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Abstract
Monitoring sea level is critical due to climate change observed over the years. Global Navigation Satellite System 
Reflectometry (GNSS-R) has been widely demonstrated for coastal sea-level monitoring. The use of signal-to-noise ratio 
(SNR) observations from ground-based stations has been especially productive for altimetry applications. SNR records 
an interference pattern whose oscillation frequency allows retrieving the unknown reflector height. Here we report the 
development and validation of a complete hardware and software system for SNR-based GNSS-R. We make it available 
as open source based on the Arduino platform. It costs about US$200 (including solar power supply) and requires mini-
mal assembly of commercial off-the-shelf components. As an initial validation towards applications in coastal regions, 
we have evaluated the system over approximately 1 year by the Guaíba Lake in Brazil. We have compared water-level 
altimetry retrievals with independent measurements from a co-located radar tide gauge (within 10 m). The GNSS-R 
device ran practically uninterruptedly, while the reference radar gauge suffered two malfunctioning periods, resulting in 
gaps lasting for 44 and 38 days. The stability of GNSS-R altimetry results enabled the detection of miscalibration steps 
(10 cm and 15 cm) inadvertently introduced in the radar gauge after it underwent maintenance. Excluding the radar gaps 
and its malfunctioning periods (reducing the time series duration from 317 to 147 days), we have found a correlation of 
0.989 and RMSE of 2.9 cm in daily means. To foster open science and lower the barriers for entry in SNR-based GNSS-R 
research and applications, we make a complete bill of materials and build tutorials freely available on the Internet so that 
interested researchers can  replicate the system.
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Introduction

Monitoring sea level is fundamental to assess climate change 
observed over the years. Sea-level changes can be caused 
by multiple phenomena, of oceanic or crustal origin, and 

having anthropic influence or not (Cazenave and Nerem 
2004). Oceanography and geodesy thus have become of 
great importance for monitoring sea level (Tamisiea et al. 
2014), to help to predict future situations and in planning for 
mitigation and adaptation (Nicholls 2011; Elsharouny 2016). 
The determination of mean sea level and its temporal evolu-
tion remains a challenge due to the many variables involved. 
There is still a need for observations covering larger areas 
during longer periods, particularly along the coastlines. 
Unfortunately, observational gaps persist both in time and 
in space (Cazenave and Nerem 2004).

Devices with different working principles have been used 
to measure sea level (Cipollini et al. 2017). Monostatic satel-
lite altimeters are the main instrument in the open oceans. 
In coastal regions, though, satellite altimetry confounds 
land and ocean, and tide gauges remain the instrument of 
choice. We are close to almost two centuries of experience 
with automatic tide gauges (Matthäus 1972); the traditional 
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mechanical float with shaft encoder has been replaced over 
time by acoustic, pressure, or radar sensors. Each has its 
own limitations: acoustic sensors might be affected by the 
temperature, pressure sensors need corrections for atmos-
pheric pressure and water density, and radar has errors pro-
portional to wave height (Martín Míguez et al. 2012; Boon 
et al. 2012). Yet problems persist in ensuring that there is 
no spurious vertical movement resulting in erroneous sea-
level change interpretations. The standard recommendation 
has recently become that satellite geodesy instrumentation 
should be installed as close as possible to tide gauges to 
measure coastal crustal deformation and put relative sea-
level records into a geocentric frame (Larson 2016).

Global Navigation Satellite System Reflectometry 
(GNSS-R) is a remote sensing technique following the prin-
ciple of bistatic radar (Zavorotny et al. 2014). The sensor can 
operate basically as an altimeter or a scatterometer. One par-
ticular GNSS-R configuration is based on the simultaneous 
reception of multiple paths—direct or line-of-sight propaga-
tion and indirect reflections—which are tracked using a sin-
gle signal replica. This mode may be called GNSS multipath 
reflectometry (GNSS-MR), and it involves the constructive/
destructive interference between at least two coherent paths. 
Such an interference pattern can be recorded in carrier-phase 
or pseudorange observables, although it is most readily rec-
ognized in signal-to-noise ratio (SNR) observations (Gar-
rison et al. 2019). In that case, SNR-based GNSS-MR tech-
nique is also known as GNSS interferometric reflectometry 
(GNSS-IR) or GNSS interference pattern technique (GNSS-
IPT). Several studies have shown how GNSS-IR/IPT can 
monitor a variety of surface targets and estimate geophysical 
parameters such as sea surface height, ocean winds, and soil 
moisture (Larson 2016). A particularly productive applica-
tion has been the proximal sensing of sea level from coastal 
stations. In that application, a single continuously tracking 
device can ensure both conventional GNSS positioning con-
trol and sea-level sensing via GNSS-R (Larson et al. 2013b). 
For sea-level measurements, coastal GNSS-R complements 
monostatic satellite altimeters and has unique advantages 
over conventional tide gauges.

Most GNSS-R studies applied to sea-level monitoring 
used geodetic-quality receivers and antennas. This is because, 
at several coastal locations, there are continuously operat-
ing reference stations (CORS). However, geodetic GNSS 
equipment is relatively expensive and may be targeted for 
theft and vandalism. Lower-cost devices can provide an alter-
native solution (Biagi et al. 2016), especially attractive for 
unattended sites. They also enable major densification in the 
sensing networks, as the cost of individual stations is a frac-
tion of high-end instrumentation. Particularly open-source 
hardware platforms, such as Arduino, have received much 
attention for environmental sensing applications and proto-
typing (Chen et al. 2017; Rainville et al. 2019; Rodrigues and 

Moraes 2019). We report the design of a complete hardware 
and software system for a SNR-based GNSS-R sensor and 
demonstrate its validation for measuring water level.

Previous work

In the present section, we briefly review the background 
and previous work about SNR-based GNSS-R for sea-level 
monitoring. For ground-based installations, GNSS-R cover-
age can be adjusted by changing the antenna height H , as the 
horizontal distance to reflection points is given by H∕tane , in 
terms of the satellite elevation angle e . The detection range 
and location can be planned in terms of specular points and 
first Fresnel zones, the approximate sensing points and areas 
(Geremia-Nievinski et al. 2016).

Previous studies include Nievinski and Larson (2014b) 
on the theoretical side, who described a physically based 
model for GNSS multipath observables. A critical aspect 
is a dependence on the phase of reflections, making inap-
plicable much of GNSS-R studies developed for incoherent 
scattering. On the experimental side, about forty existing 
GNSS stations have been demonstrated for sea-level altim-
etry (Geremia-Nievinski et al. 2020), from which we high-
light the first ones and those with the longest duration, as 
follows. The pioneer was Anderson (2000), after which there 
was a decade long hiatus, followed by two other demon-
strations (Rodriguez-Alvarez et al. 2011a; Hongguang et al. 
2012). These initial proofs-of-concept had all a duration of 
less than a week. Longer time series were presented first by 
Larson et al. (2013a), with 3-4 months at Onsala (Sweden) 
and Friday Harbor (Washington state), followed by Larson 
et al. (2013b), with 1-year observations obtained at Peter-
son Bay (Alaska). Their results showed that it is possible to 
measure sea level using geodetic receivers with a precision 
of 5–10 cm RMSE for raw retrievals (depending on the tidal 
range), with improved statistics (~ 2 cm) when forming daily 
means and neglecting longer-term variations. Finally, Lar-
son et al. (2017) revisited Friday Harbor station for a much 
longer, 10-year period. Compared to a co-located tide gauge 
(300 m distance), it confirmed 12 cm and 2 cm RMS for raw 
retrievals and daily means, respectively. Modernized GPS 
signals, such L2C and L5, have superior performance in 
producing cleaner multipath signatures (Tabibi et al. 2015), 
although the legacy L1 C/A signal is also feasible for GNSS-
R altimetry (Larson and Small 2016).

Previous hardware and software developments

Most studies on GNSS-R for coastal sea-level sensing used 
geodetic-quality commercial off-the-shelf (COTS) receiv-
ers and antennas, as reviewed by Geremia-Nievinski et al. 
(2020). Geodetic GNSS antennas are nearly hemispherical, 
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thus less sensitive to reception from negative elevation 
angles. Despite their design, such antennas are still usable 
for GNSS-R, as they are unable to reject multipath at grazing 
incidence. This is because, away from zenith and nadir, there 
is little separation in direction of arrival and in polarization 
state between reflections and line-of-sight radio propagation 
(Nievinski and Larson 2014b). Unfortunately, these devices 
are relatively expensive, which limits the wider use of GNSS-
R for environmental monitoring as the primary application, 
not just as a secondary role for GNSS CORS networks. Here 
we review hardware and software developed for SNR-based 
GNSS-R, with a focus on open-source and low-cost alterna-
tives. A similar demonstration has been published recently 
(Williams et al. 2020), although the developed hardware and 
software system is not available as open source.

One of the pioneers in hardware alternatives for SNR-
based GNSS-R was Rodriguez-Alvarez et  al. (2011b), 
who named their device “Soil Moisture IPT Observations 
at L-band” (SMIGOL). Although developed originally for 
monitoring soil moisture and other terrestrial variables 
such as vegetation, SMIGOL was also demonstrated for 
water-level sensing in a reservoir (Rodriguez-Alvarez et al. 
2011b) and later for sea level (Alonso-Arroyo et al. 2015). 
It employs a commercial receiver module (Trimble Lassen 
iQ) that offers 12 simultaneous tracking channels at L1 fre-
quency and C/A code modulations in a 26 mm x 26 mm 
form factor (Rodríguez Álvarez 2011). The module is con-
nected to an SD-card data logger (Sparkfun Logomatic and, 
later, Sparkfun Openlog) and a PIC microcontroller via a 
custom board. The antenna was most notably designed to 
be linearly (vertically) polarized for improved soil mois-
ture sensing and manufactured from scratch as a microstrip 
patch. Although SMIGOL was highly successful for the 
intended use and its components had low cost, its custom 
manufacture seems labour intensive and the embedded code 
is not publicly available, which unfortunately hinders its rep-
lication by other researchers.

Another alternative of low-cost hardware for SNR-based 
GNSS-R was called “Free-Standing Receiver of Snow 
Depth” (FROS-D), developed by Adams et al. (2013) based 
on prototypes of, and for use by, Chen et al. (2017). The 
intended application was snow depth measurement, which 
is a type of altimetry, so the device would presumably be 
equally applicable for sea-level measurement. The GPS 
receiver used was a commercial module (GlobalTop Gmm-
u2P) based on a chipset (MediaTek MT3339) that offers 22 
tracking channels at L1 frequency and C/A modulation in 
a small form factor (9 mm x 13 mm module and 4.3 cm x 
4.3 mm chip). A Raspberry Pi microprocessor provided con-
trol and storage. Finally, the antenna was custom designed 
(Chen 2016), based on a half-wavelength dipole; it is lin-
early polarized, normally vertical in upright installations, 
which authors have experimented changing to horizontal 

polarization by tipping the antenna sideways. The cost of the 
system, including autonomous power supply and supporting 
structure, was US$1200, which is lower than comparable 
COTS devices. Unfortunately, FROS-D had the same fate 
as SMIGOL: successful use by the developers involved but 
little  replication by external researchers. Finally, we should 
mention that the same GPS chip (MediaTek MT3339) has 
found other environmental applications beyond GNSS-R. 
Rodrigues and Moraes (2019) employed it for ionospheric 
scintillation monitoring, and Rainville et al. (2019) used it 
for volcanic ash detection.

We should note that the antenna designed and manu-
factured by Chen (2016) has also been used with a custom 
software-defined receiver (SDR) for GNSS-R applications 
(Chen et al. 2014). Other open-source SDR was used for 
GNSS-R by Lestarquit et  al. (2016) and Hobiger et  al. 
(2016). Such GNSS-R applications are not instances of 
GNSS-IR/IPT, let alone of the more general GNSS-MR, 
because of the way that reflections are tracked; there is not 
a single replica for the composite, i.e. direct plus reflected 
signals. SDR is highly versatile, especially useful for pro-
totyping, but it is still not practical for field applications 
because it requires storing extremely large datasets for post-
processing or demanding higher power consumption in real-
time processing.

Other related efforts are that of Rodrigues and Kasser 
(2014), who used low-cost equipment (LEA-6T u-blox 
receiver and Tallysman TW3430 antenna) for tracking the 
GPS L1 C/A signal. Although it is an instance of GNSS-R 
for water-level altimetry, it is not an instance of GNSS-IR/
IPT, as they have relied on carrier phase observables instead 
of SNR. The main drawbacks are the need for a second 
receiver serving as a base station and also the vulnerabil-
ity to incoherence of reflections due to surface roughness. 
Similar difficulties with wind-driven water waves in carrier-
phase GNSS-R (despite using geodetic-quality equipment) 
were experienced by  Löfgren et al. (2011), although in that 
case, the base station antenna was co-located on top of the 
GNSS-R antenna.

Low-cost single-frequency COTS GPS/GNSS antennas 
have the potential for improved performance in GNSS-MR 
in general and GNSS-IR/IPT in particular, because of their 
high susceptibility to multipath reception, even at high ele-
vation angles. For example, Rover and Vitti (2019) evaluated 
two types of low-cost antennas (u-blox ANN-MS and Tallys-
man TW4721) to measure snow height in three 90-min cam-
paigns. More recently, Strandberg and Haas (2020) assessed 
the antenna embedded in a mobile tablet device (Samsung 
Galaxy Tab A), for water-level monitoring in a 36-h ses-
sion. However, the short duration of evaluation in the limited 
periods reported above raises questions about the long-term 
stability and durability of low-cost hardware options for con-
tinuous operation in harsh weather conditions.
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Now turning to software, open-source options include 
WAVPY (Fabra et  al. 2017), an object-oriented library 
developed in Python language for simulations in GNSS-
R. Although aimed at more advanced observables, such 
as delay-Doppler maps, it could presumably be used for 
simulating multipath SNR as well. Nievinski and Larson 
(2014c) developed an open-source GNSS-R simulator in 
MATLAB/Octave capable of providing SNR, carrier phase 
and pseudorange under multipath reception conditions. The 
tool allows one to investigate the behaviour of observations 
at a user-specified case, which is useful for site planning. 
The simulator is also used as the physically based forward 
modelling step embedded in the statistical inversion of SNR 
measurements collected in the field (Tabibi et al. 2017). An 
open-source software package for processing SNR meas-
urements is MATLAB is described by Roesler and Larson 
(2018), including the translation of RINEX files, mapping 
of reflection zones and reflector height estimation. It allows 
researchers interested in getting to know SNR-based GNSS-
R to get started without implementing code from scratch 
Martin et al. (2020; Zhang et al. (2021).

System design

It is possible to leverage simpler consumer-grade GPS/GNSS 
receivers that output only SNR. This contrasts with profes-
sional equipment that outputs pseudorange and carrier-phase 
measurements. So, for our purpose, raw data in RINEX for-
mat are not necessary and the simpler NMEA format suffices. 
The fact that the interferometric propagation delay (the dif-
ference across reflection and direct radio waves) is mostly 
unaffected by the antenna gain pattern enables the utilization 
of lower-cost antennas. The major cancellation of ionospheric 
delays, inherent in ground-based interferometry, also makes 
dual-frequency data less necessary, as single-frequency 
GNSS devices are nearly equally as precise in that regard.

To foster open science, we provide a 30-page tutorial with 
step-by-step instructions for users to replicate our sensor, 
posted publicly (as per code availability statement below). 
To facilitate the entry for researchers interested in SNR-
based GNSS-R, we gave preference to do-it-yourself kits 
available commercially. The main electronic components 
employed are: an Arduino board integrated with secure 
digital (SD) card reader/writer (Adafruit Feather Adalog-
ger), a single-frequency GPS L1 C/A add-on (Adafruit 
GPS FeatherWing) and an external GPS patch antenna (28-
dB active, Chang Hong GPS-01-174-1M-0102). The GPS 
add-on was specifically selected because it is based on the 
chipset (MediaTek MT3339) used in FROS-D, although 
the GPS module is slightly different (GlobalTop FGPM-
MOPA6H). Additionally, a complete solar power supply sys-
tem was designed, consisting of a 6-W solar panel, a charger/

regulator and 3.7-V 4400-mAh battery. Other minor com-
ponents include connectors and adapters. A complete bill of 
materials is made available online; the total cost of materials 
was US$200 as of January 2020. Adafruit’s printed circuit 
board (PCB) design files are openly available in EagleCAD 
file format and licensed under Creative Commons Attribu-
tion-ShareAlike 3.0 terms.

For testing purposes, we have assembled multiple sensor 
units, keeping the devices operating outdoors over extended 
periods for quality control and checking daily power con-
sumption. The solar system was designed to keep the cost 
as low as possible while guaranteeing uninterrupted service 
(assuming a minimum of 5 h of solar illumination per day). 
A simple bent metal plate can be used for securing the solar 
panel at the ideal angle for a given geographical latitude. 
The mechanical supporting structure was sourced locally 
and consisted of a metal base, mast and a service box.

We have developed two pieces of software, both available 
as open source. The first one was written in the "Processing" 
programming language and runs embedded in the Arduino 
device. It is responsible for logging the GPS/GNSS data 
and battery level to the SD card at a user-specified sampling 
rate (normally 1 Hz) and file duration (hourly or daily). The 
source code is loaded as a “sketch” in the Arduino integrated 
development environment to be uploaded to the board, after 
which it runs continuously in loop mode.

The second software program was developed to load 
the data in a desktop computer for post-processing. We 
employed the MATLAB environment for convenience, but 
the source code should be compatible with the GNU Octave 
free/libre environment. The NMEA 0183 data format is not 
tabular, so each 1-Hz data block needs to be parsed to organ-
ize the SNR readings for each satellite at each new epoch 
(date and time). Only the recommended minimum common 
(RMC) and satellites in view (GSV) NMEA messages are 
decoded for faster processing. The data files are manually 
transferred from the SD card to the computer. For 1 Hz sam-
pling rate, the file size is 30 MB per day, which results in 
approximately 1 GB per month. Therefore, a 32 GB card 
(maximum capacity for FAT32 filesystem) can store data 
for more than 2.5 years. The data files are ASCII encoded 
and highly compressible (10x ratio with zip compression).

Demonstration and validation

On 26 October 2018 a GNSS-R unit was installed at the Mauá 
Wharf by the Guaíba Lake in the city of Porto Alegre, South-
ern Brazil (latitude −30.0277° S, longitude −51.2287° W). 
The GNSS antenna is about 3.5 m above the water level. For 
validation, there is a water-level sensor within 10-m distance, 
operated by the State Secretary for the Environment (SEMA). 
The gauge is a vertical radar (Campbell Scientific’s CS475A), 
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with a 15-min update interval and centimeter numerical reso-
lution. We have applied a daily moving average to smooth out 
random noise. Figure 1 shows the installation site in a pano-
ramic view. Fresnel zones in Fig. 2 indicate that azimuths due 
north, west and southwest can be used for water-level sens-
ing. There is a gap due south as a consequence of the orbital 
inclination of the GPS satellite constellation.

SNR modelling

The data processing necessary for estimating water level is 
based on previously developed forward and inverse models 
(Nievinski and Larson 2014a, 2014d). Only minor adapta-
tions were necessary to account for the composition of the 
target surface (water instead of snow). The altimetric retrieval 
algorithm starts with a first approximation to SNR field meas-
urements, essentially a polynomial fitting followed by spectral 
analysis (e.g. Lomb-Scargle periodogram) of detrended SNR:

The unknown of interest is the reflector height H, while 
the amplitude A and the phase shift � are just nuisance 
parameters to improve the fit; the satellite elevation angle 
e is known from ephemeris and the carrier wavelength λ is 
predetermined in GNSS. Second, the polynomial/spectral 
fitting is applied to synthetic SNR observations, producing 
another set of parameter estimates ( H′,A′,�′):

where P
i
= P

r
∕P

d
 is the interferometric power and 

�
i
= �

r
− �

d
 is the interferometric phase, in terms of direct 

and reflected quantities, as per subscripts; P
n
 is the noise 

power. These quantities are all obtained with a physically 
based simulator (Nievinski and Larson 2014c), based on 
user-specified surface type (freshwater), a first guess for 
reflector height, etc. In a third step, we define empirical cor-
rections based on the difference or ratio between the two pre-
vious parameter sets: H

B
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which is finally used in a nonlinear least squares fit. The 
description above is just a summary of the methodology 
fully described in Nievinski and Larson (2014a, d).

Figure 3 shows the behaviour of the inversion over the 
SNR data obtained with the GNSS-R device. The grey 
curve showing raw SNR measurements (in decibels) has a 
typical interference pattern with deep fades and little dis-
tortion. The red curve represents the inversion, with the 
model fitting the data reasonably well. In blue at the bot-
tom, we show the residuals, which have a much smaller 
variance than the raw data. The procedure above is per-
formed independently for each rising or setting satel-
lite track. We applied a visibility mask between 15 and 
35 degrees for satellite elevation angles and 190 and 10 
degrees in azimuth (in clockwise order) for better tun-
ing of results. We have applied a daily moving average 
to GNSS-R water-level retrievals for consistency with the 
radar gauge record.

Fig. 1   GNSS-R sensor (left), 
experimental station site (mid-
dle) and radar gauge (right)

Fig. 2   First Fresnel zones around the site installation; the lowest sat-
ellite elevation was set to 5°, and the reflector height was 2 m. Credit 
of background image: Google Earth
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Water‑level results

We analysed a time series of 10 months (317 days) to 
validate the GNSS-R device. Figure 4 shows the GNSS-
R and radar gauge time series during the period from 28 
October 2018 to 09 September 2019. A mean difference 
was removed as we did not have reliable levelling infor-
mation about the vertical offset between the two sensors. 
The GNSS-R sensor has been operating autonomously and 
without interruptions, checked in monthly visits, having 
withstood severe weather conditions such as thunder-
storms. By contrast, the radar gauge suffered two mal-
functioning periods, resulting in gaps lasting for 44 and 
38 days. We contacted the station operator (SEMA) to 

understand the reason for the gaps, and we were informed 
that the device went through maintenance and recalibra-
tion. We were able to detect two miscalibration steps 
(about 10 cm and 15 cm, bottom panel of Fig. 4), inadvert-
ently introduced in the radar gauge (at 2019.4 and 2019.6), 
which attests the good stability of the GNSS-R sensor. 
We reduced the time series to the period from 27 October 
2018 to 23 March 2019, to exclude the radar gauge mal-
functioning periods (Figs. 5 and 6). Figure 6 shows the 
reduced time series scatterplot. The resulting correlation 
found was 0.989, and the root-mean-square error (RMSE) 
is equal to 2.9 cm.

Fig. 3   Inversion results for a single satellite tracks: measurements are in grey and model fit in red (top panel); residuals are in blue (bottom 
panel)

Fig. 4   Top: water-level time 
series (GNSS-R and radar gauge 
in black and red, respectively); 
bottom: height error time series 
(blue) for the full period
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Discussion

The lake conditions are relatively benign compared to the 
sea, which is the intended target. Reduced surface rough-
ness (diminished water waves) and negligible tidal range 
imply that the statistics above represent a best-case con-
dition. The differences include a small error contribution 
from the radar gauge, whose nominal accuracy is 0.2 cm 
for the instantaneous water level, under ideal laboratory 
conditions. However, field deployment introduces new 
error sources for the radar, such as wind waves, antenna 

misalignment (which is assumed to point vertically) and 
the mechanical stability of the large arm needed to sup-
port the antenna over the water (we have witnessed vibra-
tion under heavy wind loads). Martín Míguez et al. (2012) 
quantified the radar performance in the field and concluded 
that its precision is closer to 0.3 cm, after correcting for 
various systematic effects (datum, scale, timing, etc.). 
Boon et al. (2012) compared four radar sensors and found 
that their precision varied from 0.6 cm to 1.5 cm, depend-
ing on the wave height; they could avoid datum errors, 
as the sensors were co-located in a levelled platform. So, 
the 2.9 cm RMSE statistic found in the present study is 
a bit higher than that of state of art in water-level sens-
ing, although it is comparable to previous GNSS-R stud-
ies, reporting centimeter-level RMSE. Improved results 
are expected in the future, as systematic errors are better 
characterized and corrected for in GNSS-R estimates.

Given that every water-level sensor has its own pros and 
cons, here we summarize the main features of GNSS-R. Its 
main disadvantages are (1) little control over the reflection 
area, as it depends on the moving satellite and the height of 
the receiving antenna—there is no possibility of pointing the 
antenna to the area of interest; (2) altimetry retrievals have 
a low temporal resolution, as it depends on the number and 
duration of satellite overpasses; (3) as a relatively new tech-
nique, its systematic errors are still not fully characterized; 
and (4) it may be hampered by the loss of electromagnetic 
coherence due to surface roughness, which limits the range 
of usable satellite elevation angles for given wind speed or 
wave height. On the other hand, SNR-based GNSS-R offers 
several unique benefits for water-level sensing: (1) sensing 
occurs at slant or oblique incidence, instead of being perpen-
dicular to the surface; this allows a greater horizontal and 
vertical separation between sensor and sea, which shelters 
the sensor from extreme events and enables measuring sea 

Fig. 5   Top: water-level time 
series (GNSS-R and radar gauge 
in black and red, respectively); 
bottom: height error (blue) dur-
ing reduced period

Fig. 6   Scatterplot of the radar gauge data and the GNSS-R device in 
reduced period
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level where it might not be feasible to have a conventional 
tide gauge; (2) it operates in open air, which implies easier 
installation and lower maintenance, compared to stilling 
wells and waveguides; (3) the bistatic configuration permits 
low energy consumption, as the sensor only receives the 
radio waves transmitted by GNSS satellites, which means 
that a small solar panel can keep the system operating con-
tinuously; (4) its low cost allows spatial densification of the 
monitoring network and permits a greater tolerance for theft 
and vandalism; (5) it has a large sampling area, for each 
satellite (the Fresnel zone around each specular reflection) 
and for a site-wide average among all satellites; (6) it can 
control for vertical land movement (i.e. subsidence or uplift), 
with possible connection to the geocenter via GNSS posi-
tioning (assuming carrier-phase observations are available); 
and (7) its zero or datum origin is more clearly defined (at 
the antenna phase centre), alleviating the need for empirical 
calibration.

Conclusions and Future Work

Monitoring sea level is essential due to climate change and 
the resulting social and economic losses. GNSS Reflectom-
etry (GNSS-R) has been demonstrated in the literature as a 
promising alternative for coastal sea-level monitoring. Most 
ground-based GNSS-R experiments rely on expensive geo-
detic-quality instrumentation, which limits its mass adop-
tion. Towards that goal, we report the development of an 
open-source low-cost sensor for SNR-based GNSS-R aimed 
towards sea-level sensing applications.

We have evaluated the system for almost 1 year (317 
days) by the Guaíba Lake in Brazil. We have compared the 
water level altimetry retrievals with independent measure-
ments from a co-located radar tide gauge (within 10 m). 
The GNSS-R device ran practically uninterruptedly. Thanks 
to its stability, we were able to detect miscalibration steps 
introduced when the radar gauge underwent maintenance. 
Statistics during the regular period (correlation of 0.989 and 
RMSE of 2.9 cm in daily means) are promising and confirm 
that the designed GNSS-R device can retrieve water height 
with centimetric accuracy.

More work is necessary to assess sensor performance 
under more challenging conditions. For example, we have 
recently set up a permanent installation located on the coast, 
at the Port of Imbituba, Brazil. We are also seeking to inte-
grate the antenna gain patterns, which might improve the 
observation fitting and possibly the precision of retrievals. 
We hope this open science effort will lower the barriers for 
entry in SNR-based GNSS-R.
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