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ABSTRACT

Introduction: Several studies in the literature have evaluated the role of oxidative 
stress and adjuvant therapies for X-linked adrenoleukodystrophy (X-ALD). Here, 
we investigated whether n-acetyl-L-cysteine (NAC) and rosuvastatin (RSV) could 
influence the generation of reactive species, redox status and nitrative stress in 
fibroblasts from asymptomatic patients with X-ALD.

Methods: Skin biopsy samples were cultured and treated for 2 hours (37 °C) with 
NAC and RSV.

Results: X-ALD fibroblasts generated high levels of reactive oxygen species. These 
levels were significantly lower in fibroblasts treated with NAC and RSV relative to 
untreated samples. The X-ALD fibroblasts from asymptomatic patients also had higher 
catalase activity, and only NAC was able to increase enzyme activity in the samples.

Conclusions: Our results indicated that NAC and RSV were able to improve oxidative 
stress parameters in fibroblasts from asymptomatic patients with X-ALD, showing that 
adjuvant antioxidant therapy may be a promising treatment strategy for asymptomatic 
patients with this disease.

Keywords: X-linked adrenoleukodystrophy; fibroblasts; n-acetyl-L-cysteine; rosuvastatin; 
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INTRODUCTION

X-linked adrenoleukodystrophy (X-ALD) is a severe neurodegenerative 
disorder caused by a defective ABCD1 transporter protein. This gene encodes 
ALDP, a protein involved in the peroxisomal uptake of very long chain fatty 
acids (VLCFA) as well as their CoA-esters. This results in a buildup of fatty 
acids, predominantly hexacosanoic (C26:0) and tetracosanoic acids (C24:0), 
in body fluids, adrenal glands, tissue and plasma1,2.

X-ALD is the most common peroxisomal disorder, occurring in all regions 
of the world with an estimated incidence of 1 per 17,000 births (male and 
female)3,4. Moser et  al.1 described four main phenotypes in patients with 
X-ALD: childhood cerebral form (CCER), adrenomyeloneuropathy (AMN), 
asymptomatic and heterozygous (HTZ) females. Asymptomatic individuals have 
the genetic abnormality and accumulation of VLCFA associated with X-ALD, 
but no adrenal or neurological involvement1. The diagnosis of X-ALD is based 
on increased concentration of VLCFA in serum, as well as high C24:0/C22:0 
(docosanoic acid) and C26:0/C22:0 ratios. However, mutation analysis is 
considered the best method to establish carrier status in women and currently, 
over 643 different mutations have been identified in the ABCD1 gene4,5. 
In recent years, LC–MS/MS methods have also been developed to screen 
dried blood spots for hexacosanoyl-2-lyso-sn-3-glycero-phosphorylcholine, 
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a biomarker that has been shown to be elevated at 
birth in the blood of patients with X-ALD and other 
peroxisomal blood disorders6.

Oxidative damage caused by reactive oxygen 
and nitrogen species is an important mediator of 
neurodegeneration since the brain has relatively low 
levels of antioxidant defenses, high lipid content and 
large quantities of catecholamines, which are highly 
susceptible to free radical attack7. The mechanisms 
responsible for tissue damage in X-ALD are not well 
elucidated; however, the literature has demonstrated 
that oxidative stress is involved in the pathophysiology 
of the disease8-11.

Many studies have shown the potential effects of 
antioxidants as adjuvant treatment for symptomatic 
patients. N-acetyl-L-cysteine (NAC) is a compound 
with antioxidant and anti-inflammatory activities 
that have been studied in X-ALD9,12,13. It stimulates 
glutathione synthesis, scavenges free radicals and 
is hypothesized to play a neuroprotective role14-16. 
Rosuvastatin (RSV) is one of the most potent widely 
available statins, and is an approved treatment 
to reduce circulating low-density lipoprotein17. 
The anti-inflammatory and antioxidant effects of 
RSV on leukocytes from patients with X-ALD and 
C26:0-enriched glial cells have been established 
in the literature9,16.

Oxidative stress in the plasma, leukocytes, 
fibroblasts and post-mortem brain samples of 
symptomatic patients with X-ALD have been 
previously reported8,9,18-21. Our research team has 
also found, in previous studies, that NAC and RSV 
were effective in reducing inflammation, oxidative 
and nitrative stress in symptomatic patients with 
X-ALD. As such, in this study, we aimed to analyze 
the effect of these compounds on oxidative and 
nitrative stress in fibroblasts from asymptomatic 
patients with X-ALD.

METHODS

Subjects
Primary fibroblast cell lines were generated from 

blood and skin samples collected by the Medical 
Genetics Department of the Hospital de Clínicas de 
Porto Alegre from asymptomatic patients with X-ALD 
and healthy participants. Sample characteristics are 
shown in Table 1. Mutation analysis was performed 
as previously described by Pereira and colleagues22 
and all diagnoses were confirmed by the analysis of 
plasma C26:0 and blood C26:0-lysophosphatidylcholine 
(C26:0-LPC) levels (Table 2). This study was approved 
by the Research Ethics Committee of the Hospital 
de Clínicas de Porto Alegre (number 15-0487) and 
all patients provided written informed consent to 
participate in the investigation.

Table 1: Asymptomatic X-ALD patients and healthy age-
matched controls’ data.

Subjects Ages 
(years) Gender Sample collection

Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6

37
39
38
9

10
11

female
female
female
male 
male
male

Blood
Blood
Blood

Blood and fibroblast
Blood and fibroblast 
Blood and fibroblast

Mean ± SD 24 ± 15.4 - -
Control 1
Control 2
Control 3
Control 4
Control 5
Control 6
Control 7
Control 8

35
36
22
21
10
9
8

38

female
female
female
female
male
male
male

female

Blood
Blood
Blood
Blood
Blood

Blood and fibroblast
Blood and fibroblast
Blood and fibroblast

Mean ± SD 22 ± 12.7 - -

Table 2: Concentrations of hexacosanoic acid (C26:0) and 
lysophosphatidylcholine-C26:0 (LC-C26:0) in controls and 
X-ALD patients.

Subjects C26:0 (µmol/L) 
(in plasma)

LC-C26:0 (µg/mL) 
(in whole blood) 

Healthy controls 
(n = 8) 0.35 ± 0.10 0.51 ± 0.07

X-ALD males
(n = 3) 0.80 ± 0.17 0.80 ± 0.17 *

X-ALD females
(n = 3) 1.35 ± 0.45 ** 1.12 ± 0.17 *** and #

*p<0.05 and ***p<0.001 compared to controls. #p<0.05 compared to 
X-ALD females. Results represent mean ± SD (standard deviation). 
One-way analysis of variance ANOVA followed by Tukey post hoc test.

Sample collection and preparation
Plasma was prepared from whole blood samples 

collected from fasting individuals (controls and patients 
with X-ALD) by venipuncture into heparinized vials. 
Whole blood was centrifuged at 1000 x g for 10 minutes. 
Plasma was removed by aspiration and frozen at 
-80°C until use. An aliquot of whole blood was blotted 
on filter paper to prepare dried blood spots for the 
measurement of C26:0-LPC levels. Fibroblasts were 
collected and frozen in liquid nitrogen until analysis.

Cell culture and antioxidant treatment
Skin biopsies were taken from patients under 

local anesthesia and placed in sterile polyethylene 
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vials (type Falcon T25). Primary and secondary cells 
were cultured in DMEM (Dulbecco’s modified Eagle 
medium) (GIBCO, Grand Island, NY, USA) containing 
5% fetal bovine serum at 37 °C in a humid atmosphere 
of 5% CO2 and harvested by treatment with 0.15 % 
trypsin–0.08 % EDTA in PBS (phosphate buffered 
saline). Cells were treated at confluence for 2 hours 
at 37 °C with NAC (100 μM) and RSV (5 μM)16. Cells 
and supernatants were harvested for the analysis 
of oxidative stress.

Cell viability assay
Cytotoxicity was evaluated using neutral red uptake 

assay, as described by Repetto et al.23.

Nitrite and nitrate assay
The quantification of NO equivalents in cell 

supernatants was performed using a nitrate/nitrite 
colorimetric assay kit (Cayman Chemical, Ann Arbor, 
MI) according to the manufacturer’s instructions.

Protein determination
Protein concentration in the extracts prepared 

from fibroblasts after treatment was determined 
according to the method described by Bradford24, 
using bovine serum albumin as standard.

Dichlorofluorescein Diacetate Oxidation 
(H2DCF-DA) measurement

The generation of reactive oxygen species 
(ROS) can be estimated as described by LeBel 
et  al.25 using H2DCF-DA. ROS exposure induces 
the oxidation of H2DCF-DA to dichlorofluorescein 
(DCF), a fluorescent product that can be quantified 
by fluorimetry. A calibration curve was determined 
with standard DCF (10 μM) and the levels of ROS 
expressed as ɲmol DCF / mg protein.

Superoxide Dismutase (SOD) activity
SOD activity was measured as described by 

Misra and Fridovich26. A unit (U) of SOD is defined 
as the amount of enzyme required to inhibit 50% of 
adrenaline oxidation, so that activity is expressed 
as U SOD / mg protein.

Catalase (CAT) activity
CAT activity was determined as described 

by Aebi27. One unit (U) of CAT is defined as the 
amount required to catalyze the decomposition of 
1 μmol H2O2 per minute, with activity expressed as 
U CAT / mg protein.

Fatty acid analysis

Blood levels of C26:0-LPC
Dried blood spot samples from control subjects 

and patients with X-ALD were analyzed using liquid 
chromatography coupled to mass spectrometry 
(LC/MS/MS). The samples were processed using 
the method described by Turgeon and collaborators6, 
with some adaptations. The results were expressed 
as µg/mL.

Plasma C26:0 levels
Plasma levels of C26:0 were determined according 

to the technique described by Moser and Moser5. 
A total lipid extract was prepared and treated with 
methanolic HCl (3N) for the formation of fatty acid 
methyl esters, which were then purified by thin-layer 
chromatography. The purified fatty acid methyl esters 
were extracted with hexane and analyzed by gas 
chromatography. This was carried out using a Varian 
gas chromatograph equipped with an HP-5 column 
(5% methylphenyl silicone, 0.33 mm film thickness, 
0.2 mm inner diameter and 25 m length), a flame 
ionization detector, a split/splitless injector, and 
helium as the mobile phase. C26:0 concentrations 
were expressed in μmol/L. Heptacosanoic acid was 
used as an internal standard.

Statistical analysis
Results were expressed as mean ± SEM 

(standard error of the mean). Comparisons between 
mean values were made using one-way analysis of 
variance ANOVA followed by Tukey post-hoc tests. 
Results with p < 0.05 were considered significant. 
Data analysis and plotting were performed using 
GraphPad Prism, version 5.0 (GraphPad Software 
Inc., San Diego, CA, USA).

RESULTS

Cell viability assay
Fibroblast viability was determined by neutral 

red assay. Figure 1 demonstrates the absence of 
significant differences between the control group, 
untreated X-ALD fibroblasts, and X-ALD fibroblasts 
treated with 100µM of NAC and 5µM of RSV, 
respectively (F[3,8] = 1.36, p > 0.05). These results 
indicate that the antioxidants were not cytotoxic and 
did not impair cell growth.
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Figure 1: Neutral red viability assay in untreated X-ALD fibroblasts, X-ALD fibroblasts treated with 100 µM n-acetyl-L-
cysteine (NAC) and X-ALD fibroblasts treated with 5µM rosuvastatin (RSV) (n = 3 per group). Results represent mean ± 
SEM (standard error of the mean), compared by one-way analysis of variance (ANOVA) followed by Tukey post hoc tests.

Markers of oxidative and nitrative stress
As can be seen in Figure 2a, higher levels of 

ROS were generated by X-ALD fibroblasts from 
asymptomatic patients than control samples. 
The comparison of untreated X-ALD fibroblasts 
to the two antioxidant groups showed that both 
treatments were able to reduce ROS levels, though 
this effect was more pronounced for NAC than RSV 
(F[3,9] = 40.73, p < 0.0001).

Figures 2b and 2c show that only CAT activity was 
altered in X-ALD fibroblasts compared to controls. 

Additionally, only NAC was able to increase CAT 
and SOD activity (F[3,8] = 21.18, p < 0.001) and 
(F[3,8] = 13.79, p < 0.01), respectively, relative to 
untreated X-ALD fibroblasts and fibroblasts treated 
with RSV.

Nitrative stress was determined by measuring 
NO equivalents. Figure 2d shows that there were no 
differences between groups, suggesting that NAC 
and RSV were unable to suppress nitrative stress 
in X-ALD fibroblasts from asymptomatic patients 
(F[3,8] = 0.82, p > 0.05).
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Figure 2: Oxidative and nitrative stress in control fibroblasts, untreated X-ALD fibroblasts, X-ALD fibroblasts treated 
with 100 µM n-acetyl-L-cysteine (NAC) and X-ALD fibroblasts treated with 5µM rosuvastatin (RSV) (n = 3 per group). 
A: catalase (CAT) activity; B: superoxide dismutase (SOD) activity; C: reactive oxygen species (ROS) production;  
D: nitrite/nitrate levels. Results represent mean ± SEM (standard error of the mean). *p < 0.05, **p < 0.01 and ***p < 0.001 
compared to controls. #p < 0.05 and # # #p < 0.001 compared to X-ALD group.  & &p < 0.01 and  & & &p < 0.001 compared to 
X-ALD + NAC groups. Data analyzed using one-way analysis of variance (ANOVA) followed by Tukey post hoc tests.

DISCUSSION

Many studies have reported that oxidative stress may 
be involved in the pathophysiology of neurodegenerative 
disorders. The chemical structure of free radicals 
includes a single unpaired electron in the outermost 
shell, resulting in a highly reactive molecule that can 
combine nonspecifically with proteins, lipids and DNA7. 
To avoid the cell damage caused by free radical formation, 
biological systems have developed antioxidant defenses 
capable of converting these reactive species into inactive 
derivatives. Antioxidants may be enzymatic or non-
enzymatic. Enzymatic antioxidants include catalase 
(CAT), superoxide dismutase (SOD) and glutathione 

peroxidase7. There are also non-enzymatic antioxidants, 
such as metal binding proteins and vitamins (such as E, 
A, C)7. The literature has shown that many compounds, 
such as NAC and RSV, have antioxidant properties and 
can be used in the treatment of several diseases, since 
they have the ability to chelate ROS and convert them 
into inactive derivatives. Oxidative stress occurs when 
the balance between antioxidant capacity and reactive 
species formation shifts in favor of the latter, due to a 
decrease in antioxidant defenses and/or an increase 
in the intracellular concentration of ROS7.

In this study, we investigated the effects of NAC 
and RSV on oxidative and nitrative stress in X-ALD 
fibroblasts from asymptomatic patients. We verified 
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that these fibroblasts generated higher levels of ROS 
than those of control participants, and that NAC and 
RSV were able to reduce ROS formation relative to 
untreated fibroblasts. Moreover, NAC was more effective 
than RSV in this regard. We also showed that X-ALD 
fibroblasts had higher CAT activity compared to control 
samples, and when treated with NAC, the fibroblasts 
showed an increase in SOD and CAT activity relative 
to untreated X-ALD fibroblasts. Nitrative stress markers 
did not significantly differ between X-ALD fibroblasts 
and the other study groups, and antioxidants were 
not able to alter NO production. Overall, our results 
suggest that NAC seems to be more potent than RSV 
as an inhibitor of oxidative stress in X-ALD fibroblasts 
from asymptomatic patients. Previous studies have 
demonstrated that NAC provides cysteine for glutathione 
synthesis and thereby contributes to the treatment of 
disease-associated oxidative stress28,29. Moreover, 
NAC has been shown to reduce disulfide bonds in 
proteins, scavenge free radicals and bind metals to 
form complexes28.

Several studies have reported oxidative changes in 
the plasma, fibroblasts and leukocytes of symptomatic 
patients with X-ALD8-10,20,21, and many investigations 
have demonstrated the protective effect of antioxidants 
such as NAC and RSV on X-ALD, both in vivo and 
in vitro8,9,13,16. Marchetti et al.9 demonstrated that the 
antioxidants NAC, Trolox (water soluble analog of 
vitamin E-TRO) and RSV were able to reduce DNA 
damage in leukocytes from symptomatic patients 
with X-ALD. Likewise, Marchetti et al.16 verified that 
glial cells enriched with C26:0 induced oxidative 
DNA damage, lipid oxidative damage, antioxidant 
enzyme imbalance, NO release and increased levels 
of IL-1β. Furthermore, these authors found that NAC, 
TRO and RSV were able to reduce some of the 
damage caused by C26:0 in glial cells16.

In line with the present findings, Vargas and 
colleagues18 observed a significant increase in CAT 
activity in fibroblasts from patients with symptomatic 
X-ALD compared to controls. Additionally, Powers 
et al.19 examined Mn-SOD expression in skin fibroblasts 
derived from control individuals and symptomatic 
patients with X-ALD and found that X-ALD was 
associated with increased Mn-SOD expression 
in X-ALD consistent with a response to oxidative 
stress. On a similar note, Fourcade et al.8 reported 
that fibroblasts from patients with X-ALD (CCER 
and AMN phenotypes) showed markedly increased 
oxidative, glicoxidative and lipoxidative damage, as 
evidenced by N1-malondialdehyde-lysine (MDAL), 
N1-carboxyethyl-lysine (CEL), N1-carboxymethyl-
lysine (CML), aminoadipic semialdehyde (AASA) and 
glutamic semialdehyde (GSA) levels. The authors also 
observed an antioxidant response after incubating 
X-ALD and control fibroblasts with C26:0, since the 
presence of C26:0 induced the expression of SOD2. 
After incubation, lipoxidative (MDAL), glicoxidative/

lipoxidative (CEL, CML) and protein oxidative (GSA, 
AASA) marker levels nearly doubled in the fibroblast 
samples from symptomatic patients with X-ALD. 
Additionally, TRO prevented SOD2 induction in human 
fibroblasts, and corrected levels of oxidative damage 
markers8. In 2010, Fourcade and colleagues30 also 
reported that valproic acid induces ABCD2 gene 
expression in the fibroblasts of symptomatic patients 
with X-ALD and reduces oxidative damage to proteins.

López-Erauskin et al.31 suggested that an early 
and carefully tailored intervention using an antioxidant 
mixture could be a possible therapeutic option 
for AMN patients, who do not suffer from severe 
neuroinflammation and demyelination, given the ability 
of NAC, TRO and lipoic acid (LA) to scavenge the 
ROS caused by excess C26:0 in the fibroblasts of 
symptomatic patients with X-ALD. All three antioxidants 
were able to individually normalize ROS levels after 
the addition of C26:0. Combining the antioxidants at 
low doses led to a synergistic effect, resulting in the full 
prevention of ROS accumulation in X-ALD fibroblasts. 
In 2012, the authors verified that X-ALD fibroblasts 
from symptomatic patients could not survive when 
forced to rely on mitochondrial energy production. 
Furthermore, treatment with antioxidants (NAC 
and LA) rescued mitochondrial damage markers in 
X-ALD, including oxidative modifications of cyclophilin 
D32. Other studies in the literature have also shown 
that the excess C26:0 in X-ALD fibroblasts led to 
mtDNA oxidation and specifically impaired oxidative 
phosphorylation triggering mitochondrial ROS 
production from electron transport chain complexes33.

In light of our findings, we may conclude that NAC 
and RSV have the potential to improve oxidative 
imbalance in fibroblasts from asymptomatic patients with 
X-ALD. Future studies with a larger number of X-ALD 
fibroblasts should be conducted to better elucidate our 
preliminary results. Nevertheless, these results allow 
us to infer that antioxidants may be considered as an 
adjuvant treatment for this severe neurogenetic disorder, 
especially in asymptomatic patients that can be treated 
early, before the onset of neurologic symptoms.
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