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1 Introduction

Studying the low-energy phenomenology of a quantum field theory is an important step
in most studies in the Standard Model (SM) and beyond. To this end, one constructs
the corresponding effective Lagrangian by separating the relevant dynamics from different
energy scales and removing the ones lying at high energies. The resulting effective field
theory (EFT) can then be used to study the physics at low energies, while keeping large
logarithms of the scale hierarchies under control by renormalization-group improvement.
A common example of such an approach is when one studies the effects of new-physics
(NP) models on flavor observables, where one separates dynamics at and above the weak
scale through a series of matching steps from the dynamics at the characteristic scale of
the process. In practice, one matches a given UV theory to the Standard Model Effective
Field Theory (SMEFT) [1, 2] which is then in turn, after renormalization group evolution
(RGE) in the SMEFT [3–6], matched to the Low Energy Effective Theory (LEFT) [7–9]
and evolved via the LEFT RG equations [10].

The example of flavor physics also shows the importance of performing the matching
steps beyond the leading order, since a great amount of interesting observables (e.g. FCNC
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processes like rare decays and neutral meson mixing) are generated starting only at one-loop
order within the SM. The process of matching NP models to an EFT to study the relevant
low-energy phenomenology constitutes a repetitive and time-consuming task, calling for
an automated solution. In the recent years, many tools for automated EFT calculations,
specially in the context of the SMEFT, have been developed [11–25]. In particular, tools for
RGE in the SMEFT and LEFT and one-loop matching of the SMEFT to the LEFT [11–13],
tree-level EFT matching of generic UV models [14] (see also [26]), as well as partial one-loop
EFT matching results [25, 27–29] are available. Moreover, the Matchmaker package (not yet
released) will automate the diagrammatic EFT matching of generic UV models [15, 30].
However, to our knowledge, no tool for complete one-loop EFT matching is currently
publicly available. We provide here a first building block in this direction by introducing
SuperTracer, a Mathematica package aimed at facilitating the one-loop EFT matching of
generic UV models using path integral methods.

The path integral formulation of one-loop EFT matching [27–29, 31, 32, 32–53] has
clear advantages over the diagrammatic procedure. For example, one does not need to
handle Feynman diagrams nor symmetry factors, and one obtains directly the complete
set of EFT operators together with their matching coefficients, without requiring any prior
knowledge of the EFT operator structure, symmetries, etc. All of these points and the
systematic nature of the procedure render the functional approach exceptionally suited to
be implemented in a computer program. As we describe in detail in section 2, at the heart
of the functional one-loop matching procedure is the evaluation of functional supertraces.
SuperTracer provides the full list of relevant supertraces for a given set of interactions and
automates their calculation to an arbitrary order in the heavy mass expansion, limited only
by the rapidly increasing complexity of the calculation at higher orders.1 Furthermore, it
provides the option of inputting substitutions for the interactions in terms of fields, and
applies some output simplifications. These arguably constitute the most tedious parts of
one-loop functional matching computations. An important difference with other functional
approaches is that the evaluation of the supertraces is performed in a manifestly covariant
way by the application of the so-called Covariant Derivative Expansion (CDE) [31–33].

The structure of this paper is as follows: in section 2, we outline the functional pro-
cedure used in SuperTracer. Readers unconcerned about the theoretical details can skip
to section 2.4, where we list all the steps that are needed to perform the one-loop EFT
matching. Section 3 then gives a short manual of the package and its functions. In sec-
tion 4 we demonstrate the usage of the package with two examples: a toy model with a
heavy vector-like fermion and an S1 scalar leptoquark extension of the SM. We conclude in
section 5. Further details about SuperTracer special variables and crosschecks are given
in two appendices.

2 The functional matching procedure

Consider a general theory LUV[ηH , ηL], whose field content can be split into heavy ηH and
light ηL degrees of freedom, satisfyingmH � mL. Our aim is to compute the EFT resulting

1During the completion of this project, we became aware of STrEAM [54], a package with a similar scope
that is released at the same time.
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from integrating out the heavy degrees of freedom ηH at the one-loop order. This can be
done following a path integral approach for the effective action of the theory. Collecting
heavy and light fields into a field multiplet of the form η = (ηH ηL)ᵀ,2 the fields are split
into background-field configurations η̂ satisfying the EOMs and quantum fluctuations η,
i.e. we let η → η̂ + η. The effective action of the theory is then given by the path integral

eiΓUV[η̂] =
∫
Dη exp

(
i

∫
ddx LUV[η + η̂]

)
. (2.1)

Diagrammatically, the background part corresponds to tree-level lines in Feynman graphs,
while lines inside loops arise from the quantum fields. Therefore, at the one-loop level,
one only needs to consider terms with up to two quantum fields, since terms with more
only produce contributions at higher loop orders. The Lagrangian expansion up to terms
quadratic in η reads

LUV[η̂ + η] = LUV[η̂] + 1
2 η̄i

δ2LUV
δηjδη̄i

∣∣∣∣∣
η=η̂

ηj +O(η3) , (2.2)

where the bar denotes the conjugate and δ/δηi is the functional derivative with respect to
ηi. The first term LUV[η̂] depends only on the classical field configurations and yields the
tree-level effective action. At energies much lower than the mass of the heavy fields, one
can perform a local expansion in inverse powers of mH of the heavy field EOMs to eliminate
η̂H in favor of the light fields. As a result, we obtain the tree-level EFT, namely we have
LUV[η̂L, η̂H(η̂L)] = L(0)

EFT, with L(0)
EFT being the tree-level EFT Lagrangian. The linear

term in the expansion of LUV around the background fields is, up to a total derivative,
proportional to the EOMs evaluated at η = η̂ and thus vanishes. From the quadratic piece,
we identify the fluctuation operator, with the generic form

Oij ≡
δ2LUV
δηjδη̄i

∣∣∣∣∣
η=η̂

= δij ∆−1
i −Xij , (2.3)

with ∆−1
i being the inverse propagator of ηi given as3

∆−1
i =


P 2 −M2

i (scalar)
/P −Mi (fermion)
−gµν(P 2 −M2

i ) (vector)
, (2.4)

where Pµ is the Hermitian covariant derivative operator Pµ(x̂, q̂) = q̂µ + gGG
a
µ(x̂)T a,

with q̂µ = i∂µ and Pµ = iDµ in position space, while the X terms encode the particle
interactions. For practical purposes, we consider the mass operators of the light fields

2For charged degrees of freedom, the field and its complex conjugate enter as separate components in η,
as we describe in more detail in 2.4.

3The vector propagator is gauge dependent, but we work exclusively in the Feynman gauge for the
quantum fluctuations as a matter of practicality. This does not imply any particular choice for the classical
gauge fields, which remain in the general Rξ gauge. See [42] for elaboration on the subject of heavy vectors
in the functional method.
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as perturbative interaction terms in X rather than part of the free Lagrangian, so their
Feynman propagators appear as the ones of fully massless particles. Namely, we take
Mi = 0 in (2.4) for the light fields.

The one-loop effective action, thus, reads

eiΓ
(1)
UV =

∫
Dη exp

(
i

∫
ddx 1

2 η̄O η
)
. (2.5)

This is a Gaussian path integral whose functional integration yields

eiΓ
(1)
UV = (SDetO)−

1
2 =⇒ Γ(1)

UV = i

2 STr ln O , (2.6)

where the superdeterminant SDet is a generalization of the regular determinant to the case
of supermatrices, i.e. matrices with Grassmann (fermionic) and ordinary (bosonic) entries.
Similarly, the supertrace STr is a generalization of the trace to the case of supermatrices,
carrying opposite signs for fermionic and bosonic degrees of freedom. Using the property
STr ln(AB) = STr lnA+ STr lnB, valid even for non-commuting operators, and the form
of O in (2.3), we get

Γ(1)
UV = i

2 STr ln ∆−1 + i

2 STr ln (1−∆X) . (2.7)

This equation provides the essential building blocks for determining the one-loop EFT.
However, ΓUV contains all possible loop contributions, including those that would corre-
spond to one-loop matrix elements with the tree-level EFT Lagrangian. A crucial sim-
plification takes place by splitting Γ(1)

UV into hard- and soft-momentum regions using the
so-called method of “expansion by regions” [55, 56],

Γ(1)
UV = Γ(1)

UV

∣∣∣
hard

+ Γ(1)
UV

∣∣∣
soft

, (2.8)

and identifying the one-loop EFT Lagrangian with the hard part of the effective action of
the UV theory [48, 49]:

Γ(1)
UV

∣∣∣
hard

=
∫

ddx L(1)
EFT . (2.9)

More precisely, contributions from the hard region directly correspond to those encoded
in the short-distance EFT Wilson coefficients (WCs) in L(1)

EFT, while contributions from
the soft region are the same as those from the long-distance EFT matrix elements with
L(0)

EFT. The loops containing heavy particles yield contributions from the region of hard
loop momenta p ∼ mH , and from the soft momentum region, p ∼ qi,mL with qi being
any light-particle external momenta satisfying qi � mH . On the other hand, loops of
light particles receive contributions only from the soft momentum region. The method of
expansion by regions states that the contribution of each region is obtained in dimensional
regularization by expanding the loop integrand into a Taylor series in the parameters that
are small there and then integrating every region over the full d-dimensional space of loop
momenta. This statement holds up to a mismatch of divergences. Identifying the hard
region with the WCs would render them infrared divergent. The mismatch is resolved once
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one also includes the hard region of the EFT amplitudes, which are all proportional to the
scaleless integral

∫ ddp
(2π)d

1
p4 ∝

i

16π2

( 1
εUV
− 1
εIR

)
, (2.10)

and have to be subtracted from the hard part, exchanging all IR divergences with UV
ones. In practice, one simply does not differentiate between εUV and εIR and skips this last
step. The trade-off is that it becomes less transparent whether the scale dependences in
the matching coefficients are related to the renormalization of the UV theory or the EFT,
unless one explicitly computes the counterterms of the UV theory.

Since ∆X ∼ m−1
H in the hard region,4 we can Taylor expand the second logarithm

in (2.7) yielding the master formula for one-loop EFT matching [53]:

∫
ddx L(1)

EFT = i

2 STr ln ∆−1
∣∣∣
hard
− i

2

∞∑
n=1

1
n

STr
[
(∆X)n

]∣∣∣
hard

. (2.11)

This formula provides the EFT Lagrangian in terms of two types of terms: log-type and
power-type supertraces. As can be seen, the log-type supertrace only depends on the heavy
particle propagators,5 and is therefore universal. Namely, it only depends on the heavy
particles present in the theory, but not on their interactions. On the other hand, the power-
type terms depend on the particle interactions, both heavy and light, encoded in X. Since,
as we mentioned before, ∆X is at most of O(m−1

H ) in the hard momentum expansion, this
provides a natural truncation of the series in terms of the EFT expansion in inverse powers
of mH .

2.1 Covariant evaluation of supertraces

The operators appearing in the functional supertraces needed for one-loop matching are of
the form Q(Pµ, Uk(x̂)), having a well-defined rational expansion in its arguments, where
Pµ is the covariant derivative operator defined in the previous section and Uk are a set of
momentum-independent functions. The supertrace acting on Q, which includes also the
trace in momentum space, is given by

STrQ(Pµ, Uk) = ±
∫ ddp

(2π)d 〈p| trQ(Pµ, Uk) |p〉 , (2.12)

where + (−) is for bosonic (fermionic) degrees of freedom, and tr denotes the trace only
over internal degrees of freedom, e.g. gauge, spin, flavor, etc. It is convenient to use the

4In the fermionic case, we have ∆ ∼ p−1 ∼ m−1
H , while X can be at most of O(1). On the other hand, in

the bosonic case, ∆ ∼ p−2 ∼ m−2
H while the interactions can be at most of O(mH). Note that this counting

holds even if LUV is itself an EFT, since the EFT validity requires p,mH � Λ for Λ being the EFT cut off.
5Note that log-type traces with light-field propagators do not contain any heavy scales and, hence, only

produce soft contributions.
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completeness relation of position states,
∫

ddx |x〉〈x| = 1, to express Q in position space:

STrQ(Pµ, Uk) = ±
∫

ddx
∫ ddp

(2π)d e
ipx trQ(Pµ, Uk(x)) e−ipx

= ±
∫

ddx
∫ ddp

(2π)d trQ(Pµ + pµ, Uk(x)) . (2.13)

In its current form, this expression is not manifestly covariant. At this point, it is useful
to apply a path integral transformation, the so-called CDE expansion [31–33], that makes
this expression manifestly covariant by putting all instances of Pµ into commutators of the
form [Pµ, Pν ], [Pµ, [Pν , Pρ]], [Pµ, Uk], etc. The CDE expansion consists in sandwiching the
expression in (2.13) between the operators e−P ·∂p and eP ·∂p :

STrQ(Pµ, Uk) = ±
∫

ddx
∫ ddp

(2π)d e
−P ·∂p trQ(Pµ + pµ, Uk(x)) eP ·∂p , (2.14)

where ∂p denotes the partial derivative with respect to the loop momentum p. The operator
eP ·∂p is trivially unity when acting to the right, while the operator e−P ·∂p also becomes
unity when it is made to act from the left due to the vanishing of total derivatives under
integration, so the supertrace remains invariant under this operation.6 However, when
passing e−P ·∂p through Q to cancel against eP ·∂p , it has the desired effect of putting all P ’s
into commutators. More precisely, this transformation yields

e−P ·∂p (pµ + Pµ) eP ·∂p = pµ + i G̃µν ∂
ν
p ,

Ũk ≡ e−P ·∂p Uk eP ·∂p =
∞∑
n=0

(−i)n
n! (D{α1,...αn}Uk) ∂

α1
p · · · ∂αnp , (2.15)

where the parenthesis denotes that the derivatives act in commutators as per usual, e.g.
(DµA) ≡ [Dµ, A], (DµDν A) ≡ [Dµ, [Dν , A]], etc., and

G̃µν ≡
∞∑
n=0

(−i)n
(n+ 2)n! (D{α1,...αn}Gµν) ∂α1

p · · · ∂αnp , D{µ1,···µn} ≡
1
n!

∑
σ∈Sn

Dµσ(1) · · ·Dµσ(n) .

(2.16)

Since Q(Pµ, Uk(x̂)) has a well-defined rational expansion in its arguments this implies

STrQ(Pµ, Uk) = ±
∫

ddx
∫ ddp

(2π)d trQ
(
pµ + i G̃µν ∂

ν
p , Ũk(x)

)
, (2.17)

yielding the desired manifestly covariant expression for the supertrace of Q.

2.2 Explicit evaluation of the relevant supertraces

In this section, we outline how to apply the covariant method to the log- and power-type
supertraces.

6This invariance does not rely on the cyclic property of the trace, which has already been evaluated for
momentum coordinates.
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2.2.1 Log-type supertraces

For the log-type supertraces, we have to evaluate STr ln ∆−1
ηH

∣∣
hard for all possible ηH prop-

agators defined in (2.4). To apply the covariant supertrace evaluation in (2.17), we need
to show first that Q(Pµ) = ln ∆−1

ηH (Pµ) satisfies the requirement of having a well-defined
expansion in Pµ. This can be shown by writing an integral representation of the logarithm:

ln ∆−1
ηH

=
∫ 1

z
dξ

d(∆ξ
ηH

)−1

dξ ∆ξ
ηH
− ln ∆z

ηH
, (2.18)

with ∆ξ
i defined as ∆i in (2.4) but replacing Mi by ξMi, such that d

(
∆ξ
ηH

)−1
/ dξ does not

depend on p. By taking the z →∞ limit, it is clear that Q = ln ∆−1
ηH can be expanded in

inverse powers of Pµ and MηH up to an infinite constant, ln(∆∞ηH ), that will be removed
later. Hence, we can apply the covariant expression of the supertrace in (2.17) giving

STr ln ∆−1
ηH

= ±
∫

ddx
∫ ddp

(2π)d tr
{∫ 1

∞
dξ

d(∆ξ
ηH

)−1

dξ ∆ξ
ηH

(pµ + i G̃µν)− ln(∆∞ηH )
}
.

(2.19)

Since we are after the hard part of this trace, we can Taylor expand ∆ξ
ηH

(pµ + i G̃µν) to
remove G̃µν from the argument. We have

STr ln ∆−1
ηH

∣∣∣
hard

= ±
∫

ddx
∫ ddp

(2π)d tr
{∫ 1

∞
dξ

d(∆ξ
ηH

)−1

dξ ∆ξ
ηH

∞∑
n=1

(
GηH∆ξ

ηH

)n}
, (2.20)

where we subtracted the n = 0 term of the series and the infinite constant, which combine
to give ln ∆−1

ηH and cancel against the path integral normalization factor. In this expression,
we omitted the argument of ∆ξ

ηH
(pµ) for notational simplicity and defined

Gi =


−i
{
pµ, G̃µν

}
∂νp + (G̃µν ∂νp )2 (scalar)

−iγµ G̃µν ∂νp (fermion)
+i
{
pµ, G̃µν

}
∂νp − (G̃µν ∂νp )2 (vector)

. (2.21)

The remaining evaluation of this supertrace is rather arduous but nevertheless straightfor-
ward, since the integral in ξ is trivial after performing the well-known loop integrals

µ2ε
∫ ddp

(2π)d
pµ1 · · · pµ2k

(p2 −M2)αp2β

= gµ1...µ2k

(−1)α+β+ki

(4π)2 M2(2+k−α−β)
(
µ̄2eγE

M2

)ε Γ(d2 + k − β)Γ(α+ β − d
2 − k)

2kΓ(α)Γ(d2 + k)
. (2.22)
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The evaluation of the log-type traces up to dimension six was done e.g. in [57]. For
completeness, we list them here up to O(M−2

i ):

i

2 STr ln ∆−1
Φ,cV

∣∣∣
hard

= ∓ 1
16π2 tr

{
1
12 ln µ̄2

M2
Φ,cV

G2
µν+ 1

M2
Φ,cV

(
1
60(DµGµν)2+ i

90G
µ
νG

ν
ρG

ρ
µ

)}
,

i

2 STr ln ∆−1
Ψ

∣∣∣
hard

= − 1
16π2 tr

{
1
3 ln µ̄2

M2
Ψ
G2
µν+ 1

M2
Ψ

(
2
15(DµGµν)2− i

45G
µ
νG

ν
ρG

ρ
µ

)}
,

i

2 STr ln ∆−1
V

∣∣∣
hard

= 1
16π2 tr

{
1
12

(
1−2 ln µ̄2

M2
V

)
G2
µν

− 1
M2
V

(
1
30(DµGµν)2+ i

45G
µ
νG

ν
ρG

ρ
µ

)}
, (2.23)

where we removed the divergences in the dimension-four terms using the MS scheme. They
can be trivially recovered by taking lnµ2/M2

ηH
→ lnµ2/M2

ηH
+ 1/ε (for d = 4− 2ε).

2.2.2 Power-type supertraces

For the power-type traces, it is simpler to show that Q(Pµ, Uk) = (∆X)n are indeed
expansions of rational functions in Pµ and momentum-independent terms. Indeed, this is
clearly the case for ∆(Pµ), while in local theories the X interactions can be written as

X(Pµ, x̂) =
∞∑
n=0

Xµ1···µn
n (x̂)Pµ1 · · ·Pµn , (2.24)

where Xn are functions of fields and derivatives of fields acting inside commutators, such as
[Pµ, φ] = i(Dµφ). The Pµ terms in the X expansion are usually termed as “open covariant
derivatives”. Note that the expansion of X as a polynomial in Pµ is not unique, since terms
of the form [Pµ, φ] always can be arranged as [Pµ, φ] = Pµ φ− φPµ. We fix this ambiguity
by arranging the Pµ operators always to the rightmost.

Having argued that Q(Pµ, Uk) = (∆X)n are expansions of rational functions in Pµ and
Xµ1···µn
n (x̂), we can apply the covariant expression of the supertrace in (2.17) giving

STr [(∆X)n] = ±
∫

ddx
∫ ddp

(2π)d tr
{[

∆(pµ + i G̃µν ∂
ν
p ) X̃

]n}
, (2.25)

with X̃ ≡ X(pµ + i G̃µν ∂
ν
p , X̃

µ1···µn
n (x)). Once more, we can benefit from only needing the

hard part of the supertrace to expand out the G̃µν terms in the propagators, namely,

STr [(∆X)n]|hard = ±
∫

ddx
∫ ddp

(2π)d tr
{[

∆
∞∑
m=0

(
G∆

)m
X̃
]n}

, (2.26)

where ∆(pµ) are the free propagators defined in (2.4), and G is defined in (2.21). As
with the log-type supertrace, the remaining evaluation of the power-type supertrace is
straightforward and the loop integrals can be readily evaluated with∫ ddp

(2πd)
pµ1 · · · pµ2k

(p2 −M2
1 )α1 · · · (p2 −M2

n)αnp2β

=
n∑

m=1

αm−1∑
k=0

1
k!

∫ ddp
(2πd)

pµ1 · · · pµ2k

(p2 −M2
m)αm−kp2β

(
∂

∂M2
m

)k ∏
`6=m

1
(M2

m −M2
` )α` , (2.27)
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along with formula (2.22). However, the amount of algebra involved in evaluating these
supertraces makes it rather tedious without the use of computer tools.

2.3 Comments on the treatment of γ5 in fermion supertraces

There is an added complication in the evaluation of fermion supertraces in terms where all
propagators are fermionic, resulting in traces of γ-matrices. One of the primary outstanding
problems in dimensional regularization is how to continue the definition of γ5 away from
4 dimensions, cf. [58]. Whatever regularization procedure (and renormalization scheme)
is used in the matching calculation requires the same choice to be used in subsequent
computations in the EFT. We therefore propose to use a semi-naive implementation of
dimensional regularization, as Naive Dimensional Regularization (NDR) often is the most
practical choice for perturbative calculations.

For the Dirac algebra we formally set{
γµ, γν

}
= 2gµν ,

{
γµ, γ5

}
= 0, and γ2

5 = 1, (2.28)

where all Lorentz indices are d-dimensional. This algebra in conjunction with cyclicity of
the trace results in the vanishing of all traces with an odd number of γ5’s, prohibiting
the recovery of the four-dimensional result in the limit d → 4. We therefore abandon the
cyclicity of γ5-odd traces, while formally substituting [59, 60]

tr[γµγνγργσγ5] = −4iεµνρσ +O (ε) . (2.29)

With this prescription the choice of where the γ5-odd traces are read from — meaning
which γ in a Dirac trace is written as the left-most — results in another O (ε) ambiguity.
This ambiguity is therefore only manifest in divergent diagrams, where the ε pole and the
O (ε) trace ambiguity combines to give a finite ambiguity in the computation.

The calculation of the one-loop effective action in the UV theory does not involve any
UV divergent γ5-odd diagram due to anomaly cancellation and the prescription is unam-
biguous. A complication arises when performing the matching computation and identifying
L(1)

EFT with the hard part of the functional supertrace: the expansion of the loop integral
in heavy masses and hard loop momenta can introduce spurious IR divergences in some of
the integrals. The IR divergences combined with the reading-point ambiguity introduce an
ambiguity in L(1)

EFT. Conveniently, when expanding loop integrals by regions, spurious IR
divergences in the hard part of the integral are known to cancel exactly against correspond-
ing UV divergences in the soft part, which in our case corresponds to 1-loop diagrams in the
EFT. With the ε poles canceling in Γ(1)

EFT, so too will the ambiguities in γ5-odd diagrams,
as long as the γ5 prescription is applied consistently between the matching and the EFT
calculations. That is, as long as the reading points are chosen identically.

The consistent choice of reading point is perhaps best illustrated with an example. If
the UV theory involves both light and heavy fermions, ψ and Ψ, the effective action can
contain contributions of the form

Γ(1)
UV ⊃ −

i

2 STr
[
∆ψXψΨ ∆ΨXΨψ

]
. (2.30)
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In the UV theory the γ5-odd piece of this part of the effective action is finite, thereby
ensuring that there is no ambiguity from the reading point of the Dirac trace, which is
embedded in the supertrace. Computing equivalent one-loop amplitudes in the EFT will
involve a part coming from one-loop contributions to SEFT and one loop diagrams with
the tree-level EFT:

Γ(1)
EFT ⊃ S

(1)
EFT −

i

2 STr
[
∆ψX

EFT
ψψ

]
, (2.31)

where the corresponding contribution to the EFT fluctuation operator quickly is identi-
fied as

XEFT
ψψ ⊃ XψΨ

i /D +MΨ
M2

Ψ
XΨψ + . . . (2.32)

The two contributions to Γ(1)
EFT are readily identified with the hard and soft part of the UV

loops, respectively. Consequently, the ε poles cancel between them and, when the same
reading point is chosen, so will the reading point ambiguity in the finite part of the effective
action. The reading point can be fixed by e.g. making sure that XΨψ is the last piece of
the trace, in both EFT computation and matching computations.

2.4 Summary of the functional matching method

In this section, we summarize the relevant steps needed to perform functional EFT match-
ing at the one-loop level. These are:

i) Collecting all fields, heavy and light, into field multiplets: to obtain the
fluctuation operator (2.3), one needs to take functional derivatives with respect to all
fields in the theory, including field conjugates in the case of complex fields. For this
reason, it is useful to arrange the fields into field multiplets

ϕφ =
(
φ

φ∗

)
, ϕψ =

(
ψ

ψc

)
, ϕA =

(
Aµ
A∗µ

)
, (2.33)

in the case of complex scalars, fermions, and complex vectors, respectively. Here f c =
Cf̄ᵀ is the charge-conjugated fermion with C being the charge conjugation matrix and
both f and f c 4-component Dirac spinors. In the case when only some chiralities
are present, like in the SM, chiral projectors should be used in the corresponding
interactions. Furthermore, it is convenient to organize the fields (in the form of (2.33))
into one field multiplet for each field type. These types are heavy scalar, light scalar,
heavy fermion, light fermion, heavy vector, light vector, heavy ghost, and light ghost,
which we generically denote by Φ, φ, Ψ, ψ, V , A, cV , and cA, respectively.

ii) Obtaining the heavy field EOMs: the EOMs can be determined directly by
setting the first functional derivative of the UV Lagrangian with respect to the heavy
fields equal to zero, namely

δLUV
δηH

∣∣∣∣
η=η̂

= 0 , (2.34)

where we remind the reader that the hat denotes field configurations that satisfy
the EOMs, and ηH contains all the heavy fields multiplets ηΦ, ηΨ, ηV , and/or ηcV
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of the theory. These equations need to be expanded to a given order in the heavy
mass expansion, matching the desired order in the EFT expansion, to obtain order-
by-order expressions of the heavy fields in terms of light fields. The tree-level EFT
Lagrangian is obtained by replacing these expressions into the UV Lagrangian.

iii) Determining the X terms: these are obtained from the second functional deriva-
tive of the UV Lagrangian with respect to heavy and light fields after subtraction of
the inverse propagators. More precisely,

Xij = δij ∆−1
i −

δ2LUV
δη̄i δηj

∣∣∣∣∣
η=η̂

, (2.35)

with the inverse propagators given in (2.4). Light-particle masses are always included
in the X terms to better organize the power counting. If the X terms contain
derivative interactions, these should be arranged in the form of (2.24). In most
practical cases, only the terms X0 and/or Xµ

1 of this expansion are present. It is
convenient to keep track of the mass dimension of the fields and derivatives acting
on fields (e.g. “close covariant derivatives”) inside each X term, since this provides a
simple power counting for the EFT expansion.

iv) Identifying and evaluating the relevant supertraces: the next step is to iden-
tify the relevant log-type and power-type supertraces that enter into the one-loop
EFT matching equation (2.11). Log-type supertraces are model-independent, since
they do not depend on theX terms (encoding the relevant LUV interactions), but only
on the heavy-field propagators. They can be evaluated from the expansion (2.20).
A list of all log-type supertraces evaluated up to operators of dimension six is given
in (2.23). A log-type supertrace should be included for each of the heavy fields in the
theory, including the complex conjugate in the case of complex fields.

Power-type supertraces do depend on the X terms and should (a priori) be
computed for every UV model. The infinite series in (2.11), and hence the number
of supertraces to compute, is truncated by the desired mass dimension of the EFT
operators, which is determined by adding the mass dimensions of each of the X

terms appearing in a given supertrace. An important subtlety to consider is that
the series (2.11) gives rise to symmetry factors in some of the supertraces. These
symmetry factor are given by the inverse of the number of times the trace repeats
itself under cyclic permutations. These types of supertraces can be evaluated by
means of the expansion in (2.26).

The procedure presented here closely follows the prescription presented in [53]. How-
ever, there are a number of differences between the two. First, light-field masses are
included in the X terms and not in the propagators. Second, the derivative expansion of
X is defined such that all derivatives are made to act to the rightmost, cf. (2.24). Fur-
thermore, we do not adopt a diagrammatic description for the identification of the relevant
power-type supertraces, since this task is performed automatically by SuperTracer, as we
describe below.
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Figure 1. Summary of the functional approach to one-loop EFT matching. Highlighted in red, we
show the parts of the procedure that are taken care of by SuperTracer, and in yellow those parts
that will be handled by the master program MATCHETE (to be released).

3 SuperTracer in a nutshell

SuperTracer is a Mathematica package aimed at facilitating the functional EFT matching
procedure described in section 2 and illustrated in figure 1. The package takes over the
most tedious parts of this procedure by automating the process of identifying and evaluating
all relevant supertraces. The program also partially simplifies the resulting operators, as
described below. However, it does not provide a complete reduction to a basis, and the
calculation of the X interactions and heavy field EOMs still has to be done manually. We
delegate these tasks to the Mathematica package MATCHETE (Matching Effective Theories
Efficiently) [61], which we are currently developing, and which will include SuperTracer
at its core. The ultimate goal is to fully automate the matching procedure, having as
input a user-defined UV Lagrangian, and completely eliminating the need for manually
determining and inserting the X interactions.

The main routines in the current implementation of SuperTracer evaluate log- and
power-type supertraces by performing the following steps:

i) The propagators are reconstructed from the input list of X interactions, and every-
thing is placed in a non-commutative product. Fermionic traces are assigned an extra
factor of (−1).

ii) The covariant expansion of ∆ and X terms are performed to the appropriate order.
All momentum derivatives act through the expression to terminate on the right.

iii) All Dirac products are simplified and matched to a basis of anti-symmetrized prod-
ucts, Γµ1,...µn = γ[µ1 · · · γµn], and the loop integrals are evaluated using dimensional
regularization with d = 4− 2ε in the MS scheme.

Added utility is provided by allowing the user to substitute model-specific expressions in
the X operators, making it possible to directly perform additional simplifications such as
evaluating Dirac traces.

As for validation of the package, we have cross-checked a variety of supertraces against
the STrEAM package as kindly provided by the authors [54]. Furthermore, the two exam-
ple models discussed in section 4 have allowed us to check the package against a sample
diagrammatic computation (cf. appendix B) and previous literature.
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3.1 Downloading and installing the package

The SuperTracer package is free software under the terms of the GNU General Public
License v3.0 and is publicly available in the GitLab repository

https://gitlab.com/supertracer/supertracer

The package can be installed in one of two ways:

i) Automatic installation: the simplest way to download and install SuperTracer is to
run the following command in a Mathematica notebook:

In[1]:= Import["https://gitlab.com/supertracer/supertracer/-/raw/
master/install.m"]

This will download and install SuperTracer in the Applications folder of Mathemat-
ica’s base directory.

ii) Manual installation: the user can also manually download the package from the Git-
Lab repository ß. We recommend placing the SuperTracer folder in the Applications
folder of Mathematica’s base directory, so its location does not need be specified be-
fore loading the package. Alternatively, the user can place the SuperTracer folder
in a different directory and specify its location via

In[2]:= AppendTo[$Path,"directory"];

with directory being the path to the SuperTracer folder.

Once installed, the user can load SuperTracer in any Mathematica notebook by running

In[3]:= << SuperTracer`

3.2 SuperTracer global variables and routines

After the package has been loaded, a variety of global variables and routines are defined.
The main global variables are described in tables 1 and 2. The routines available to the
user are:

Main SuperTracer routines

• LogTerm[field,<order>] returns the log-type terms, resulting from integrat-
ing out a heavy field, to a given order in the EFT expansion. The field, which
can be Φ,Ψ,V or cV, is assumed to be real (or Majorana in the fermionic case),
so the output should be multiplied by two in the case of complex (or Dirac)
fields. The order is assumed to be inclusive unless it is given inside curly
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Variable Description
Φ,φ,Ψ,ψ,V,A,cV,cA Field types. They are, respectively, heavy scalar, light scalar,

heavy fermion, light fermion, heavy vector, light vector, heavy
ghost, and light ghost.

X[{f1,f2},<ord>] Input form for the X interactions. The arguments f1 and
f2 should be field types, while <ord> is an optional argument
specifying the order of X, which can be a single number (if X0
is the only term in the expansion in (2.24)) or a list of numbers
indicating the orders of the X0,1,2,... terms. If no <ord> is
given, the default values in Xords are taken. This variable
has a special output format, e.g. X[{ψ,ψ}] shows as Xψψ and
X[{ψ,ψ},2] as X[2]

ψψ .
Xords Association with the default interaction order of each X term,

e.g. Xords@{ψ,ψ} returns 1.
STr[Xterms] A header denoting a supertrace of the list Xterms of X interac-

tions. Symmetry factors and a global factor of − i
2 is included

into the definition of this variable for notational simplicity.
M[label] Heavy field mass. The output has special format Mlabel

$DegenerateMasses Global variable that can be True or False (set to True by
default). If True, all heavy scales are assumed to be equal to
M["H"] (output format MH).

µbar2 Matching scale squared. This variable has the special output
format µ2.

Table 1. Main SuperTracer variables.

brackets, e.g. LogTerm[Φ,6] provides all operators up to dimension six, while
LogTerm[Φ,{6}] provides only operators of dimension six. The order is an
optional argument. If no order is given, 6 is assumed.

• PowerTerms[Xterms,<order>] returns the sum of all power-type traces that
need to be computed for a given list of X terms to a given order in the EFT
expansion. As for LogTerm, the order is an optional argument and it is treated
in the same manner. For example, if we have a theory with three X terms,
X [3/2]
ψΦ , X [3/2]

Φψ and X [3]
ψψ, by running PowerTerms

In[4]:= PowerTerms[{X[{ψ,Φ},3/2],X[{ψ,ψ},3]}]

Out[4]= STr[{X[3/2]
Φψ ,X[3/2]

ψΦ }] + STr[{X[3/2]
Φψ ,X[3]

ψψ ,X[3/2]
ΨΦ }] +

STr[{X[3/2]
Φψ ,X[3/2]

ψΦ ,X[3/2]
Φψ ,X[3/2]

ψΦ }]

we find that three supertraces, denoted by STr, need to be computed at the
level of dimension six operators. Note that the symmetry factor 1/2 that would
appear in STr[{X[3/2]

Φψ ,X[3/2]
ψΦ ,X[3/2]

Φψ ,X[3/2]
ψΦ }] (cf. section 2.4) and a global − i

2
is absorbed into the definition of STr for notational simplicity. Further note

– 14 –



J
H
E
P
0
4
(
2
0
2
1
)
2
8
1

that conjugate interactions need not be introduced since these are automatically
included by PowerTerms. Indeed, in our example we have input X[{ψ,Φ},3/2]
but not X[{Φ,ψ},3/2].

• STrTerm[Xterms,<order>,<Xsubstitutions>] evaluates the power-type su-
pertrace of a given list of X terms to a given order in the EFT expansion.
The output of STrTerm is assumed to be inside

∫
ddx 1

16π2 tr [.], with tr [.] being
a trace over internal degrees of freedom. Moreover, note that the definition of
supertrace in SuperTracer includes symmetry factors and a global − i

2 factor.
This routine further allows for the optional substitution of the X terms into their
explicit expressions in terms of fields. Rather than explaining how to perform
X substitutions here, we provide detailed usage examples of this functionality in
section 4 and in the ancillary Mathematica notebooks. The order is treated in
the same way as in the LogTerm routine. However, if the list of X substitutions
is given, the order must also be given. Finally, the ε poles are removed from the
output of STrTerm. They can be easily recovered since their coefficient matches
that of the renormalization-scale logarithm.

• SuperSimplify[expr] is the primary simplification routine, which provides a
one-point-stop for simplifications of SuperTracer outputs. It simplifies out-
puts of STrTerm and LogTerm by attempting different index labels and col-
lecting terms with the same operator structure. SuperSimplify also calls
SimplifyOutput, which uses integration by parts, commutator, and Jacobi
identities to match the output to a basis of operators. Although the outputs of
SuperTracer is shown as a normal sum of terms to the user, its full Mathematica
form consists of a sum of LTerm[coeff,OpStr] that separate the coefficient and
operator structure of each term for better internal manipulations.

Routines for X substitutions

• AddField[label,type,<charge(s)>,<countingDim>] defines a field of a given
type (cf. table 1) with a given label, so it can be used in an X substitution. If
the field is charged under a single gauge U(1), its charge should be provided as
label[charge], where label is a label for the U(1) symmetry chosen by the
user and charge is a number specifying the field charge. On the other hand, if
the field is charged under multiple U(1) gauge groups, the user should give a list
of charges with the format {label1[charge1],label2[charge2],...}. As an
example, let us define a heavy scalar field f with charge 2 under a gauge U(1)L
that we label by L:

In[5]:= AddField[f,Φ,L[2]]

This creates the field routine f[Indices] where the flavor and gauge indices
carried by the field should be given as a list. If the field carries no indices,
no argument or an empty list can be given. In the case of a vector field, the
first entry in the list must be a Lorentz index µ, i.e. the indices should then be
given in the format {µ,rep1[ind1],rep2[ind2],...}, where rep1 denotes the

– 15 –



J
H
E
P
0
4
(
2
0
2
1
)
2
8
1

Variable Description
g[µ,ν] Lorentz metric tensor. The arguments µ,ν are

Lorentz indices. This variable has the special out-
put format gµν .

ε[µ,ν,ρ,σ] Levi-Civita symbol. The arguments µ,ν,ρ,σ are
Lorentz indices. This variable has the special out-
put format εµνρσ.

γ[µ], γ[5] Dirac matrices. The argument µ is a Lorentz index.
The output has the special form γµ or γ5.

PL, PR Chiral projectors. The output has the special output
form PL and PR, respectively.

T[{repA[A],rep[a],rep[b]}] Symmetry generator. The arguments a and b are
indices in the representation rep, whereas A is in
the representation repA. The output has the spe-
cial form TAab.

GA[{µ,ν},tag] Field-strength tensor for Abelian groups. The ar-
guments µ and ν are Lorentz indices and tag is the
symbol used to label the Abelian symmetry. Abelian
field-strength tensors are displayed as F µν

tag in the out-
put.

GnA[{µ,ν},{rep[a],rep[b]}] Field-strength tensor for non-Abelian groups. As
before, the arguments µ and ν are Lorentz indices,
while a and b label non-Abelian group indices in rep-
resentation rep. Non-Abelian field-strength tensors
have output format Gab µν

rep .
δ[{rep[a],rep[b]}] Kronecker delta. The two arguments a and b are

indices of the representation rep. This variable has
the special output format δab.

eps[{rep[a],rep[b]}] Anti-symmetric tensor with two indices. The two
arguments a and b are indices of the representation
rep. This variable has the special output format εab

rep.
Flavor[index] Flavor index. The header Flavor labels the flavor

representation and specifies that index is a flavor
index.

Table 2. SuperTracer variables relevant for X substitutions.

representation of the index ind1. To remove the field f from the set of defined
fields, the routine RemoveField[f] can be used.

• Bar[obj] returns the bar of a fermion field or the complex conjugate of other
fields. Applying Bar to couplings and generators yields their conjugate. The
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routine can also be applied to representations and charges in X substitutions to
denote their conjugate. This routine has a special output format, i.e. Bar[obj]
shows as obj.

• Transp[obj] returns the transpose of any object in Dirac space, that is, fermion
fields, chiral projectors, or Dirac matrices. This routine has a special output
format, i.e. Transp[obj] shows as objT.

• CConj[field] returns the charge conjugate of a fermion field, e.g. CConj[f[]]
gives CC**fT with CC being the charge conjugation matrix. If this routine is
applied to something other than a fermion field, the output is aborted and a
warning is issued.

• CD[index,expr] or CD[{indices},expr] returns the covariant derivative(s) of
a given expression, with the number of Lorentz indices determining the number
of derivatives. If the covariant derivative acts on a undefined variable, it is
assumed to be vanishing.

To keep track of non-commutative objects SuperTracer co-opts Mathematica’s build in
NonCommutativeMultiply (**). Field objects, elements of the Dirac algebra and field-
strength tensors are treated as non-commutative until the end of the computation. Only
when using the substitution capability of STrTerm is non-commutativity for bosonic fields
and field-strength tensors relaxed. All substitution rules must be given as non-commutative
products.

As we have already described in certain routines and global variables, we have de-
fined special output formats for some expressions to facilitate the reading of SuperTracer
outputs. The explicit Mathematica expression of the output can be seen by applying the
InputForm/FullForm routine. Although understanding this explicit form is not necessary
to use all SuperTracer features, it is required when doing further manipulations of the
output. We refer the interested reader to appendix A for more details on the variables that
are used there.

4 Usage examples

Here we illustrate the matching procedure described in section 2 and the functionality of
the SuperTracer package with two examples of heavy field integration: a toy model with
a heavy vector-like fermion and an S1 scalar leptoquark extension of the SM.

4.1 Toy model with a heavy vector-like fermion

As a first example, we consider a toy model with a heavy fermion Ψ charged under a gauged
U(1)e with a Yukawa interaction to a singlet scalar φ and the left-handed component of a
light fermion ψ. The Lagrangian of the model is given by

L = −1
4FµνF

µν + 1
2(∂µφ)(∂µφ) + ψ̄ i /D ψ + Ψ̄(i /D −M)Ψ−

(
y ψ̄L φΨR + h.c.

)
+ Lξ,

(4.1)
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where Dµψ = ∂µψ − ieAµψ (similarly for Ψ) and Lξ = −(∂µAµ)2/(2ξ) is the gauge-
fixing Lagrangian. We illustrate the functional integration of Ψ up to one-loop order and
dimension-six operators. The tree-level EFT Lagrangian is easily obtained by substituting
the classical value of Ψ, defined by its EOM, into the model Lagrangian. The EOM for Ψ
reads

Ψ = − 1
M

y∗ φψL −
1
M2 y

∗ i /D (φψL) +O(M−3) , (4.2)

where we ignored terms of O(M−3), since they do not contribute to the matching of
dimension-six operators, neither at tree-level nor at the one-loop order. After substitut-
ing (4.2) into the model Lagrangian, the tree-level EFT Lagrangian is given by

L(0)
EFT = −1

4FµνF
µν + 1

2(∂µφ)(∂µφ) + ψ̄ i /D ψ + Lξ + |y|
2

M2 (ψ̄L φ) i /D (φψL) +O(M−4) .
(4.3)

Let us now proceed to the one-loop matching computation. As discussed in section 2, we
fix ξ = 1 for the quantum fluctuation. Next, we rewrite the fields into multiplets in the
form of (2.33):

ϕφ = φ , ϕA = Aµ , ϕψ =
(
ψ

ψc

)
, ϕΨ =

(
Ψ
Ψc

)
, (4.4)

with the c superscript denoting charge conjugation. The X terms for this Lagrangian read
(cf. (2.35))

X [5/2]
ΨA =

(
−e γµ Ψ
e γµ Ψc

)
, X [3/2]

ψA =
(
−e γµ ψ
e γµ ψ

c

)
, X [1]

ψΨ =
(
y PR 0

0 y∗ PL

)
φ ,

X [7/2]
ψφ =

(
y PR Ψ
y∗ PL Ψc

)
, X [3/2]

Ψφ =
(
y∗ PL ψ

y PR ψ
c

)
, (4.5)

while the term with interchanged fields simply correspond to the conjugate of the ones
displayed here, e.g. XBA = XAB. As for the tree-level EFT Lagrangian, the heavy field Ψ
needs to be replaced by its classical configuration in (4.2), e.g.

X [7/2]
ψφ = −|y|

2

M2

(
PR i /D (φψ)
PL i /D (φψc)

)
+O(M−3) . (4.6)

Note that we have added a superindex to the X terms with the total mass dimension of
the light fields and covariant derivatives in them. This provides a useful way for counting
the mass dimension of a given supertrace. The full set of X terms constitute the main
input for SuperTracer to evaluate the one-loop effective Lagrangian.

As described in section 2, the one-loop functional determinant is divided into log-type
and power-type contributions, namely L(1)

EFT = L(1)
log + L(1)

power. The log-type contribution is
obtained from SuperTracer by calling the LogTerms routine:

In[6]:= LogTerm[Ψ,6]

Out[6]= -
1
6

Log
[µ2

M2
H

]
Gµν** Gµν +

1
15

1
M2

H
DµGµν** DρGνρ +

1
90

i
1
M2

H
Gµν** Gµρ** Gνρ
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and multiplying the output by 2 as Ψ is a Dirac fermion in this example. Since Ψ is charged
under an abelian symmetry, we have Gµν = e Fµν , and the resulting Lagrangian reads

L(1)
log = e2

16π2

[
−1

3 log µ2

M2
Ψ
FµνF

µν − 2
15M2

Ψ
DµF

µνDρFρν

]
. (4.7)

As described in section 2.2.2, for the power-type contributions, we have to evaluate all
possible supertraces constructed out of powers of ∆iXij blocks starting with a heavy
field propagator, with the sum of X term dimensions not exceeding the desired operator
dimension of the EFT Lagrangian. For this example, the power-type Lagrangian up to
dimension six is obtained from the following supertraces:∫

ddxL(1)
power = − i2

[
STr

{
∆ΨX

[5/2]
ΨA ∆AX

[5/2]
AΨ

}
+ STr

{
∆ΨX

[3/2]
Ψφ ∆φX

[3/2]
φΨ

}
+ STr

{
∆ΨX

[1]
Ψψ ∆ψX

[1]
ψΨ

}
+
(
STr

{
∆ΨX

[5/2]
ΨA ∆AX

[3/2]
Aψ ∆ψX

[1]
ψΨ

}
+ STr

{
∆ΨX

[1]
Ψψ ∆ψX

[7/2]
ψφ ∆φX

[3/2]
φΨ

}
+ h.c.

)
+ STr

{
∆ΨX

[1]
Ψψ ∆ψX

[3/2]
ψA ∆AX

[3/2]
Aψ ∆ψX

[1]
ψΨ

}
+ STr

{
∆ΨX

[1]
Ψψ ∆ψX

[1]
ψΨ ∆ΨX

[3/2]
Ψφ ∆φX

[3/2]
φΨ

}
+ 1

2 STr
{(

∆ΨX
[3/2]
Ψφ ∆φX

[3/2]
φΨ

)2}+ 1
2 STr

{(
∆ΨX

[1]
Ψψ ∆ψX

[1]
ψΨ
)2}

+ 1
3 STr

{(
∆ΨX

[1]
Ψψ ∆ψX

[1]
ψΨ
)3} ]

hard
. (4.8)

The symmetry factors 1/2 and 1/3 appearing in front of some of the supertraces count
the power of repeated blocks in a given supertrace. The same expression can be readily
obtained from SuperTracer with the PowerTerms routine:

In[7]:= Xterms = {X[{Ψ,A},5/2], X[{ψ,A},3/2], X[{ψ,Ψ},1], X[{ψ,φ},7/2],
X[{Ψ,φ},3/2]};
LagPower = PowerTerms[Xterms, 6]

Out[7]= STr[{X[5/2]
ΨA ,X[5/2]

AΨ }] + STr[{X[3/2]
Ψφ ,X[3/2]

φΨ }] + STr[{X[1]
Ψψ,X[1]

ψΨ}] +
STr[{X[5/2]

ΨA ,X[3/2]
Aψ ,X[1]

ψΨ}] + STr[{X[3/2]
Ψφ ,X[7/2]

φψ ,X[1]
ψΨ}] +

STr[{X[1]
Ψψ,X[3/2]

ψA ,X[5/2]
AΨ }] + STr[{X[1]

Ψψ,X[7/2]
ψφ ,X[3/2]

φΨ }] +
STr[{X[3/2]

Ψφ ,X[3/2]
φΨ ,X[3/2]

Ψφ ,X[3/2]
φΨ }] + STr[{X[1]

Ψψ,X[3/2]
ψA ,X[3/2]

Aψ ,X[1]
ψΨ}] +

STr[{X[1]
Ψψ,X[1]

ψΨ,X[3/2]
Ψφ ,X[3/2]

φΨ }] + STr[{X[1]
Ψψ,X[1]

ψΨ,X[1]
Ψψ,X[1]

ψΨ}] +
STr[{X[1]

Ψψ,X[1]
ψΨ,X[1]

Ψψ,X[1]
ψΨ,X[1]

Ψψ,X[1]
ψΨ}]

This routine takes as input all X terms present in a given model, defined in Xterms and
the maximal mass dimension of the supertraces, which is 6 in our example. The routine
PowerTerms automatically completes the list of X interactions in Xterms with the corre-
sponding conjugate interactions, namely X [5/2]

Aψ , X [3/2]
Aψ , etc. are automatically included, so

their input is optional. Further note that the − i
2 and symmetry factors are absorbed in the
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definition of STr in SuperTracer. Moreover, the field propagators in between X terms are
implicitly understood. These supertraces can be evaluated by replacing STr by STrTerms.
For concreteness, let us focus in the first term of this expression:

In[8]:= LagPower[[1]]
% /. STr -> STrTerm

Out[8]= STr[{X[5/2]
ΨA ,X[5/2]

AΨ }]

Out[9]=
1
8

i
(

3 + 2 Log
[µ2

M2
H

])
γµ**DµXΨiAj

**XAjΨi
+

1
2

(
1 + Log

[µ2

M2
H

])
MHXΨiAj

**XAjΨi

Note that, for notational simplicity,
∫

ddx 1
16π2 is omitted in the output of STrTerms.

The SuperTracer package also allows for the substitution of the X interactions. Let us
continue to use the above term as an example. First, we need to define the fields appearing
in a given X term. Since in this case we want to replace XΨA in (4.5), we only need to
define the heavy fermion field Ψ. This is done by calling the routine AddField:

In[10]:= AddField[ψh, Ψ, e[1]]

where the first argument is the label we are going to use for the field, the second argument
is the type of field, and the third argument the U(1)e charge. In this example, we are
denoting the Ψ field with the label ‘ψh,’ and we are defining it as a heavy fermion field, Ψ
in SuperTracer notation. Note that we have avoided using the label ‘Ψ’, since this variable
is already predefined in SuperTracer. Once the field has been defined, we can introduce
the value of XΨA in (4.5) (and its conjugate) into the STrTerm routine:

In[11]:= STrTerm[{X[{Ψ,A},5/2],X[{A,Ψ},5/2]},6,
{
{Ψ,A}->{{-e γ[α[j]]**ψh[]}, {e γ[α[j]]**CConj[ψh[]]}},
{A,Ψ}->{{-e Bar[ψh[]]**γ[α[i]], e Bar[CConj[ψh[]]]**γ[α[i]]}},
M[Ψ]->{Mh, Mh},
G[Ψ]->{{e[1]},{[e[-1]]}},
G[A]->{{}}
}

]

Out[11]=
1
2

i e2
(

1 + 2 Log
[ µ2

Mh2

])
ψh**γµ**Dµψh - 2 e2 Mh

(
1 + 2 Log

[ µ2

Mh2

])
ψh**ψh

A few comments on the notation are in order:

i) Substitution rules that are not scalar have to be introduced in matrix form. The
substitution for {Ψ, A} is a column vector ({{a}},{b}}) and for {A,Ψ} a row vector
({{a,b}}), corresponding to ϕA being a scalar and ϕΨ being a doublet.

ii) The use of NonCommutativeMultiply (denoted by **) when multiplying fields is
mandatory, since these need to be treated as non-commuting objects during Super-
Tracer evaluation.
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iii) Whenever there are vector fields in the substitution rules, there needs to be an open
Lorentz index matching that of the vector field. This Lorentz index has to be α[i]
when A is the first element, e.g. {A,Ψ}, and α[j] when A is the second element, as
in {Ψ, A}.

iv) We have also defined the heavy fermion masses with the third substitution rule.
We have avoided using M for the mass, since this variable is already predefined in
SuperTracer. Also, since the heavy fermion field is encoded in the ϕΨ = (Ψ Ψc)ᵀ
doublet, a list with two elements is needed.

v) Finally, we have defined the action of the field-strength tensors on the fields. In this
case, there is a single gauge group, the U(1)e, which we labeled with e, so we only
need to specify the electric charges in the format {e[charge]} for each of the fields.
By default, the charges are assumed to be zero, which is why we input an empty list
for A. A more complicated example with multiple gauge groups is given in the next
section.

After substituting the EOM into the output for Ψ (see (4.2)), one readily obtains7

− i2 STr
{

∆ΨX
[5/2]
ΨA ∆AX

[5/2]
AΨ

}
hard

= −
∫

ddx 1
16π2 7e2

(
1
2+log µ̄2

M2
Ψ

)
|y|2

M2
Ψ

(ψ̄L φ) i /D (φψL) ,

(4.9)

where the parts highlighted in blue are kept implicit in SuperTracer for notational simplic-
ity. The complete computation of the power-type Lagrangian is provided in the ancillary
Mathematica notebook VLfermExample.nb. We have compared this result against an ex-
plicit computation done by diagrammatic matching, finding full agreement between the
two. More details on this comparison are provided in appendix B.

We wish to close this section with a consequence of the γ5 prescription employed in
our approach. The supertrace

STr
{

∆ΨX
[1]
Ψψ ∆ψX

[1]
ψΨ

}
, (4.10)

contains terms with divergent loop integrals and odd numbers of γ5. Due to the lack of
a CP-violating interactions in the model, these terms cannot give rise to a contribution
to the effective action of the form FµνF̃

µνφ2. Indeed, in the SuperTracer calculation, a
cancellation between the contributions from ψ,Ψ and the ones from ψc,Ψc takes place.
This result is found in our prescription only if the traces are read from the correct starting
point, which is guaranteed by construction in our formalism. At the diagrammatic level,
a reading point ambiguity persists unless the diagrams are read in a consistent way. This
means that some Dirac traces would have to be read against the conventional direction
and interpreted as loops of charge-conjugated fermions instead of the usual way. We stress
again that in our approach, the traces are automatically arranged in a way that fixed this
issue. We have also checked against the diagrammatic computation that the WC of an

7As we show in the ancillary Mathematica notebook VLfermExample.nb, it is also possible to include the
EOM for Ψ in the input of STrTerm, yielding the same result.
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operator of the form FµνF̃
µνφ1 φ2, in a theory with two scalar fields instead of one, is

correctly reproduced.

4.2 S1 scalar leptoquark

As our second example, we consider an S1 ∼ (3̄,1, 1/3) scalar leptoquark extension of
the SM, with the parenthesis indicating the S1 representation under the SM gauge group
SU(3)c × SU(2)L ×U(1)Y . The Lagrangian of the model reads

L = LSM + |DµS1|2 −M2 |S1|2 −
(
λiα1L q̄

c
i ε `α S1 + λiα1R ū

c
i eα S1 + h.c.

)
− λS

2 |S1|4 − λHS |H|2 |S1|2 , (4.11)

where LSM is the SM Lagrangian, ε = i σ2 is the SU(2)L anti-symmetric tensor, and i and
α are quark and lepton flavor indices, respectively. The covariant derivative acting on S1
is given by

DµS1 =
(
∂µ + igc (T a)∗Gaµ −

1
3 igYBµ

)
S1 , (4.12)

with T a being the fundamental SU(3) generators, and gc and gY the QCD and hypercharge
gauge couplings, respectively. The complete one-loop matching conditions of this model to
the SMEFT up to dimension-six operators can be found in [62]. Here, we do not intend to
fully reproduce this result but rather to illustrate the one-loop matching procedure using
the functional method described in section 2 and the SuperTracer package. First, we
obtain the tree-level effective Lagrangian by substituting the EOM of S1,

S1 = 1
M2

[
(λiα1L)∗ ¯̀

α ε q
c
i − (λiα1R)∗ ēαuci

]
+O(M−2) , (4.13)

into the Lagrangian, yielding

L =LSM −
1
M2 λ

iα
1L(λjβ1L)∗ (q̄ci ε `α) (¯̀

β ε q
c
j) + 1

M2 λ
iα
1R(λjβ1R)∗ (ūci eα) (ēβ ucj)

+ 1
M2

[
λiα1L(λjβ1R)∗ (q̄ci ε `α) (ēβ ucj) + h.c.

)
+O(M−4) , (4.14)

which after applying Fierz transformations coincides with the tree-level Lagrangian in [62].
To perform the one-loop integration, we collect the fields into multiplets in the form
of (2.33):

ϕS =
(
S1
S∗1

)
, ϕH =

(
H

H∗

)
, ϕf =

(
f

f c

)
, ϕA = A , (4.15)

with A = B,W,G and f = q, u, d, `, e. As in the previous example, the X terms for the S1
part of the Lagrangian can be readily obtained from (2.35):

X [4,3]
SA = −

(
2iQSA (Dµ S1)
−2iQ∗SA (Dµ S1)∗

)
−
(
QSA S1
−Q∗SA S∗1

)
iDµ , X [6]

AA′ = −gµνS†1
{
QSA, QSA′

}
S1 ,

X [3/2]
qS =

(
0 λ∗1L ε PR`

c

λ1L ε PL` 0

)
, X [3/2]

`S =
(

0 −λ∗1L ε PR qc

−λ1L ε PL q 0

)
,
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X [3/2]
uS =

(
0 λ∗1R PL e

c

λ1R PR e 0

)
, X [3/2]

eS =
(

0 λ∗1R PL u
c

λ1R PR u 0

)
,

X [3]
ql =

(
0 λ∗1Lε PRS

∗
1

λ1Lε PLS1 0

)
, X [3]

ue =
(

0 λ∗1RPLS
∗
1

λ1RPRS1 0

)
,

X [4]
SH = λHS

(
S1H

† S1H
ᵀ

S∗1H
† S∗1H

ᵀ

)
, X [6]

HH = λHS

(
(S†1S1)1 0

0 (S†1S1)1

)
,

X [2]
SS = λHS

(
(H†H)1 0

0 (H†H)1

)
+ λS

(
(S†1S1)1 + S1S

†
1 S1S

ᵀ
1

S∗1S
†
1 (S†1S1)1 + S1S

†
1

)
, (4.16)

with QSB = g′/3, QSW = 0 and QSG = −gs (T a)∗. The corresponding X terms for the
SM interactions can be found e.g. in appendix B of [53]. As in the previous example, all
the X terms with permutated fields can be obtained by Hermitian conjugation of the ones
above, that is XBA = XAB. However, in contrast with the previous example, we now
have an “open covariant derivative”, i.e. a covariant derivative that does not act inside a
commutator, in the XSA interaction. Following the prescription in (2.24), this means that
XAS should be put in canonical form by making the derivative act from the rightmost, e.g.

X [4,3]
AS =

(
i(Dµ S1)†QSA −i(Dµ S1)ᵀQ∗SA

)
+
(
−S†1 QSA Sᵀ

1 Q
∗
SA

)
iDµ . (4.17)

We have once again included the mass dimension of the X terms as a superscript. For the
XSA and XAS , which contain X0 and Xµ

1 terms in the expansion in (2.24), we have added
two counting parameters instead of one, corresponding respectively to the term without
open derivatives, X0, and the term with one open derivative, Xµ

1 . The open derivative is
not included in the counting of the X mass dimensions. We emphasize that specifying X
mass dimensions in this way is useful to keep track of the EFT power counting.

Once the X terms have been determined, we can proceed to the identification and
evaluation of the relevant log-type and power-type supertraces yielding L(1)

EFT = L(1)
log +

L(1)
power. Once more, the log-type contribution can be readily obtained:

L(1)
log = 1

16π2

[
− 1

12 log µ2

M2 trG {FµνFµν}−
1

60M2 trG {DµF
µνDρFρν}

− 1
90M2 trG

{
i F ν

µ F ρ
ν F µ

ρ

}]

= 1
16π2

[
−g

2
c

24 log µ2

M2 (Gµν)a(Gµν)a−g
2
Y

36 log µ2

M2 BµνB
µν− g2

c

120M2 (DµG
µν)a(DρGρν)a

− g2
Y

180M2 ∂µB
µν∂ρBρν+ g3

c

360M2 fabc (G ν
µ )a(G ρ

ν )b(G µ
ρ )c

]
, (4.18)

where we took Fµν = gc T
a (Gµν)a + gY YS1 Bµν in the second equality. Note the implicit

color factor arising from the gauge trace in the terms with Bµν . This result coincides
with the one in [62]. The same expression for the first equality in (4.18) is obtained by
SuperTracer by running
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In[12]:= LogTerm[Φ,6]

Out[12]= -
1
24

Log
[µ2

M2
H

]
Gµν** Gµν +

1
120

1
M2

H
DµGµν** DρGνρ -

1
180

i
1
M2

H
Gµν** Gµρ** Gνρ

and accounting for the doubling of contributions since S1 is a complex scalar field, and the
contributions from both S1 and S∗1 should be included. As for the power terms, the first
thing to note is that XAA, XSH and XHH do not contribute at mass dimension six due to
their high mass dimension. Since we do not intend to perform the full matching procedure,
but just to illustrate the method in a more realistic example, we set λ1R to zero and neglect
the SM Yukawa couplings. In this case, the only relevant SM X terms are X [3/2]

ψA and their
conjugates. Following the prescription in section 2.4, we collect all fields of the same type
into multiplets, such that e.g. ϕA = (G W B)ᵀ and XΦA = (XSG 0 SSB). The Lagrangian
for the power terms then reads

L(1)
power = − i2

[
STr

{
∆ΦX

[2]
ΦΦ

}
+ STr

{
∆ΦX

[4,3]
ΦA ∆AX

[4,3]
AΦ

}
+ 1

2 STr
{(

∆ΦX
[2]
ΦΦ

)2
}

+STr
{

∆ΦX
[3/2]
Φψ ∆ψX

[3/2]
ψΦ

}
+ 1

3 STr
{(

∆ΦX
[2]
ΦΦ

)3
}

+STr
{

∆ΦX
[2]
ΦΦ∆ΦX

[3/2]
Φψ ∆ψX

[3/2]
ψΦ

}
+
(
STr

{
∆ΦX

[4,3]
ΦA ∆AX

[3/2]
Aψ ∆ψX

[3/2]
ψΦ

}
+ h.c.

)
+STr

{
∆ΦX

[3/2]
Φψ ∆ψX

[3]
ψψ∆ψX

[3/2]
ψΦ

}
+ STr

{
∆ΦX

[3/2]
Φψ ∆ψX

[3/2]
ψA ∆AX

[3/2]
Aψ ∆ψX

[3/2]
ψΦ

}
+ 1

2 STr
{(

∆ΦX
[3/2]
Φψ ∆ψX

[3/2]
ψΦ

)2
}]

hard
. (4.19)

Once more, note the symmetry factors 1/2 and 1/3 in some of the traces. This result is
reproduced by the program from the input

In[13]:= Xterms = {X[{Φ,A},{4,3}],X[{ψ,Φ},3/2],X[{ψ,ψ},3],
X[{Φ,Φ},2],X[{ψ,A},3/2]};
LagPower = PowerTerms[Xterms]

Out[13]= STr[{X[2]
ΦΦ}] + STr[{X[{4,3}]

ΦA ,X[{4,3}]
AΦ }] + STr[{X[2]

ΦΦ,X[2]
ΦΦ}]

+ STr[{X[3/2]
Φψ ,X[3/2]

ψΦ }] + STr[{X[{4,3}]
ΦA ,X[3/2]

Aψ ,X[3/2]
ψΦ }]

+ STr[{X[2]
ΦΦ,X[2]

ΦΦ,X[2]
ΦΦ}] + STr[{X[2]

ΦΦ,X[3/2]
Φψ ,X[3/2]

ψΦ }]
+ STr[{X[3/2]

Φψ ,X[3/2]
ψA ,X[{4,3}]

AΦ }] + STr[{X[3/2]
Φψ ,X[3]

ψψ ,X[3/2]
ψΦ }]

+ STr[{X[3/2]
Φψ ,X[3/2]

ψA ,X[3/2]
Aψ ,X[3/2]

ψΦ }] + STr[{X[3/2]
Φψ ,X[3/2]

ψΦ ,X[3/2]
Φψ ,X[3/2]

ψΦ }]

where, we remind the reader, the symmetry and the −i/2 factors are taken as part of the
definition of STr in SuperTracer. As an example, we show the evaluation of the second
term, corresponding in the diagrammatic language to a one-loop gauge correction to the
propagator of the S1 leptoquark. As usual, first we have to define the fields entering in the
X substitutions using AddField, which in this case is just the S1 leptoquark:

In[14]:= AddField[S1,Φ,Y[1/3]]
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where we labeled hypercharge by Y. Once this has been done, we can input our X substi-
tution in (4.16) into STrTerm to obtain desired result:

In[15]:= STrTerm[{X[{Φ,A}, {4,3}], X[{A,Φ}, {4,3}]}, 6,
{
{Φ,A} -> - g[α[j], µ]
{
{-gc Bar[T[{SU3A[j], SU3[i], SU3[a]}]] S1[{SU3[a]}],0,
gp/3 S1[{SU3[i]}]},
{gc T[{SU3A[j], SU3[i], SU3[a]}] Bar[S1[{SU3[a]}]],0,
-gp/3 Bar[S1[{SU3[i]}]]}
},
{A,Φ} -> - g[α[i], µ]
{
{-gc T[{SU3A[i], SU3[j], SU3[a]}] Bar[S1[{SU3[a]}]],
gc Bar[T[{SU3A[i], SU3[j], SU3[a]}]] S1[{SU3[a]}]},
{0,0},
{gp/3 Bar[S1[{SU3[j]}]], -gp/3 S1[{SU3[j]}]}
},
M[Φ] -> {MS, MS},
G[A] -> {{SU3A}, {SU2A}, {}},
G[Φ] -> {{Bar@SU3, Y[1/3]}, Bar@{Bar@SU3, Y[1/3]}}
}

]

Out[15]= -
1
9

MS2 (gp2 + 9 gc2 C2[SU3])
(

1 + Log
[ µ2

MS2

])
S1a S1a

Since we are introducing field substitutions with “open covariant derivatives” and with
gauge indices, some comments on the notation of the input are in order:

i) As previously mentioned, the X [4,3]
SA and X [4,3]

AS interactions in (4.16) and (4.17) contain
terms with one open covariant derivative. At present, SuperTracer only supports
X substitutions for terms with up to two open covariant derivatives, namely for X0,
Xµ

1 and Xµν
2 in the expansion in (2.24). When providing X substitutions, a separate

rule for any relevant X0, Xµ
1 and/or Xµν

2 must be added. They all start with the
replacement rule {FieldType1,FieldType2}->... but they are differentiated by the
open indices in the rule: no open index for X0 (as we did with all substitutions so
far), µ for Xµ

1 , and µ and ν for Xµν
2 . In the present example, only the Xµ

1 part
of X [4,3]

SA and X [4,3]
AS contribute at dimension six, as trivially seen by adding the X

term dimensions in the supertrace of our example. Hence, we only need to input a
replacement rule for this term. Indeed, the two substitutions in the example above
contain an open µ index in g[α[j], µ]. The symbols used for entering open Lorentz
indices in the substitution must always be µ in the case of one open index or µ and
ν for two open indices.
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ii) The input of gauge indices in X substitutions requires a representation label defining
the kind of index, specified as rep[index]. In our example, we chose SU3A and SU3 to
distinguish adjoint and fundamental SU(3)c indices, respectively, although any label
names preferred by the user are equally valid. As in the vector-like fermion example,
the action of Gµν on each field needs to be defined by the appropriate substitution
rules, the ones for G[A] and G[Φ] in our example. For instance, the substitution rule
G[Φ] -> {{Bar@SU3, Y[1/3]}, Bar@{Bar@SU3, Y[1/3]}} indicates that S1 trans-
forms in the antifundamental of SU(3)c (since we consider SU3 to denote fundamental
SU(3)c indices and Bar gives the conjugate) and has hypercharge 1/3 (labeled by Y),
while S∗1 transforms in the fundamental of SU(3)c and has hypercharge −1/3. In the
output, all indices are displayed in the same manner as superindices of the fields (and
couplings) since tracking their type is straightforward in most cases. When this is
not the case, these can be made explicit by evaluating the command ShowRep[True],
which globally turns on the printing of index types. This behavior can be deactivated
again by using ShowRep[False]. Also looking into the InputForm/FullForm yields
the information about the index types.

iii) The open indices in the X substitutions are all identified to the program by always
giving them the same index name. For the substitution of Xη1η2 all the open indices
from the η1 field, must be given in the form rep[i], whereas the open indices from
η2 must be entered as rep[j]. In both cases rep can freely be chosen to fit the index
type, but the names must always be i and j, respectively. For the indices contracted
internally in X, there are no rules as to the index names. The usage of open indices
is demonstrated in the example substitution, where the reader can see the use of i
and j in the open SU3 and SU3A indices. We add that it is unproblematic to use
the same index name multiple times in this context as e.g. rep1[i] and rep2[i] are
recognized as different indices by SuperTracer.

iv) Gauge generators T aij are specified in SuperTracer as T[{repA[a],repR[i],repR[j]}].
These objects present some basic properties such as being traceless T aii = 0 and Her-
mitian T

a
ij = T aji. The relation T aik T

a
kj = C2(R) δij , where C2(R) is the quadratic

Casimir of the representation with i, j indices, is also encoded in T, along with
T aij T

b
ji = S2(R) δab for the Dynkin index S2(R). Other group specific properties can

be added on a case-by-case basis by the user, as we show in the example notebook
S1LQExample.nb.

v) Finally, it is worth noting that other indices than gauge can be included in the X
substitutions. By default SuperTracer will assume all field indices are gauge when
finding the action of field-strength tensors. One can, however, assign index labels to
be treated as global or flavor indices by calling AddGlobalSym[rep], after which all
indices with the label rep will be treated as global indices.8 Flavor is a predefined
global index, and if e.g. we were to give S1 a flavor index, we would call it with
S1[{SU3[a], Flavor[b]}]. In this case, we should also make sure to account for
the flavor index being contracted along S1 propagators, which can be accounted for

8The list of global labels can be reset with ResetGlobalSym[].
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by providing the global labels when we set the action of the field-strength tensors on
the field: G[Φ] -> {{Bar@SU3, Y[1/3], Flavor}, Bar@{Bar@SU3, Y[1/3], Flavor}}.
While we do not demonstrate global indices in action here, the S1LQExample.nb
notebook example provides an example of this functionality.

More examples, including EOM substitutions for S1 and some group algebra simplifications,
are provided in the S1LQExample.nb notebook example.

As noted before, the output from SuperTracer can be directly compared to the results
found in ref. [62]. Comparing the full operator basis requires a significant amount of
manipulations of the results due to the lack of an automatic Fierz transformation routine.
However, we have done partial checks and find agreement with the expressions we checked
with a single exception.9

5 Conclusions

Computing a low-energy effective Lagrangian from a given theory is a common and ex-
ceedingly mechanical task at the beginning of most studies both in and beyond the SM.
Having an automated solution greatly simplifies and accelerates these initial stages and
puts matching calculations into the realm of something that can be quickly realized to test
ideas without having to devote large amounts of time to it. In many cases, the more inter-
esting phenomenology arises at the loop-level, for example when studying flavor physics.
Therefore, an automated solution should be able to include at least the one-loop effects.

SuperTracer is an important step in this direction. It allows for the computation of
functional supertraces, which is the central part of a functional matching computation, in
an automated fashion. While the diagrammatic approach to matching is arguably more
common, the path integral formalism holds several advantages. First and foremost, it re-
quires no knowledge of the operator basis, circumventing the risk of missing an operator.
Secondly, the formalism lends itself incredibly well to automation, something that cannot
be said for the diagrammatic approach: finding an operator basis and then constructing and
computing all contributing Feynman graphs to fix their matching coefficients is a dispro-
portionately more complicated task to automate. Furthermore, computing the necessary
prerequisites for the functional computations is almost trivial. The labor-intensive task of
performing the momentum expansion and the actual computation of the one-loop effective
action is then mostly done by SuperTracer.

At the current stage, performing a one-loop matching computation with SuperTracer
still requires a significant amount of human intervention. While it is true that computing
the ingredients is easy, inputting them into the program is still somewhat time-consuming
and requires a certain amount of care. Furthermore, the output produces an effective
Lagrangian that typically needs to be manipulated to become useful in an actual physics
computation. First, SuperTracer does not provide the interaction terms X or the EOMs
of the heavy fields, which need to be provided by the user. For this, the program would
need to know the full theory Lagrangian and derive these expressions from its functional

9We believe the authors of ref. [62] are missing a factor of two in their matching coefficients CHB and CHG.
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derivatives. Second, the resulting effective Lagrangian contains redundant operators, which
can be reduced by the standard methods such as reduction of products of Dirac matri-
ces, integration-by-parts identities, field redefinitions and Fierz transformations. These
shortcomings will be addressed in the upcoming release of a Mathematica package called
MATCHETE [61], which will contain SuperTracer at its heart. MATCHETE will allow the user
to input a Lagrangian and specify the power-counting rules of the fields. The program will
then automatically compute the one-loop EFT Lagrangian in a minimal basis.

Already in its current form, without the expected benefits from the full release of
MATCHETE, the program presented here provides a tremendous simplification to a one-loop
matching computations, paving the way for a fully automated solution. While it often
remains illuminating to perform parts of these computations manually, a computer program
can provide valuable cross-checks. We believe however, that the outlook of fully relegating
the drawn-out task of a matching computation to a machine has exciting implications for
model building and phenomenology in the future.
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A Special SuperTracer variables

For completeness, table 3 provides a list of all public SuperTracer variables that were not
described in section 3. These variables are used internally in SuperTracer outputs, as can
be seen explicitly by applying to them the Mathematica routine InputForm/FullForm.
While knowing the internal representation of symbols is useful for further manipulations
of SuperTracer outputs, the output is formatted to make it as intuitive as possible for
the user.

B Diagrammatic matching for the vector-like fermion example

In this appendix we shall further outline the comparison between the diagrammatic and the
functional matching calculation in section 4.1. To compare the results swiftly, we choose
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Internal notation Description
LTerm[cof, op] Denotes a Lagrangian operator op with co-

efficient cof.
li[seq] Denotes a sequence seq of Lorentz indices.
DiracProduct[seq] Represents the product of Dirac matrices,

charge conjugation matrices and chiral pro-
jectors in the sequence seq. Argument
li[µ] is used for γµ, li[µ, ...] for Γ(n)

µ,...,
and 5 for γ5. The DiracProduct head is not
show in the standard output.

Proj[±1] Chiral projector (+1 for PR and −1 for PL).
It can only be used inside DiracProduct. Its
output has the same special form as PL, PR.

CovD[li[<seq1>],expr,li[<seq2>]] Internal representation of a sequence of
covariant derivatives, given by the op-
tional argument <seq1>, acting of the ex-
pression expr. The expression can have
Lorentz indices, given by the optional se-
quence <seq2>. This variable has a special
output format, e.g. CovD[li[µ],f,li[]]
shows as Dµf and CovD[li[µ,ν],f,li[µ]]
as DµDνfµ.

CovD[li[<seq>],Field[label,type,
indices,charge],li[]]

Internal representation of a field and covari-
ant derivatives acting on it. The optional
argument <seq> is a sequence of Lorentz
indices marking the covariant derivatives,
label is the name of the field, type the field
type (see table 1), indices a list of field in-
dices, and charge a number (or a list of num-
bers) indicating the field charge(s) under the
Abelian group(s).

CovD[li[<seq>],G[gauge],li[µ,ν]] Internal representation of a field-strength
tensor, and covariant derivatives acting on
it. The optional argument <seq> is a se-
quence of Lorentz indices marking the co-
variant derivatives. The argument gauge in-
dicates the gauge structure and can be either
a symbol labeling the Abelian symmetry, or
two non-Abelian indices in the form {a,b}.
The arguments µ and ν are the Lorentz in-
dices of the field-strength tensor.
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Internal notation Description
Index[index,rep] A header to distinguish internally that a

certain index is an index variable and
belongs to the representation rep. In-
dices entered in other routines in the form
rep[index] are internally transformed to
Index[index,rep]. For the output, in-
dices are displayed as superscripts and by
default their representation is not printed.
The routine ShowRep[True] can be evalu-
ated to globally activate displaying indices
with their representation as subscript. The
stardard behaviour is recovered by evaluat-
ing ShowRep[False].

Dim[rep] Dimension of the representation rep. This
variable has the special output format Nrep.

S2R[rep] Dynkin index of representation rep. This
variable has the special output format
S2[rep].

C2R[rep] Quadratic Casimir of representation rep.
This variable has the special output format
C2[rep].

AddGlobalSym[rep] Adds the representation rep to the list of
global symmetry representations (except for
Flavor, all representations are local by de-
fault). The routine ResetGlobalSym[] can
be used to reset the list of global symmetry
representations to {Flavor}.

CanonizeIndices[expr] Brings the Lorentz indices in expr to canon-
ical order by attempting different index
relabelings. This routine is called by
SuperSimplify.

SimplifyOutput[expr] Applies integration by parts, commutator,
and Jacobi identities to match expr to a ba-
sis of operators. This routine is called by
SuperSimplify.

Table 3. SuperTracer notation relevant for output manipulations.

a basis for the effective Lagrangian closest to the output of SuperTracer, which can be
found in the ancillary Mathematica notebook VLfermExample.nb. We then compute an
exhaustive set of n-point functions to fix the couplings of the effective theory.
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Note that in the diagrammatic approach, several n-point functions can match to the
same effective operators since one distinguishes between amplitudes with and without extra
gauge fields. As an example, consider an effective operator of the form

ψ̄φi /Dφψ . (B.1)

This operator contributes to both a four-point function ψ2φ2 as well as a five-point func-
tion with an additional gauge field. Herein lies one of the advantages of the covariant
functional approach, as it computes the WC of this operator directly. On the other hand,
the relation of the two amplitudes by gauge invariance serves as a valuable cross-check of
the diagrammatic calculation.

Integrating out the heavy vector-like fermion Ψ produces two types of matching cor-
rections: first, we obtain hard corrections to the renormalizable interactions of the soft
fields in the theory, including the ones that were not present in the UV theory. We thus
split the low-energy Lagrangian into a leading-power and subleading-power piece, defining

LEFT =
∑
i

ci oi . (B.2)

At leading power, we have the one-loop effective Lagrangian:

L(1)
EFT

∣∣∣
M0

= cφ
2 (∂µφ)(∂µφ)− cm

2 φ2 − cλ
4! φ

4 − cA
4 FµνF

µν + cψ ψ̄L(i /D)ψL . (B.3)

Note that non-vanishing matching coefficients cφ, cA and cψ imply that the light degrees of
freedom are not canonically normalized. The presentation was chosen this way to emulate
the output of the functional calculation more closely. In a diagrammatic computation, one
would usually assume canonically normalized light fields and include hard wave-function
corrections using the LSZ formula. Since the functional trace corresponds to 1PI diagrams,
such corrections are not included in the matching coefficients. Instead, we treat oφ, om,
oA and oψ as independent composite operators and match them to the hard regions of
the two-point functions. The result with canonically normalized fields can be recovered by
performing the field redefinitions:

φ→ φ√
1 + cφ

, Aµ →
Aµ√

1 + cA
, ψ → ψ√

1 + cψ
. (B.4)

At dimension six, we define the following effective Lagrangian, this time including both the
dimension-six terms from the tree-level and one-loop Lagrangian:

LEFT|M2 = c1
2M2 φD

4φ+ c2
4M2 Fµν∂

2Fµν − ic3
2M2 ψ̄{ /D,D

2}PLψ

+ c4e

M2Fνρψ̄ ΓµνρPLDµψ + c5e

M2 (∂νFµν)ψ̄γµPLψ

+ c6
2M2 ψ̄φ i /DφPLψ + c7

4!M2 φ
2D2φ2 − c8

8M2 FµνF
µνφ2 + c9

6!M2 φ
6 , (B.5)

where Γµνρ = γ[µγνγρ]. The way the Lagrangian is written, we have anticipated the
coefficients ci to be real in the matching example we are considering. The first line of
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this Lagrangian generates power-corrections to the propagators and, in the case of charged
fields, power corrections to the gauge couplings. Note that the most general basis should
also include the CP-odd counterpart of o8, with one field-strength tensor replaced by its
dual. Due to the absence of a source of CP-violation in the UV model, we drop it right away.

To demonstrate the matching procedure, let us begin with the example of the two-point
functions. Up to second order in the expansion in p2/M2 (with pµ being the momentum
of the field), these are:

= iαy
2π

{
p2
(

∆µ + 1
2

)
− 2M2(∆µ + 1) + p4

3M2

}
,

= iα

3π
(
pµpν − gµνp2

){
∆µ + p2

5M2

}
,

= iαy
8π /pPL

{(
∆µ + 3

2

)
+ 2p2

3M2

}
, (B.6)

with ∆µ = 1/ε+log µ2/M2, αy = |y|2/4π, α = e2/4π and d = 4−2ε. The above expressions
fix the (MS-renormalized) effective couplings:

cφ = αy
2π

(
log µ2

M2 + 1
2

)
, cm = αy

π
M2

(
log µ2

M2 + 1
)
, c1 = αy

6π ,

cA = α

3π log µ2

M2 , c2 = α

15π ,

cψ = αy
8π

(
log µ2

M2 + 3
2

)
, c3 = αy

12π . (B.7)

Inserting these results into the Lagrangian (B.3) and the first line of (B.5) reproduces the
output from the program when evaluating the following log-type and power-type super-
traces

STr
{

∆ΨX
[1]
Ψψ∆ψX

[1]
ψΨ

}
, STr ln ∆Ψ , STr

{
∆ΨX

[3/2]
Ψφ ∆φX

[3/2]
φΨ

}
. (B.8)

The operator o3 is the first one in the sequence that contributes to more than one amplitude,
as it is possible to contract it with up to three external photon states. Naturally, the next
step is to compute the three-point function of two fermions and one gauge field. It is found
to be

= ieαy
8π

{
γµPL

[
∆µ + 3

2

]
+ 1
M2

[
γµPL

(
11(k2

1 + k2
2) + 7k1 · k2
9

)

− pµ

6 /pPL −
/k1γ

µ/k2PL

]}
, (B.9)
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Figure 2. Example Feynman diagrams contributing to the one-loop matching up to O(α2
y) of the

effective operator o6.

where the fermion and anti-fermion have outgoing momenta k1 and k2, respectively, and
we define pµ = kµ1 − k

µ
2 . One recognizes immediately that the first term is reproduced by

oψ with the matching condition found from the two-point function of the fermion. While
in the diagrammatic calculation this is a sanity check, it never occurs in the functional
calculation since the supertrace

STr
{

∆ΨX
[3/2]
Ψφ ∆φX

[3/2]
φΨ

}
,

immediately gives rise to the operator oψ, generating both amplitudes. The beauty of the
functional calculation shines even brighter in the subleading-power contributions. For the
diagrammatic matching, one needs to first find the appropriate operator basis, derive the
corresponding amplitudes, and match them to the expression above. Needless to say, this is
a rather tedious exercise. On the other hand, the effective interactions are all immediately
found by evaluating a single supertrace. From the diagrammatic computation we find:

c4 = − αy
16π , c5 = αy

9π , (B.10)

which matches the output from SuperTracer perfectly.
The last example that deserves attention is the matching to the operator o6. This is the

first (and only) operator in L(1)
EFT that is also generated at tree-level. In the diagrammatic

approach, we evaluate all Feynman graphs corresponding to the amplitudes up to the
desired order in the couplings. We find that the one-loop corrections proportional to O(α)
vanish in the sum over all diagrams. The non-vanishing contributions are then found from
graphs akin to those shown in figure 2. They lead us to the matching condition:

c6 = 2|y|2
[
1− αy

2π

(
log µ2

M2 + 1
)
− αy

8π

]
. (B.11)

For the sake of comparison between the diagrammatic and the functional approach, we have
split the result by diagram topology: the first term originates from the tree level graphs,
the second one from the vertex graphs and the third one from the box diagrams. The
propagator correction is scaleless and thus vanishes. In the functional computation, this
result comes together in a somewhat different form. The supertraces yielding the vertex
corrections are of the form:

STr
{

∆ΨX
[1]
Ψψ∆ψX

[7/2]
ψφ ∆φX

[3/2]
φΨ

}
. (B.12)
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Note that this expression, once evaluated, involves the classical Ψ through X [7/2]
ψφ . To obtain

the effective Lagrangian, this field has to be reduced by its equations of motion, turning
the result into an expression of the form of o6. Contributions corresponding to the third
diagram in figure 2 never appear in the functional computation because the corresponding
supertrace does not involve any heavy (quantum) fields. Finally, the box-type contributions
are found directly from supertraces of the form:

STr
{

∆ΨX
[1]
Ψψ ∆ψX

[1]
ψΨ ∆ΨX

[3/2]
Ψφ ∆φX

[3/2]
φΨ

}
. (B.13)

The rest of the calculation proceeds analogously to the concepts explained here, and we
refrain from detailing every step of the computation. Instead, we simply give the remaining
matching coefficients,

cλ = 24α2
y log µ2

M2 , c7 = 13α2
y , c8 = 8

3αyα , c9 = 15|y|6
π2 , (B.14)

which reproduces the output found from SuperTracer exactly.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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