi-
nated by inelastic contributions both in the S- and P-wave.
Employing a RChT description of the vector form factor,
we found that, in combination with the information on the
K ∗

0 (1430) incorporated in the input S-wave T -matrix, the
spectrum allows one to determine the K ∗(1410) mass at
the level of 30 MeV. An improved separation of these over-
lapping resonances, as well as distinguishing among the
fit variants shown in Figs. 4, 5, 6, and 7, requires addi-
tional information on the form factor phase motions, which
could be obtained via a future measurement of the forward–
backward asymmetry, e.g., at Belle II, see Fig. 8. Estimating
the K ∗(1410) tensor coupling via large-Nc arguments, the
resulting vector form factor also allows us to derive a refined
estimate of the CP asymmetry generated by a tensor opera-
tor, see Eq. (48).

Finally, we considered the extraction of the K ∗
0 (1430)

and K ∗
0 (1950) resonance properties from the scalar T -matrix

and form factor via Padé approximants, leading to the con-
straints on the pole positions shown in Figs. 10 and 12. For
the K ∗

0 (1950) we find an improved precision compared to
previous analyses, with an uncertainty dominated by the fit
to πK scattering input. For the K ∗

0 (1430) the uncertainty is
dominated by the systematics of the Padé expansion, likely
related to the proximity of the η′K threshold. We also pro-
vided results for the pole residues and the corresponding
branching fractions, both for πK scattering and the coupling
to the s̄γ μu current.

In conclusion, our representation for the scalar πK form
factor proves adequate well beyond the elastic region, and
can be constrained phenomenologically up to energies where
analyses of πK scattering are available. This covers the
entire kinematic range probed in the τ decay, includes the
K ∗

0 (1950) resonance region, and should thus allow for a
meaningful description of the πK form factor in future anal-
yses of semileptonic D- and B-meson decays. In particular,
combined analyses with τ → KSπντ data along the lines
presented here should keep the number of free parameters to
a minimum.
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