
11

2-Approximating Feedback Vertex Set in Tournaments

DANIEL LOKSHTANOV, University of California, USA

PRANABENDU MISRA, Max-Planck Institute for Informatics, SIC, Germany

JOYDEEP MUKHERJEE, Ramakrishna Mission Vivekananda Educational and Research Institute,

India and Indian Statistical Institute, India

FAHAD PANOLAN, Department of Computer Science and Engineering, IIT Hyderabad, India

GEEVARGHESE PHILIP, Chennai Mathematical Institute, India and UMI ReLaX

SAKET SAURABH, Institute of Mathematical Sciences, HBNI, India and University of Bergen,

Norway and UMI ReLaX

A tournament is a directed graph T such that every pair of vertices is connected by an arc. A feedback vertex

set is a set S of vertices in T such that T − S is acyclic. We consider the Feedback Vertex Set problem in

tournaments. Here, the input is a tournament T and a weight function w : V (T) → N , and the task is to find

a feedback vertex set S in T minimizing w (S) =
∑

v ∈S w (v). Rounding optimal solutions to the natural LP-

relaxation of this problem yields a simple 3-approximation algorithm. This has been improved to 2.5 by Cai

et al. [SICOMP 2000], and subsequently to 7/3 by Mnich et al. [ESA 2016]. In this article, we give the first

polynomial time factor 2-approximation algorithm for this problem. Assuming the Unique Games Conjecture,

this is the best possible approximation ratio achievable in polynomial time.

A preliminary version of this article appeared in the Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algo-

rithms (SODA 2020).

This project has received funding from the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (Grant Agreements No. 819416 and No. 715744), the

IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39), the Bergens Forsknings Stif-

telse (BFS) under the grant “Putting Algorithms Into Practice” (No. 810564) and the Norwegian Research

Foundation (NRF) under the grant “Parameterized Complexity for Practical Computing” (No. 274526d).

Saket Saurabh also acknowledges the support of the Swarnajayanti Fellowship Grant No. DST/SJF/MSA-01/

2017-18.

Authors’ addresses: D. Lokshtanov, Department of Computer Science, University of California, 2104 Harold Frank Hall,

Santa Barbara, California, 93106-5110, USA; email: daniello@ucsb.edu; P. Misra, Max Planck Institute for Informatics,

Campus E1-4, Saarland University, 66123 Saarbrucken, Germany; email: pmisra@mpi-inf.mpg.de; J. Mukherjee, Ramakr-

ishna Mission Vivekananda Educational and Research Institute, PO Belur Math, Dist. Howrah 711202 West Bengal, In-

dia; email: joydeep.m1981@gmail.com; F. Panolan, Department of Computer Science and Engineering, Indian Institute of

Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India; email: fahad@cse.iith.ac.in; G. Philip, Chennai Math-

ematical Institute, H1, SIPCOT IT Park, Siruseri, Kelambakkam 603103, India; email: gphilip@cmi.ac.in; S. Saurabh, The

Institute of Mathematical Sciences, IV Cross Road, CIT Campus, Taramani, Chennai 600113, Tamil Nadu, India; email:

saket@imsc.res.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2021/04-ART11 $15.00

https://doi.org/10.1145/3446969

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3446969

11:2 D. Lokshtanov et al.

CCS Concepts: • Theory of computation → Graph algorithms analysis; Approximation algorithms

analysis; Algorithm design techniques;

Additional Key Words and Phrases: Approximation algorithm, local ratio, feedback vertex set, tournament,

branching

ACM Reference format:

Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese Philip, and Saket

Saurabh. 2021. 2-Approximating Feedback Vertex Set in Tournaments. ACM Trans. Algorithms 17, 2, Article

11 (April 2021), 14 pages.

https://doi.org/10.1145/3446969

1 INTRODUCTION

A feedback vertex set (FVS) in a graph G is a vertex subset S such that G − S is acyclic. In the case
of directed graphs, it means G − S is a directed acyclic graph (DAG). In the (Directed) Feedback
Vertex Set ((D)FVS) problem, we are given as input a (directed) graph G and a weight function
w : V (G) → N . The objective is to find a minimum weight feedback vertex set S . Both the directed
and undirected versions of the problem are NP-complete [14] and have been extensively studied
from the perspective of approximation algorithms [3, 13], parameterized algorithms [7, 9, 18], exact
exponential time algorithms [22, 26] as well as graph theory [12, 23].

In this article, we consider a restriction of DFVS, namely, the Feedback Vertex Set in Tourna-
ments (TFVS) problem, from the perspective of approximation algorithms (we refer to the textbook
of Williamson and Shmoys [25] for an introduction to approximation algorithms). A tournament

is a directed graph G such that every pair of vertices is connected by an arc, and TFVS is simply
DFVS when the input graph is required to be a tournament. Even this restricted variant of DFVS

has applications in voting systems and rank aggregation and is quite well-studied [6, 11, 15, 19, 20,
21]. It is formally defined as follows.

Feedback Vertex Set in Tournaments (TFVS)
Input: A tournament G and a weight function w : V (G) → N .
Output: A minimum weight FVS of G.

It is well known that a tournament has a directed cycle if and only if there is a directed triangle [11].
Thus, the TFVS problem can be re-cast as a special case of the well-studied 3-Hitting Set problem
(also known as Vertex Cover in 3-uniform hypergraphs). Here the input is a universe U , a weight
function w : U → N and a family F of subsets of U , each of size at most 3. The goal is to find a
minimum weight subset S of the universe that intersects every set in F . 3-Hitting Set (and therefore
also TFVS) admits a simple 3-approximation algorithm: Taking the natural LP relaxation1 and
selecting all elements whose variable is set to at least 1/3 leads to a 3-approximate solution. For
3-Hitting Set this simple approximation algorithm is likely the best possible: assuming the Unique
Games Conjecture (UGC) there is no c-approximation algorithm for c < 3 [17]. A c-approximation
algorithm with c < 2 would imply P = NP [10].

Since TFVS is a special case of 3-Hitting Set, algorithms for 3-Hitting Set translate to algorithms
for TFVS, but lower bounds for 3-Hitting Set do not translate to lower bounds for TFVS. Indeed,
TFVS does admit c-approximation algorithms with c < 3. The first such algorithm was given by
Cai et al. [6], who gave a 5/2-approximation algorithm using the local ratio technique of Bar-
Yehuda and Even [5]. Recently, Mnich et al. [20] gave a 7/3-approximation algorithm using the

1There is a variable 0 ≤ xv ≤ 1 for every element v and a constraint xu + xv + xw ≥ 1 for every triple {u, v, w } ∈ F .

The objective is to minimize the sum of the variables.

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

https://doi.org/10.1145/3446969

2-Approximating Feedback Vertex Set in Tournaments 11:3

iterative rounding technique. They also observe that the approximation-preserving reduction from
Vertex Cover to TFVS of Speckenmeyer [24] implies that, assuming the Unique Games Conjecture
(UGC) [17], TFVS cannot have an approximation algorithm with factor smaller than 2. Mnich
et al. [20] state that their algorithm “gives hope that a 2-approximation algorithm, that would be

optimal under the UGC, might be achievable (for TFVS).” In this article, we show that this is indeed
the case, by giving a (randomized) 2-approximation algorithm for TFVS. More formally, we prove
the following theorem.

Theorem 1. There exists a randomized algorithm that, given a tournament G on n vertices and a

weight functionw onG, runs in time O (n17) and outputs a feedback vertex set S ofG. With probability

at least 7/10, S is a 2-approximate solution of (G,w). When the instance is unweighted, the running

time can be improved to O (n12).

This algorithm can be easily de-randomized in quasi-polynomial time.

Overview of algorithm. We first give a high level overview of a 2-approximation algorithm for the
unweighted case (when every vertex has weight 1). Let OPT be an optimal solution, if |OPT| ≥ n/2
then every feasible solution (such as the entire vertex set!) is a 2-approximate solution. Assuming
that |OPT| < n/2, a randomly chosen vertexp will be not in OPT with constant probability. Further,
with constant probability such a vertexp will be “in the middle one-third” of the unique topological
ordering ofG −OPT. In other words, with constant probabilityp will have at least (G − |OPT|)/3 ≥
n/6 in-neighbors and at least (G − |OPT|)/3 ≥ n/6 out-neighbors. Crucially, both the number of in-
neighbors and the number of out-neighbors will be at most 5n/6. The idea is now to usep as a pivot
in a “quicksort-like” procedure. This idea has been previously used in approximating Feedback Arc
Set in Tournaments (FAST), and other related problems [1]. It is also a key component of the PTAS
for FAST [16].

If there exists an arc uv from N + (p) to N − (p), then puv forms a directed triangle and hence,
since p � OPT, OPT contains eitheru orv . We put bothu andv into the solution, delete them from
G (and OPT), and repeat as long as there are arcs from N + (p) to N − (p). Each iteration adds two
vertices to the solution while decreasing |OPT| by at least one. When the procedure terminates
there are no arcs from N + (p) to N − (p). Hence, for the purposes of 2-approximation, we can assume
without loss of generality that there are no arcs from N + (p) to N − (p).

When there are no arcs from N + (p) to N − (p) the problem breaks into two independent sub-
instances. Indeed, for every solution S− to G[N − (p)] and solution S+ to G[N + (p)], we have that
S− ∪ S+ is a solution toG. To see this, take the topological order ofG[N − (p)] − S−, append p, then
append the topological order of G[N + (p)] − S+ and observe that this is a topological order of G −
(S− ∪ S+). The algorithm calls itself recursively onG[N − (p)] andG[N + (p)], obtains 2-approximate
solutions S− and S+ and returns S− ∪ S+ as its 2-approximate solution.

The algorithm thus makes two recursive calls to instances of size at most 5n/6, leading to the

recurrenceT (n) ≤ 2T (5n/6), which solves to T (n) = nO (1) by the Master Theorem. This is the en-
tire algorithm! Of course, when formulating the recurrence above, we silently assumed that the
choice of p always succeeds, instead of succeeding with constant probability. To correct for this
it is sufficient to repeat the experiment (pick a random p and run the algorithm recursively on
G[N − (p)] and G[N + (p)]) a constant number of times in each recursive call, leading to the recur-

rence T (n) ≤ O (1) ·T (5n/6), which still solves to T (n) = nO (1) .

Derandomization. The only place where the algorithm uses randomness is the choice of the
pivot p. The only properties we need from p is that it is not in OPT, and that its indegree and
outdegree is at least n/6. We know that at least n/6 vertices of G have these properties. The de-
terministic algorithm replaces the step when p is selected at random with a loop that tries all

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

11:4 D. Lokshtanov et al.

the n possible choices for p. This leads to the recurrence T (n) ≤ n · 2T (5n/6), which solves to

T (n) ≤ nO (log n) .
Dealing with weights. There are two steps of the algorithm for unweighted graphs that do not
work directly also for weighted graphs. The first problem is that we can no longer deal with the
|OPT| > n/2 case by picking all the vertices into the solution (since their total weight can be more
than twice the weight of OPT). The second problem is that when we pick a pivot vertex p and
find an arc uv from N + (p) to N − (p), we can no longer pick both u and v into the approximate
solution. Both problems are quite easily handled by “local ratio” arguments (Lemma 3 handles the
first problem, while Lemma 4 handles the second).

2 PRELIMINARIES

In this article, we work with directed graphs (or digraphs) that do not contain any self loops or
parallel arcs. We use V (G) to denote the vertex set of a digraph G and E (G) to denote the set
of arcs of G. We use the notation uv to denote an arc from vertex u to vertex v in a digraph.
Vertices u,v are incident with arc uv . A tournament is a digraph in which there is exactly one
arc between any two vertices. The set of out-neighbors of a vertex v in a digraph G is defined to
be N + (v) := {u | vu ∈ E (G)}, and the set of in-neighbors of v in G is defined to be N − (v) := {u |
uv ∈ E (G)}. For an integer � ≥ 3 a directed cycle of length � in a digraphG is an alternating sequence
C = v1a1v2a2 . . .v�a� where {v1 . . . ,v� } ⊆ V (G) is a set of � distinct vertices ofG and {a1 . . . ,a� } ⊆
E (G) is a subset of arcs of G where ai = vivi+1; 1 ≤ i < � and a� = v�v1. A digraph is acyclic if it
does not contain a directed cycle. A triangle in a digraph is a directed cycle of length three. In this
article, we use the term “triangle” exclusively to denote directed triangles. A topological sort of a
digraphG with n vertices is a permutation π : V (G) �→ [n] of the vertices of the digraph such that
for all arcs uv ∈ E (G), it is the case that π (u) < π (v). Such a permutation exists for a digraph G if
and only ifG is acyclic [4]. For an acyclic tournament, the topological sort is unique [4]. Deleting a
vertexv from digraphG involves removing, fromG, the vertexv and all those arcs inG with which
v is incident inG. We useG −v to denote the digraph obtained by deleting a vertexv ∈ V (G) from
digraph G. For a vertex set S ⊆ V (G), we use G − S to denote the digraph obtained from digraph
G by deleting all the vertices of S .

A feedback vertex set (FVS) of a digraphG is a vertex set S such thatG − S is acyclic. A vertex set
is a feasible solution if and only if it is an FVS. Given a weight functionw : V (G) → N the weight of
a vertex set S isw (S) =

∑
v ∈S w (v). An FVS SOPT ofG is an optimal solution of the instance (G,w)

if every other FVS S ofG satisfiesw (S) ≥ w (SOPT). An FVS S ofG is called 2-approximate solution

of the instance (G,w) ifw (S) ≤ 2w (SOPT) for an optimal solution SOPT of (G,w). An FVS S is called
p-disjoint for a vertex p if p � S , and further, S is said to be an optimal p-disjoint FVS of (G,w) if,
for every p-disjoint solution S ′ we have w (S ′) ≥ w (S). Note that an optimal p-disjoint solution of
(G,w) is not necessarily an optimal solution of (G,w). However, if an optimal solution SOPT of
(G,w) happens to be p-disjoint, then SOPT is also an optimal p-disjoint solution of G. A p-disjoint
FVS S ofG is called 2-approximate p-disjoint solution of the instance (G,w) ifw (S) ≤ 2w (S ′) for an
optimal p-disjoint solution S ′ of (G,w).

In the following, we will assume that G is a tournament on n vertices, and w : V (G) → N is
a weight function. Furthermore, for any induced subgraph H of G, we assume that w defines a
weight function, when restricted to V (H). We will frequently make use of the following lemma,
which directly follows from the fact that acyclic digraphs are closed under vertex deletions.

Lemma 1. Let S be an FVS of a digraph G and let X be a subset of the vertex set of G. Then S \ X
is an FVS of the digraph G − X . If S� is an optimal solution of an instance (G,w) of TFVS and X is a

subset of S�, then S� \ X is an optimal solution of the instance ((G − X),w), of weightw (S�) −w (X).

We use the following lemma to prove the correctness our algorithm in the later section.

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

2-Approximating Feedback Vertex Set in Tournaments 11:5

Lemma 2. Let (G,w) be an instance of TFVS.

(i) A vertex v ∈ G is not part of any triangle in G if and only if every arc between a vertex in

N − (v) and a vertex in N + (v) is of the form xy ; x ∈ N − (v),y ∈ N + (v).
(ii) Let x ∈ V (G) be a vertex that is not part of any triangle in G. Let Hin = G[N − (x)] and

Hout = G[N + (x)] be the subgraphs induced in G by the in- and out-neighborhoods of ver-

tex x , respectively. A set S is an FVS of digraph G if and only if S ∩V (Hin) is an FVS of the

subgraph Hin and S ∩V (Hout) is an FVS of the subgraph Hout .

Proof. Suppose vertex v is not part of any triangle in G. If there is an arc st in G where vertex
s is in the out-neighborhood N + (v) of vertex v and vertex t is in its in-neighborhood N − (v), then
the vertices {s,v, t } form a triangle containing vertex v , a contradiction. So every arc between
vertices x ∈ N − (v) and y ∈ N + (v) is directed from x to y. Conversely, if vertices {v, s, t } form a
triangle and—without loss of generality—vs is an arc in G, then we have that both st and tv are
arcs in G. Thus, s ∈ N + (v), t ∈ N − (v), and arc st is not of the form xy ; x ∈ N − (v),y ∈ N + (v).

Now prove statement (ii) of the lemma. Let S be an FVS ofG. As Hin − (S ∩V (Hin)) and Hout −
(S ∩V (Hout)) are subgraphs of G − S (which is a DAG), we have that S ∩V (Hin) is an FVS of
Hin and S ∩V (Hout) is an FVS of Hout . Now, we prove the other direction. Let S ⊆ V (G) be such
that S ∩V (Hin) is an FVS of Hin and S ∩V (Hout) is an FVS of Hout . Since Hin − S is an acyclic
tournament, there is a unique topological sortu1, . . . ,u� of Hin − S , where {u1, . . . ,u� } = V (Hin) \
S . Also, since Hout − S is an acyclic tournament, there is a unique topological sort v1, . . . ,v�′ of
Hout − S , where {v1, . . . ,v�′ } = V (Hout) \ S . Since x is not part of a triangle in G, by statement (i)
of the lemma, there is no arc from a vertex in {v1, . . . ,v�′ } to a vertex in {u1, . . . ,u� }. This implies
that u1, . . . ,u�,x ,v1, . . . ,v�′ is a topological sort of G − S . Therefore, S is an FVS of G. �

3 THE ALGORITHM

In this section, we develop the required tools, and present an algorithm that illustrates our ap-
proach. In the following section, we present an algorithm with an improved running time, by
fine-tuning our approach. The algorithm will distinguish between two cases: either the optimal
solution contains many (more than some constant fraction of the) vertices, or it does not. The
following lemma handles the case when the optimal solution contains many vertices.

Lemma 3. Let (G,w) be an instance of TFVS where G has n vertices and that has an optimal

solution S� that contains at least αn vertices ofG, where α > 1/2 is a constant. Let D ⊆ V (G) be a set

of n(α − 1
2) vertices of the smallest weight inV (G), ties broken arbitrarily, and let Δ = maxv ∈D w (v)

be the weight of the heaviest vertex in D. Let w ′ : V (G) \ D → N be the weight function that assigns

the weight w (v) − Δ to each vertex v of G − D. If Rapx is a 2-approximate solution of the reduced

instance (G − D,w ′), then Rapx ∪ D is a 2-approximate solution of the instance (G,w).

Proof. Let R� be an optimum solution of the reduced instance (G − D,w ′). Then w ′(Rapx) ≤
2w ′(R�). From Lemma 1, we get that S� \ D is a—not necessarily optimal—solution of the reduced
instance (G − D,w ′). Since R� is an optimum solution of this instance, we have thatw ′(S� \ D) ≥
w ′(R�). Since w ′(v) = (w (v) − Δ) holds for each vertex v ∈ (S� \ D), we get that w ′(S� \ D) =
w (S� \ D) − |S� \ D | · Δ ≤ w (S�) − |S� \ D | · Δ. Since |S� \ D | ≥ αn − (α − 1

2)n = n
2 , we get that

w ′(S� \ D) ≤ w (S�) − Δ
2n. Hence, w ′(R�) ≤ w ′(S� \ D) ≤ w (S�) − Δ

2n.
Thus, w ′(Rapx) ≤ 2w ′(R�) ≤ 2w (S�) − Δn. Since the set Rapx is disjoint from the deleted set

D we have that w ′(v) = w (v) − Δ holds for each vertex v ∈ Rapx . Hence, w (Rapx) = w ′(Rapx) +
|Rapx | · Δ ≤ (2w (S�) − Δn) + |Rapx | · Δ = 2w (S�) − Δ(n − |Rapx |). Since w (v) ≤ Δ holds for each

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

11:6 D. Lokshtanov et al.

vertex v ∈ D we have that w (D) ≤ |D | · Δ. Hence,

w (Rapx ∪ D) = w (Rapx) +w (D)

≤ 2w (S�) − Δ(n − |Rapx |) + |D | · Δ
= 2w (S�) − Δ(n − |Rapx | − |D |)
= 2w (S�) − Δ(n − |Rapx ∪ D |)
≤ 2w (S�).

Here the last inequality follows from the fact that |Rapx ∪ D | ≤ n = |V (G) |. �

We remark that, in Lemma 3, the instance (G − D,w ′) contains at most (3
2 − α)n vertices, where

n = |V (G) |. This fact will be helpful in the analysis of our algorithm. The next lemma shows that
given {p,u,v}, we can safely pick a lighter weight vertex of the two vertices u and v into a 2-
approximate p-disjoint solution.

Lemma 4. Let (G,w) be an instance of TFVS and p ∈ V (G). Let {u,v} be two vertices such that

(i) {p,u,v} form a triangle in G, and (ii) w (v) ≤ w (u). Let w ′ be the weight function defined by: (a)
w ′(v) = 0 ,(b) w ′(u) = w (u) −w (v), and (c)w ′(x) = w (x) for all vertices x � {u,v}. Then for every

2-approximate p-disjoint solution Rapx of the reduced instance (G −v,w ′), we have Rapx ∪ {v} is a

2-approximate p-disjoint solution of the original instance (G,w).

Proof. Since (G −v) − Rapx = G − (Rapx ∪ {v}) and the former digraph is acyclic by assump-
tion, we get that Rapx ∪ {v} is a FVS in the digraph G. We will show that Rapx ∪ {v} is a 2-
approximate p-disjoint solution of (G,w). Since p � Rapx , Rapx ∪ {v} is a p-disjoint FVS of G. Let
S� be an optimal p-disjoint solution of (G,w). Notice that S� ∩ {u,v} � ∅. Now to complete the
proof, it remains to show thatw (Rapx ∪ {v}) ≤ 2w (S�). Let Δ = min{w (u),w (v)}, that isw (v) = Δ.
Now, we have the following:

w (Rapx ∪ {v}) ≤ w ′(Rapx ∪ {v}) + 2Δ (since w (v) = Δ and w (u) = Δ +w ′(u))

= w ′(Rapx) + 2Δ (since w ′(v) = 0)

≤ 2w ′(S� \ {v}) + 2Δ (since S� \ {v} is an FVS of G −v)

= 2w ′(S�) + 2Δ (since w ′(v) = 0)

= 2
(
w (S�) − Δ · |S� ∩ {u,v}|

)
+ 2Δ

≤ 2w (S�) (since S� ∩ {u,v} � ∅).

This completes the proof. �

Suppose that we have picked a pivot vertex p that is disjoint from an optimal solution. If there
is an arc xy ∈ E (G) such that x ∈ N + (p) \ Di and y ∈ N − (p) \ Di , then the vertices {x ,p,y} form a
triangle in G, and so at least one of the two vertices {x ,y} must be present in the solution S�. Let
v be a vertex of the least weight among {x ,y}, ties broken arbitrarily, and let u be the other vertex.
Then Lemma 4 applies to the tuple {(G,w),p, {u,v}}.

Procedure Reduce(G,w,p) of Algorithm 1 applies Lemma 4 exhaustively until there are no arcs
from N + (p) to N − (p): It starts by setting D0 = ∅, w0 = w , and i = 0. As long as there is an arc
xy ∈ E (G) such that x ∈ N + (p) \ Di and y ∈ N − (p) \ Di it finds vertices {u,v} as described in the
previous paragraph and computes a weight function w ′ as specified in Lemma 4 as applied to the
collection {(G,w),p, {u,v}}. It sets wi+1 = w

′, Di+1 = Di ∪ {v}, increments i by one, and repeats.
When no such arc xy exists the procedure outputs the set D = Di and the weight function w̃ = wi .

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

2-Approximating Feedback Vertex Set in Tournaments 11:7

Our next lemma states that procedure Reduce runs in polynomial time and correctly outputs
a reduced instance. Recall that for an instance (G,w) of TFVS and a vertex p ∈ V (G), a p-disjoint

solution of (G,w) is an FVS of G, which does not contain vertex p.

Lemma 5. Let (G,w) be an instance of TFVS and p ∈ V (G). When given (G,w,p) as input, the

procedure Reduce runs in O (|V (G) |2) time and outputs a vertex set D ⊆ (V (G) \ {p}) and a weight

function w̃ with the following properties:

(i) there are no arcs from N + (p) to N − (p) in digraph G − D, and

(ii) for every 2-approximate p-disjoint solution S of (G − D, w̃), the set S ∪ D is a 2-approximate

p-disjoint solution of (G,w).

Proof. The check on line 3 of Algorithm 1 fails if and only if there are no arcs from N+ (p)
to N − (p) in the digraph G − Di for the value of i at that point. Since the assignment of Di to D
on line 13 happens only if this check fails, we get that there are no arcs from N + (p) to N − (p) in
the digraph G − D. Let S be a 2-approximate p-disjoint solution of (G − D, w̃). Then by a simple
induction on the number of iterations and Lemma 4, we obtain that S ∪ D is a 2-approximate p-
disjoint solution of (G,w).

To complete the proof, we show that procedure Reduce runs in O (n2) time where n = |V (G) |.
LetV (G) = {v1, . . . ,vn }. We assume that graphG is given as its n × n adjacency matrix MG where
MG [i, j] = 1 if vivj is an arc in G and MG [i, j] = 0 otherwise. We assume also that the weight
function w is given as a 1 × n array where w[i] stores the weight of vertex vi .

We compute the two neighborhoods N − (p) and N + (p) of the pivot vertex p by scanning the
entries of the rowMG [p]; vertexvi ∈ N + (p) ifMG [p, i] = 1, andvi ∈ N − (p) ifvi � p andMG [p, i] =
0. This takes O (n) time. Let din = |N − (p) |,dout = |N + (p) | be the in- and out-degrees of vertex p.
We construct a dout × din arrayA to store the neighborhood relation between the sets N + (p) and
N − (p), and a 1 × dout array OD to store the out-degrees of vertices in N + (p) into the set N − (p).
We initialize all entries of A and OD to zeroes. Now for each pair of vertices vi ∈ N + (p),vj ∈
N − (p) we increment the entries A[i, j] and OD[i] by 1 each if and only if MG [i, j] = 1. Once
this is done the cell OD[i] holds the number of out-neighbors of vertex vi ∈ N + (p) in the set
N − (p), and A[i, j] = 1 if and only if vivj is an arc in G for vertices vi ∈ N + (p),vj ∈ N − (p). Since
|N + (p) | + |N − (p) | = (n − 1) all this can be done in O (n2) time.

To execute the test on line 3 of Algorithm 1, we scan the list OD for a non-zero entry. If all
entries of OD are zeros, then there is no arc xy of the specified form and the test returns False.
If OD[i] > 0 for some i, then we scan the row A[i] to find an index j such that A[i, j] = 1. Then
x = vi ,y = vj is a pair of vertices that satisfy the test. We use these vertices to execute lines 4
to 10 of the procedure. We effect the addition of vertex v to the set Di+1 on line 11 as follows:
If v = x = vi ∈ N + (p), then we setOD[i] = 0 andA[i, j] = 0 ; 1 ≤ j ≤ din . If v = y = vj ∈ N − (p),
then for each 1 ≤ i ≤ dout such that A[i, j] = 1, we decrement the cells OD[i] and A[i, j] by 1.

Each line of Algorithm 1, except for line 11, takes constant time. Line 11—as described above—
takes O (n) time. Each execution of line 11 takes either a row or a column ofA, which has non-zero
entries and sets all these entries to zero. Since the algorithm does not increment these entries in
the loop, we get that the while loop of lines 3 to 12 is executed at most |N+ (p) | + |N − (p) | = (n − 1)
times. Thus, the entire procedure runs in O (n2) time. �

Combining Lemmas 1, 2, and 5, we get

Corollary 1. On input (G,w,p) the procedure Reduce runs in O (n2) time and outputs a vertex

set D ⊆ V (G) \ {p} and a weight function w̃ such that for every FVS S− of G[N − (p) \ D] and every

FVS S+ of G[N + (p) \ D], we have that S− ∪ S+ ∪ D is a p-disjoint FVS of G.

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

11:8 D. Lokshtanov et al.

Further, if S− is a 2-approximate solution of (G[N − (p) \ D], w̃) and S+ is 2-approximate solution

of (G[N + (p) \ D], w̃), then S− ∪ S+ ∪ D is a 2-approximate p-disjoint solution of (G,w).

Proof. The running time of procedure Reduce follows from Lemma 5. Let S− be an FVS of
G[N − (p) \ D] and S+ be an FVS of G[N + (p) \ D]. By Lemma 5, there are no arcs from N + (p)
to N − (p) in digraph G − D. Then by statement (i) of Lemma 2, p is not part of any triangle in
G − D. Thus, by statement (ii) of Lemma 2, S− ∪ S+ is an FVS of G − D. Therefore, by Lemma 1,
S− ∪ S+ ∪ D is an FVS of G. Moreover, since p � S− ∪ S+ ∪ D, it is a p-disjoint FVS of G.

Suppose S− is a 2-approximate solution of (G[N − (p) \ D], w̃) and S+ is a 2-approximate solution
of (G[N + (p) \ D], w̃). Now, we claim that S− ∪ S+ is a 2-approximate p-disjoint solution of (G −
D, w̃). Let R− and R+ be optimal solutions of (G[N − (p) \ D], w̃) and (G[N + (p) \ D], w̃), respec-
tively. Then, we claim that R− ∪ R+ is an optimal p-disjoint solution of (G − D, w̃). By statement
(ii) of Lemma 2, R− ∪ R+ is an FVS of G − D and clearly it does not contain p. Suppose R− ∪ R+ is
not an optimal p-disjoint solution of (G − D, w̃). Let R� be an optimal p-disjoint solution of (G −
D, w̃) and w̃ (R�) < w̃ (R− ∪ R+). Then, either w̃ (R� ∩ (N − (p) \ D)) < w̃ (R−) or w̃ (R� ∩ (N + (p) \
D)) < w̃ (R+). Consider the case when w̃ (R� ∩ (N − (p) \ D)) < w̃ (R−). By Lemma 2, R� ∩ (N − (p) \
D) is an FVS of G[N + (p) \ D]. But this contradicts the assumption that R− is an optimal solution
of (G[N − (p) \ D], w̃). The same arguments apply to the case when w̃ (R� ∩ (N + (p) \ D)) < w̃ (R+).
Therefore, R− ∪ R+ is an optimal p-disjoint solution of (G − D, w̃). Since S− is a 2-approximate
solution of (G[N − (p) \ D], w̃) and S+ is a 2-approximate solution of (G[N + (p) \ D], w̃), we have
that w̃ (S− ∪ S+) = w̃ (S−) + w̃ (S+) ≤ 2(w̃ (R−) + w̃ (R+)) ≤ 2w̃ (R− ∪ R+). Hence, S− ∪ S+ is a 2-
approximate p-disjoint solution of (G − D, w̃). Then by Lemma 5, S− ∪ S+ ∪ D is a 2-approximate
p-disjoint solution of (G,w). This completes the proof of the corollary. �

We are now ready to prove the following theorem.

Theorem 2. There exists a randomized algorithm that, given a tournament G on n vertices and a

weight functionw onG, runs in time O (n34) and outputs a feedback vertex set S ofG. With probability

at least 1/2, S is a 2-approximate solution of (G,w).

Proof. We first describe the algorithm. On input (G,w), if G has at most 10 vertices, then the
algorithm finds an optimal solution by exhaustively enumerating and comparing all potential so-
lutions. Otherwise the algorithm iteratively computes at most 26 solutions of (G,w) by making
recursive calls. It then outputs the least weight FVS among them. We now describe the iterations
and the recursive calls. Let us index the iteration by i ∈ {0, 1, . . . , 25}.

The first iteration is different from the other 25 iterations. In this iteration, the algorithm sets
D ⊆ V (G) to be the set of the n

6 vertices of smallest weight in V (G) and Δ = maxv ∈D w (v). Let
w ′ : V (G) \ D → N be the weight function that assigns the weight w (v) − Δ to each vertex v of
G − D. The algorithm calls itself recursively on (G − D,w ′). The recursive call returns an FVS S of
G − D, the algorithm constructs the FVS S0 = S ∪ D of G.

We do the remaining 25 iterations only when the set {v : N + (v) ≤ 8n/9,N − (v) ≤ 8n/9} is non-
empty. For each of these 25 iterations (which we index by i ∈ {1, 2, . . . , 25}), the algorithm picks
a vertex pi uniformly at random from the set of vertices {v : N + (v) ≤ 8n/9,N − (v) ≤ 8n/9}; pi is
the pivot vertex for the ith iteration. For each pi the algorithm runs the procedure Reduce on G,
pi , and w and obtains a set Di and a weight function w̃i . It then makes two recursive calls, one
on (G[N − (pi) \ Di], w̃i), and the other on (G[N + (pi) \ Di], w̃i). Let the sets returned by the two
recursive calls be S−i and S+i , respectively. The algorithm constructs the set Si = S−i ∪ S+i ∪ Di as
the FVS of G corresponding to i .

Finally, the algorithm outputs the minimum weight Si , where the minimum is taken over
0 ≤ i ≤ 25 as the solution. The algorithm terminates within the claimed running time, since

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

2-Approximating Feedback Vertex Set in Tournaments 11:9

the running time is governed by the recurrence T (n) ≤ 26 ·T (8n/9) + 25 ·T (n/2) + O (n2), which
solves to T (n) = O (n38) by the Master theorem [8]. Here, we rely on the fact that for each pivot-
vertex v , the two recursive calls made on subgraphs induced by N + (v) and N − (v), which are
disjoint, and hence one of them has size at most n/2. We now prove that in each iteration, the
constructed solution Si is indeed an FVS of G, and that the same holds for the solution returned
by the algorithm. We apply an induction on the number of vertices in G. For n ≤ 10 there are no
recursive calls made, and the returned solution is an optimal solution, since it is computed by brute
force. For n > 10 the returned solution is one of the Si ’s and so it is sufficient to prove that all Si ’s
are in fact feedback vertex sets of G. For Si , i ≥ 1 this follows from Corollary 1 and the induction
hypothesis. And for i = 0, we know that S0 = S ∪ D and S is a vertex subset returned by the recur-
sive call for the instance (G − D,w ′), which is also an FVS of G − D, by the induction hypothesis.
Since G − S0 = ((G − D) − S) and S is an FVS of (G − D), clearly S0 is an FVS of G.

Finally, we will show that with probability at least 1/2, the algorithm outputs a 2-approximate
solution of (G,w). We prove this by induction onn, the number of vertices inG. Suppose that Si is of
the least weight among S0, S1, . . . , S25, for some i ∈ {0, 2, . . . 25}, which is output by the algorithm.
For n ≤ 10 the returned solution is optimal, so assume n > 10. Let SOPT be an optimal solution for
(G,w). We distinguish between two cases, either |SOPT | ≥ 2n/3 or |SOPT | < 2n/3. By the induction
hypothesis the first iteration, the recursive call on (G − D,w ′) returns a 2-approximate solution S
for (G − D,w ′) with probability at least 1/2. If |SOPT | ≥ 2n/3, then it follows from Lemma 3 (with
α = 2/3) that Si for i = 0, is a 2-approximate solution for (G,w).

Suppose now that |SOPT | < 2n/3. We will argue that in each of the 25 remaining iterations
the probability that pi � SOPT is at least 1/9. Indeed, G − SOPT is an acyclic tournament on at
least n/3 vertices. Let R be the set of vertices in V (G) \ SOPT excluding the first �n/9
 vertices
and the last �n/9
 vertices in the unique topological order of the acyclic tournament G − SOPT .
For each vertex v in R it holds that |N + (v) | ≤ n − �n/9
 − 1 ≤ 8n/9 and similarly |N − (v) | ≤ 8n/9,
i.e., R ⊆ {v : |N + (v) | ≤ 8n/9, |N − (v) | ≤ 8n/9}. Furthermore, |R | ≥ n/9, since |V (G) \ SOPT | ≥ n/3.
Hence, when we pick a random vertex pi among all vertices with in-degree and out-degree at most
8n/9, we have that with probability at least 1/9 the vertex pi is in R, and therefore not in SOPT .

We shall say that an iteration i with i ≥ 1 is good if pi � SOPT and the two solutions S−i and
S+i returned from the recursive calls on (G[N − (pi) \ Di], w̃i) and (G[N + (pi) \ Di], w̃i), are 2-
approximate for their respective instances. Since pi � SOPT with probability at least 1/9, and each
of S−i and S+i are 2-approximate with probability at least 1/2 (by the induction hypothesis), it fol-
lows that this iteration is good with probability at least 1/9 · 1/2 · 1/2 ≥ 1/36. Therefore, with
probability at least

1 − (1 − 1/36)25 ≥ 1/2,

there is at least one iteration i that is good. For this iteration it follows from Corollary 1 that
Si = Di ∪ S+i ∪ S−i is 2-approximate pi -disjoint solution of (G,w). Moreover, since pi � SOPT , SOPT

is also an optimal pi -disjoint solution of (G,w). Hence,w (Si) ≤ 2w (SOPT). Therefore, the solution
output by the algorithm is a 2-approximate solution with probability at least 1/2. This concludes
the proof. �

3.1 Deterministic 2-approximation in Quasi-polynomial Time

We can easily derandomize the above algorithm in quasi-polynomial time. Instead of randomly
selecting the pivots pi , we iterate over all the candidates in {v : N + (v) ≤ 8n/9,N − (v) ≤ 8n/9}.
The correctness of this algorithm follows from the same arguments as above, and we obtain a
deterministic 2-approximation algorithm for TFVS. To bound the running time, observe that the
number of recursive calls will be at most 2n + 1. Thus, the running time of the algorithm will be

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

11:10 D. Lokshtanov et al.

governed by the recurrence T (n) ≤ (2n + 1) ·T (8n/9) + O (n2), which solves to T (n) = nO (log n) .
Thus, we get the following theorem.

Theorem 1. There exists an algorithm that given an instance (G,w) of TFVS on n vertices, runs in

time nO (log n) and outputs a 2-approximate solution of (G,w).

4 IMPROVING THE RUNNING TIME

In this section, we present an improved implementation of the approximation algorithm in The-
orem 2, that attains a running time of O (n17) for general weighted instances. This running time
can be further improved to O (n12) for unweighted instances.

Theorem 3. There exists a randomized algorithm that, given a tournament G on n vertices and

a weight function v on V (G), runs in time O (n17) and outputs a feedback vertex set S of G. With

probability at least 7/10, S is a 2-approximate solution of (G,w).

Proof. Our algorithm is identical to the one presented in the proof of Theorem 2 with a few
updated parameters and an improved running time analysis. Let us fix an optimum solution S� to
(G,w). In particular, the following parameters of the algorithm are carefully chosen.

• Let r ≥ 1/2 denote the minimum probability of the event where our algorithm finds a 2-
approximate solution. Observe that r is a lower-bound on the probability of success for any
recursive calls made by the algorithm. Note that in Theorem 2, we set r = 1/2.

• Let α ∈ (1/2, 1) denote the threshold on the cardinality of S� beyond which it is considered
large. That is, if |S� | ≥ αn, then we apply Lemma 3, and then recursively solve an instance
on (3

2 − α)n vertices in the (special) first iteration of the algorithm. Recall that in Theorem 2,
we setα = 2/3, and then recursively solved an instance on 5n/6 vertices in the first iteration.

• Let β ∈ (0, 1) denote the fraction of vertices in G − S� that are suitable candidates for
the pivot vertex (from the second iteration onward), where S� is an optimum solution
of (G,w). Let R� ⊆ V (G) \ S� denote this subset of vertices. Note that, if |S� | < αn, then
|V (G) \ S� | ≥ (1 − α)n and |R� | ≥ β (1 − α)n. Now, G − S� is an acyclic tournament with a
unique topological order, and let us define R� to be the subset of vertices ofG − S� contain-

ing all but the first
(1−α)(1−β)

2 n and last
(1−α)(1−β)

2 n vertices in this topological order. There-

fore, for any v ∈ R, |N + (v) |, |N − (v) | ≥ (1−α)(1−β)
2 n, which implies that |N + (v) |, |N − (v) | ≤

(1 − (1−α)(1−β)
2)n for any vertex v ∈ R. Recall that we set β = 1/3 in Theorem 2.

• Finally, let k denote the number of iterations in our algorithm, and it will be chosen to
ensure that we compute a 2-approximate solution to (G,w) with probability at least r . In
Theorem 2, this was set to 26, which includes the special first iteration where only one
recursive call is made, and the remaining 25 iterations where two recursive calls are made.

Let us now describe how we arrive at our choice of k , given r , α and β . The first iteration consid-
ers the case when |S� | ≥ αn. In the remaining k − 1 iterations, we assume that |S� | ≤ αn. Recall
that in each of the last k − 1 iterations, we attempt to obtain a vertexv ∈ R� as the pivot vertex, by
sampling a vertex uniformly at random. The probability of success is at least |R� |/n ≥ (1 − α)β .2

We can improve this probability by slightly adjusting the sampling process and its analysis as fol-
lows. First, observe that we only require the following two properties of a pivot vertexv : (i) v � S�

and (ii) |N + (v) |, |N − (v) | ≤ (1 − (1−α)(1−β)
2)n. Therefore, let Rα,β denote the subset of vertices in

G with |N + (v) |, |N − (v) | ≤ (1 − (1−α)(1−β)
2)n, and let R = Rα,β \ S�. Observe that any vertex in R is

2In Theorem 2 for α = 2/3, β = 1/3, and r = 1/2, this probability is at least 1/9.

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

2-Approximating Feedback Vertex Set in Tournaments 11:11

a suitable pivot vertex. Further note that R� ⊆ R ⊆ Rα,β . Let v be a vertex sampled uniformly at

random from Rα,β . We claim that v ∈ R with probability at least
(1−α)β

α+(1−α)β
. Indeed, let Z = R \ R�

and let |R� | = ((1 − α)β + γ)n for some γ ≥ 0, and then we have

Prv∼Rα ,β
[v ∈ R] = |R |/|Rα,β |

≥ |R |/|S� ∪ Rα,β |

=
|R� | + |Z |

|S� | + |R� | + |Z |

≥ |R� |
|S� | + |R� |

=
(1 − α)β + γ

α + (1 − α)β + γ

≥ (1 − α)β

α + (1 − α)β
.

In the above, we have used the fact a+c
b+c
≥ a

b
whenever a ≤ b and a,b, c ≥ 0.

Recall that in our algorithm, from the second iteration onward, we first sample a pivot vertexv .
Then, we apply procedure Reduce toG,v,p to obtain D ⊆ V (G) and a weight functionw ′. We then
recursively solve two sub-instances (G1,w

′) and (G2,w
′), whereV (G1) = N + (v) \ D andV (G2) =

N − (v) \ D. These recursive calls produce solutions S1 and S2, and we produce S = D ∪ S1 ∪ S2 as
an approximate solution to (G,w), in this iteration. Let us compute the probability that this itera-
tion succeeds, i.e., the probability that S a 2-approximate solution. This is equal to the probability
that v ∈ R and then the two recursive calls also compute 2-approximate solutions to (G1,w

′) and

(G2,w
′), respectively. Hence, the probability that one iteration succeeds is at least r 2 (1−α)β

α+(1−α)β
. We

need to boost this probability to at least r , and for this, we have k − 1 such iterations. We choose
the smallest value of k , which satisfies the following inequality:

(
1 − r 2 (1 − α)β

α + (1 − α)β

)k−1

≤ 1 − r .

Given r ,α , and β , we solve the above equation to compute the number of iterations k ; which
ensures that we compute a 2-approximate solution to (G,w) with probability at least r .

Next, let us compute the running time. Observe that in the first iteration, which considers the
case when |S� | ≥ αn, we apply Lemma 3 and recursively solve an instance with at most (3

2 − α)n
vertices. In the remaining k − 1 instances, we make two recursive calls, on graphs with at most

(1 − (1−α)(1−β)
2)n vertices. Further, note that the two instances have no common vertices. Hence,

we can say that the recursive calls are made on two instance with δn and (1 − δ)n vertices for some

1/2 ≤ δ ≤ 2−(1−α)(1−β)
2 . Observe that δ ≥ 1/2 and 1 − δ ≤ 1/2, and hence we make two recursive

calls on instances with at most
2−(1−α)(1−β)

2 n vertices, and n
2 vertices, respectively. Therefore, the

running time of our algorithm is

T (n) ≤ T
((

3

2
− α

)
n
)
+ (k − 1)T

(
2 − (1 − α) (1 − β)

2
n

)
+ (k − 1)T

(n
2

)
+ O (n2).

Here, the term O (n2) denotes the time spent by the algorithm in processing the current instance
and preparing the sub-instances for the recursive calls (i.e in Lemma 3 and Corollary 1). In The-
orem 2, we simplified and solved the above recurrence using the Master Theorem, which yielded
a running time of O (n34). Here, we apply the Akra-Bazzi method [2] to solve the above equation,

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

11:12 D. Lokshtanov et al.

which yields the following bound:

T (n) ≤ Θ

(
np

(
1 +

∫ n

1

x2

xp+1
dx

))
,

where p satisfies

(
3

2
− α

)p

+ (k − 1)

(
(1 − α) (1 − β)

2

)p

+ (k − 1)
(

1

2

)p

= 1.

This leads to a running time of O (np), assuming p ≥ 3.
It can be determined that when we set α = 0.55, β = 0.1855, and r = 0.715, we have k = 19 iter-

ations and p ∼ 16.9. Hence, the running time of the algorithm is O (n17).3 Since the probability of
finding a 2-approximate solution to (G,w), denoted by r , is more than 7/10, we have the claimed
result. �

Next, we present an improved running time for unweighted instances.

Theorem 4. There exists a randomized algorithm that, given a tournament G on n vertices, runs

in time O (n12) and outputs a feedback vertex set S of G. With probability at least 8/10, S is a 2-

approximate solution of G.

Proof. Our algorithm and analysis is nearly the same as in Theorem 3. The main change is
in the choice of the parameter α , which denotes the threshold at which S� is considered large.
In particular, we set α = 1

2 . This corresponds to the case where there is an optimum solution S�

that contains at least half of the vertices of G, and hence V (G) itself is a 2-approximate solution.
Therefore, for α = 1

2 , the first iteration of our algorithm does not lead to a recursive call. In the
remaining iterations, our algorithm is the same as in Theorem 4; here it is helpful to assume that
there is a weight function w that gives weight 1 to every vertex. From α , β , and r , we determine
the number of iterations k , and then bound the running time of our algorithm as

T (n) ≤ (k − 1)T

(
2 − (1 − α) (1 − β)

2
n

)
+ (k − 1)T

(n
2

)
+ O (n2).

When we set α = 0.5, β = 0.223, and r = 0.8, we get that the number of iterations is k = 14 (in-
cluding the first iteration where no recursive calls are made), and p ∼ 11.9. Hence, the running
time of the algorithm is O (n12). Since r = 8/10, we obtain the claimed result. �

Theorems 3 and 4 together give us Theorem 1.

5 CONCLUSIONS

We presented a simple randomized 2-approximation algorithm for Feedback Vertex Set in Tour-
naments. Assuming the Unique Games conjecture, the approximation ratio is optimal. It runs in
time O (n34). We then presented an improved algorithm, with a more sophisticated running time
analysis that runs in time O (n17). This running time can be improved to O (n12) for unweighted
instances. We also present a de-randomization of our algorithm that runs in quasi-polynomial
time.

It would be interesting to see whether one can achieve the same approximation ratio can be
obtained by an algorithm with a running time of O (n2) (i.e., linear in input size) or something

3These values were obtained by solving the above equations on a computer.

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

2-Approximating Feedback Vertex Set in Tournaments 11:13

close to it. Another interesting open problems is to design a deterministic polynomial time 2-
approximation algorithm. Finally, it would be interesting to see whether ideas from this arti-
cle can be used to obtain improved approximation algorithms for other “structured hitting-set”
problems.

REFERENCES

[1] Nir Ailon, Moses Charikar, and Alantha Newman. 2008. Aggregating inconsistent information: Ranking and cluster-

ing. J. ACM 55, 5 (2008), 23:1–23:27. DOI:https://doi.org/10.1145/1411509.1411513

[2] Mohamad Akra and Louay Bazzi. 1998. On the solution of linear recurrence equations. Comput. Optimiz. Appl. 10, 2

(1998), 195–210.

[3] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. 1999. A 2-approximation algorithm for the undirected feedback

vertex set problem. SIAM J. Discrete Math. 12, 3 (1999), 289–297.

[4] Jørgen Bang-Jensen and Gregory Z. Gutin. 2009. Digraphs—Theory, Algorithms and Applications, 2nd ed. Springer.

[5] R. Bar-Yehuda and S. Even. 1981. A linear-time approximation algorithm for the weighted vertex cover problem. J.

Algor. 2, 2 (1981), 198–203. DOI:https://doi.org/10.1016/0196-6774(81)90020-1

[6] Mao-cheng Cai, Xiaotie Deng, and Wenan Zang. 2000. An approximation algorithm for feedback vertex sets in tour-

naments. SIAM J. Comput. 30, 6 (2000), 1993–2007.

[7] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. 2008. A fixed-parameter algorithm for the

directed feedback vertex set problem. J. ACM 55, 5 (2008), 21:1–21:19.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3rd

ed.). MIT Press, Cambridge, MA.

[9] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry

Wojtaszczyk. 2011. Solving connectivity problems parameterized by treewidth in single exponential time. In IEEE

52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,

Rafail Ostrovsky (Ed.). IEEE Computer Society, 150–159. DOI:https://doi.org/10.1109/FOCS.2011.23

[10] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. 2005. A new multilayered PCP and the hardness

of hypergraph vertex cover. SIAM J. Comput. 34, 5 (2005), 1129–1146.

[11] Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. 2010. Fixed-parameter tractability results

for feedback set problems in tournaments. J. Discrete Algor. 8, 1 (2010), 76–86.

[12] P. Erdős and L. Pósa. 1965. On independent circuits contained in a graph. Can. J. Math. 17 (1965), 347–352.

[13] Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. 1998. Approximating minimum feedback sets and mul-

ticuts in directed graphs. Algorithmica 20, 2 (1998), 151–174.

[14] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman and Co.

[15] Serge Gaspers and Matthias Mnich. 2013. Feedback vertex sets in tournaments. J. Graph Theory 72, 1 (2013), 72–89.

[16] Claire Kenyon-Mathieu and Warren Schudy. 2007. How to rank with few errors. In Proceedings of the 39th Annual

ACM Symposium on Theory of Computing. ACM, 95–103. DOI:https://doi.org/10.1145/1250790.1250806

[17] Subhash Khot and Oded Regev. 2008. Vertex cover might be hard to approximate to within 2-ε . J. Comput. Syst. Sci.

74, 3 (2008), 335–349.

[18] Tomasz Kociumaka and Marcin Pilipczuk. 2014. Faster deterministic Feedback Vertex Set. Info. Process. Lett. 114, 10

(2014), 556–560.

[19] Mithilesh Kumar and Daniel Lokshtanov. 2016. Faster exact and parameterized algorithm for feedback vertex set in

tournaments. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS’16) (LIPIcs),

Nicolas Ollinger and Heribert Vollmer (Eds.), Vol. 47. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 49:1–49:13.

DOI:https://doi.org/10.4230/LIPIcs.STACS.2016.49

[20] Matthias Mnich, Virginia Vassilevska Williams, and László A. Végh. 2016. A 7/3-approximation for feedback vertex

sets in tournaments. In Proceedings of the 24th Annual European Symposium on Algorithms (ESA’16) (LIPIcs), Piotr

Sankowski and Christos D. Zaroliagis (Eds.), Vol. 57. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 67:1–67:14.

DOI:https://doi.org/10.4230/LIPIcs.ESA.2016.67

[21] Venkatesh Raman and Saket Saurabh. 2006. Parameterized algorithms for feedback set problems and their duals in

tournaments. Theor. Comput. Sci. 351, 3 (2006), 446–458.

[22] Igor Razgon. 2007. Computing minimum directed feedback vertex set in O(1.9977n). In Proceedings of the 10th Italian

Conference on Theoretical Computer Science (ICTCS’07), Giuseppe F. Italiano, Eugenio Moggi, and Luigi Laura (Eds.).

World Scientific, Singapore, 70–81.

[23] Bruce Reed, Neil Robertson, Paul Seymour, and Robin Thomas. 1996. Packing directed circuits. Combinatorica 16, 4

(1996), 535–554.

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1145/1250790.1250806
https://doi.org/10.4230/LIPIcs.STACS.2016.49
https://doi.org/10.4230/LIPIcs.ESA.2016.67

11:14 D. Lokshtanov et al.

[24] Ewald Speckenmeyer. 1989. On feedback problems in diagraphs. In Proceedings of the 15th International Workshop

on Graph-Theoretic Concepts in Computer Science (WG’89) (Lecture Notes in Computer Science), Manfred Nagl (Ed.),

Vol. 411. Springer, 218–231. DOI:https://doi.org/10.1007/3-540-52292-1_16

[25] David P. Williamson and David B. Shmoys. 2011. The Design of Approximation Algorithms. Cambridge University

Press, Cambridge, UK.

[26] Mingyu Xiao and Hiroshi Nagamochi. 2015. An improved exact algorithm for undirected feedback vertex set. J. Comb.

Optim. 30, 2 (2015), 214–241.

Received October 2019; revised September 2020; accepted January 2021

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 11. Publication date: April 2021.

https://doi.org/10.1007/3-540-52292-1_16

