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ABSTRACT
Background. The enriched environment (EE) is a laboratory housing model that
emerged from efforts to minimize the impact of environmental conditions on
laboratory animals. Recently, we showed that EE promoted positive effects on behavior
and cortisol levels in zebrafish submitted to the unpredictable chronic stress (UCS)
protocol. Here, we expanded the characterization of the effects of UCS protocol by
assessing parameters of oxidative status in the zebrafish brain and reveal that EE protects
against the oxidative stress induced by chronic stress.
Methods. Zebrafish were exposed to EE (21 or 28 days) or standard housing conditions
and subjected to the UCS protocol for seven days. Oxidative stress parameters (lipid
peroxidation (TBARS), reactive oxygen species (ROS) levels, non-protein thiol (NPSH)
and total thiol (SH) levels, superoxide dismutase (SOD) and catalase (CAT) activities
were measured in brain homogenate.
Results. Our results revealed that UCS increased lipid peroxidation and ROS levels,
while decreased NPSH levels and SOD activity, suggesting oxidative damage. EE for
28 days prevented all changes induced by the UCS protocol, and EE for 21 days
prevented the alterations on NPSH levels, lipid peroxidation and ROS levels. Both EE
for 21 or 28 days increased CAT activity.
Discussion. Our findings reinforce the idea that EE exerts neuromodulatory effects
in the zebrafish brain. EE promoted positive effects as it helped maintain the redox
homeostasis, which may reduce the susceptibility to stress and its oxidative impact.

Subjects Neuroscience, Zoology
Keywords Environmental enrichment, Unpredictable chronic stress, Oxidative stress, Zebrafish

INTRODUCTION
Currently, the issue of housing condition of animals in the laboratory is widely
acknowledged in scientific discussions (Kempermann, Kuhn & Gage, 1997; National
Research Council (US) Committee for the Update of the Guide for the Care and Use of
Laboratory Animals, 2011; Kim et al., 2017). Sherwin (2004), for example, reviewed the
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effects of standard laboratory cages design and husbandry in rodents. The author argues that
validity of research data is another reason to improve housing conditions of experimental
animals, besides the more often mentioned welfare aspect. Different husbandry conditions
could contribute to the observed data variability and irreproducibility among different
laboratories. For zebrafish, however, studies comparing the impact of housing conditions
on research outcomes are scarce. The standard laboratory condition for this species
consists of housing the animal in shoals in barren tanks only with a recirculation system,
heater thermostat (temperature control), and water in ideal conditions including physical,
chemical and biological characteristics (pH, salinity, alkalinity, hardness, dissolved oxygen
and nitrogen residues) (Lawrence & Mason, 2012). However, this housing environment is
very far from the natural habitat conditions to zebrafish, that lives in shallow water with
aquatic vegetation and gravel substrates (Arunachalam et al., 2013).

In this context, the practice of enriched environment (EE) arose from efforts tominimize
the impact of environmental conditions on laboratory animals (Diamond, Krech & Rosen-
zweig, 1964;Kempermann, Kuhn & Gage, 1997;Young et al., 1999;Van Praag, Kempermann
& Gage, 2000; Bennett et al., 2006). EE is a laboratory housing model that aims to approx-
imate the housing condition to the natural habitat of the animals. This form of housing
includes interventions that contributes to increase stimulation of sensory, motor and
cognitive neuronal systems of the brain, and it allows or facilitates the animals to develop
natural and species-specific behaviors (Van Praag, Kempermann & Gage, 2000; Lazarov
et al., 2005; Meshi et al., 2006; Nithianantharajah & Hannan, 2006; Tanti et al., 2013).

A growing body of evidence reports the beneficial effects of EE for several species
of laboratory animals (Nilsson et al., 1999; Brown et al., 2003; Sale et al., 2007; Sztainberg
& Chen, 2010; Toth et al., 2011; Gapp et al., 2016). Studies in rodents report that EE has
positive effects on the maintenance of the redox state, promoting protection against
oxidative stress. For example, it was demonstrated that rats housed in EE presented reduced
oxidative stress biomarkers, such as thiobarbituric acid reactive substances (TBARS),
protein oxidation, superoxide anion (O•−2 ) activity and higher values for antioxidant
parameters, such as the total radical antioxidant parameter, catalase (CAT) and superoxide
dismutase (SOD) when compared to animals housed in standard laboratory conditions
(Mármol et al., 2015) . A report showed that EE attenuated the upregulation of biomarkers
of ROS production, such as levels of oxidase 2 (NOX2) and 8-hydroxy-2-deoxyguanosine
(8-OH-dG) induced by a rat model of post-traumatic stress disorder (Sun et al., 2016).
In addition, EE promoted neuroprotection through epigenetic mechanisms because it
increased levels of DNA methylation and reduced levels of hydroxymethylation, as well as
increased histone acetylation levels of H3 and H4. This resulted in increased expression
of genes encoding oxidative machinery proteins, such as Hmox1, Aox1, and Cox2, and
reduced expression of inflammatory genes such as IL-6 E Cxcl10 (Griñan Ferré et al., 2016).

Lastly, although some evidence suggests promising results for EE on oxidative stress in
rodents, studies that report the effects of EE on this parameter in zebrafish are still scarce.
Considering that in our previous study we demonstrated that EE prevented the increase of
ROS in zebrafish submitted to the unpredictable chronic stress (UCS) protocol (Marcon et
al., 2018), we hypothesized that zebrafish submitted to UCS protocol housed in EE would
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Figure 1 Housing conditions. (A) Barren tank; (B) Enriched environment tank. Image credit/source:
(A and B) Matheus Marcon.

Full-size DOI: 10.7717/peerj.5136/fig-1

be less vulnerable to oxidative stress. Therefore, in this study we tested the effects of EE
in zebrafish submitted to UCS on a range of oxidative stress parameters including lipid
peroxidation (TBARS), reactive oxygen species (ROS), non-protein thiol (NPSH) levels,
total thiol (SH) levels, superoxide dismutase (SOD) activity, and catalase (CAT) activity.

MATERIAL AND METHODS
Animals
A total of 150 short fin wild-type (WT) adult zebrafish (Danio rerio) 50:50 male/female
ratio over 6-month-old were purchased from Delphis aquariums (Porto Alegre, Brazil).
The fish were kept in a closed acclimation tank system of 16 L (40×20× 24 cm, <2 fish
per liter) for two weeks. Tanks were filled with non-chlorinated tap water, well-aerated in
appropriate conditions as previously reported by Marcon et al. (2018). The illumination
of the room was 14/10 h light/dark photoperiod cycle (lights on at 06:00 am). The fish
were fed twice a day with a commercial flake fish food (Alcon BASIC R©, Alcon, Brazil) and
nauplii of brine shrimp (Artemia salina). The amount of food was calculated based on the
number of fish per tank and followed the instructions of the Zebrafish Book (Westerfield,
2000). All experiments were approved by the Ethics Committee of Universidade Federal
do Rio Grande do Sul (#30992/2015).

Experimental procedures
EE methodology followed that described by Marcon et al. (2018) and is shown in Figs. 1
and 2. After the acclimation period (two weeks), zebrafish were randomly assigned to
one of two experimental housing environments: barren tank (BARREN) or enriched
environment (EE). BARREN condition consists of standard laboratory tank as described
above and containing only water, heater, filter, and aeration system while EE condition
consists the same BARREN condition plus tank gravel in the bottom (English sea stones,
4–9 mm, 3 cm high from the bottom of the tank), a ruin-like plastic object, and three
submerged plastic plants (two 10 cm tall and one 20 cm tall) (Fig. 1). All tanks of both
experimental acclimation conditions were kept in a horizontal plane at the same room, so
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Figure 2 Experimental design. The fish were housed in barren tank (BARREN) or enriched environment
tank (EE) for 21 or 28 days. In the last seven days of the experimental protocol, they were submitted to the
unpredictable chronic stress (UCS) protocol or remained unchanged (Control). The day after the last
stressor, at 08:00 a.m., the fish were euthanized for biochemical analyzes of oxidative stress (the brain was
used for the dosage of the brain was used for the dosage of lipid peroxidation (TBARS), reactive oxygen
species (ROS) levels, non-protein thiol (NPSH) and total thiol (SH) levels, superoxide dismutase (SOD)
and catalase (CAT) activities.

Full-size DOI: 10.7717/peerj.5136/fig-2

we used a white frosted cardboard (30 × 60 cm) placed only in between tanks to prevent
visual contact of fish from different tanks.

Zebrafish were kept in barren tank (BARREN) or enriched environment tank for 21 (EE
21) or 28 (EE 28) days. In both housing conditions, in the last seven days of the experimental
protocol the animals were again divided into two experimental subgroups (non-stressed
or stressed, respectively, S− and S+). The S+ groups were submitted to unpredictable
chronic stress (UCS) protocol detailed bellow. At the end of the experimental protocol on
day 29th (24 h of the last intervention), the animals were removed from their tanks by
using a net and immediately anesthetized by rapid cooling (immersion in water at 2–4 ◦C).
After cessation of opercular movements zebrafish were euthanized by decapitation. The
brain was used for analysis of oxidative stress.

Unpredictable chronic stress (UCS) protocol
To induce stress in the zebrafish a UCS protocol was used which is already well established
and described in our previous studies (Piato et al., 2011; Marcon et al., 2016; Rambo et al.,
2017). UCS protocol was based on the following stressors (1) heating tank water up to
33 ◦C (30 min); (2) cooling tank water to 23 ◦C (30 min); (3) crowding of 12 animals
in a 300-mL beaker (50 min); (4) transferring the animals to other tank with low water
level exposing the dorsal body wall (2 min); (5) tank change, three consecutive times with
30-min interval; and (6) chasing with a net (8 min) that were randomly presented twice
a day for 7 consecutive days (day 21 to day 28) to the animals of the stressed groups. The
non-stressed (S−) animals were maintained in the same room and did not undisturbed
throughout the experiments.
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Oxidative stress analysis
For brain tissue preparation, immediately after euthanasia, fish were dissected out in
ice and to each sample used five brains were pooled that were gently homogenized in
ice-cold phosphate buffered saline (PBS; Sigma Aldrich, St. Louis, MO, USA) pH 7.4 and
centrifuged at 10,000× g for 5 min at 4 ◦C to remove cellular debris. The supernatants
were collected and used for estimation biomarkers associated with oxidation mechanisms
and induction of oxidative stress described herein.

Lipid peroxidation (TBARS)
Lipid peroxidation (Draper & Hadley, 1990) was estimated by monitoring thiobarbituric
acid reactive substance (TBARS) production. Briefly, a volume equal to 50–70 µg protein of
brain homogenate were added to 150 µL of 2% trichloroacetic acid (TCA, Sigma Aldrich R©)
and centrifuged (10,000× g, 10 min). The supernatants were collected, mixed with 150 µL
of 0.5% thiobarbituric acid (TBA; Sigma Aldrich, St. Louis, MO, USA) and then heated
at 100 ◦C for 30 min. The reading of TBARS levels occurred in the microplate reader in
absorbance at 532 nm, using 1,1,3,3-tetramethoxypropane (TMP; Sigma Aldrich, St. Louis,
MO, USA) as a standard. Results were expressed as nanomoles (nmol) MDA/mg protein
(n= 5).

Reactive oxygen species (ROS) assay
To evaluate the free radical content (LeBel et al., 1990; Ali, LeBel & Bondy, 1992), the
fluorescent probe 2′, 7′-dichlorofluorescin diacetate (DCFH-DA; Sigma Aldrich, St.
Louis, MO, USA) was used. Briefly, 25 µL of brain homogenate was incubated with of
1 mM DCFH-DA and PBS buffer at 37 ◦C for 30 min. ROS levels was estimated in the
microplate reader in fluorescence at 520 nm of emission and 480 nm of excitation using
dichlorofluorescein (DCF) as standard. Results were expressed as relative fluorescence unit
(RFU) (n= 5).

Non-protein thiol (NPSH) levels
To estimate NPSH levels (Ellman, 1959), equal volumes (30 µL) of brain preparation and
6% trichloroacetic acid (Sigma Aldrich, St. Louis, MO, USA) was mixed and centrifuged
(3,000× g, 10 min at 4 ◦C). Subsequently, an aliquot of supernatant (50 µg protein) was
further mixed with 10 mM 5,5-dithio-bis-2-nitrobenzoic acid (DTNB; Sigma Aldrich, St.
Louis, MO, USA) dissolved in ethanol and the intense yellow color developed wasmeasured
in the microplate reader at 412 nm after 1 h of incubation at room temperature. Results
were expressed as µmol NPSH/mg of protein (n= 5).

Total thiol (SH) levels
To estimate SH levels (Ellman, 1959), a volume equal to 50 µg protein of brain homogenate
wasmixedwith 10mM5,5-dithio-bis-2-nitrobenzoic acid (DTNB; SigmaAldrich, St. Louis,
MO, USA) dissolved in ethanol (Sigma Aldrich, St. Louis, MO, USA). The intense yellow
color developed was measured in the microplate reader at 412 nm after 1 h of incubation
at room temperature. Results were expressed as µmol SH/mg of protein (n= 5).
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Superoxide dismutase (SOD) activity
SOD activity (Misra & Fridovich, 1972) was estimated by quantifying the inhibition of
superoxide-dependent adrenaline auto-oxidation. Adrenochrome formation rate was
observed at 480 nm in the microplate reader in a reaction medium containing glycine-
NaOH (50 mM, pH 10, Sigma Aldrich R©), epinephrine (60 mM, pH 1.7; Sigma Aldrich, St.
Louis, MO, USA), and homogenate brain (15–30–60 µg of protein). Results were expressed
in Units/mg protein (n= 5).

Catalase (CAT) activity
CAT activity (Aebi, 1984) was estimated by measuring the rate of decrease in hydrogen
peroxide (H2O2) absorbance at 240 nm. Assay mixture consisted of potassium phosphate
buffer (Sigma Aldrich R©), H2O2 (1 M; Sigma Aldrich, St. Louis, MO, USA) and brain
homogenate (30 µg protein). The results were expressed in Units/mg protein (n= 5).

Protein determination
Protein was determined by the Coomassie blue method (Bradford, 1976) using bovine
serum albumin (Sigma Aldrich, St. Louis, MO, USA) as standard. Absorbance of samples
was measured at 595 nm.

Statistical analysis
Kolmogorov–Smirnov and Levene tests were used to determine the normal distribution
of the data and homogeneity of variance, respectively. Results were analyzed by two-way
ANOVA (stress and enriched environment as independent factors) followed by Tukey post
hoc test for comparisons within groups and between housing conditions. Differences were
considered significant at p< 0.05. The data were expressed as a mean + standard error of
the mean (S.E.M.).

RESULTS
Figure 3 shows the effects of EE on biochemical parameters associated with oxidative stress
(TBARS and ROS) in zebrafish submitted to UCS and summarizes the two-way ANOVA
analyzes. Regarding TBARS (Fig. 3A), two-way ANOVA revealed that UCS interacted with
EE: stress only increased TBARS levels when fish were housed in barren tanks, but not
when they were housed for 21 or 28 days of EE. Regarding ROS (Fig. 3B), two-way ANOVA
also revealed an interaction between UCS and EE: increased ROS levels were observed only
in stressed fish from barren tanks, but not from enriched tanks.

Figures 4 and 5 show the effects of EE on biochemical parameters associated with
antioxidant mechanisms (NPSH and SH levels, SOD and CAT activity) in zebrafish
submitted to UCS. In Fig. 4A, two-way ANOVA revealed an interaction between UCS
and EE for NPSH levels: stress decreased NPSH levels only in fish from barren tanks,
while EE for 21 or 28 days prevented this effect of stress. Regarding SH levels (Fig. 4B),
two-way ANOVA revealed an interaction but no main effects of UCS and EE; post hoc
tests, however, did not reach significance for multiple comparisons between groups.

In Fig. 5A, two-way ANOVA for SOD activity revealed an interaction between UCS and
EE: stress decreased SOD activity, which was prevented only when fish were housed in
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Figure 3 Effects of enriched environment for 21 (EE 21) or 28 days (EE 28) on biochemical parameters
associated with oxidative stress in zebrafish brain submitted to unpredictable chronic stress (S+) or
not (S−). Lipid peroxidation (TBARS) and reactive oxygen species (ROS) levels. BARREN: barren tank.
Data are expressed as a mean+ S.E.M. n= 5. Two-way ANOVA/Tukey.

Full-size DOI: 10.7717/peerj.5136/fig-3

Figure 4 Effects of enriched environment for 21 (EE 21) or 28 days (EE 28) on antioxidant mecha-
nisms in zebrafish brain submitted to unpredictable chronic stress (S+) or no (S−). Non-protein thiols
(NPSH) and Total thiol (SH) levels. BARREN: barren tank. Data are expressed as a mean+ S.E.M. n= 5.
Two-way ANOVA/Tukey.

Full-size DOI: 10.7717/peerj.5136/fig-4

EE for 28, but not 21 days. Regarding CAT activity (Fig. 5B), two-way ANOVA revealed
main effects for UCS and EE, but no interaction between these factors; overall, stress
decreased while EE increased CAT activity. Previously, some studies had already reported
the protective potential of EE on maintenance of redox homeostasis. EE showed to
prevent DNA oxidation (Kang et al., 2016; Sun et al., 2016), the increase of carbonyl
protein (Herring et al., 2008), the increase of total free radicals content (Cechetti et al.,
2012) and the increase of lipid peroxidation (Muhammad et al., 2017) in rodents.
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Figure 5 Effects of enriched environment for 21 (EE 21) or 28 days (EE 28) on antioxidant mechanisms
in zebrafish brain submitted to unpredictable chronic stress (S+) or no (S−). Superoxide dismutase
(SOD) and Catalase (CAT) activity. BARREN: barren tank. Data are expressed as a mean+ S.E.M. n= 5.
Two-way ANOVA/Tukey.

Full-size DOI: 10.7717/peerj.5136/fig-5

DISCUSSION
In this study, we replicate a previous result and expand the characterization of the effects
of EE on mechanisms associated with antioxidant defenses and oxidative stress in zebrafish
submitted to UCS. We demonstrated for the first time that UCS protocol induced several
changes in redox homeostasis in the zebrafish brain and revealed that EE has a protective
effect against the oxidative stress induced by the UCS protocol.

UCS protocol induces several biochemical changes in the zebrafish brain and through
sustained activation of the neuroendocrine axis leads to increased cortisol levels (Piato
et al., 2011; Manuel et al., 2014; Marcon et al., 2016; Rambo et al., 2017; Song et al., 2017).
This was confirmed by the results recently published in our previous study, which showed
that the UCS protocol increased cortisol levels while EE for 21 or 28 days prevented this
increase (Marcon et al., 2018). In this way, the response to sustained stress leads to great
energy expenditure and for this reason some cellular metabolic processes are accelerated
(Otte et al., 2016), such as oxidative phosphorylation (Zorov, Juhaszova & Sollott, 2014)
and β-oxidation of fatty acids (Carracedo, Cantley & Pandolfi, 2013). As a consequence,
the excessive production of ROS can reach levels above the antioxidant defense capacity of
the organism and consequently oxidize cellular structures leading to oxidative stress (Sies,
Berndt & Jones, 2017; Poprac et al., 2017).

Particular features of nervous tissue, such as neurotransmitters metabolism, high iron
content, low antioxidant capacity, neuronal membrane rich in polyunsaturated fatty acids
and high oxygen consumption, make the brain an organ extremely susceptible to oxidative
stress (Clarke & Sokoloff, 1999; Halliwell, 2006). Therefore, sustained antioxidant mecha-
nisms are necessary for themaintenance of cerebral homeostasis (Finkel & Holbrook, 2000).

Glutathione (GSH) is the main antioxidant component in brain tissue. It is essential
for maintenance of redox homeostasis, serving as the cofactor of the enzymes glutathione
peroxidase (GPx) and glutathione-S-transferase (GST) and a direct neutralizer of ROS
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(Dringen, 2000; Dringen & Hirrlinger, 2003). Here we showed that the UCS protocol
decreased NPSH levels, a measure that reflects the levels of GSH, while it did not alter the
SH levels (thiols groups associated with cysteine residues), suggesting that chronic stress
promoted the depletion of cerebral GSH in zebrafish.

At the same time, the UCS protocol decreased SOD but did not alter CAT activities.
Physiologically the SOD enzyme plays a key role in neutralizing the superoxide anion
(O•−2 ) to hydrogen peroxide (H2O2), which is synergistically converted to water (H2O)
and oxygen (O2) by CAT (Fukai & Ushio-Fukai, 2011). Therefore, we hypothesized the
decrease in the SOD activity induced by UCS may led to an excessive accumulation
of O•−2 . O•−2 in high concentrations may contribute to oxidative stress through direct
or indirect damage, for example, by the formation of other reactive species, such as
peroxynitrite (ONOO−), H2O2 or hydroxyl radical (OH•) (Fenton reaction) (Pacher,
Beckman & Liaudet, 2007). Additionally, we revealed here that the UCS protocol increases
ROS production and therefore we suggest that the high levels of ROS associated with the
decrease of the antioxidant mechanisms (GSH level and decreased SOD activity) led to
an imbalance between its production and detoxification and consequently increased lipid
peroxidation in stressed animals leading to oxidative stress. This is according to a previous
study that showed a decrease in the values of total antioxidant status, SOD activity and
the increase of lipid peroxidation in mice submitted to chronic unpredictable mild stress
(Biala et al., 2017).

Oxidative stress is related to the development of mental disorders (Ng et al., 2008) and
it was demonstrated to contribute to the pathophysiology of neurodegenerative diseases
(Christen, 2000). Therefore, it is remarkable the need for studies that bring new discoveries
in this line. Interestingly, here, we have shown for the first time that EE promoted protection
against oxidative stress induced byUCS.We report that EE for 28 days prevented all changes
induced by UCS in the oxidative status while EE for 21 days prevented the decreased of
NPSH levels and the increased of the lipid peroxidation and ROS levels. Besides, both EE
for 21 or 28 days increased the CAT activity.

In this study, we suggest that EE prevented the oxidative by preventing the decrease of
antioxidant defenses (GSH level and SOD enzyme activity), as well as the increase of ROS
levels. Furthermore, EE increases the expression of glucocorticoid receptors (Shilpa et al.,
2017), which is associated with downregulation of neuroendocrine axis activity; this occurs
by negative feedback at the cortisol receptor and reduces the response to sustained stress.

CONCLUSION
Our findings are in agreement with our previous study and together with the literature
findings reinforce the idea that EE exerts neuromodulatory effects. Here, we revealed that EE
promoted positive effects in the maintenance of redox homeostasis, which may reduce the
susceptibility to stress and its oxidative impact. However, our data are still preliminary and
require further investigation to establish and clarify the exact neurobiological mechanisms
by which EE prevents changes in oxidative status. Also, we reinforce and suggest that
zebrafish is a suitable animal model to investigate the neurobiology of stress and the effects
of EE.
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