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Abstract
We characterize unicyclic graphs that are singular using the support of the null space of
their pendant trees. From this, we obtain closed formulas for the independence and matching
numbers of a unicyclic graph, based on the support of its subtrees. These formulas allows
one to compute independence andmatching numbers of unicyclic graphs using linear algebra
methods.
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1 Introduction

Recently, in Jaume and Molina (2018), the authors studied the null space of the adjacency
matrix of trees and they presented a null decomposition of trees. In general, this null decom-
position divides a tree into two forests (one of the forests can be empty), one composed by
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singular trees and the other composed by non-singular trees. The technique used was the
analysis of the support of the tree, where the support is defined as the subset of vertices for
which at least one of its corresponding coordinates of the eigenvectors of the null space of
the adjacency matrix is nonzero.

As an application, in Jaume andMolina (2018), the null decomposition was used to obtain
closed formulas for two classical parameters. The first one is the independence number of
a graph G, denoted by α(G). Notice that the problem of computing α(G) is NP-hard Karp
(1972) and several mathematicians have studied α(G) (for example, Alon and Kahale 1998;
Frieze 1990; Shearer 1983). The second one is the matching number of a graphG, denoted by
ν(G) (Cvetkovć et al. 1980; Ming andWang 2001). Historically, the matching theory started
with bipartite graphs and one of the earliest works was published in 1916 (König 1916).

In this paper, we extend the results of Jaume and Molina (2018) to unicyclic graphs. In a
more general sense, we obtain structural information of the unicyclic graphs using the support
of their subtrees. In particular, we obtain closed formulas for the independence and matching
numbers of unicyclic graphs that depend on the support and the core of their subtrees. Next
we give an outline of this paper. It is worth pointing out that, in practice, this means that these
classical parameters can be computed using linear algebra.

In Sect. 2, we present some basic notations and definitions of support of a graph. In
Sect. 3, we characterize singular unicyclic graphs using the support of their pendant trees. In
Sect. 4, we obtain a closed formula for the independence number of unicyclic graphs using
the support of the subtrees of these unicyclic graphs. In Sect. 5, we obtain closed formulas for
the matching number of unicyclic graphs based on the support of subtrees of these unicyclic
graphs.

2 Basic definitions and notation

In this section, we present some notation and basic definitions. In particular, we explain the
notion of support of a graph. We use the graphs of Fig. 1 to illustrate the concepts used here.

Let G = (V , E) be a simple graph of order n, with vertex set V = {v1, . . . , vn} and edge
set E = E(G), the adjacency matrix A(G) = (ai j )n×n of G is defined as

ai j =
{
1, if {vi , v j } ∈ E;
0, if {vi , v j } /∈ E .

Denote by ελ the λ-eigenspace of A(G); thus, ελ = {x ∈ R
n : A(G)x = λx}. The 0-

eigenspace (ε0) is the focus of our work and will be denoted byN (G). The nullity of a graph
G, denoted by η(G), is the multiplicity of the eigenvalue zero in the spectrum of A(G) or,
equivalently, the dimension of the 0-eigenspace of G. The graph G is called singular if A(G)

is a singular matrix or η(G) > 0. Otherwise, the graph G is called nonsingular.
As an example, we observe that the set S = {(0, 1, 0,−1, 0, 0)t , (0, 0, 1,−1, 0, 0)t } is a

basis for the null space of the tree T1 of Fig. 1; hence, η(T1) = 2. And we notice that 0 is not
an eigenvalue of the tree T2 of Fig. 1, so η(T2) = 0.

Definition 2.1 A set I ⊂ V of vertices of a graph G is an independent set in G if no two
vertices in I are adjacent. A maximum independent set is an independent set of maximum
cardinality. The cardinality of anymaximum independent set inG, denoted by α(G), is called
the independence number of G. I(G) denotes the set of all maximum independent sets of
G.
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Fig. 1 Support, matching and independent set

For example, in Fig. 1, the vertex subsets {v2, v3, v4, v5} and {v2, v3, v4, v6} of the tree
T1 are the only independent sets of maximum cardinality. Therefore,

I(G) = {{v2, v3, v4, v5}, {v2, v3, v4, v6}},
and α(T1) = |{v2, v3, v4, v5}| = 4.

Definition 2.2 A matching M in G is a set of pairwise non-adjacent edges, that is, no two
edges inM share a common vertex. Amaximummatching is amatching of largest cardinality
in G. The matching number of G, denoted by ν(G), is the size of a set of any maximum
matching. M(G) denotes the set of all maximum matching of G. A vertex is saturated by
M , if it is an endpoint of one of the edges in the matching M . Otherwise, the vertex is said
non-saturated. Moreover, a matching is said to be perfect if it saturates all vertices of G.

In the figures, we use zig zag edges to represent the edges of a matching.
In Fig. 1, tree T1 has matching {{v1, v3}, {v5, v6}} and tree T2 has perfect matching

{{v7, v9}, {v8, v10}, {v11, v14}, {v12, v13}}. Therefore, ν(T1) = 2 and ν(T2) = 4.
The Edmond–Gallai vertices of G, denoted by EG(G), is the set of all vertices of G that

are non-saturated by some maximum matching M in G.
For example, the maximum matchings of T1 are

M(T1) = {{{v1, v2}, {v5, v6}}, {{v1, v3}, {v5, v6}}, {{v1, v4}, {v5, v6}}}.
Thus, EG(T1) = {v2, v3, v4} and EG(T2) = ∅.

Definition 2.3 Let G be a graph with n vertices and let x be a vector of Rn . The support of
x in G is

SuppG(x) = {v ∈ V (G) : xv �= 0}.
Let S be a subset of Rn . Then the support of S in G is

SuppG(S) =
⋃
x∈S

SuppG(x).

As a convention, we use rectangular vertices in figures to represent the vertices of the
support. Consider tree T1 (Fig. 1) and the set of vectors

S = {(0, 1, 0,−1, 0, 0)t , (0, 0, 1,−1, 0, 0)t }. Then SuppT1(S) = {v2, v3, v4}.
The following result shows that to compute the support of an eigenspace of A(G), it is

enough to analyse the coordinates of the vectors of a basis of this eigenspace.
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Lemma 2.4 (Jaume and Molina 2018) Let G be a graph, and λ an eigenvalue of A(G). Let
B = {b1, . . . , bk} be a basis of ελ, then SuppG(ελ) = SuppG(B).

We are interested in the support of the null space of A(G), that is, our focus is
SuppG(N (G)), which, for purposes of notation, is denoted by Supp(G). In practice, to
compute Supp(G), we will use Lemma 2.4 and not the definition of support. That is, we
compute a basis of the null space and consider the entries of the vectors in the basis to obtain
the support.

For example, notice that S = {(0, 1, 0,−1, 0, 0)t , (0, 0, 1,−1, 0, 0)t } is a basis ofN (T1)
(Fig. 1); thus,

Supp(T1) = SuppT1(S) = {v2, v3, v4}.
Moreover, note that T2 (Fig. 1) is non-singular, that is,N (T2) = {0}; therefore, Supp(T2) = ∅.
Theorem 2.5 (Jaume and Molina 2018) Let T be a tree, then Supp(T ) is an independent set
of T .

In Bevis et al. (1995), the authors showed that the rank of tree is twice the matching
number. Lemma 2.6 is a corollary of this fact.

Lemma 2.6 T is a nonsingular tree if and only if T has a perfect matching.

Aswe can see in Fig. 1, tree T1 is a singular tree, because it does not have perfect matching.
Tree T2 is a nonsingular tree, because it has perfect matching.

Our first goal is to characterize singular unicyclic graphs in terms of the support of their
pendant trees, which is the subject of next section.

In the next lemma, we show that only the vertices of the support of a tree are not saturated
by some maximum matching in this tree.

Lemma 2.7 Let T be a tree, then EG(T ) = Supp(T ).

Proof of Lemma 2.7 is in Sect. 4.

3 Singular unicyclic graphs

In this section, we characterize singular unicyclic graphs using the support of their pendant
trees, which is the statement of Theorem 3.6.

For cycles, the problem of characterizing singular graphs is solved.

Lemma 3.1 (Sookyang et al. 2008) A cycle Cn of n vertices is singular if and only if n is
divisible by 4.

Hence, for the remaining of this section, we will consider a unicyclic graph G �= Cn . Let
G be a unicyclic graph and let C be the unique cycle of G. For each vertex v ∈ V (C), we
denote by G{v} the induced connected subgraph of G with maximum possible number of
vertices, which contains the vertex v and no other vertex of C . G{v} is called the pendant
tree of G at v. Notice that G is obtained by identifying the vertex v of G{v} with the vertex
v on C for all vertices v ∈ C . In Fig. 2, we have two unicyclic graphs G and H with their
pendant trees G{v1}, G{v2}, G{v3}, H{v4}, H{v5} and H{v6}, respectively.
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Fig. 2 Unicyclic graphs of Types I and II and their pendant trees

Definition 3.2 (Gong et al. 2010) For a tree G{v} with at least two vertices, vertex v ∈ G{v}
is called mismatched in G{v} if there exists a maximum matching of G{v} that does not
saturate v; otherwise, v is called matched in G{v}. If a tree consists of only one vertex it is
considered mismatched.

A unicyclic graph G is said to be of Type I if there exists a vertex v on the cycle of G such
that v is matched in G{v}, otherwise, G is said to be of Type II.

To emphasize, a unicyclic graph G is of Type I, if there exists a vertex v of its cycle that is
saturated by all maximum matchings of the pendant tree G{v}. G is of Type II if any vertex
v of its cycle is not saturated by some maximum matching of G{v}.

As an example, consider the unicyclic graph G in Fig. 2. We notice that G is of Type I,
because the vertex v1 is matched in G{v1}. Indeed, the maximum matchings of G{v1} are
{{a, q}, {v1, i}, { j, l}} and {{r , q}, {v1, i}, { j, l}} and both of them saturate v1. The unicyclic
graph H of Fig. 2 is of Type II, because the pendant trees H{v4}, H{v5} and H{v6} havemax-
imummatchings that do not saturate v4, v5 and v6, respectively. For example, {{u, w}, {t, z}},
{{x, y}} and {{p, o}} are maximummatchings in H{v4}, H{v5} and H{v6}, respectively, that
do not saturate v4, v5 and v6, respectively.

We show next that to verify that a unicyclic graph is Type I or II, it suffices to check
whether a vertex v of the cycle is or is not in the support of the pendant tree G{v}.
Proposition 3.3 A unicyclic graph G is of Type I if and only if there exists at least one pendant
tree G{v} such that v /∈ Supp(G{v}).
Proof SinceG is of Type I, we know that there exists a vertex v in the cycle ofG such that v is
always saturated by any maximummatching in G{v}, that is, v /∈ EG(G{v}), by Lemma 2.7
we have v /∈ Supp(G{v}). ��

Immediately, we obtain the dual result.

Corollary 3.4 A unicyclic graph G is of Type I I if and only if every pendant tree G{v} is such
that v ∈ Supp(G{v}).

The following result computes the nullity of a unicyclic graph from the nullity of its
pendant trees.

Lemma 3.5 (Gong et al. 2010) Let G be a unicyclic graph and let C be its cycle. If G is of
Type I and v ∈ V (C) be matched in G{v}, then

η(G) = η(G{v}) + η(G − G{v}).
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If G is of Type II, then

η(G) = η(G − C) + η(C).

We now obtain a characterization of singular unicyclic graphs using the support of their
pendant trees.

Theorem 3.6 Let G be a unicyclic graph and let C be the cycle of G. G is singular if and
only if one of the following happens:

(i) There is a pendant tree G{v}, with v /∈ Supp(G{v}) and either G{v} does not have
perfect matching or G − G{v} does not have perfect matching.

(ii) Every pendant tree G{v} is such that v ∈ Supp(G{v}) and either one of the trees that
compose the forest G − C does not have perfect matching or the cycle C has length
equal to a multiple of 4.

Proof (i) As there is a pendant tree G{v} such that v /∈ Supp(G{v}), we conclude by
Proposition 3.3 that G is of Type I. Moreover, by Lemma 3.5, we conclude that G will
be singular if and only if G{v} or G − G{v} has nonzero nullity, and by Lemma 2.6, we
know that this only happens if G{v} does not have perfect matching or G − G{v} does
not have perfect matching.

(ii) Since every pendant treeG{v} is such that v ∈ Supp(G{v}), we conclude byCorollary 3.4
that G is of Type II. Then by Lemma 3.5, we know that G will be singular if and only if
G −C or C has nonzero nullity, and by Lemmas 2.6 and 3.1, it happens if and only if at
least one of the trees composing the forest G −C does not have perfect matching or the
cycle C has length equal to a multiple of 4.

��

4 Independence number of unicyclic graphs

In this section, we obtain closed formulas for the independence number of a unicyclic graph
G. This formula depends on the number of vertices of the support and also on the amount
of N -vertices of subtrees of this unicyclic graph G. To understand our result, we start by
presenting the null decomposition of trees, given in Jaume and Molina (2018).

Definition 4.1 Let T be a tree. The S-forest of T , denoted byFS(T ), is defined as the subgraph
induced by the closed neighborhood of Supp(T ) in T :

FS(T ) = T [N [Supp(T )]].
The N -forest of T , denoted by FN (T ), is defined as the remaining graph:

FN (T ) = T − FS(T ).

The null decomposition of T is the pair (FS(T ),FN (T )).

V (FN (T )) is called the set of N -vertices of T .
We represent star vertices in the figures as the N -vertices. As an example, the support of

the tree T in Fig. 3 is

Supp(T ) = {v2, v3, v6, v7, v8, v10, v11, v12, v19, v21, v22}.
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Fig. 3 Null decomposition of the tree T

The S-forest of T generated by the closed neighborhood of the support consists of

FS(T ) = T [N [Supp(T )]] = T [N [{v2, v3, v6, v7, v8, v10, v11, v12, v19, v21, v22}]]
= T [{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v19, v20, v21, v22}]
= S1 ∪ S2 ∪ S3 ∪ S4.

The N -forest of T consists of

FN (T ) = T − FS(T ) = T [{v13, v14, v15, v16, v17, v18}] = N1 ∪ N2.

Figure 3 illustrates the null decomposition of the tree T .

Definition 4.2 The core ofG, denoted byCore(G), is defined to be the set of all the neighbours
of some supported vertex of G:

Core(G) =
⋃

v∈Supp(G)

N (v).

For example, the core of tree T (Fig. 3) is

Core(T ) = {v1, v4, v5, v9, v20}.
The next lemma gives closed formulas for the independence and matching numbers of

trees and it is crucial to prove our main results.
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Lemma 4.3 (Jaume and Molina 2018) Let T be a tree. Then

ν(T ) = |Core(T )| + |V (FN (T ))|
2

α(T ) = |Supp(T )| + |V (FN (T ))|
2

.

We use Lemma 4.4 to show Lemma 2.7.

Lemma 4.4 Let T be a tree. Consider FS(T ) = ⋃k
i=1 Si and FN (T ) = ⋃t

j=1 N j , where for
all i ∈ {1, . . . , k} and j ∈ {1, . . . , t} we have that Si and N j are connected components of
FS(T ) andFN (T ), respectively. If M ∈ M(T ), then M∩E(Si ) ∈ M(Si ) and M∩E(N j ) ∈
M(N j ), where i ∈ {1, . . . , k} and j ∈ {1, . . . , t}.
Proof Suppose there exists M ∈ M(T ) such that M ∩ E(Sr ) /∈ M(Sr ) or M ∩ E(Ns) /∈
M(Ns), for some r ∈ {1, . . . , k} or s ∈ {1, . . . , t}, that is, |M ∩ E(Sr )| < ν(Sr ) or
|M ∩ E(Ns)| < ν(Ns). By Corollary 4.14 of Jaume and Molina (2018), we obtain

M ∩ (E(T ) − (E(FS(T )) ∪ E(FN (T )))) = ∅.

Then M = (M ∩ E(FS(T ))) ∪ (M ∩ E(FN (T ))) . By Corollary 3.8 and Corollary 4.6
of Jaume and Molina (2018), we obtain ν(Si ) = |Core(Si )|, for all i ∈ {1, . . . , k} and
Core(T ) = ⋃k

i=1 Core(Si ), respectively. Moreover, by Theorem 4.13 of Jaume and Molina
(2018), we have that N j is nonsingular tree, for all j ∈ {1, . . . , t}. Therefore, by Lemma 2.6,

we conclude that N j has perfect matching and ν(N j ) = |V (N j )|
2 . Thus, we have that

ν(T ) = |M | = |M ∩ E(FS(T ))| + |M ∩ E(FN (T ))|

=
k∑

i=1

|M ∩ E(Si )| +
t∑

j=1

|M ∩ E(N j )|

<

k∑
i=1

ν(Si ) +
t∑

j=1

ν(N j ) = |Core(T )| + |V (FN (T ))|
2

,

which is a contradiction, because byLemma4.3,we have that ν(T ) = |Core(T )|+ |V (FN (T ))|
2 .

��
Proof of Lemma 2.7 Let T be a tree. Consider FS(T ) = ⋃k

i=1 Si and FN (T ) = ⋃t
j=1 N j ,

where for all i ∈ {1, . . . , k} and j ∈ {1, . . . , t}, we have that Si and N j are connected
components of FS(T ) and FN (T ), respectively. Given v ∈ Supp(T ). We will obtain M ∈
M(T ) such thatM does not saturate v. ByCorollary 4.6 of Jaume andMolina (2018),we have
that Supp(T ) = ⋃k

i=1 Supp(Si ) and Core(T ) = ⋃k
i=1 Core(Si ). Thus, v ∈ Supp(Sr ), for

some r ∈ {1, . . . , k}. By Theorem 4.13 of Jaume andMolina (2018), we have that there exists
Mr ∈ M(Sr ) such that v is not saturated by Mr . Consider Mi ∈ M(Si ) and M

′
j ∈ M(N j ),

where i ∈ {1, . . . , k} − {r} and j ∈ {1, . . . , t}. Define M =
(⋃k

i=1 Mi

)
∪

(⋃t
j=1 M

′
j

)
.

Note that M is a matching in T and |M | = ν(T ), that is, M ∈ M(T ). Moreover, v is not
saturated by M . Therefore, v ∈ EG(T ).

Now, given v ∈ EG(T ). We will show that v ∈ Supp(T ). Since v ∈ EG(T ), then there
exists M ∈ M(T ) such that v is not saturated by M . Note that by Theorem 4.13 of Jaume
and Molina (2018), we have that N j is nonsingular tree, for all j ∈ {1, . . . , t}. Thus, by
Lemma 2.6, we conclude that N j has perfect matching. Moreover, by Lemma 4.4, we obtain
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M∩E(N j ) ∈ M(N j ), where j ∈ {1, . . . , t}, that is, M∩E(N j ) is a perfect matching in N j .
Hence, v /∈ ⋃t

j=1 V (N j ). Then v ∈ V (Sr ), for some r ∈ {1, . . . , k}. Since v is not saturated
by M , then v is not saturated by M∩E(Sr ). Notice that M∩E(Sr ) ∈ M(Sr ), by Lemma 4.4.
Thus, by Theorem 4.13 of Jaume and Molina (2018), we conclude that v ∈ Supp(Sr ).
By Corollary 4.6 of Jaume and Molina (2018), we have that Supp(T ) = ⋃k

i=1 Supp(Si ).
Therefore, v ∈ Supp(T ). ��

Our next result tells us that given any vertex in a nonsingular tree, there will always be at
least one maximum independent set that does not contain this vertex and another maximum
independent set that contains this vertex.

Proposition 4.5 Let T be a nonsingular tree and v ∈ V (T ). Then there exist I1, I2 ∈ I(T )

such that v ∈ I1 and v /∈ I2.

Proof Since T is a tree, we have that T is a bipartite graph. Then there exist two disjoint
subsets B1 and B2 of V (T ) such that V (T ) = B1 ∪ B2 and for all {a, b} ∈ E(T ), we have
{a, b} ∩ B1 �= ∅ and {a, b} ∩ B2 �= ∅. As T is a nonsingular tree, it has perfect matching
M , by Lemma 2.6. As α(T ) = ν(T ) = |M | = |V (T )|

2 and for all {a, b} ∈ M , we have

{a, b} ∩ B1 �= ∅ and {a, b} ∩ B2 �= ∅, then |B1| = |B2| = |V (T )|
2 . That is, B1, B2 ∈ I(T ).

Therefore, given a v ∈ V (T ) we have v ∈ B1 and v /∈ B2 or v ∈ B2 and v /∈ B1. ��

Lemma 4.6 If T is a tree and v ∈ V (FN (T )), then there exist I1, I2 ∈ I(T ) such that v ∈ I1
and v /∈ I2.

Proof The null decomposition, in general, divides a tree T into two forests (one of them
may be empty), a forest formed by singular trees, denoted by FS(T ), and other formed by
non-singular trees, denoted by FN (T ) (see Theorem 4.5 and Theorem 4.13 of Jaume and
Molina 2018).

Moreover, we have Supp(T ) = ⋃
S∈FS(T ) Supp(S) and V (FN (T )) = ⋃

N∈FN (T ) V (N ).
Thus, if v ∈ V (FN (T )), we have v ∈ V (N1) for some N1 ∈ FN (T ). As N1 is non-singular
using Proposition 4.5, we obtain IN1 , JN1 ∈ I(N1) such that v ∈ JN1 and v /∈ IN1 .

Let

I1 = Supp(T ) ∪ IN1 ∪
⎛
⎝ ⋃

N∈FN (T ) and N �=N1

IN

⎞
⎠ and

I2 = Supp(T ) ∪ JN1 ∪
⎛
⎝ ⋃

N∈FN (T ) and N �=N1

JN

⎞
⎠ .

We observe that I1 and I2 are independent sets because Supp(T ) is an independent set

of T and N (Supp(T )) = Core(T ), then N (Supp(T )) ∩
(⋃

N∈FN (T ) IN
)

= ∅. Notice that
|I1| = |I2| = |Supp(T )|+ |V (FN (T ))|

2 , then I1, I2 ∈ I(T ) by Lemma 4.3. Moreover, we have
v /∈ I1 and v ∈ I2. ��

Lemma 4.7 Let T be a tree and I an independent set of T . If ci ∈ Core(T )∩ I , then I /∈ I(T ).

Proof We notice that, in general, I = {s1, s2, . . . , s j } ∪ {c1, c2, . . . , ct } ∪ {n1, n2, . . . , nr },
where {s1, s2, . . . , s j } ⊆ Supp(T ), {c1, c2, . . . , ct } ⊆ Core(T ) and {n1, n2, . . . , nr } ⊆
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64 Page 10 of 18 L. E. Allem et al.

V (FN (T )) (possibly we can have {n1, n2, . . . , nr } = ∅). By Lemma 3.5 of Jaume and
Molina (2018), we have

|N ({c1, c2, . . . , ct }) ∩ Supp(T )| > |{c1, c2, . . . , ct }|.
Note that J = {s1, s2, . . . , s j }∪ (N ({c1, c2, . . . , ct }) ∩ Supp(T ))∪{n1, n2, . . . , nr } is an

independent set of T . Indeed, N (Supp(T )) ∩ {n1, n2, . . . , nr } = ∅ and {s1, s2, . . . , s j } and
N ({c1, c2, . . . , ct }) ∩ Supp(T ) are independent sets, because {s1, s2, . . . , s j } ⊆ Supp(T ),
N ({c1, c2, . . . , ct }) ∩ Supp(T ) ⊆ Supp(T ) and Supp(T ) is an independent set by The-
orem 2.5. Moreover, note that {s1, s2, . . . , s j } ∩ (N ({c1, c2, . . . , ct }) ∩ Supp(T )) = ∅
otherwise I would not be an independent set, then |J | > |I |, therefore, I /∈ I(T ). ��

Theorem 4.8 is one of the main results of this section. It gives a closed formula for
the independence number of unicyclic graphs G of Type I. This formula depends on the
support and N -vertices of subtrees. It means that using this formula, we can compute the
independence number of unicyclic graphs of Type I using linear algebra.

Theorem 4.8 If G is a unicyclic graph of Type I and G{v} its pendant tree such that v /∈
Supp(G{v}), then

α(G) = |Supp(G{v})| + |Supp(G − G{v})|+ |V (FN (G{v}))|+|V (FN (G − G{v}))|
2

.

Proof Note that there is an independent set I1 ∈ I(G{v}) such that v /∈ I1. Indeed, if
v ∈ V (FN (G{v})) ∪Core(G{v}), then by Lemmas 4.6 and 4.7 there is a I1 ∈ I(G{v}) such
that v /∈ I1. Let I2 ∈ I(G − G{v}). Let u, w ∈ N (v) ∩ V (G − G{v}). We will prove that
I1 ∪ I2 ∈ I(G).

We notice that I1 ∪ I2 is an independent set in G. To see that, we observe that the vertices
of I1 are not connected to each other, because I1 is an independent set. Similarly, we conclude
the same for I2. Moreover, the only adjacencies between G{v} and G −G{v} occur between
vertices v and u and vertices v and w. Since v /∈ I1, there is no possibility of adjacency
between vertices of I1 and vertices of I2. Suppose that I1 ∪ I2 /∈ I(G), that is, there exists
an independent set J in G such that |J | > |I1 ∪ I2|. As V (G) = V (G{v}) ∪ V (G − G{v}),
there is a J1 ⊆ V (G{v}) and J2 ⊆ V (G − G{v}) such that J = J1 ∪ J2. We have that

|I1| + |I2| = |I1 ∪ I2| < |J | = |J1| + |J2|. (1)

In this case, we see that J1 and J2 are independent sets inG{v} andG−G{v}, respectively.
Thus, we have |J1| ≤ |I1| and |J2| ≤ |I2|, because I1 ∈ I(G{v}) and I2 ∈ I(G − G{v}).
Therefore, |J1| + |J2| ≤ |I1| + |I2|, which is a contradiction by (1). Hence, I1 ∪ I2 ∈ I(G).
By Lemma 4.3, we have

α(G{v}) = |Supp(G{v})|+ |V (FN (G{v}))|
2

and

α(G − G{v}) = |Supp(G − G{v})|+ |V (FN (G − G{v}))|
2

.

Therefore, the independence number of G is given by

α(G) = |I1| + |I2| = α(G{v}) + α(G − G{v})
= |Supp(G{v})|+ |V (FN (G{v}))|

2
+ |Supp(G − G{v})|+ |V (FN (G − G{v}))|

2
.

��
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Fig. 4 Unicyclic graph G and its subtrees

The following example is an application of Theorem 4.8. Consider G the unicyclic graph
of Fig. 4. We observe that G is of Type I. Indeed, v /∈ Supp(G{v}) = {g, e, d}, then by
Proposition 3.3, we have that G is a unicyclic graph of Type I. Moreover, Supp(G−G{v}) =
{a, b, i, j, z}, V (FN (G{v})) = ∅ and V (FN (G − G{v}) = {w, c}.

Therefore, by Theorem 4.8, we have that the independence number of G is given by

α(G) = |Supp(G{v})| + |Supp(G − G{v})|+ |V (FN (G{v}))|+|V (FN (G − G{v}))|
2

= 3 + 5 + 2

2
= 9.

Weobserve that J = {a, b, c, d, e, g, i, j, c} is amaximum independent set ofG and |J | = 9.

Lemma 4.9 Let G be a unicyclic graph and C its cycle. Let G{v} be a pendant tree such that
v ∈ Supp(G{v}). If u ∈ N (v) ∩ V (G{v}), then u /∈ Supp(G − C).

Proof Let G{v} − v = ⋃k
i=1 Ti , where Ti is a connected component of G{v} − v. Let

Mi ∈ M(Ti ). As v ∈ Supp(G{v}) there is a M ∈ M(G{v}) such that M does not saturate
v by Lemma 2.7. We observe that u ∈ N (v) ∩ V (G{v}), then u /∈ Supp(G{v}), because
Supp(G{v}) is an independent set of G{v} by Theorem 2.5. Then M ∈ M(G{v} − v) and
ν(G{v}) = ν(G{v} − v). Suppose u ∈ Supp(G{v} − v) = ⋃k

i=1 Supp(Ti ), that is, there
is a i such that u ∈ Supp(Ti ), then by Lemma 2.7 in Ti we obtain a Mi ∈ M(Ti ) does
not saturate u. Note that

⋃k
i=1 Mi ∈ M(G{v} − v) and

⋃k
i=1 Mi does not saturate u.

Then
⋃k

i=1 Mi ∈ M(G{v}), because ν(G{v}) = ν(G{v} − v). Which is a contradiction,
because

⋃k
i=1 Mi does not saturate u and all maximummatching inG{v} saturates u because

u /∈ Supp(G{v}). Therefore, u /∈ Supp(G{v} − v). Since the connected components of
G{v} − v are connected components of G − C , we have u /∈ Supp(G − C). ��

Theorem 4.10 is a similar result for unicyclic graphs of Type II and gives a closed formula
for the independence number of unicyclic graphs of Type II.
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Theorem 4.10 Let G be a unicyclic graph and C its cycle. Let G − C = ⋃k
i=1 Ti , where Ti

is a connected component of G − C. If G is a unicyclic graph of Type II, then

α(G) =
⌊ |V (C)|

2

⌋
+

k∑
i=1

|Supp(Ti )|+ |V (FN (Ti ))|
2

.

Proof Let vi ∈ V (C) and ui ∈ Ti such that ui ∈ N (vi ). By Lemma 4.9, we have ui /∈
Supp(Ti ). As ui ∈ V (FN (Ti ))∪Core(Ti ) then, by Lemmas 4.6 and 4.7, we have a Ji ∈ I(Ti )

such that ui /∈ Ji . Consider Jc ∈ I(C) and define I = Jc ∪
(⋃k

i=1 Ji
)
. We will show that

I ∈ I(G).
First, we notice that I is an independent set in G. Indeed, for all i , we observe that the

vertices of Ji are nonadjacent to each other, because Ji is an independent set. Similarly, we
conclude the same for Jc. Moreover, there is no chance that a vertex of Ji is adjacent to a
vertex J�, with i �= �, since the vertices of the trees Ti and T� are not adjacent to each other.
Now, we show that vertices of Ji are not connected to vertices of Jc. To see that, we observe
that the only adjacency that exists between Ti and C is the adjacency between vertex ui and
vi , but since ui /∈ Ji , there is no possibility of adjacency between vertices of Ji and Jc.

Suppose now I /∈ I(G), that is, there is an independent set F in G such that |F |>|I |. As
V (G) = V (C) ∪

(⋃k
i=1 V (Ti )

)
, we see that there exist Fc ⊆ V (C) and Fi ⊆ V (Ti ) such

that F = Fc ∪
(⋃k

i=1 Fi
)
. Thus, we have

|Fc| +
k∑

i=1

|Fi | = |F |>|I | = |Jc| +
k∑

i=1

|Ji |. (2)

As Fc and Fi are independent sets ofC and Ti , respectively, we have |Fc| ≤ |Jc| and |Fi | ≤
|Ji |, because Jc ∈ I(C) and Ji ∈ I(Ti ). Thus, we have |Fc|+∑k

i=1 |Fi | ≤ |Jc|+∑k
i=1 |Ji |,

which is a contradiction by (2). Therefore, I ∈ I(G). We observe that α(C) =
⌊ |V (C)|

2

⌋
and,

by Lemma 4.3, we have, for all i ,

α(Ti ) = |Supp(Ti )|+ |V (FN (Ti ))|
2

.

Therefore, the independence number of G is given by

α(G) = |Jc| +
k∑

i=1

|Ji | = α(C) +
k∑

i=1

α(Ti )

=
⌊ |V (C)|

2

⌋
+

k∑
i=1

|Supp(Ti )|+ |V (FN (Ti ))|
2

.

��
As an example, consider G the unicyclic graph of Fig. 5. We first notice that G is a

unicyclic graph of Type II, because v ∈ Supp(G{v}) = {n, p, v}, w ∈ Supp(G{w}) =
{e, g, h, i, w, d, f } and u ∈ Supp(G{u}) = {u, �}. Then by Corollary 3.4, we obtain G is a
unicyclic graphofType II.Moreover,wehaveG−C3 = ⋃5

i=1 Ti ,whereT1 = G[{b, g, h, i}],
T2 = G[{a, e}], T3 = G[{c, f , d}], T4 = G[{ j, �}] and T5 = G[{m, n, o, p}] (see Fig. 5).

Since T2, T4 and T5 have perfect matching, so they are non-singular and have empty
support. T1 and T3 do not have perfect matching, so they are singular and computing their
supports we obtain Table 1.
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Fig. 5 Unicyclic graph of Type II and the support of its subtrees

Table 1 Support and N -vertices
of the subtrees T1, T2, T3, T4 and
T5

G − C3 Support N -vertices

T1 Supp(T1) = {g, h, i} V (FN (T1)) = ∅
T2 Supp(T2) = ∅ V (FN (T2)) = {a, e}
T3 Supp(T3) = {d, f } V (FN (T3)) = ∅
T4 Supp(T4) = ∅ V (FN (T4)) = { j, �}
T5 Supp(T5) = ∅ V (FN (T5)) = {m, n, o, p}

Therefore, by Theorem 4.10, we have that the independence number of G is given by

α(G) =
⌊ |V (C)|

2

⌋
+

k∑
i=1

|Supp(Ti )|+ |V (FN (Ti ))|
2

=
⌊
3

2

⌋
+ 3 + 2

2
+ 2 + 4

2
+ 2

2
= 10.

We observe that I = {g, h, i, e, d, f , p, n, �, v} is a maximum independent set of G and
|I | = 10.

5 Matching number of unicyclic graphs

In this section, we obtain closed formulas for the matching number of unicyclic graphs.

Definition 5.1 Let M be a matching in the graph G. An M-alternating path is a path that
alternates edges inM and edges that are not inM . AnM-augmenting path is anM-alternating
path, if it begins and ends at vertices non saturated by M .

Consider the matching M = {{d, c}, {a, b}, {v,w}} in graph G of Fig. 6. As the path
P1 = (e, d, c, b, a) is an M-alternating path because its edges alternate outside and within
the matching M . Now the path P2 = (u, v, w, o) is M-augmenting, because it is an M-
alternating path and starts and ends at vertices non-saturated by M (vertices u and o).
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Fig. 6 M-alternating path and M-augmenting path

a1 a2 a3 a2k v u b1 b2 b2s−2 b2s−1 b2s· · · · · ·

Fig. 7 M-augmenting path P

The following is a classic result, it characterizes maximum matchings in a graph G.

Lemma 5.2 (Berge 1957) A matching M is maximum in G if and only if G does not have an
M-augmenting path.

We now give a closed formula for the matching number of unicyclic graphs G of Type I.
This formula depends on the core and N -vertices of subtrees.

Theorem 5.3 If G is a unicyclic graph of Type I and G{v} its pendant tree such that v /∈
Supp(G{v}), then

ν(G) = |Core(G{v})|+|Core(G − G{v})|+ |V (FN (G{v}))| + |V (FN (G − G{v}))|
2

.

Proof Let M1 ∈ M(G{v}) and M2 ∈ M(G − G{v}). Let u, w ∈ N (v) ∩ V (G − G{v})
and M = M1 ∪ M2. We will prove that M ∈ M(G). Suppose that M /∈ M(G). Hence,
by Lemma 5.2, there is an M-augmenting path, denoted by P . Notice that P is neither
totally contained in G{v} nor totally contained in G − G{v}; otherwise, P would be M1-
augmenting or M2-augmenting, which is a contradiction, because M1 ∈ M(G{v}) and
M2 ∈ M(G − G{v}), respectively. Moreover, P does not contain the edges {u, v} and
the edge {w, v} simultaneous, because {u, v}, {w, v} /∈ M . Then P starts at a vertex a1
of G{v} and ends at a vertex b2s of G − G{v}. Now we notice that the path P contains
the edge {u, v} or the edge {w, v}. Suppose that P contains the edge {u, v}, then we have
P = (a1, a2, . . . , a2k, v, u, b1, b2, . . . , b2s) (see Fig. 7).

Let B1 = {{a2k, v}, {u, b1}} ∪ ⋃k−1
i=1 {{a2i , a2i+1}} ∪ ⋃s−1

j=1{{b2 j , b2 j+1}} and B2 =
{{u, v}}∪⋃k

i=1{{a2i−1, a2i }}∪⋃s
j=1{{b2 j−1, b2 j }}. We observe that B1 ⊆ M and B2∩M =

∅. Let M ′ be a matching in G given by M ′ = (M ∪ B2)\B1. As M
′ ∩ E(G{v}) is a

matching in G{v}, we see that it does not saturate v, because v /∈ Supp(G{v}). Hence,
M

′ ∩ E(G{v}) /∈ M(G{v}) (see Lemma 2.7), that is, |M ′ ∩ E(G{v})| < |M1|. We have

|M ′ ∩ E(G{v})| = |((M ∪ B2) \ B1) ∩ E(G{v})|
= |((M1 ∪ M2 ∪ B2) \ B1) ∩ E(G{v})|
= |((M1 \ B1) ∪ (M2 \ B1) ∪ (B2 \ B1)) ∩ E(G{v})|
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Fig. 8 Unicyclic graph of Type I and support of subtrees

= |((M1 \ B1) ∪ (M2 \ B1) ∪ B2) ∩ E(G{v})|
= |((M1 \ B1) ∩ E(G{v})) ∪ ((M2 \ B1) ∩ E(G{v})) ∪ (B2 ∩ E(G{v}))|
= |((M1 ∩ E(G{v})) \ B1) ∪ ((M2 ∩ E(G{v})) \ B1) ∪ (B2 ∩ E(G{v}))|
= |(M1 \ B1) ∪ (B2 ∩ E(G{v}))|
= |(M1 \ B1)| + |(B2 ∩ E(G{v}))|
= |M1| − |M1 ∩ B1| + |(B2 ∩ E(G{v}))|

= |M1| −
∣∣∣∣∣∣{{a2k , v}} ∪

k−1⋃
i=1

{{a2i , a2i+1}}
∣∣∣∣∣∣ +

∣∣∣∣∣∣
k⋃

i=1

{{a2i−1, a2i }}
∣∣∣∣∣∣

= |M1| − k + k = |M1|. (3)

By Eq. (3), we have |M1| > |M ′ ∩ E(G{v})| = |M1|, which is a contradiction.
The case where P contains the edge {w, v} is analogous. Therefore, M ∈ M(G). Using

Lemma 4.3, we have

ν(G{v}) = |Core(G{v})|+ |V (FN (G{v}))|
2

and

ν(G − G{v}) = |Core(G − G{v})|+ |V (FN (G − G{v}))|
2

.

Therefore, the matching number of G is given by

ν(G) = |M1| + |M2| = ν(G{v}) + ν(G − G{v})
= |Core(G{v})|+|Core(G − G{v})|+ |V (FN (G{v}))| + |V (FN (G − G{v}))|

2
.

��
As an example of Theorem 5.3, consider the unicyclic graph G of Fig. 8. To see that it is

of Type I, we notice that v /∈ Supp(G{v}) = {a, b, j}, then by Proposition 3.3, we have G
is a unicyclic graph of Type I. Moreover, Supp(G − G{v}) = {e, f , i}, Core(G{v}) = {c},
V (FN (G{v})) = {v, d, �,m}, Core(G − G{v}) = {g, h} and V (FN (G − G{v})) = {o, n}.

Therefore, by Theorem 5.3, we have that the matching number of G is given by

ν(G) = |Core(G{v})|+|Core(G − G{v})|+ |V (FN (G{v}))| + |V (FN (G − G{v}))|
2

123



64 Page 16 of 18 L. E. Allem et al.

= 1 + 4

2
+ 2 + 2

2
= 6.

We point out that M = {{b, c}, {v, d}, {�,m}, {n, o}, {e, g}, { f , h}} is a maximummatch-
ing of G and |M | = 6.

We now present a similar result for the matching number of unicyclic graphs G of Type
II.

Theorem 5.4 Let G be a unicyclic graph and C its cycle. Let G −C = ⋃k
i=1 Ti , where Ti is

a connected component of G − C. If G is a unicyclic graph of Type II, then

ν(G) =
⌊ |V (C)|

2

⌋
+

k∑
i=1

|Core(Ti )| + |V (FN (Ti ))|
2

.

Proof For each pendant tree G{v}, with v ∈ V (C), choose an Mv ∈ M(G{v}) that does not
saturate v. Note that this maximum matching exists because G is a unicyclic graph of Type
II, and this implies that v ∈ Supp(G{v}) for all v ∈ V (C). Hence, by Lemma 2.7, we have
that Mv exists. Choose an Mc ∈ M(C) and let M = Mc ∪ (⋃

v Mv

)
.

We will show that M ∈ M(G). Suppose by contradiction that M /∈ M(G). Then, by
Lemma 5.2, there exists aM-augmenting path denoted by P inG. Note that if V (P) ⊆ V (C),
then P would be a Mc-augmenting path in C which is a contradiction because Mc ∈ M(C).
Now, if V (P) ⊆ V (G{v}), then P would be an Mv-augmenting path in G{v}, which is a
contradiction because Mv ∈ M(G{v}).

Note that the only way to obtain an M-augmenting path P in G is if we start the path P
at a vertex u ∈ V (G{v}), with u �= v, and end at a vertex z /∈ V (G{v}). If that happens,
there would be an Mv-alternating path starting in u and ending in v contained in P . But since
Mv does not saturate v, actually we would obtain a Mv-augmenting path in G{v}, which is
a contradiction, because Mv ∈ M(G{v}). Therefore, M ∈ M(G).

By Lemma 4.3, we have

ν(Ti ) = |Core(Ti )| + |V (FN (Ti ))|
2

.

Moreover, we have ν(C) =
⌊ |V (C)|

2

⌋
. Since v is not saturated by Mv in G{v}, we see that

Mv ∈ M(G{v} − v), that is, ν(G{v}) = ν(G{v} − v). Therefore, we have that the matching
number is given by

ν(G) = |Mc| +
∑

v∈V (C)

|Mv| = ν(C) +
∑

v∈V (C)

ν(G{v})

= ν(C) +
∑

v∈V (C)

ν(G{v} − v) = ν(C) +
k∑

i=1

ν(Ti )

=
⌊ |V (C)|

2

⌋
+

k∑
i=1

|Core(Ti )| + |V (FN (Ti ))|
2

.

��
Consider G the unicyclic graph of Fig. 9. We see that G is a unicyclic graph of

Type II, because a ∈ Supp(G{a}) = {a, j, l,m}, b ∈ Supp(G{b}) = {b, h, g}, c ∈
Supp(G{c}) = {c, o}, d ∈ Supp(G{d}) = {d, u, v, w, t} and e ∈ Supp(G{e}) = {e}. By
Corollary 3.4, we have that G is of Type II. Notice that G − C5 = ⋃4

i=1 Ti , where
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Fig. 9 Unicyclic graph of Type II and its subtrees T1, T2, T3 and T4

Table 2 Support, core and N -vertices of the trees T1, T2, T3 and T4

Support Core N -vertices

Supp(T1) = {h, g} Core(T1) = { f } V (FN (T1)) = ∅
Supp(T2) = ∅ Core(T2) = ∅ V (FN (T2)) = {n, o, p, q}
Supp(T3) = {t, v, u, w} Core(T3) = {r , s} V (FN (T3))) = ∅
Supp(T4) = { j, l,m} Core(T4)) = {i} V (FN (T4)) = ∅

T1 = G[{ f , g, h}], T2 = G[{n, o, p, q}], T3 = G[{r , s, t, u, v, w}] and T4 = G[{ j, i, l,m}]
(see Fig. 9). We see that T2 has perfect matching, then T2 is non singular and so T2 has empty
support. Moreover, we have that T1, T3 and T4 do not have perfect matchings, then they are
singular and their supports are given in Table 2.

Therefore, by Theorem 5.4, we have that the matching number of G is given by

ν(G) =
⌊ |V (C)|

2

⌋
+

k∑
i=1

|Core(Ti )| + |V (FN (Ti ))|
2

.

=
⌊
5

2

⌋
+ 1 + 4

2
+ 2 + 1 = 8.

We point out that M = {{a, b}, {d, e}, {i, j}, { f , g}, {p, q}, {n, o}, {r , v}, {s, w}} is a maxi-
mum matching of G and |M | = 8.

Notice that, oncewe have the cycle and the pendant trees of a unicyclic graphG, according
to Proposition 3.3 and Corollary 3.4, we can decide if G is Type I or Type II computing
the support of each pendant tree in polynomial time. Therefore, the closed formulas of
Theorems 4.8, 4.10, 5.3 and 5.4 are of practical use.
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Cvetkovć DM, Doob M, Sachs H (1980) Spectra of graphs: theory and application, vol 87. Academic Press,

London
Frieze AM (1990) On the independence number of random graphs. Discrete Math 81:171–175
Gong S, Fan Y, Yin Z (2010) On the nullity of graphs with pendant trees. Linear Algebra Appl 433:1374–1380
Jaume DA, Molina G (2018) Null decomposition of trees. Discrete Math 341:836–850
Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW, Bohlinger JD (eds)

Complexity of computer computations. The IBMResearch Symposia Series. Springer, Berlin, pp 85–103
König D (1916) Gráfok és alkalmazásuk a determinánsok és a halmazok. Matematikai śs Természettudományi
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