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ABSTRACT

This work presents a new method for stability analysis and stabilization of sampled-
data controlled Lure systems, subject to aperiodic sampling and nonlinearities that are
sector bounded and slope restricted, in both global and regional contexts. We assume
that the states of the plant are available for measurement and that the nonlinearities are
known, which leads to a more general formulation of the problem. The states are ac-
quired by a digital controller which updates the control input at aperiodic discrete-time
instants, keeping it constant between successive sampling instants. The approach here
presented is based on the use of a new class of looped-functionals and a generalized Lure-
type function, which leads to stability and stabilization conditions that are written in the
form of Linear Matrix Inequalities (LMIs) and quasi-LMIs, respectively. On this basis,
optimization problems are formulated aiming to compute the maximal intersampling in-
terval or the maximal sector bounds for which the asymptotic stability of the origin of the
sampled-data closed-loop system is guaranteed. In the case where the sector conditions
hold only locally, the solution of these problems also provide an estimate of the region of
attraction for the continuous-time trajectories of the closed-loop system. As the synthesis
conditions are quasi-LMIs, a Particle Swarm Optimization (PSO) algorithm is proposed
to deal with the involved nonlinearities in the optimization problems, which arise from
the product of some decision variables. Numerical examples are presented throughout the
work to highlight the potentialities of the method.

Keywords: Sampled-data Control, Lure Systems, Stability and Stabilization, Looped-
Functional Approach, Particle Swarm Optimization Algorithm.



RESUMO

Este trabalho apresenta um novo método para a análise de estabilidade e estabilização
de sistemas do tipo Lure com controle amostrado, sujeitos a amostragem aperiódica e não
linearidades que são limitadas em setor e restritas em derivada, em ambos contextos global
e regional. Assume-se que os estados da planta estão disponíveis para medição e que as
não linearidades são conhecidas, o que leva a uma formulação mais geral do problema.
Os estados são adquiridos por um controlador digital que atualiza a entrada de controle
em instantes de tempo discretos e aperiódicos, mantendo-a constante entre dois instantes
sucessivos de amostragem. A abordagem apresentada neste trabalho é baseada no uso de
uma nova classe de looped-functionals e em uma função do tipo Lure generalizada, que
leva a condições de estabilidade e estabilização que são escritas na forma de desigualdades
matriciais lineares (LMIs) e quasi-LMIs, respectivamente. Com base nestas condições,
problemas de otimização são formulados com o objetivo de computar o intervalo máximo
entre amostragens ou os limites máximos do setor para os quais a estabilidade assintótica
da origem do sistema de dados amostrados em malha fechada é garantida. No caso em que
as condições de setor são válidas apenas localmente, a solução desses problemas também
fornece uma estimativa da região de atração para as trajetórias em tempo contínuo do
sistema em malha fechada. Como as condições de síntese são quasi-LMIs, um algoritmo
de otimização por enxame de partículas é proposto para lidar com as não linearidades
envolvidas nos problemas de otimização, que surgem do produto de algumas variáveis
de decisão. Exemplos numéricos são apresentados ao longo do trabalho para destacar as
potencialidades do método.

Palavras-chave: Controle Amostrado, Sistemas Lure, Estabilidade e Estabilização,
Abordagem Looped-Functional, Algoritmo de Otimização por Enxame de Partícu-
las.
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1 INTRODUCTION

Sampled-Data Control (SDC) has attracted a lot of researchers’ attention in the last
decades (HESPANHA; NAGHSHTABRIZI; XU, 2007), (ZHANG et al., 2019). This
field of study comprehends the analysis of stability and stabilization of systems evolving
in continuous-time, whereas a digital controller delivers inputs at discrete-time instants.
More precisely, the signals of the plant are sampled and then transmitted to the controller,
which updates the plant control input according to a pre-defined law, keeping it constant
between successive sampling instants. This effect may induce complex behaviors, like
oscillations and instability for the closed-loop system. In some situations, for instance,
a large sampling period may be sufficient enough to destabilize a system. On the other
hand, small sampling times may stabilize a system naturally unstable.

In the classical problem of linear SDC systems considering periodic sampling, the sta-
bility can be evaluated indirectly by obtaining a discrete model through exact discretiza-
tion of the continuous-time plant, i.e., assessed from a discrete model whose state values
coincides to the ones of the continuous-time plant at the periodic sampling instants. Dif-
ficulties arises when dealing with uncertain systems, as the uncertainties appears at the
exponent of the transition matrix. On the other hand, for nonlinear systems, approximate
discretization techniques such as Euler and Bilinear ones are commonly used to assess the
system stability. However, these techniques may fail for longer sampling periods, leading
to system instability.

Although there exist a well-established theory for periodic SDC for linear systems,
as for example in (CHEN; FRANCIS, 2012), (ÅSTRÖM; WITTENMARK, 2013) and
the references therein, in the last years authors have shown concern over the issue of sta-
bility and stabilization of aperiodic SDC (FRIDMAN, 2010), (SEURET; GOMES DA
SILVA JR., 2012), (HETEL et al., 2017), (ZENG et al., 2020). This is motivated by
the increasing demand in the industry for embedded systems (microprocessed systems
dedicated exclusively to predefined tasks) and Networked Control Systems (NCS), which
are spatially distributed systems where the communication between sensors, actuators,
controllers and devices occurs through a shared and band-limited digital communica-
tion network (HESPANHA; NAGHSHTABRIZI; XU, 2007), (ZAMPIERI, 2008). In this
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context, the study of aperiodic SDC emerged as a modelling abstraction which allows
to understand the behavior of systems with sampling jitters, packet drop-outs or fluctua-
tions (HETEL et al., 2017), caused generally by computer architecture, operating system,
protocols with no guarantee of an uniform sampling rate (ANTSAKLIS; BAILLIEUL,
2007) or by a heavy temporary load of computation in a processor, which can corrupt
the sampling period of a given controller (SEURET, 2012). Hence, these variations on
the sampling period can dramatically affect the stability properties of the controlled sys-
tem. Furthermore, when a SDC is updated aperiodically, then the exact discretization is
no longer valid even for the linear case. Thus, the hybrid behavior resulting from the
discrete- and continuous-time dynamics should be taken explicitly into account.

A more challenging task is to obtain conditions that guarantee stability for nonlinear
SDC systems. Nonlinearities also degrades the performance of a control loop and may
lead to instability of the controlled system. In this context, several nonlinear systems can
be represented through a generic class denominated Lure systems, which is composed of a
linear, time-invariant system fed back by a (vector-valued) nonlinearity that is supposed to
belong to a cone-bunded sector, e.g. in (SUYKENS; VANDEWALLE; DE MOOR, 1998),
(ZENG et al., 2011), (VALMORBIDA; DRUMMOND; DUNCAN, 2016). Concerning
the stability issue of Lure systems, graphical criteria such as the Circle and Popov ones
or Lyapunov-based approaches are generally used to assess the stability of continuous-
time systems (KHALIL, 2002). However, as will be discussed in the next chapters, there
are lack of works concerning stability and stabilization of sampled-data controlled Lure
systems, which motivates researches in this area.

In this study, sufficient conditions for the stability analysis and stabilization of a
sampled-data controlled Lure system subject to aperiodic sampling and nonlinearities that
are sector and slope restricted are proposed. The method is based on a looped-functional
approach that focus on the behavior in the intersampling interval, ensuring that a pos-
itive definite function is strictly decreasing at the sampling instants, which implies the
asymptotic convergence of the continuous-time trajectories of the system to the origin
(SEURET, 2012), (SEURET; GOMES DA SILVA JR., 2012). In this context, from a new
class of looped-functionals and Lure-type functions, we derive stability and stabilization
conditions for the sampled-data closed-loop system in the form of Linear Matrix Inequal-
ities (LMIs) or quasi-LMIs (that is, LMIs by fixing some parameters). On this basis,
several optimization problems are stated, while ensuring global or regional asymptotic
stability for the trajectories of the closed-loop system, aiming for instance, to maximize
the intersampling intervals, the admissible sector bounds or to maximize the estimate of
the region of attraction.

The outline of this dissertation is as follows. In Chapter 2, a bibliographic review
about modelling techniques and approaches for stability analysis of sampled-data systems
is presented. A review of Lure systems is also presented, with the intent of a characteri-
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zation of the study inside this field of research.
In Chapter 3, a representation of the Lure system with a generic aperiodic sampled-

data control law is formalized. Regarding the looped-functional approach, preliminary
theorems for assessing the stability of the closed-loop system with SDC in both global
and regional contexts are presented.

In Chapter 4, from the given control law, LMI conditions for analysing global and
regional asymptotic stability are derived, using the preliminary results from Chapter 3
as basis. Numerical examples and a comparative result with a work in the literature is
provided.

In Chapter 5, conditions of Chapter 4 are modified to compute feedback gains and syn-
thesize global or regional stabilizing controllers. A criterion to improve the time response
of the trajectories of the controlled system is also presented. As the obtained stabilization
conditions are in the form of quasi-LMIs, it is proposed an evolutionary algorithm to test
the feasibility of the inequalities while searching for the best combination of parameters
that optimize the results according to each stated problem. As examples, some numerical
simulations are executed by an appropriate algorithm to illustrate the methodology.

Finally, in Chapter 6, conclusions and some discussions on the prospects for future
work are presented. Additionally, the Appendix provides some basic theoretical tools.
Along the reading, it will be referenced when its content might be helpful.
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2 LITERATURE REVIEW: STABILITY OF SAMPLED-
DATA CONTROL SYSTEMS

In this chapter, a literature review on topics related to the scope of this dissertation
is presented. In Section 2.1, modelling techniques, representations and approaches for
sampled-data systems are discussed. Next, Section 2.2 introduces the Lure systems and
presents a summary of works regarding SDC Lure systems, with the main ideas of their
approaches.

2.1 Sampled-Data Control Systems

Dynamical systems are often classified as either continuous-time or discrete-time sys-
tems. For instance, one can easily recognize that classical mechanical systems and ana-
log electronic circuits evolving in time according to physical laws such as Newton’s and
Kirchhoff’s have continuous dynamics. On the other hand, financial and stock markets,
where asset prices rise or fall, optimization algorithms and digital systems of all kinds
that use binary logic can naturally be classified as discrete-time dynamical systems.

However, there exist many systems which combines qualitatively the behavior of dis-
crete and continuous-time systems, making it difficult to classify them in a definite way
(GOEBEL; SANFELICE; TEEL, 2012). In a switched electrical circuit, for example,
voltages and currents that change continuously according to classical electrical network
laws also change discontinuously due to the switching of the transistors (GOEBEL; SAN-
FELICE; TEEL, 2009). Biological reactions, mechanisms subject to impact and any
system involving both digital and analog components also have discontinuous dynamics
when receiving an impulse stimulus.

Sampled-data systems are inserted in this context, as they also exhibits both discrete
and continuous-time behavior, since the control updates occur at discrete-time instants,
while the overall system naturally has continuous dynamics. As we are interested in the
stability of this kind of systems, along this chapter we will discourse about the two main
approaches existing in the literature to model and to deal with them. The first one is
the hybrid approach, which models the SDC system through difference and differential
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equations and maps the update in the control signal at the sampling instants. A direct
implication is that the obtained model is finite-dimensional. The second approach is the
time-delay approach, where the sampling is translated into a time-varying input delay that
keeps the control signal constant between two successive sampling instants, thus resulting
in an infinite-dimensional model. In the sequence, we detail each one of these approaches,
starting with the hybrid.

2.1.1 Hybrid Approach

According to GOEBEL; SANFELICE; TEEL (2012), a hybrid dynamical system, or
just a hybrid system, is a dynamical system that exhibits characteristics of both contin-
uous and discrete-time dynamical systems or a dynamical system that is modelled with
a combination of common modelling tools for continuous and discrete-time dynamical
systems. Essentially, a closed-loop system may be modelled through a merge of differ-
ential equations and difference equations, since the former cannot describe changes on
logical variables and the latter is not capable to completely characterize the system dy-
namics. A hybrid system can be formally represented, for instance, by the following
model (GOEBEL; SANFELICE; TEEL, 2009):ẋ(t) = f(x(t)), ∀x(t) ∈ C

x+(t) = g(x(t)), ∀x(t) ∈ D
, (1)

where x ∈ Rn is the vector of states of the system, ẋ is the vector of its derivatives with
respect to time, x+ is the vector of the values of the states after an instantaneous change, f
and g are, respectively, the flow map and the jump map, with C and D being, respectively,
the flow and jump sets. In this representation, the states of the hybrid system changes
according to a differential equation ẋ(t) = f(x(t)) while in the set C, and to a difference
equation x+(t) = g(x(t)) while in the set D, whose solution is a discontinuous function
of time. This allows to capture the dynamics of purely continuous-time or discrete-time
systems. Note that f and g must be completely defined on the flow and jump sets.

According to HETEL et al. (2017), the first mentions to SDC systems as hybrid dy-
namical systems came from the work of MOUSA; MILLER; MICHEL (1986), where it
was performed a stability analysis given some input-output properties of the continuous-
time plant. Later, hybrid systems were applied, for example, to linear SDC systems with
uniform and multi-rate sampling aiming to solve H2 and H∞ problems (TOIVONEN,
1992), (KABAMBA; HARA, 1993), (SUN; NAGPAL; KHARGONEKAR, 1993). An
extension to nonlinear SDC systems was addressed in (HOU; MICHEL; YE, 1997), (YE;
MICHEL; HOU, 1998). For a solid theoretical foundation of hybrid systems, the reader
is encouraged to see (GOEBEL; SANFELICE; TEEL, 2009), (GOEBEL; SANFELICE;
TEEL, 2012) and the references therein.

One of the most important classes of hybrid systems used to deal with sample-and-
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hold circuits is the class of impulsive ones, described by Ordinary Differential Equations
(ODEs) and instantaneous state jumps or impulses (HESPANHA; LIBERZON; TEEL,
2008), (GOEBEL; SANFELICE; TEEL, 2009), (BRIAT; SEURET, 2012a). In this case,
the difference equation activates the discrete-time dynamics at the impulse instants, which
introduces discontinuities in the trajectories of the system. A finite-dimensional, SDC sys-
tem in the impulsive framework may be expressed, for instance, by the following equa-
tions: 

ẋ(t) = f(x(t), u(t)), ∀t /∈ Θ;

x(t) = x(t−), ∀t ∈ Θ, t 6= 0;

u(t) = g(x(t−)), ∀t ∈ Θ, t 6= 0;

u̇(t) = 0, ∀t /∈ Θ;

x(0) = x0, u(0) = Kxx0, t = 0,

(2)

where Θ = {t ∈ R+ : t = tk, tk+1 > tk, k ∈ N} is the set containing the time sequence
of impulsive updates tk, x ∈ Rn is the plant state variable, x0 is the vector of initial
conditions of the states of the system, u ∈ Rq is the control signal, Kx ∈ Rq×n is the
states gains matrix, f and g are the flow and jump maps. The limit from below of the
signal x(t) is defined as x(t−) = limt̃→t, t̃<t x(t̃) and the left-hand side derivative of x
with respect to t, as ẋ(t) = limt̃→t, t̃<t

x(t̃)−x(t)

t̃−t . Observe in representation (2) that if the
difference between two successive sampling times (also called dwell-time) is constant,
we have a periodic SDC. Otherwise, we have an aperiodic SDC.

In this context, the modelling as impulsive systems had been used in the literature
in the last decades to assess the stability of SDC systems. For instance, impulsive sys-
tems with aperiodic sampling had been developed in (TOIVONEN, 1992), (DULLERUD;
LALL, 1999), (MICHEL; HU, 1999). In (SIVASHANKAR; KHARGONEKAR, 1994),
necessary and sufficient conditions were provided regarding the stability of linear systems
andL2-gain analysis in the form of differential equation with jumps. The impulsive model
was also applied to sampled-data stabilization of linear uncertain systems subject to peri-
odic sampling (HU et al., 2003) by using a piecewise linear in time quadratic Lyapunov
Function (LF) and further extended to aperiodic sampling with a known upper bound in
(NAGHSHTABRIZI; HESPANHA; TEEL, 2008), which introduced a method based on a
discontinuous LF.

More recently, the analysis of stability of linear impulsive systems was done through
the use of looped-functionals as in (BRIAT; SEURET, 2012a), (BRIAT; SEURET, 2012b),
providing reduction on the conservatism in comparison to the existing results. In (BRIAT,
2013), conditions for robust stability analysis and stabilization of periodic and aperiodic
uncertain SDC systems are derived considering a quadratic clock-dependent LF and a
link of this approach and the looped-functional one is discussed in (BRIAT, 2016). Re-
garding yet the impulsive system framework, results of linear systems subject to input



21

saturation and aperiodic sampling are given in (FIACCHINI; GOMES DA SILVA JR.,
2018), (FAGUNDES; GOMES DA SILVA JR.; JUNGERS, 2019).

2.1.2 Time-Delay Approach

The time-delay approach, or also known as input-delay approach, was introduced by
(MIHEEV; SOBOLEV; FRIDMAN, 1988) and further developed by (FRIDMAN, 1992).
It consists in modelling the aperiodic sample-and-hold operations by a delayed control
input, whereas the system evolves in continuous-time. An LTI system with a sampled-
data control law may be expressed, for instance, by the following time-delay system:ẋ(t) = Ax(t) +Buu(t− τ(t));

τ(t) = t− tk, ∀t ∈ [tk, tk+1), k ∈ N;
(3)

where x ∈ Rn is the plant state variable, u ∈ Rq is the control signal, which is a function
that depends on the plant and the controller states delayed in time, A ∈ Rn×n is the
dynamical matrix and Bu ∈ Rn×q is the input matrix. Representation (3) corresponds to
the case where the time-varying delay τ(t) is piecewise-linear with derivative τ̇(t) = 1

for t 6= tk. Note that when a sampling occurs, the delay is reset to zero, i.e., τ(tk) = 0.
In the case where the derivative of the delay is less than or equal to one, robust sta-

bility conditions for linear systems with time-varying delays were derived via Lyapunov-
Krasovskii Functionals (LKF), as for example in (FRIDMAN, 2014) and the references
therein. On the other hand, for time-varying delays without any restrictions on its deriva-
tive (also known as fast-varying delays), the stability issue has initially been treated
through the use of Lyapunov-Razumikhin functions (see CAO; SUN; CHENG (1998) and
some references in (HALE; LUNEL, 2013) and (KOLMANOVSKII; MYSHKIS, 2012)),
leading to results that are possibly conservative. These methods became very popular in
the NCS literature to analyse and design linear uncertain systems under aperiodic sam-
plings with the known upper bound on the sampling intervals (FRIDMAN; SEURET;
RICHARD, 2004), (YU et al., 2005), (GAO; CHEN, 2008), (JIANG et al., 2008).

In (FRIDMAN; SEURET; RICHARD, 2004) robust stability conditions for sampled-
data control were developed for linear systems by using a LKF and assuming that the
delay is restricted to evolve at the same rate of time τ̇ = 1 as in (3), reducing the conser-
vatism in comparison to the Lyapunov-Razumikhin approach without loss of generality,
since the restriction of τ̇ is intrinsic to the SDC system. Improvements to the existing
results were provided in (MIRKIN, 2007) and (FUJIOKA, 2009) by using the small gain
theorem. These methods were very relevant at the time, because differently from the
discrete-time approaches, they were able to deal with uncertain systems or systems with
time-varying parameters. In the works of (SEURET, 2009), (LIU; SUPLIN; FRIDMAN,
2010) and (FRIDMAN, 2010), conditions were refined to provide less restrictive results,
with the latter introducing a novel time-dependent Lyapunov functional-based technique
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for aperiodic sampled-data control which does not grow after the sampling times. This
LKF used in (FRIDMAN, 2010) is given as follows:

VLK(t, x(t), ẋ(t)) = V LK(t) = xT (t)Px(t) + (tk+1 − t)
∫ t

tk

ẋT (s)Uẋ(s)ds

+(tk+1 − t)ξT (t)

[
X+XT

2
−X +X1

? −X1 −XT
1 + X+XT

2

]
ξ(t), t ∈ [tk, tk+1), (4)

where P ∈ Sn�0, U ∈ Sn�0, X ∈ Rn×n, X1 ∈ Rn×n, ξ(t) = [xT (t) xT (tk)]
T . Note that the

terms dependent on U and X , X1 vanishes at the sampling instants. Thus, this functional
is continuous, since limt→tk V LK(t) = V LK(tk). The main idea of this method is to prove
that a positive definite LKF as in (4) is upper and lower bounded by two positive scalars
and that V̇ LK(t) < 0, t ∈ [tk, tk+1).

However, according to SEURET (2012), this approach was still conservative, since
it requires the positivity-definiteness of the functional. To overcome this, the author
introduced the looped-functional approach, in which the functional does not require to
be positive definite. This method was firstly applied to obtain sufficient conditions for
asymptotic and exponential stability by considering a linear system with a sampled-data
control, subject to periodic and aperiodic sampling and uncertain systems.

Recently, a new two-sided looped-functional was introduced in (ZENG; TEO; HE,
2017) in the context of sampled-data linear systems, which takes into account the infor-
mation on both intervals x(t) to x(tk) and x(t) to x(tk+1). The obtained conditions sub-
stantially improved those ones in the literature, as the results were nearly approximated
to those obtained from the theoretical bound (i.e., by eigenvalue analysis). In (ZENG
et al., 2020), conditions were improved to take into account the presence of time-delays
in the network by using a two-sided looped-functional which depends on the informa-
tion on the intervals x(tk) to x(t), x(t) to x(tk+1), x(tk − τ) to x(t − τ) and x(t − τ) to
x(tk+1−τ). Less restrictive results were obtained, and connections between the impact of
communication delay and sampling action are investigated, where it has been noticed that
time-delays may improve rather than deteriorate the system performance in some cases.

2.2 Lure Systems

According to (KHALIL, 2002), many nonlinear physical systems can be represented
as a feedback connection of an LTI dynamical system G(s) with a nonlinear element φ,
which satisfies the so-called sector conditions. Such class of systems is known as Lure
systems. The structure of a Lure system is illustrated in Fig. 1.
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Figure 1: Basic structure of a Lure system.

Font: Adapted from (KHALIL, 2002).

The state space mathematical description of an unforced (r(t) = 0) Lure system
corresponding to Fig. 1 is given by:

ẋ = Ax+Bz

y = Cx+Dz

z = −φ(t, y),

(5)

where x ∈ Rn, z ∈ Rm, y ∈ Rm, (A,B) is controllable, (A,C) is observable, and
φ : [0,∞) × Rm → Rm, φ(t, 0) = 0. We assume that the algebraic loop is well-posed,
i.e., has as unique solution z for every (t, x) in the domain of interest. This is always the
case when D = 0. The transfer function matrix of the linear system is given by G(s) =

C(sI − A)−1B + D, and it is square and proper. The nonlinearity φ is a memoryless
function, possibly time-varying, which is piecewise continuous in t and locally Lipschitz
in y, and satisfies a sector condition according to Definition 1.

Definition 1. Let ∆ = diag(δ1, δ2, . . . ,δm), ∆ = diag(δ1, δ2, . . . , δm), with real constants

δi and δi > δi,∀i. A memoryless nonlinearity φ : [0,∞) × Rm → Rm is said to belong

to the sector [∆,∆], where ∆̃ = ∆−∆ is a positive definite symmetric matrix, if

[φ(t, y)−∆y]T [φ(t, y)−∆y] ≤ 0, ∀t ≥ 0, ∀y ∈ Y0 ⊂ Rm, (6)

where the interior of Y0 is connected and contains the origin.

The sector condition (6) can be verified globally, that is the case when Y0 = Rm, or
locally, i.e., for a finite domain Y0 defined as follows:

Y0 , {y(t) ∈ Rm; yi(t) ∈ [y
i
, yi], ∀i = 1, . . . ,m}, (7)

where y
i
∈ R, yi ∈ R, y

i
< 0 < yi. Then, Y0 is a convex region that contains the origin

and if the sector condition holds in Y0, then this region is defined as a region of validity
of the sector condition. Thus, given nonlinearities φ, we conclude that:
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• If Y0 is strictly contained in Rm, then the sector conditions are satisfied locally;

• If Y0 match the whole space in Rm, then the sector conditions are satisfied globally.

Figure 2 illustrates scalar functions verifying the sector conditions locally or globally.
The nonlinearity φi in Fig. 2(a) belongs to a sector [δi, δi] locally, with validity region
given by (7). On the other hand, Fig. 2(b) represents a nonlinearity that globally belongs
to a sector [δi, δi].

Figure 2: Sector condition - (a) Local case and (b) Global case.

Font: Author.

Remark 1. It is well-known that a function φi(·) contained in the sector [δi, δi] can be

transformed through a loop transformation into a function φ̃i(·) in the sector [0, δ̃i], with

δ̃i = δi − δi � 0, without loss of generality. Thus, the system presented in Fig. 1 can be

equivalently represented by the system given in Fig. 3.

Figure 3: Loop transformation.

Font: Author.
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This process defines a new linear system G̃(s) = G(s)[I + ∆G(s)]−1 and a new

nonlinearity φ̃(t, y) = φ(t, y) − ∆y. Note that a constant negative feedback gain ∆y is

applied around the linear component of the system which effect is offset by subtracting

∆y from the output of the nonlinearity.

We should point out that other restrictions for the nonlinearities can be taken into
account, e.g. slope bounds (TURNER; KERR, 2014), (VALMORBIDA; DRUMMOND;
DUNCAN, 2016), (VALMORBIDA; DRUMMOND; DUNCAN, 2018).

2.2.1 Absolute Stability

Regarding Lure systems, the main problem of interest is to study the stability of the
origin x = 0 (which is an equilibrium point of the system), not for a given nonlinearity,
but for a class of nonlinearities that satisfy a given sector condition. If we succeed in
certifying the stability of the origin for all nonlinearities in the sector, then the system is
said to be absolutely stable, according to the following definition:

Definition 2 (KHALIL (2002)). Consider system (5), where φ satisfies a sector condition

per Definition 1. The system is absolutely stable if the origin is globally uniformly asymp-

totically stable for any nonlinearity in the given sector. It is absolutely stable with a finite

domain if the origin is uniformly asymptotically stable.

To determine if a Lure system is absolutely stable for all nonlinearities satisfying a
given sector, we must analyse the asymptotic stability of its origin. To handle with this
problem, two classes of methods are used. The first one uses graphical tools which are
based on the frequency response of the linear system, leading to well-known frequency-
based techniques, such as the Circle and Popov criteria. On the other hand, the second
class is based on the Lyapunov’s direct method, where the main idea is to obtain sufficient
conditions that guarantees the stability of the origin by using a given Lyapunov function
candidate. In the sequence, we recall the Circle and Popov criteria.

2.2.1.1 Circle Criterion

The Circle Criterion provides graphical conditions based on the Nyquist diagram to
verify if a continuous-time Lure system in the form (5) is absolutely stable. Using the con-
cepts from strictly positive real (SPR) functions stated in Lemma 14 (see the Appendix),
we present the following theorem regarding the multivariable Circle Criterion.

Theorem 1 (Multivariable Circle Criterion (KHALIL, 2002)). The system (5) is abso-

lutely stable if

• φ ∈ [∆,∞] and G(s)[I + ∆G(s)]−1 is strictly positive real, or

• φ ∈ [∆,∆], with ∆̃ = ∆−∆ = ∆̃T � 0, and Z(s) = [I + ∆G(s)][I + ∆G(s)]−1

is strictly positive real.
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If the sector condition is satisfied only on a setY0 ⊂ Rm, then the foregoing conditions

ensure that the system is absolutely stable with a finite domain.

Conditions from Theorem 1 can be verified graphically for the scalar case m = 1, by
examining the Nyquist plot of G(jω) (KHALIL, 2002). For φ ∈ [δ, δ], with δ > δ, we
have that the system is absolutely stable if the scalar transfer function Z(s) = 1+δG(s)

1+δG(s)
is

SPR. From Lemma 14, this condition can be easily checked if Z(s) is Hurwitz, that is,
the poles of all elements of Z(s) have negative real parts, and if the following inequality
is satisfied:

Re

[
1
δ

+G(jω)
1
δ

+G(jω)

]
> 0, ∀ω ∈ (−∞,∞). (8)

To establish the connections between the Nyquist plot of G(jω) and (8), one needs to
distinguish three different cases that arises from possible changes on the sign of δ. Figure
4 illustrates a particular case for 0 < δ < δ, which is explained below.

Figure 4: Representation of the Circle Criterion.

Font: Adapted from (KHALIL, 2002).

From Fig. 4, observe that from a point q of the Nyquist plot of G(jω) (depicted in
red), two lines can be drawn to connect q to the limits of the closed disk D(δ, δ) over
the real axis, given by the points −(1/δ) + j0 and −(1/δ) + j0. We have that the ratio
of (q − (−1/δ)) with (q − (−1/δ)) presents positive real part when the angle difference
between them (θ1−θ2) is less than π/2, fact that occurs when q is outside the diskD(δ, δ).
As 0 < δ < δ and since (8) is required to hold for all ω, we conclude that the Nyquist
plot must be strictly outside the disk D(δ, δ). From the Nyquist criterion, we have that
Z(s) is Hurwitz if G(s)[1 + δG(s)]−1 is Hurwitz. This property holds, if and only if the
Nyquist plot of G(jω) does not intersect the point−(1/δ) + j0 (that is the case where the
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Nyquist plot of G(jω) does not enter the disk D(δ, δ)) and encircles it exactly k times in
the counterclockwise direction, where k is the number of poles of G(s) in the open right-
half complex plane. Hence, conditions of Theorem 1 are satisfied, and absolute stability
is assessed.

The following theorem summarizes the graphical stability conditions for these three
mentioned cases, yielding to the Circle Criterion, stated as follows.

Theorem 2 (Circle Criterion (KHALIL, 2002)). Consider a scalar system in the form (5),

where {A,B,C,D} is a minimal realization of G(s) and φ ∈ [δ, δ]. Then, the system is

absolutely stable if one of the following conditions is satisfied, as appropriate:

(i) If 0 < δ < δ, the Nyquist plot ofG(jω) does not enter the diskD(δ, δ) and encircles

it k times in the counterclockwise direction, where k is the number of poles of G(s)

with positive real parts.

(ii) If 0 = δ < δ, G(s) is Hurwitz and the Nyquist plot of G(jω) lies to the right of the

vertical line defined by Re[s] = −1/δ.

(iii) If δ < 0 < δ, G(s) is Hurwitz and the Nyquist plot of G(jω) lies in the interior of

the disk D(δ, δ).

If the sector condition is satisfied only on an interval [y, y], then the foregoing condi-

tions ensure that the system is absolutely stable with a finite domain.

An important feature of the Nyquist plot is that by raising the frequency response
curve of the system from experimental data, one can investigate the absolute stability of
the system. On the other hand, for the multivariable case, the stability can be verified by
analytical means through the conditions stated in the following lemma.

Lemma 1 (Kalman-Yakubovich-Popov Lemma. (KHALIL, 2002)). Let Z(s) = C(sI −
A)−1B +D be a m×m transfer function matrix, where A is Hurwitz, (A,B) is control-

lable, and (A,C) is observable. Then Z(s) is strictly positive real if and only if there exist

a positive symmetric matrix P , matrices W and L and a positive constant ε such that

PA+ A
T
P = −LTL− εP (9)

PB = C
T − LTW (10)

W TW = D +D
T
. (11)

If these conditions hold for Z(s) = [I+ ∆G(s)], then it can be shown that a quadratic
Lyapunov function V (x) = xTPx certifies the asymptotic stability of the origin of the
system (5), with D = 0, for nonlinearity φ that belongs to a sector [0,∆] as given in (6).
In the case that φ satisfies the sector condition only for y ∈ Y0 ⊂ Rm, then the previous
analysis is valid only in a neighbourhood of the origin. In what follows, we present the
second frequency-based approach denominated Popov Criterion.
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2.2.1.2 Popov Criterion

Consider a particular case of system (5), given by
ẋ = Ax+Bz

y = Cx

zi = −φi(yi),

(12)

i = 1, . . . ,m, where x ∈ Rn, z ∈ Rm, y ∈ Rm, (A,B) is controllable, (A,C) is
observable, φi : R→ R is a locally Lipschitz memoryless nonlinearity that belongs to the
sector [0, δi]. The transfer function G(s) = C(sI −A)−1B is strictly proper and φ is time
invariant and decoupled, that is, φi(y) = φi(yi). Then, we present the Popov Criterion,
given by Theorem 3.

Theorem 3 (Popov Criterion (KHALIL, 2002)). The system (12) is absolutely stable

if, for 1 ≤ i ≤ m, φi ∈ [0, δi], 0 < δi ≤ ∞, there exists a constant λi ≥ 0, with

(1 + σkλi) 6= 0 for every eigenvalue σk of A, such that M + (I + sΛ)G(s) is strictly

positive real, where Λ = diag(λ1, . . . , λm) and M = diag(1/δ1, . . . , 1/δm). If the sector

condition φi ∈ [0, δi] is satisfied only on a set Y0 ⊂ Rm, then the foregoing conditions

ensure that the system is absolutely stable with a finite domain.

Considering the scalar case m = 1, the SPR of Z(s) = (1/δ) + (1 + sλ)G(s) can be
verified graphically. From Lemma 14 (see the Appendix), Z(s) is SPR if

1

δ
+ Re[G(jω)]− λωIm[G(jω)] > 0, ∀ω ∈ [−∞,∞], (13)

where G(jω) = Re[G(jω)] + jIm[G(jω)]. If the plot of Re[G(jω)] versus ωIm[G(jω)],
with ω as a parameter, lies to the right of the the line intercepting the point (−1/δ) with
a slope 1/λ, then condition (13) is satisfied. The graphical representation of the Popov
Criterion is illustrated in Fig. 5.

Figure 5: Representation of the Popov Criterion.

Font: Adapted from (KHALIL, 2002).
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Note that the axis of the Popov plot are different from those of the Nyquist plot. If
condition (13) is satisfied only for the open interval ω ∈ (−∞,∞), while the left-hand
side approaches zero as ω → ∞, e.g. in the case when δ = ∞ and G(s) has relative
degree two, then one needs also to verify that

lim
ω→∞

ω2

{
1

δ
+ Re[G(jω)]− λωIm[G(jω)]

}
> 0. (14)

Note also that if λi = 0, the conditions of Circle criterion are recovered for the case
φ ∈ [0, δ]. From the KYP Lemma, M + (I + sΛ)G(s) is SPR if and only if there exists
a positive definite symmetric matrix P , matrices W and L and a positive constant ε, such
that

PA+ ATP = −LTL− εP (15)

PB = (C + ΛCA)T − LTW (16)

W TW = 2M + ΛCB +BTCTΛ. (17)

In particular, if (15)-(17) holds, the asymptotic stability of the system (12) is certified

by the Lyapunov function V = (1/2)xTPx +
m∑
i=1

λi

∫ yi

0

φi(s)ds, which is known as a

Lure-Postnikov function. In the case that φ satisfies the sector condition only for y ∈
Y0 ⊂ Rm, then the previous analysis is valid only in a neighbourhood of the origin.

However, despite the importance of both Circle and Popov approaches, they are not
suitable to deal with more complex formulations, such as, for example, the introduction
of the sampling effect or uncertainties on Lure systems. In the sequence, we present a
brief discussion of the Lyapunov-based approaches, which are more flexible in this sense.

2.2.1.3 Lyapunov-Based Approaches

Alternatively to the frequency-based approaches provided for instance by the Circle
and Popov criteria, one can use the Lyapunov’s theory to determine if the origin of the
Lure system is absolutely stable. Here, we refer to the Lyapunov’s direct method, which
consists in searching for a Lyapunov function such that the stability of the nonlinear sys-
tem can be assessed (for more details, see the appendix).

For this, consider a continuous-time system given, for example, by (5) and let V :

Dx → R+ be a continuously differentiable function defined in a domain Dx ⊂ Rn that
contains the origin, with V (0) = 0 and V (x) > 0 in Dx−{0}. If the time derivative of V
in respect to time denoted by V̇ (x) is negative, then V will decrease along the solutions of
the system. From this, we conclude that if V̇ ≤ 0 in Dx, then x = 0 is stable. Moreover,
if V̇ < 0, then x = 0 is asymptotically stable. If these conditions are satisfied, then
this function is a Lyapunov function. Note, however, that the existence of a LF provides
only sufficient, not necessary conditions for stability. For the case when Dx = Rn, then
there is an interest in study global stability properties of the system. Otherwise, when
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global stability can not be assessed, then the analysis of stability is focused only for a
region in the neighbourhood of the origin. Moreover, the sector conditions are frequently
incorporated in the inequalities V (x) > 0 and V̇ (x) < 0 through S-Procedure (see the
Appendix) as done in (CASTELAN; TARBOURIECH; QUEINNEC, 2008), aiming to
satisfy them only for nonlinearities φ that belongs to the sector, allowing to obtain less
conservative and numerically tractable conditions.

In this context, different classes of LFs have been considered to study Lure sys-
tems, like quadratic ones (KHALIL, 2002), (CASTELAN; TARBOURIECH; QUEIN-
NEC, 2008), (GOMES DA SILVA JR et al., 2013), quadratic functions with respect to the
state, with crossed terms between the state and the nonlinearity (GONZAGA; JUNGERS;
DAAFOUZ, 2012), Lure-Postnikov LFs (HADDAD; KAPILA, 1995), (PARK; BAN-
JERDPONGCHAI; KAILATH, 1998), (PARK, 2002), Lure-Postnikov LFs with compo-
nents on both the states and nonlinearities (SUYKENS; VANDEWALLE; DE MOOR,
1998), (TURNER; KERR, 2014), composite LFs (HU; HUANG; LIN, 2004) and gener-
alized Lure function (VALMORBIDA; DRUMMOND; DUNCAN, 2018).

It is desirable that for a given function, stability and stabilization conditions can be
formulated as convex optimization problems. As observed in most of the works men-
tioned above, the stability constraints are generally written as linear matrix inequalities,
which are convex on the decision variables, and therefore can be easily solved numerically
through Semi-Definite Programming (SDP) tools. It should, however, be highlighted that
the derived conditions are applied to continuous-time systems or discrete-time ones. For
systems with sampled-data control, new approaches are required for a formal stability
assessment.

In what follows, we give a brief review on the works concerning sampled-data Lure
systems, which are the focus of this dissertation, highlighting the main points of each ap-
proach. In (HAO; ZHAO, 2010) and (ZENG et al., 2011), the stability of a Lure system
with time-varying network-induced delays is assessed through a Lyapunov-Krasovskii
functional-based method, which requires the positivity of the quadratic part and does not
take into account informations about the nonlinearity as well its possible slope restric-
tions. These works employs a state-feedback law delayed in time. In (LOUIS; JUNGERS;
DAAFOUZ, 2015), the stability issue of Lure systems governed by a control law sta-
bilising their forward Euler approximate model is investigated. Although the obtained
conditions are LMIs, this approach is limited to periodic control updates. In (SEIFUL-
LAEV; FRADKOV, 2013), the authors derive stability conditions by using a Lyapunov-
Krasovskii functional and a state feedback sampled-data control law in the framework of
the input-delay approach. The cases of both periodic and aperiodic sampling are covered,
and conditions for exponential stability are provided. An extension of the results regard-
ing uncertain systems is given in (SEIFULLAEV; FRADKOV, 2016) and in (SEIFUL-
LAEV; FRADKOV, 2015), the authors use an approach from the standpoint of systems
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passification, with control by static output feedback.
Finally, in (ZANI; FLORES; GOMES DA SILVA JR., 2018) the authors conducted

a study on the master-slave synchronization problem of chaotic Lure systems subject to
aperiodic sampled-data control with nonlinearities described by a piecewise-linear func-
tion. Stability conditions are derived by using similar theoretical tools to those will be
employed in this work, such as a Lure-type functions and looped-functionals. However,
we emphasize that this work cover a wider class of nonlinearities, also differing in the
consideration of the slope restrictions, which allow us to incorporate new terms on the
functional. Combining this with the use of a generalized Lure-type function (which will
be applied for the first time for stability analysis of sampled-data controlled Lure systems),
less restrictive conditions can be obtained, thus potentially reducing the conservatism of
the approach.

2.3 Final Comments

The literature review presented in this chapter assists to understand how stability anal-
ysis is generally assessed by considering a particular class of nonlinear systems denomi-
nated Lure systems. Modelling techniques and approaches are presented and discussed.

However, as exposed in the previous sections, few studies regarding the stability and
stabilization of sampled-data controlled Lure systems with aperiodic control updates have
been conducted. Motivated by the above facts, our contributions will stand on the devel-
opment of new stability conditions in the looped-functional framework.

The contents of the next chapters are composed of these contributions, starting from
the representation of the Lure system in the sampled-data context. Based on a generalized
Lure function, a particular looped-functional and a generic control law that consider the
feedback of both the states and the nonlinearities, preliminary results are presented in
Chapter 3, which leads to stability and stabilization conditions in both global and regional
contexts in the further chapters.
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3 PROBLEM FORMULATION AND PRELIMINARIES

3.1 Introduction

This chapter will present the mathematical formulation of a sampled-data controlled
Lure system composed of an LTI plant evolving in continuous-time, with nonlinearities
assumed to be both sector and slope restricted. In the sampled-data context, the signals
of the plant are acquired at periodic or aperiodic time intervals and then sent to a digital
controller, which delivers inputs that are held constant between two successive sampling
instants to the Lure system aiming its stabilization. More specifically, we are interested in
the case where the admissible variation of the sampling instants are delimited by a lower
and an upper bound.

Regarding the studied Lure system, we present conditions to guarantee the existence
and uniqueness of a solution for the algebraic loop contained in the argument of the non-
linearity and we recall the classical sector conditions, which are useful for incorporating
the sector and slope restrictions into the analysis. These are fundamental elements to
introduce the looped-functional approach that will allow us to assess the stability of the
sampled-data Lure system. From the above mentioned, we provide base theorems for
assessing the stability of the sampled-data closed-loop system in both global and regional
contexts. Finally, in order to derive testable conditions in the next chapters, we introduce
a new class of looped-functionals that takes into account the Lure nonlinearity and recall
the generalized Lure function proposed in (VALMORBIDA; DRUMMOND; DUNCAN,
2018).

3.2 Problem Formulation

Consider the continuous-time plant described by the following Lure system:ẋ(t) = Ax(t) +Buu(t) +Bφφ(y(t))

y(t) = Cx(t) +Dφφ(y(t))
, (18)

where x ∈ Rn represents the states of the plant, u ∈ Rq represents the control input
and y ∈ Rm is the argument of the nonlinearity φ. Matrices A ∈ Rn×n, Bu ∈ Rn×q,
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Bφ ∈ Rn×m, C ∈ Rm×n, Dφ ∈ Rm×m are known and constant.

The nonlinearity φ : Y → Rm, Y ⊆ Rm is assumed to be time-invariant, memo-
ryless, Lipschitz on Y , decentralized, sector bounded and slope restricted, i.e., φ(y) =

[φ1(y1), . . . , φm(ym)]T , with φi(yi) satisfying, ∀i = 1, . . . ,m:

φi(0) = 0 (19a)

φi(yi)

yi
∈ [δi, δi], ∀y ∈ Y0 ⊆ Y (19b)

∂φi(yi) ∈ [γ
i
, γi], ∀y ∈ Y0 ⊆ Y , (19c)

where δi ∈ R, δi ∈ R, δi ≤ δi are, respectively, the lower and upper sector bounds for
the ith nonlinearity and γ

i
∈ R, γi ∈ R, γ

i
< γi are, respectively, the lower and upper

slope bounds for the ith nonlinearity. From these bounds, denote ∆ , diag(δ1, . . . , δm),
∆ , diag(δ1, . . . , δm), Γ , diag(γ

1
, . . . , γ

m
) and Γ , diag(γ1, . . . , γm) to express the

sector and slope conditions in matrix format. The Lipschitz assumption on φ implies that
∂φi(yi) = dφi

dyi
almost everywhere, relaxing the requirement for the nonlinearity to be

continuously differentiable.

We suppose that the control signal u is computed by a digital controller and is up-
dated at sampling instants denoted by tk, remaining constant between two successive
sampling instants through a zero-order holder (ZOH). In particular, we consider the fol-
lowing sampled-data control law:

u(t) = Kxx(tk) +Kφφ(y(tk)), ∀t ∈ [tk, tk+1), (20)

where Kx ∈ Rq×n, Kφ ∈ Rq×m. At the sampling time tk, k ∈ N, the plant state x(tk)

is sent to the controller and the control law is computed. Then, the control signal is sent
back to the plant to be used as soon as it arrives. Note that φ(y(tk)) can be obtained by
solving the implicit equation y(tk)−Dφφ(y(tk)) = Cx(tk), which will be detailed in the
sequence.

We consider the generic case of aperiodic sampling, and we assume that there exist
two positive scalars T1 ≤ T2, such that the difference between two successive sampling
instants Tk = tk+1 − tk satisfies

0 < T1 ≤ Tk ≤ T2, ∀k ∈ N. (21)

Thus, {tk}k∈N is an increasing sequence of positive scalars such that
⋃
k∈N[tk, tk+1) =

[0,+∞). Note that the periodic sampling appears as a particular case, in which Tk must
have the same value ∀k ∈ N, i.e., Tk = T1 = T2, ∀k. In a networked control context, the
bounds T1 and T2 can represent, for instance, network conditions that can affect sampling
rate, e.g. lag induced by computer operating system or communication protocol.

Figure 6 shows a block diagram of the controlled system.
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Figure 6: Structure of the closed-loop system, ∀t ∈ [tk, tk+1).

Font: Author.

Remark 2. Note that the generic control law (20) allows to use information about the

nonlinearities (CASTELAN; TARBOURIECH; QUEINNEC, 2008) through the termKφφ.

As we assume that the states can be measured and φ is a function of x, if the nonlinearities

are known they can be directly evaluated by the controller by solving the implicit equation

in (18), thus obtaining φ(y(tk)). However, if the nonlinearities are unknown or cannot be

measured, the control law becomes simply a linear state-feedback, i.e., Kφ = 0.

3.2.1 Algebraic Loop

From system (18), note that the second equation is an implicit one, as we consider
that y depends also on φ(y) if Dφ 6= 0, which characterizes an algebraic loop. The
well-posedness of this algebraic loop is guaranteed if there exists a unique solution to
the implicit equation F (y) , y − Dφφ(y) = Cx, that is, a mapping y(Cx) satisfying
F (y(Cx)) = Cx. In (VALMORBIDA; DRUMMOND; DUNCAN, 2018) it is shown
that for functions φ that are differentiable almost everywhere, a condition for the algebraic
loop to be well-posed is that the Jacobian of F (y), JF (y) = I −Dφ∂φ(y), belongs to a
compact and convex set of invertible (nonsingular) matrices for almost all values of y.

Given the slope restriction of φ in (19c) for almost all y, we have that JF (y) ∈
M , co({I −DφΓ,Γ ∈ G}), where

G , {Γ ∈ Dm : Γ = diag(γ1,γ2, . . . ,γm),γi ∈ [γ
i
, γi],∀i}.

From the above, we have that the setM is convex and compact. The following propo-
sition provides conditions for the matrices in the setM to be nonsingular, thus guaran-
teeing that the solution to the algebraic loop exists and is unique.
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Proposition 1. (VALMORBIDA; DRUMMOND; DUNCAN, 2018). Assume that (I −
DφΓ) is nonsingular. If there exists a matrix N ∈ Dm

�0, such that

2N − He{N(I −DφΓ)−1Dφ(Γ− Γ)} � 0,

then the algebraic loop F (y) = y − Dφφ(y) = Cx is well-posed for all matrices Γ

belonging to the set G.

Proof. If (I −DφΓ) is singular, then there exists z ∈ Rm, z 6= 0 such that

0 = (I −DφΓ)z = ((I −DφΓ)−Dφ(Γ− Γ))z

= (I −DφΓ)z − (Dφ(Γ− Γ)(Γ− Γ)−1(Γ− Γ))z.

Define z , (Γ− Γ)−1(Γ− Γ)z to obtain

(I −DφΓ)[z − (I −DφΓ)−1Dφ(Γ− Γ)z] = 0.

Multiply the above expression on the left by zTN(I −DφΓ)−1 to obtain

zTNz − zTN(I −DφΓ)−1Dφ(Γ− Γ)z = 0. (22)

Since for γ
i
≤ γi < γi, 0 ≤ (γi − γ

i
)−1(γi − γ

i
) ≤ 1 and as Γ, Γ, Γ and N are

diagonal matrices, we have

zTNz = zT (Γ− Γ)−1(Γ− Γ)Nz ≥ zT (Γ− Γ)−2(Γ− Γ)2Nz = zTNz. (23)

Thus, if (I −DφΓ) is singular, by combining (22) and (23) we must have

zT
(
N − 1

2
He

{
N(I −DφΓ)−1Dφ(Γ− Γ)

})
z ≤ 0,

which contradicts the inequality of the claim. Hence, if the inequality in the claim holds,
the matrix (I −DφΓ) is nonsingular for any Γ ∈ G.

Provided Proposition 1 holds, we can define the following set

X0 = {x ∈ Rn | y ∈ Y0, F (y) = Cx}, (24)

whereY0 ⊆ Y ⊆ Rm corresponds to the set where the sector and slope restrictions defined
in (19) holds. If the sector (19b) and slope bounds (19c) hold globally, i.e., Y0 = Rm,
global properties are obtained by setting X0 = Rn.
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3.2.2 Sector Conditions

In this subsection, we present the inequalities verified by the sector and slope bounded
nonlinearity. The classical sector condition presented in Definition 1 is very convenient
to use in the analysis of stability of nonlinear systems, due to the fact that it can be easily
incorporated into LMIs restrictions, e.g. as demonstrated in (ARCAK; LARSEN; KOKO-
TOVIĆ, 2003), (CASTELAN; TARBOURIECH; QUEINNEC, 2008) and (VALMOR-
BIDA; DRUMMOND; DUNCAN, 2018). From this, define S∆ : Rm×m×Rm×Rm → R,
SΓ : Rm×m × Rm × Rm → R as

S∆(U, φ(κ), κ) , (φ(κ)−∆κ)TU(∆κ− φ(κ))

SΓ(U, φ̇(κ), κ̇) , (φ̇(κ)− Γκ̇)TU(Γκ̇− φ̇(κ)).

Then, we state the following lemmas:

Lemma 2. (KHALIL, 2002). If U1 ∈ Dm
�0 and φ : Y → Rm, Y ⊆ Rm, satisfies (19), then

S∆(U1, φ(κ), κ) ≥ 0, (25)

for all κ ∈ Y0 ⊆ Y .

Lemma 3. (VALMORBIDA; DRUMMOND; DUNCAN, 2018). If U2 ∈ Dm
�0 and φ : Y →

Rm, Y ⊆ Rm, satisfies (19), then

SΓ(U2, φ̇(κ), κ̇) ≥ 0, (26)

almost everywhere for κ ∈ Y0 ⊆ Y .

We emphasize that these inequalities will play a very important role to obtain condi-
tions to assess the stability of the closed-loop system (18)-(20).

3.3 Preliminary Results

In this section, we address the Lure problem through a looped-functional approach
for sampled-data systems, aiming to assess the stability of the origin of the system (18)
with the sampled-data control law (20). For this, two main theorems are presented, which
provide sufficient conditions to guarantee the asymptotic stability of the origin of the SDC
system, in a global and regional context, respectively. These theorems are inspired in the
works of (SEURET, 2012) and (SEURET; GOMES DA SILVA JR., 2012), and focuses
on the interconnections between the discrete and continuous-time Lyapunov theorems, as
sampled-data systems are naturally at the boundary of these two theories.

It is shown that if the time derivative of a positive function along the trajectories of the
continuous-time model is strictly negative, then a function V is strictly decreasing for the
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discrete-time asynchronous system. Differently from the Lyapunov-Krasovskii based ap-
proches, adopted for instance in (FRIDMAN; SEURET; RICHARD, 2004),
(NAGHSHTABRIZI; HESPANHA; TEEL, 2008), (FRIDMAN, 2010), this approach does
not require the positivity-definiteness of the functional for the global case.

3.3.1 Looped-Functional Approach

Define, as in (SEURET, 2012), xk(τ) , x(tk + τ), yk(τ) , y(tk + τ) and φk(τ) ,

φ(yk(τ)). Hence, the closed-loop behavior in the interval [tk, tk+1) can be described by:ẋk(τ) = Axk(τ) +Bφφk(τ) +Bu(Kxxk(0) +Kφφk(0))

yk(τ) = Cxk(τ) +Dφφk(τ), ∀τ ∈ [0, Tk),
(27)

where ẋk(τ) = d
dτ
xk(τ). In this representation, we introduce the variable τ , which ex-

presses the behavior of the closed-loop system between successive sampling instants.
When a update of the control arises, then τ is set to zero and then evolves continuously
in time until the next sampling tk+1. Fig. 7 illustrates the evolution of τ for periodic
sampling (Tk ∈ [2.0, 2.0]) and aperiodic sampling (Tk ∈ [0.001, 2.0]).

Figure 7 – Evolution of the variable τ : (a) periodic sampling case (b) aperiodic sampling
case.

Font: Author.

Using representation (27), and inspired by the results in (SEURET; GOMES DA
SILVA JR., 2012) for linear sampled-data control systems subject to actuator saturation,
we state the following theorem regarding the looped-functional approach that allows to
assess the closed-loop stability of a Lure-type system.
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Theorem 4. Consider system (18), with (19) being satisfied ∀y ∈ Rm, and the control

law (20), with Tk satisfying (21). Let V : Rn → R+ be a differentiable function for which

there exist real numbers µ1, µ2 > 0 and p > 1 such that

µ1‖x‖p ≤ V (x) ≤ µ2‖x‖p, ∀x ∈ Rn, (28)

and let W0 : [0,T2]×KT2 × [T1,T2]→ R be a continuous and differentiable functional,

which satisfies for all z(·) ∈ KT2
1 and for all Tk ∈ [T1,T2]

W0(Tk, z(·), Tk) = W0(0, z(·), Tk). (29)

Then, if

Ẇ (τ, xk, Tk) =
d

dτ
[V (xk(τ)) + W0(τ, xk, Tk)] < 0, (30)

∀k ∈ N, Tk ∈ [T1,T2] and τ ∈ [0, Tk) along the trajectories of (27), it follows that

(i) ∆V (k) = V (xk+1(0)) − V (xk(0)) = V (x(tk+1)) − V (x(tk))) < 0, ∀k ∈ N,

Tk ∈ [T1,T2];

(ii) The origin of the nonlinear closed-loop system composed by (18) and the sampled-

data control law (20) is globally asymptotically stable (GAS), i.e., it follows that

x(t)→ 0 as t→∞, ∀x(0) ∈ Rn.

Proof. First note that, by continuity of the system trajectories xk(Tk) = xk+1(0). Inte-
grating now (30) in the interval [0,Tk] and using (29), we conclude that this inequality
implies that ∆V (k) = V (xk+1(0)) − V (xk(0)) = V (x(tk+1)) − V (x(tk)) < 0, ∀k ∈ N.
Thus, we can conclude that xk(0) = x(tk)→ 0 as k →∞.

To conclude the proof, we need to show that x(t) is uniformly bounded ∀t ∈ [tk, tk+1),
∀k, and that the continuous-time trajectories also converge to the origin, i.e., x(t)→ 0 as
t → ∞. For this, note that as φi(yi)

yi
∈ [δi, δi], it follows that, ∀t, there exist scalars αi(t),

0 ≤ αi(t) ≤ 1 such that

φi(yi(t)) = [αi(t)δi + (1− αi(t))δi ]yi(t) = υi(t)yi(t), (31)

with υi(t) ∈ [δi, δi]. Thus, we can write φ(y(t)) = Υ(υ(t))y(t), with Υ(υ(t)) =

diag(υ1(t), υ2(t), . . . , υm(t)), υ(t) ∈ fυ = {υ ∈ Rm|δi ≤ υi ≤ δi, i = 1, . . . ,m}.
In this case, as the algebraic loop is supposed to be well-posed, we have y(t) = Cx(t) +

DφΥ(t)y(t), or equivalently

y(t) = (I −DφΥ(υ(t)))−1Cx(t). (32)

1We recall from the notations, that KT2
is the set of continuous functions from an interval [0,T2] to Rn.
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Hence, the closed-loop system can be represented by the following linear time-varying
system, ∀t ∈ [tk, tk+1)

ẋ(t) = Ax(t) +Bu(Kxx(tk) +Kφφ(y(tk))) +BφΥ(υ(t))(I −DφΥ(υ(t)))−1Cx(t).

(33)

Considering the lifted-variables, one has

ẋk(τ) = (A+BφΥ(υk(τ))(I −DφΥ(υk(τ)))−1C)xk(τ) +Bu(Kxxk(0) +Kφφk(0)).

(34)

Define υk(τ) , υ(tk + τ). For each admissible υk ∈ KT2 , such that υk(τ) ∈ fυ,
define the transition matrix for the system (33) as Ψυk(τ, s) , Ψυ(tk + τ, tk + s). Thus,
it follows that

xk(τ) = Ψυk(τ, 0)xk(0)+

∫ τ

0

Ψυk(τ, s)Bu

[
Kx Kφ

] [xk(0)

φk(0)

]
ds. (35)

Thus, we have that

‖xk(τ)‖ ≤ ‖Ψυk(τ, 0)‖ ‖xk(0)‖+
∥∥∥∥∫ τ

0

Ψυk(τ, s)ds

∥∥∥∥ ∥∥∥∥Bu

[
Kx Kφ

] [xk(0)

φk(0)

]∥∥∥∥
≤
(
‖Ψυk(τ, 0)‖+

∥∥∥∥∫ τ

0

Ψυk(τ, s)ds

∥∥∥∥(‖BuKx‖

+ ‖BuKφ‖ ‖Υ(υk(0))(I −DφΥ(υk(0)))−1C||
))
‖xk(0)‖

≤
(
‖Ψυk(τ, 0)‖+

∫ T2

0

‖Ψυk(τ, s)ds‖
(
‖BuKx‖

+ ‖BuKφΥ(υk(0))(I −DφΥ(υk(0)))−1C‖
))
‖xk(0)‖. (36)

As υk(τ) ∈ fυ, ∀τ ∈ [0,T2], there exist a scalar µΨ,

µΨ = sup
υk ∈ KT2

s.t. υk(τ) ∈ fυ

(
‖Ψυk(τ, 0)‖+

∫ T2

0

‖Ψυk(τ, s)ds‖(‖BuKx‖+ ‖BuKφµυ‖)
)
, (37)

with µυ = maxυ ∈fυ ‖Υ(υ)(I−DφΥ(υ))−1C‖, such that ‖xk(τ)‖ ≤ µΨ‖xk(0)‖. Hence,
if xk(0) → 0 as k → ∞, i.e., x(tk) → 0 as k → ∞, then x(tk + τ) = xk(τ) → 0 as
k →∞, ∀τ ∈ [0, Tk), that is x(t) = x(tk + τ)→ 0 as t→∞.

Basically, the idea of Theorem 4 is to ensure that a function V is strictly decreasing
at the sampling instants, i.e., ∆V (k) < 0, ∀k, and that between the sampling instants
the trajectories are uniformly bounded, which ensures the convergence of the continuous-
time trajectories to the origin. In this case, this is achieved by ensuring the positivity of V
and Ẇ < 0.
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A graphical illustration of the proof of Theorem 4 is shown in Fig. 8. Observe that
W0 decreases continually with the sequence of samplings and coincides with the function
V at the sampling instants. Furthermore, the introduction of the functional allows V to be
locally increasing, as it need to be decreasing only at the sampling instants.

Figure 8: Illustration of the proof of Theorem 4.

Font: Adapted from (SEURET, 2012) and (SEURET; GOMES DA SILVA JR., 2012).

When the nonlinearities does not hold the sector conditions globally, regional stability
conditions are provided by the following theorem, which is similar to the ones presented
in (MOREIRA et al., 2019) and (PALMEIRA; GOMES DA SILVA JR; FLORES, 2020).

Theorem 5. Consider system (18), with (19) being satisfied ∀y ∈ Y0 ⊂ Rm and Y0 as

defined in (7), and the control law (20), with Tk satisfying (21). Consider a compact

domain Dx ⊆ X0 ⊂ Rn containing the origin and let V : Rn → R+ be a differentiable

function for which there exist real numbers µ1, µ2 > 0 and p > 1 such that

µ1‖x‖p ≤ V (x) ≤ µ2‖x‖p, ∀x ∈ Dx − {0}. (38)

Let L(V, ρ) = {x ∈ Rn|V (x) ≤ ρ}, with ρ > 0, be the level sets of V and a

continuous-time functional W0 : [0,T2]×KT2 × [T1,T2]→ R+, such that

W0(0, xk, Tk) = W0(Tk, xk, Tk) = 0,

W0(τ, xk, Tk) > 0,∀τ ∈ [0, Tk),∀Tk ∈ [T1,T2], ∀xk such that xk(τ) ∈ Dx − {0}.
(39)

Define W (τ, xk, Tk) = V (xk(τ)) + W0(τ, xk, Tk) and let Ẇ (τ, xk, Tk) be the deriva-

tive of W (τ, xk, Tk) with respect to τ . If the inequality

Ẇ (τ, xk, Tk) < 0 (40)

is satisfied for xk(τ) ∈ Dx ⊂ Rn, ∀τ ∈ [0, Tk), ∀Tk ∈ [T1,T2], ∀k ∈ N, then for any

initial condition x(0) = x0(0) lying inside any level set L(V, ρ) ⊂ Dx, it follows that:
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(i) ∆V (k) = V (xk+1(0))− V (xk(0)) < 0, ∀k ∈ N;

(ii) The corresponding trajectories of the closed-loop system, formed by (18) and (20)

never leave L(V, ρ) and converge asymptotically to the origin.

Proof. Suppose that x(0) = x0(0) ∈ ∂L(V, ρ) ⊂ Dx and that (40) is satisfied. Then, it
follows that

W (τ, x0, T0) < W (0, x0, T0), ∀τ ∈ (0, T0]. (41)

Taking into consideration (41) and the properties of W0 stated in (39), it follows that
V (x0(τ)) < W (τ, x0, T0) < W (0, x0, T0) = V (x0(0)), ∀τ ∈ (0, T0], implying that
x0(τ) ∈ L(V, ρ) ⊂ Dx, ∀τ ∈ (0, T0]. Now, integrating (40) over the interval [0, T0] and
considering (39), one obtains that V (x0(T0))− V (x0(0)) < 0. Noting now by continuity
of trajectories that x0(T0) = x1(0), we conclude that ∆V (0) < 0 and thus V (x1(0)) <

V (x0(0)), which implies that V (x1(0)) < ρ, i.e., x1(0) ∈ ∂L(V, ρ1) ⊂ L(V, ρ) for some
ρ1 < ρ. Repeating this reasoning for k = 1, 2, . . . ,∞, it follows that ∆V (k) < 0,
∀k ∈ N, which proves item (i). As a consequence, it follows that limk→∞ xk(0) =

limk→∞ x(tk) = 0. Moreover, since V (xk(τ)) < V (xk(0)), we conclude that L(V, ρ)

is a positively invariant set and, as from (i) limk→∞ V (xk(0)) = 0, we conclude that
limk→∞ V (xk(τ)) = 0 and hence xk(τ) → 0 for k → ∞, which concludes the proof of
item (ii).

Remark 3. Differently from Theorem 4, here we need a functional that is positive definite

and satisfies W0(0, xk, Tk) = W0(Tk, xk, Tk) = 0, to ensure that the trajectories do not

leave Dx between two sampling instants. Note however that function V is not required to

be strictly decreasing with respect to the continuous-time trajectory, which implies that

L(V, ρ) is positively invariant but not continuously contractive.

In this work, we will use the following functional to derive the stability and stabiliza-
tion conditions presented in the next chapters:

W0(τ, xk, Tk) = (Tk − τ)τ

[
xk(0)

φk(0)

]T
X

[
xk(0)

φk(0)

]

+(Tk − τ)

{∫ τ

0

ẋTk (θ)Rxẋk(θ)dθ +(xk(τ)− xk(0))T [Fx(xk(τ)− xk(0))+ 2Gxxk(0)]

}
+(Tk − τ)

{∫ τ

0

φ̇Tk (θ)Rφφ̇k(θ)dθ +(φk(τ)− φk(0))T [Fφ(φk(τ)− φk(0))+ 2Gφφk(0)]

}
(42)

with Fx ∈ Sn, Gx ∈ Rn×n, X ∈ Sn+m, Fφ ∈ Sm, Gφ ∈ Rm×m, Rx ∈ Sn�0 and Rφ ∈ Sm�0.
Its inspiration came from previous works in the literature. The terms Fx and Gx were
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firstly introduced in the work of NAGHSHTABRIZI; HESPANHA; TEEL (2008). The
integral term was considered in (FRIDMAN, 2010). The term τ(Tk − τ)xk(0)TXxk(0)

was presented by (SEURET, 2012). Our contribution stands on the terms depending on
the nonlinearity φ, which allows to take into account the slope bounds of the nonlineari-
ties that may lead to less conservative results. Regarding the conditions for the functional
stated in Theorem 4, since (Tk − τ) = 0 when τ = Tk and xk(τ) − xk(0) = 0 when
τ = 0, it follows that this functional satisfies (29). Moreover, it is continuous at all sam-
pling instants and differentiable over [0, Tk). Observe that the looped-functional approach
focuses on the behavior of the intersampling intervals, i.e., for t ∈ [tk, tk+1), ∀k, which
the evolution of the closed-loop system in time is mapped to the lifted domain through
the variable τ ∈ [0, Tk).

Finally, to evaluate the conditions stated in the previous theorems, one needs to choose
a candidate function V . This subject will be discussed in the sequence.

3.3.2 Generalized Lure Lyapunov Function

Consider the generalized Lure function VLG : Rn → R+, proposed in (VALMOR-
BIDA; DRUMMOND; DUNCAN, 2018) and defined as follows:

VLG(x) , VQG(x) +
m∑
i=1

λi

∫ yi

0

(φi(s)− δis)ds, (43)

where yi = Cix+Dφiφ(y), i = 1, . . . ,m and

VQG(x) ,

[
x

φ(y)

]T [
P11 P12

P T
12 P22

][
x

φ(y)

]
. (44)

This function is an extended version of the traditional Lure function, where the matrix
P and the scalars λi (also known as Lure-Postnikov coefficients), Λ , diag(λ1, . . . ,λi),
i = 1, . . . ,m, are necessarily positive definite. Note that this form does not require the
positive-definiteness of P , nor the non-negativity of the coefficients λi (VALMORBIDA;
DRUMMOND; DUNCAN, 2018).

As discussed in (VALMORBIDA; DRUMMOND; DUNCAN, 2016) and (VALMOR-
BIDA; DRUMMOND; DUNCAN, 2018), the function (43) is a generalization of the fol-
lowing LF considered in (TURNER; KERR, 2014):

V̂ (x) =

[
x

φ(y)

]T
P̂

[
x

φ(y)

]
+

4∑
j=1

m∑
i=1

µj,i

∫ yi(x)

0

gj,i(s)ds, (45)

where g1,i(s) , φi(s), g2,i(s) , δis − φi(s), g3,i(s) , (γi − ∂φi(s))s, g4,i(s) ,

∂φi(s)(δis− φi(s)), with P̂ � 0 and µj,i ≥ 0, i = 1, . . . ,m, j = 1, . . . , 4.
In this case, the positivity-definiteness of the function VLG(x) defined in (43) should

be ensured by other means, as stated in the following lemma.
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Lemma 4. (VALMORBIDA; DRUMMOND; DUNCAN, 2018). Consider VLG in (43)

where φ satisfies (19a)-(19b) and Proposition 1 holds. If there exists a matrix Λ̃ ∈ Dm
�0

such that

Λ � −Λ̃, (46)

VQG(x)− 1

2
yT (∆−∆)Λ̃y > 0, ∀x ∈ X0, (47)

then VLG(x) > 0, ∀x ∈ X0 ⊂ Rn.

Proof. The idea is to use (46) to obtain a positive definite lower bound for (43) as follows.
We assume the well-posedness of the algebraic loop for all x ∈ X0. First, note that the
following relation holds:

VLG(x) = VQG(x) +
m∑
i=1

λi

∫ yi

0

(φi(s)− δis)ds

≥ VQG(x)−
m∑
i=1

λ̃i

∫ yi

0

(φi(s)− δis)ds

= VQG(x)−
m∑
i=1

λ̃i

∫ yi

0

(φi(s)− δis)ds−
1

2
yT (∆−∆)Λ̃y

= VQG(x)−
m∑
i=1

λ̃i

∫ yi

0

φi(s)ds−
1

2
yT (∆−∆−∆)Λ̃y

= VQG(x) +
m∑
i=1

λ̃i

∫ yi

0

(δis− φi(s))ds−
1

2
yT (∆−∆)Λ̃y. (48)

Hence, from (47) and the fact that

m∑
i=1

λ̃i

∫ yi

0

(δis− φi(s))ds ≥ 0,

we can conclude that VLG(x) > 0, provided (46) and (47) are satisfied.

A relaxed version of Lemma 4, considering the coupling between x and φ (through y)
can be stated as follows.

Lemma 5. (VALMORBIDA; DRUMMOND; DUNCAN, 2018). Assume that (46) is satis-

fied. If there exist a matrix U0 ∈ Dm
�0 such that

VQG(x)− 1

2
yT (∆−∆)Λ̃y − S∆(U0, φ, y) > 0, (49)

then VLG(x) > 0, ∀x ∈ X0 ⊂ Rn.

Proof. Assume that (46) is satisfied. From Lemma 2, we have that if x ∈ X0, then
S∆(U0, φ, y) ≥ 0 and thus VQG(x)− 1

2
yT (∆−∆)Λ̃y > S∆(U0, φ, y) ≥ 0.
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The generalized function VLG(x) will be used along the work to derive stability condi-
tions. In order to show the potential advantage and the conservatism reduction induced by
the generalized Lure function, we present along this work results considering particular
structures of the function VLG(x) defined in (43) that have been used in the literature, as
detailed in Table 1.

Table 1: Particular structures of the generalized Lure function.
Function VLG with

VQ = xTP11x P12 = 0, P22 = 0, λi = 0,∀i

VQG =

[
x

φ(y)

]T [
P11 P12

PT12 P22

][
x

φ(y)

]
λi = 0,∀i

VL = xTP11x+

m∑
i=1

λi

∫ yi

0

(φi(s)− δis)ds P12 = 0, P22 = 0, λi > 0, ∀i

VR =

[
x

φ(y)

]T [
P11 P12

PT12 P22

][
x

φ(y)

]
+

m∑
i=1

λi

∫ yi

0

φi(s) ds λi > 0, δi = 0,∀i

More specifically, we evaluate the feasibility of the inequalities such that them also
hold, for instance, for a quadratic function VQ(x), for a generalized quadratic function
VQG(x) and for a Lure-Postnikov function VL(x). Note that we also introduced the func-
tion VR(x), which will be used later to derive stabilization conditions.

3.4 Final Comments

In this chapter, it was presented a formal representation of a Lure system with sampled-
data control, subject to aperiodic sampling and nonlinearities that are sector and slope
restricted. We have introduced some aspects related to the sector inequalities and then we
have stated the looped-functional approach, which provides sufficient conditions to assess
the stability of the closed-loop system. This approach aims at linking the continuous and
discrete-time Lyapunov theories, which main objective is to ensure that a positive func-
tion is strictly decreasing at the sampling instants, thus guaranteeing the convergence of
the trajectories of the continuous-time system to the origin.

Based on this theoretical foundation, the main contribution from this chapter are the
Theorem 4 and the Theorem 5, concerning respectively to the global and local stability
assessment of the closed-loop system composed by a Lure system and a sampled-data
control law. Regarding these, we have introduced a novel class of functionals which main
feature is on the terms that depend on the nonlinearities and their derivatives and we have
presented a generalized Lure function that does not require the positivity of the quadratic
part, nor of the Lure-Postnikov coefficients.

From these elements and the results of Theorem 4 and Theorem 5, in the next chapters
we will provide LMI conditions to analyse and synthesize sampled-data feedback laws in
order to ensure the stability of the closed-loop system.
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4 STABILITY ANALYSIS

4.1 Introduction

This chapter concerns the stability analysis of the sampled-data closed-loop control
system presented in Fig. 6, formally expressed byẋ(t) = Ax(t) +Bu(Kxx(tk) +Kφφ(y(tk))) +Bφφ(y(t))

y(t) = Cx(t) +Dφφ(y(t))
, for t ∈ [tk, tk+1). (50)

In this case, we assume thatKx andKφ are given i.e., they were previously computed.
Recapitulating the last chapter, Theorem 4 and Theorem 5 were presented to provide suf-
ficient conditions to ensure the stability of the sampled-data controlled system, in both
global and regional contexts, respectively, through a looped-functional approach. Based
on these results, the idea here is to derive testable conditions in the form of linear matrix
inequalities by considering a particular looped-functional defined in (42) and a general-
ized Lure function given in (43).

Section 4.2 addresses the stability problem through a global perspective, i.e, it deals
with the case where the sector and slope restrictions hold globally. The obtained condi-
tions allow to formulate optimization problems regarding the maximization of the upper
intersampling bound, the maximal jitter over a nominal sampling time or the admissible
sector bounds on the nonlinearities for which global stability is guaranteed.

Section 4.3 focuses on the regional stability analysis, which comprehends the case
where the sector conditions hold only locally. From this, we present optimization prob-
lems in order to provide the highest estimates of the region of attraction while maximizing
the upper intersampling bound, the jitter or the sector bounds.

Along this chapter, numerical examples are provided to highlight the potentialities of
the method.

4.2 Global Results

In this section, we derive conditions in the form of linear matrix inequalities to assess
the global asymptotic stability of the origin of the sampled-data closed-loop system (50),
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under aperiodic sampling satisfying Tk ∈ [T1,T2] and considering that the nonlinearities
satisfy the sector and slope conditions given in (19) globally, i.e., they hold ∀y ∈ Rm.
These are given by the following theorem.

Theorem 6. For given 0 < T1 ≤ T2, assume that there exist matrices P ∈ Sn+m, Λ ∈ Dm,

Λ̃ ∈ Dm
�0, Uh ∈ Dm

�0, h = 0, . . . , 3, Fx ∈ Sn, Gx ∈ Rn×n, Fφ ∈ Sm, Gφ ∈ Rm×m,

Rx ∈ Sn�0, Rφ ∈ Sm�0, Qx ∈ R(3n)×n, Qφ ∈ R(3m)×m, X ∈ Sn+m, L ∈ R3(n+m)×n that

satisfy, for i = 1,2:

Ψ1(Ti) = Π1 + TiΠ2 + TiΠ3 ≺ 0 (51)

Ψ2(Ti) =

Π1 − TiΠ3 TiM
T
135Qx TiM

T
246Qφ

? −TiRx 0

? ? −TiRφ

 ≺ 0 (52)

Λ � −Λ̃ (53)

P − 1

2

[
CT

DT
φ

]
(∆−∆)Λ̃

[
C Dφ

]
+ He

{
1

2

[
(∆C)T

(∆Dφ − I)T

]
U0

[
∆C (∆Dφ − I)

]}
� 0,

(54)

with

Π1 = He{MT
12PM34} −MT

15FxM15 −MT
26FφM26 − He{MT

26GφM6} − He{MT
15GxM5}

− He

{
1

2
(MT

1 (∆C)T +MT
2 (∆Dφ − I)T )ΛCM3

}
− He

{
1

2
(MT

1 (∆C)T +MT
2 (∆Dφ − I)T )ΛDφM4

}
+ He{MT

2 (I − (∆Dφ)T )−MT
1 (∆C)T )U1(∆CM1 + (∆Dφ − I)M2)}

+ He{MT
4 (I − (ΓDφ)T )−MT

3 (ΓC)T )U2(ΓCM3 + (ΓDφ − I)M4)}

+ He{MT
6 (I − (∆Dφ)T )−MT

5 (∆C)T )U3(∆CM5 + (∆Dφ − I)M6)}

− He{MT
135QxM15} − He{MT

246QφM26}+ He{LM0}

Π2 = MT
3 RxM3 + He{MT

3 (FxM15 +GxM5)}+ He{MT
4 (FφM26 +GφM6)}

+MT
4 RφM4

Π3 = MT
56XM56, (55)
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where1

M0 = [A Bφ − I 0 BuKx BuKφ]

M1 = [I 0 0 0 0 0] M2 = [0 I 0 0 0 0] M3 = [0 0 I 0 0 0]

M4 = [0 0 0 I 0 0] M5 = [0 0 0 0 I 0] M6 = [0 0 0 0 0 I]

M15 = M1 −M5 M26 = M2 −M6

M12 = [MT
1 MT

2 ]T M34 = [MT
3 MT

4 ]T M56 = [MT
5 MT

6 ]T

M135 = [MT
1 MT

3 MT
5 ]T M246 = [MT

2 MT
4 MT

6 ]T .

Then the origin of the sampled-data closed-loop system (50) with φ satisfying (19)

and Tk ∈ [T1,T2] is globally asymptotically stable.

Proof. Considering the result of Theorem 1, the idea is to prove that (29) and (30) are
satisfied, ∀k ∈ N, considering W0 as given in (42) and a generalized Lure-type function
(43).

It is straightforward to prove that the positivity of V is implied by the inequalities (53)
and (54) using Lemma 2 and Lemma 5. Note that by left and right multiplying (54) by[
x

φ

]T
and

[
x

φ

]
, respectively, and considering the sector conditions (19) it follows that (49)

is satisfied. Furthermore, as seen in Chapter 3, the functional W0 given in (42) satisfies
the condition (29). Moreover, it is continuous at all sampling instants and differentiable
over [0, Tk). The rest of the proof consists in showing that (51)-(52) imply (30). With this
aim, the expression of Ẇ = dW

dτ
is given as follows:

Ẇ (τ, xk, Tk) = 2

[
xk(τ)

φk(τ)

]T
P

[
ẋk(τ)

φ̇k(τ)

]
− [(xTk (τ)(∆C)T + φTk (τ)(∆Dφ − I)T )ΛC]ẋk(τ)

− [(xTk (τ)(∆C)T + φTk (τ)(∆Dφ − I)T )ΛDφ]φ̇k(τ)

− (xk(τ)− xk(0))T [Fx(xk(τ)− xk(0)) + 2Gxxk(0)] + (Tk − 2τ)

[
xk(0)

φk(0)

]T
X

[
xk(0)

φk(0)

]

+ (Tk − τ)ẋTk (τ)[Rxẋk(τ) + 2Fx(xk(τ)− xk(0)) + 2Gxxk(0)]−
∫ τ

0

ẋTk (θ)Rxẋk(θ)dθ

− (φk(τ)− φk(0))T [Fφ(φk(τ)− φk(0)) + 2Gφφk(0)]

+ (Tk − τ)φ̇Tk (τ)[Rφφ̇k(τ) + 2Fφ(φk(τ)− φk(0)) + 2Gφφk(0)]−
∫ τ

0

φ̇Tk (θ)Rφφ̇k(θ)dθ.

(56)

Using the sector conditions defined in Lemma 2 and Lemma 3, we have that

Ẇ (τ, xk, Tk) < Ẇ (τ, xk, Tk) + 2S∆(U1, φk(τ), yk(τ)) + 2SΓ(U2, φ̇k(τ), ẏk(τ))

+ 2S∆(U3, φk(0), yk(0)), (57)

1The matrices M0, . . . ,M6 are not of the same dimension. The notations 0 and I correspond to the zero
and identity matrices of appropriate dimensions.
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or equivalently

Ẇ (τ, xk, Tk) < Ẇ (τ, xk, Tk) (58)

+ 2(φTk (τ)(I − (∆Dφ)T )− xTk (τ)(∆C)T )U1(∆Cxk(τ) + (∆Dφ − I)φk(τ))

+ 2(φ̇Tk (τ)(I − (ΓDφ)T )− ẋTk (τ)(ΓC)T )U2(ΓCẋk(τ) + (ΓDφ − I)φ̇k(τ))

+ 2(φTk (0)(I − (∆Dφ)T )− xTk (0)(∆C)T )U3(∆Cxk(0) + (∆Dφ − I)φk(0)).

Consider the vector ηk(τ) = [xTk (τ) φTk (τ) ẋTk (τ) φ̇Tk (τ) xTk (0) φTk (0)]T , the vector
ζk(τ) = M135 ηk(τ) and a matrix Qx ∈ R(3n)×n. Since Rx is assumed to be positive
definite, it follows that (ẋk(θ)−R−1

x QT
x ζk(τ))TRx(ẋk(θ)−R−1

x QT
x ζk(τ)) > 0. Integrating

this expression over [0, τ ], the following inequality is obtained (BRIAT; SEURET, 2012a):∫ τ

0

ẋTk (θ)Rxẋk(θ)dθ − 2ζTk (τ)Qx(xk(τ)− xk(0)) + τζTk (τ)QxR
−1
x QT

x ζk(τ) ≥ 0.

(59)

Consider now a new vector ψk(τ) = M246 ηk(τ) and a matrix Qφ ∈ R(3m)×m. Follow-
ing the same reasoning as above, we have that:∫ τ

0

φ̇Tk (θ)Rφφ̇k(θ)dθ − 2ψTk (τ)Qφ(φk(τ)− φk(0)) + τψTk (τ)QφR
−1
φ QT

φψk(τ) ≥ 0.

(60)

On the other hand, from (27), there exists a coupling relation between the components
of the vector ηk(τ). Hence, ∀L ∈ R3(n+m)×n the following equality is satisfied:

ηTk (τ)L[Axk(τ) +Bφφk(τ)− ẋk(τ) +Bu(Kxxk(0) +Kφφk(0))]ηk(τ)

= ηTk (τ)LM0ηk(τ) = 0. (61)

This null term can be added to (58). Hence, combining (58), (59), (60) and (61), one
obtains that

Ẇ ≤ ηTk (τ)[Π1 + (Tk − τ)Π2 + τ(MT
135QxR

−1
x QT

xM135 +MT
246QφR

−1
φ QT

φM246)

+ (Tk − 2τ)Π3]ηk(τ). (62)

Thus, to prove that Ẇ < 0, it suffices to guarantee that

Π1 +(Tk − τ)Π2 +τ(MT
135QxR

−1
x QT

xM135 +MT
246QφR

−1
φ QT

φM246) +(Tk − 2τ)Π3 ≺ 0.

(63)

As this matrix inequality is affine with respect to τ , and τ ∈ [0, Tk), a necessary and
sufficient condition to satisfy it is given by{

Π1 + Tk(Π2 + Π3) ≺ 0 (64)

Π1 − TkΠ3 + Tk(M
T
135QxR

−1
x QT

xM135 +MT
246QφR

−1
φ QT

φM246) ≺ 0. (65)
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Finally, as (64) and (65) are affine in Tk and Tk ∈ [T1,T2], applying the same reasoning
and Schur’s Complement to (65), we conclude that Ψ1(Ti) ≺ 0 and Ψ2(Ti) ≺ 0, i =

1,2, are sufficient to ensure Ẇ < 0. Hence, by virtue of Theorem 4, the satisfaction of
conditions (51)-(54) ensures the global asymptotic convergence of the trajectories to the
origin.

Remark 4 (Adapted from (VALMORBIDA; DRUMMOND; DUNCAN, 2018)). The use

of Lemma 3 in the proof of Theorem 4, requires y to be differentiable. As y(x) = Cx +

Dφφ(y(x)), we have dy
dt

= C dx
dt

+Dφ∂φ(y)dy
dt

, which can be written as (I−Dφ∂φ(y))dy
dt

=

C dx
dt

. If Proposition 1 is satisfied, then (I −Dφ∂φ(y)) is nonsingular for all y ∈ Y0 and
dy
dt

exists, given by dy
dt

= (I −Dφ∂φ(y))−1C dx
dt

.

Remark 5. The conditions presented in Theorem 6 consider in its developments the use of

the generalized Lure function VLG. However, the LMIs can be easily modified to deal with

special cases of this LF. This can be particularly useful for comparing results and giving

an idea of the conservatism of each approach. With this aim, for the numerical exam-

ples presented in the next subsection, inequalities (53) and (54) are adapted or removed

according to each LF: for VQ, we substitute them by P11 � 0; for VQG, we eliminate

(53) and the term related to Λ̃ in (54); lastly, for VL we substitute them respectively, by

Λ � 0 and by P11 � 0. The terms of (55) are adjusted according to the following: for the

functions VQ and VL, we modify the structure of the matrix P to P =

[
P11 0

? 0

]
. Also, the

terms related to Λ are removed for the functions VQ and VQG as these LFs does not have

the Lure coefficients on its formulations.

When the slope bounds (Γ, Γ) are unknown or φ is supposed to be continuous but with
arbitrary slope, i.e., only conditions (19a) and (19b) are satisfied, we cannot consider φ̇
in the developments. Nevertheless, stability conditions can be obtained by considering a
quadratic function V (x) = VQ(x) = xTP11x and a functional

W0(τ, xk, Tk) = (Tk − τ)τ

[
xk(0)

φk(0)

]T
X

[
xk(0)

φk(0)

]

+(Tk − τ)

{∫ τ

0

ẋTk (θ)Rxẋk(θ)dθ +(xk(τ)− xk(0))T [Fx(xk(τ)− xk(0))+2Gxxk(0)]

}
,

(66)

with Fx ∈ Sn, Gx ∈ Rn×n, X ∈ Sn+m and Rx ∈ Sn�0. In this context, observe that
stability conditions can only be derived from a Lure-Postnikov function VL if we assume
Dφ = 0, that is y = Cx.

Then, considering V (x) = xTP11x the following corollary can be stated, regarding
the stability of the closed-loop system under aperiodic sampling and with nonlinearities
that lies on a sector.
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Corollary 1. For given 0 < T1 ≤ T2, assume that there exist matrices P11 ∈ Sn�0,

Uh ∈ Dm
�0, h = 1, . . . , 2, Fx ∈ Sn, Gx ∈ Rn×n, Rx ∈ Sn�0, Qx ∈ R(3n)×n, X ∈ Sn+m, L

∈ R(3n+2m)×n that satisfy, for i = 1, 2 :

Ψ1(Ti) = Π1 + TiΠ2 + TiΠ3 ≺ 0 (67)

Ψ2(Ti) =

[
Π1 − TiΠ3 TiM

T
134Qx

? −TiRx

]
≺ 0 (68)

with

Π1 = He{MT
1 P11M3} −MT

14FxM14 − He{MT
14GxM4} − He{MT

134QxM14}+ He{LM0}

+ He{MT
2 (I − (∆Dφ)T )−MT

1 (∆C)T )U1(∆CM1 + (∆Dφ − I)M2)}

+ He{MT
5 (I − (∆Dφ)T )−MT

4 (∆C)T )U2(∆CM4 + (∆Dφ − I)M5)}

Π2 = MT
3 RxM3 + He{MT

3 (FxM14 +GxM4)}

Π3 = MT
45XM45, (69)

where

M0 = [A Bφ − I BuKx BuKφ]

M1 = [I 0 0 0 0] M2 = [0 I 0 0 0] M3 = [0 0 I 0 0]

M4 = [0 0 0 I 0] M5 = [0 0 0 0 I]

M14 = M1 −M4 M45 = [MT
4 MT

5 ]T M134 = [MT
1 MT

3 MT
4 ]T .

Then the origin of the sampled-data closed-loop system (50), with φ satisfying (19a),

(19b) and Tk ∈ [T1,T2] is globally asymptotically stable.

Proof. The proof follows the same steps from the proof of Theorem 2, by considering
the augmented vector ηk(τ) = [xTk (τ) φTk (τ) ẋTk (τ) xTk (0) φTk (0)]T , the function V (x) =

xTP11x, the sector conditions from Lemma 2 and Schur’s Complement.

4.2.1 Optimization Problems

From the conditions stated in Theorem 6, we can formulate three optimization prob-
lems, detailed as follows.

P1. Given T1, the sector and slope bounds, find the maximal T2 such that the global
stability of the closed-loop system (50) is ensured.

P2. Given a nominal sampling time Tnom, the sector and slope bounds, find a bound
on the maximum symmetrical allowable jitter, denoted by σ, (i.e., T1 = Tnom − σ,
T2 = Tnom + σ), such that the global stability of the closed-loop system (50) is
ensured.
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P3. Given T1 and T2, compute the maximum sector and slope bounds given by the
diagonal matrix Ω, such that the global stability of the closed-loop system (50) is
ensured.

Note that, as (51), (52), (53), (54) are LMIs once T1, T2 and the sector bounds are
fixed, these optimization problems can be straightforwardly solved by considering feasi-
bility LMI problems and bisection techniques.

In the bisection algorithm, we interactively increase/decrease T2, σ or a parameter
defining the sector and test the LMIs constraints with these variables fixed. For instance,
for the maximization of T2, we start with a guess for T2 and if the LMI problem is feasible,
we increase T2 of a certain amount. Otherwise, if it is infeasible, we decrease T2. Once
for T2 of an iteration the problem is feasible (say T2 = a) and for the next one (or the
previous one) it is not (say T2 = b), we can choose for the next iteration T2 = (a + b)/2.
We stop the procedure when a certain toleration e = a − b is achieved. Note that this
procedure approaches the maximum T2 for which the LMIs are feasible.

Remark 6. The numerical complexity of the conditions presented in Theorem 6 is related

to the optimization problems P1-P3. The numerical complexity that LMI solvers are able

to handle is an open topic, which is discussed in some references only when the authors

find convergence problems. It usually depends on the considered solver (e.g., LMILAB

or SeDuMi) and some optimization problem parameters such as the number of LMI con-

ditions (nl), maximum LMI order (no) and number of decision variables (nv). Based on

the LMI conditions (51), (52), (53), (54), these parameters can be computed as a function

of the plant dimensions n of the state and m of the nonlinearity. Table 2 illustrates the

numerical complexity of the method through the expressions of nl, no and nv.

Table 2: Numerical complexity associated to the optimization problems P1-P3.
nl 13

no 4(n+m)

nv n(9n+2)+m(6m+8)+5nm

4.2.2 Numerical Examples

Example 1: Consider the SISO system given in (VALMORBIDA; DRUMMOND;
DUNCAN, 2018) that can be described in the form (18) with the following matrices

A =


−0.5 −6.2 −0.105 −1.2

1 0 0 0

0 1 0 0

0 0 1 0

 , Bu =


1

0

0

0

 ,Bφ =


0.5

0

0

0


C =

[
0 0.2 0 0

]
, Dφ = [0],
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and the control law (20) with the following gains

Kx =
[
0.1 0.2 0.005 0.2

]
, Kφ = [0.5],

with the bounds on φ given by δ = 0, δ = Ω, γ = −Ω, γ = Ω. In what follows,
we present comparative results considering different structures of the function VLG (see
Table 1), as presented in Table 1. Inequalities are adjusted to each function, as detailed
in Remark 5. The obtained results for problems P1-P3 are shown in Table 3. For P1, we
consider T1 = 0.1 ms and Ω = 1√

2
. For P2, we fixed Tnom = 1.5 s and Ω = 1√

2
and for

P3 we defined T1 = 0.1 ms and T2 = 2.0 s. The numerical complexity for the solutions
of the optimization problems is defined by nl = 13, no = 20 and nv = 186.

Table 3: Global analysis, Ex. 1 - Results for problems P1-P3.
Problem Parameter VQ VQG VL VLG

P1 T2 1.1151 1.1161 2.2121 2.6362

P2 σ 1.0492 1.0496 1.0888 1.2260

P3 Ω 0.5955 0.5970 0.7842 1.1043

For the first problem, as shown in Table 3, using the generalized Lure function VLG we
achieve values for T2 that are greater 19.1%, 136.1% and 136.4% than the ones obtained
with VL, VQG and VQ, respectively. For P2, we guaranteed the stability for T1 = 0.2740

s and T2 = 2.7260 s, with σ greater 12.6%, 16.8 % and 16.8 % than the ones obtained
with VL, VQG and VQ, respectively. For the last feasibility problem, the sector bounds and
the lower slope bound, represented by Ω, were 40.8%, 84.9% and 85.4% bigger than the
ones obtained with VL, VQG and VQ, respectively. This shows, as expected, a considerable
conservatism reduction when a generalized Lure-type function is considered.

Observe that the value of T2 achieved by P2 with the function VLG is greater than
the one obtained from P1 with the same function, which evidences that the choice of T1

affects the maximal intersampling bound for which stability is preserved. Table 4 shows
the influence on T2 for different values of T1, considering Ω = 1√

2
and the function VLG.

Table 4: Global analysis, Ex. 1 - Influence of T1 on T2, considering the function VLG.
T1 (s) 0.5 1.0 2.0 3.0 4.0 5.0

T2 (s) 2.9075 3.3161 3.9955 4.4764 4.8205 5.0739

From the results presented in Table 4, one sees that increasing T1 leads to greater T2

up to a certain limit, given by T1 = T2 = 5.0889 s, i.e., the admissible sampling intervals
for which stability is ensured, is reduced to the periodic case. Although this result is quite
interesting, it is difficult to precise a link of this behavior with the matrices of the system.
In addition, this phenomenon may have come from limitations of the derived sufficient
stability conditions.
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To show that the achieved results support the global stabilization of the closed-loop
system (50), we simulate the system considering the result from P1, i.e., Tk ∈ [0.0001,

2.6362], and the nonlinearity

φ(y(t)) = 0.1sin(5y(t)) + 0.15y(t), (70)

that satisfies (19) with δ = 0, δ = 1√
2
, γ = − 1√

2
, γ = 1√

2
. The control action and the

states of the closed-loop system are presented in Fig. 9 and Fig. 10, respectively, for
initial conditions x(0) = [1 1 1 1]T . Fig. 11 illustrates the sequence of samplings instants
used in the simulation through the lifted variable τ(t).

Figure 9: Global analysis, Ex. 1 - Control action of the closed-loop system.

Font: Author.

Figure 10: Global analysis, Ex. 1 - States of the closed-loop system.

Font: Author.
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Figure 11: Global analysis, Ex. 1 - Sequence of the sampling instants.

Font: Author.

It is easy to notice that when t → ∞ the states and the control law converge to the
origin, reinforcing the obtained results. To obtain the values of Tk, we used a pseudo-
random algorithm (function rand(·) from MATLAB, with default seed) that generates its
numbers from the standard uniform distribution over the defined interval.

Example 2: Consider system (18) given by the following matrices

A =

[
−1.1 −2

1 0

]
, Bu =

[
1

0

]
,Bφ =

[
0.5

0

]
, C =

[
−0.95 1.50

]
, Dφ = [−0.5],

and the control law (20) with the following gains

Kx =
[
1 1

]
, Kφ = [0.5],

with the bounds on φ given by δ = 0, δ = Ω, γ = 0, γ = Ω. This system satisfies
Proposition 1, that is, the algebraic loop in (50) is well-posed. The obtained results for
problems P1-P3 are detailed in Table 5 by considering different LF structures. For P1, we
consider T1 = 0.5 s and Ω = 1√

2
. For P2, we fixed Tnom = 0.75 s and Ω = 1√

2
and for P3

we defined T1 = 0.5 s and T2 = 1.0 s.

Table 5: Global analysis, Ex. 2 - Results for problems P1-P3.
Problem Parameter VQ VQG VL VLG

P1 T2 1.0308 1.0964 1.0308 1.5378

P2 σ 0.2566 0.2702 0.2566 0.5542

P3 Ω 0.7141 0.7277 0.7141 0.9999

For the first problem, using the generalized Lure function VLG we obtain the larger
value of T2. We achieve values for T2 that are greater 40.2%, 49.1% and 49.1% than the
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ones obtained with VQG, VQ and VL, respectively. For P2, we guaranteed the stability for
T1 = 0.1958 s and T2 = 1.3042 s, with σ greater 105.1%, 115.9% and 115.9% than the
ones obtained with VQG, VL and VQ, respectively. For the last feasibility problem, the
upper sector and slope bounds, represented by Ω were 37.4%, 40.0% and 40.0% bigger
than the ones obtained with VQG, VL and VQ, respectively. We also observed that for some
values of T1 lesser than 0.43, the LMI restrictions were infeasible for VQ, VQG and VL by
solving P1. However, with the function VLG, stability can be certified by considering
smaller values of T1. For instance, fixing T1 = 0.1 ms, by virtue of Theorem 6 we
guaranteed stability for T2 = 1.2071.

To show that the achieved results support the global stabilization of the closed-loop
system (50), we simulate the system considering the result from P2, i.e., Tk ∈ [0.1958,

1.3042], and a saturation nonlinearity

φ(y(t)) =


0.5y(t),−0.5 ≤ y(t) ≤ 0.5

0.25, y(t) > 0.5

−0.25, y(t) < −0.5

(71)

which satisfies (19) with δ = 0, δ = 1√
2
, γ = 0, γ = 1√

2
. The control action and the states

of the closed-loop system are presented in Figs. 12 and 13.

Figure 12 – Global analysis, Ex. 2 - Control action (left axis) and saturation nonlinearity
behavior (right axis) of the closed-loop system.

Font: Author.
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Figure 13: Global analysis, Ex. 2 - States of the closed-loop system.

Font: Author.

Example 3: Aiming to compare our results with a different work on sampled-data Lure
systems, consider the following system treated in (SEIFULLAEV; FRADKOV, 2015):

ẋ1(t) = −2x1(t) + sin(x2(t)),

ẋ2(t) = x1(t)− x2(t) + 2sin(x2(t)) + u(t)

y(t) = x2(t)

u(t) = −Ky(tk), ∀t ∈ [tk, tk+1), tk+1 − tk ≤ T2.

This system can be rewritten in form (18)-(20) with the following matrices:

A =

[
−2 1

1 1

]
, Bu =

[
0

1

]
,Bφ =

[
1

2

]
, C =

[
0 1
]
, Dφ = [0], Kx =

[
0 −K

]
, Kφ = [0],

and with φ(y(t)) = sin(y(t)) − y(t), satisfying (19) with δ = −1.2173, δ = 0, γ = −2

and γ = 0. The maximum values of T2 (P1) obtained with Theorem 6, by considering
VLG and T1 = 0.0001 s and with Theorem 3 from (SEIFULLAEV; FRADKOV, 2015) are
given in Fig. 14 for different gains K. It is important to mention that to make the results
comparable, we set the decay rate in (SEIFULLAEV; FRADKOV, 2015) to zero.

From Fig. 14, one can easily note that our formulation leads to greater values of T2

than the ones obtained by (SEIFULLAEV; FRADKOV, 2015). The maximal values of T2

obtained with Theorem 6 and with Theorem 3 from (SEIFULLAEV; FRADKOV, 2015)
were T2 = 1.3601 s and T2 = 0.8768 s, with respective gains K = 1.51 and K = 1.62.
This represents an increase of 55.1% on the upper intersampling bound. Observe that for
K < 1.51 no feasible solution is obtained for conditions (51)-(54) neither for the ones
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in (SEIFULLAEV; FRADKOV, 2015). Thus, our approach provides less conservative
results in comparison to the above work on sampled-data Lure systems.

Figure 14: Global analysis, Ex. 3 - Dependence of the upper bound T2 on gain K.

Font: Author.

To show that the results support asymptotic global stabilization of the origin, we sim-
ulate the closed-loop system by considering K = 2, T1 = T2 = 1.0197 s (although we
prove stability for any Tk ∈ [0.0001, 1.0197]), and initial conditions x(0) = [2 0]T , as
illustrated in Fig. 15.

Figure 15 – Global analysis, Ex. 3 - Trajectories of the closed-loop system for K = 2 and
T1 = T2 = 1.0197 s.

Font: Author.
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4.3 Regional Results

When the nonlinearities does not satisfy the sector conditions for Y0 = Rm, it is said
that stability can be achieved only locally. In this context, the objective of this section con-
sists in guaranteeing the asymptotic stability of the origin of the system (50) for nonlinear-
ities satisfying the sector and slope bounded conditions (19b), (19c) in a region of validity
Y0 = {y ∈ Rm|yj(x) ∈ [y

j
, yj],∀j = 1, . . . ,m}, where yj(x) = Cjx + Dφjφ(y(x)),

y
j
∈ R, yj ∈ R, y

j
< 0 < yj , j = 1, . . . ,m.

Afterwards, when the origin is asymptotically stable, we are often interested in de-
termining how far from it the trajectory can be initialized and still converge to the origin
as t → ∞ (KHALIL, 2002), which gives rise to the definition of the region of attraction
(Ra). The region of attraction is defined as the set of all x ∈ Rn, such that Φ(t, x) is
defined for all t ≥ 0 and limt→∞Φ(t, x) = 0, where Φ(t, x) are the solutions of (50)
that starts at initial state x at time t = 0. Determining the exact region of attraction by
analytical means may be a hard or even an impossible task. However, one can use Lya-
punov’s theory to determine an estimate of the region of attraction by finding levels sets
L(V, ρ) = {x ∈ Rn| V (x) ≤ ρ} of a function V such that they are positively invariant
and included in a domain Dx ⊆ X0 ⊂ Rn where the sector and slope bounds hold (for
this, note that a mapping of the region Y0 ⊂ Rm to X0 ⊂ Rn is required).

On this basis, the rationale under the development of the conditions here presented
is based on Theorem 5, which provides sufficient conditions to assess the asymptotic
stability of the origin of the sampled-data Lure system (50) in a local context. Recall-
ing its results in a simplified way, we consider a function W (τ, xk, Tk) = V (xk(τ)) +

W0(τ, xk, Tk), where V is a continuously differentiable function and W0 is a continuous-
time positive definite functional which is equal to zero at the sequence of samplings. If
Ẇ (τ, xk, Tk) < 0 along the solutions of the system, than the continuous-time trajecto-
ries starting at x(tk) ∈ ∂L(V, ρ) ⊂ Dx moves from one Lyapunov surface V (x) = ρ to
an inner Lyapunov surface with a smaller ρ at the instant tk+1 without leaving L(V, ρ).
This is achieved thanks to the positivity of the functional and the fact that the function
V is strictly decreasing at the sampling instants (but not necessarily between two suc-
cessive sampling instants). This implies that L(V, ρ) is a positively invariant set but not
continuously contractive.

In other words, we have that the satisfaction of conditions from Theorem 5 implies
that any trajectories starting in L(V, ρ) remains in L(V, ρ) for all t ≥ 0 and approaches
the origin as t → ∞. Thus, if we include the level sets in a domain of validity Dx ⊆ X0,
then L(V, ρ) may be seen as an estimate of the region of attraction of the origin, that
is, L(V, ρ) ⊂ Ra ⊂ Rn. In what follows, we will present conditions to guarantee the
inclusion L(V, c) ⊂ Dx = X0, starting from the case where the domain X0 corresponds
to an asymmetric validity region.
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4.3.1 Asymmetric Validity Regions

When y
j

is not equal to yj , we have an asymmetric region of validity for the sector
and slope restrictions. The region Y0 can be mapped in space Rn by X0 given in (24),
which can be equivalently described as follows:

X0 = {x ∈ Rn|(yj(x)− y
j
)(yj(x)− yj) ≤ 0, j = 1, . . . ,m}. (72)

Note that y(x) ∈ Y0 if and only if x ∈ X0.
In the following lemma, we provide conditions that guarantee generic inclusions for

the level set L(V, ρ) of a function V in X0, as defined in (72).

Lemma 6. (VALMORBIDA; DRUMMOND; DUNCAN, 2018). If there exist scalars σj >

0 such that the following inequalities are satisfied

−σj(yj(x)− y
j
)(yj(x)− yj) ≥ (ρ− V (x)), (73)

for j = 1, . . . ,m, then L(V, ρ) ⊂ X0 holds, with X0 given by (72).

Proof. If the above inequality holds, then for all x satisfying (ρ − V (x)) ≥ 0, i.e., ∀x ∈
L(V, ρ), the inequality σj(yj(x) − y

j
)(yj(x) − yj) ≤ 0 holds, which as σj > 0 ensures

that x ∈ X0.

The following lemma provides LMI conditions to check the inclusion of the level set
of the generalized Lure function VLG(x) expressed by L(VLG, ρ) in the set (72).

Lemma 7. If there exist matrices P ∈ Sn+m, Λ̃ ∈ Dm
�0, Sc,j ∈ Dm

�0 and positive scalars

σj and ρ, such that the following inequalities are satisfied
−(σjyjyj + ρ) σj

y
j
+yj

2 Cj σj
y
j
+yj

2 Dφj 0

? P11 − 1
2C

T (∆−∆)Λ̃C P12 − 1
2C

T (∆−∆)Λ̃Dφ σjC
T
j

? ? P22 − 1
2D

T
φ (∆−∆)Λ̃Dφ σjD

T
φj

? ? ? σj



+ He


1

2


0

(∆C)T

(∆Dφ − I)T

0

Sc,j [0 ∆C (∆Dφ − I) 0

] � 0, (74)

for j = 1, . . . ,m, then L(VLG, ρ) ⊂ X0, with X0 given by (72).

Proof. From Lemma 6 and the generalized Lure function VLG(x) defined in (43), inequal-
ities (73) becomes

− σjyjyj − ρ+ σj(yj + yj)yj(x)− σjy2
j (x) + VQG(x) +

m∑
i=1

λi

∫ yi

0

(φi(s)− δis)ds ≥ 0,

(75)
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j = 1, . . . ,m. Consider that λi ≥ −λ̃i is satisfied ∀i. From (48), we obtain a lower bound
for the Lure-Postnikov terms, given by the following relation:

m∑
i=1

λi

∫ yi

0

(φi(s)− δis)ds ≥ −
1

2
yT (∆−∆)Λ̃y ≥ 0. (76)

Hence, provided the inequalities

−σjyjyj − ρ+ σj(yj + yj)yj(x)− σjy2
j (x) + VQG(x)− 1

2
yT (∆−∆)Λ̃y ≥ 0 (77)

hold, we have that (75) holds. Note that the substitution of the lower bound (77) in (73)
correspond to the inclusion of an outer approximation of the level set L(VLG, ρ) in X0,
that is, if the outer approximation is included in X0, then L(VLG, ρ) will also be included
in X0. Expanding the terms yj(x) = Cjx+Dφjφ(y(x)), rewriting (77) in a matrix format
and relaxing for all x and φ which satisfies the sector conditions through adding the term
−S∆(Sc,j, φ, y) (as defined in Lemma 5) on the left side of (77), we have that the following
inequalities provide sufficient conditions to verify (77):Ix

φ


T

Ψ

Ix
φ

− S∆(Sc,j, φ, y) =

Ix
φ


T

Ψ̃

Ix
φ

 ≥ 0, (78)

with Ψ̃ given by:

Ψ̃ =

−(σjyjyj + ρ) σj
y
j
+yj

2
Cj σj

y
j
+yj

2
Dφj

? P11 − 1
2
CT (∆−∆)Λ̃C P12 − 1

2
CT (∆−∆)Λ̃Dφ

? ? P22 − 1
2
DT
φ (∆−∆)Λ̃Dφ


− σj

0 0 0

0 CT
j Cj CT

j Dφj

0 ? DT
φj
Dφj

+ He

1

2

 0

(∆C)T

(∆Dφ − I)T

Sc,j [0 ∆C (∆Dφ − I)

].
(79)

A sufficient condition to ensure (78) is that Ψ̃ � 0. Applying Schur’s Complement
on Ψ̃ � 0 it is straightforward to obtain (74), which ensures that (78) be satisfied, hence
guaranteeing that L(VLG, ρ) ⊂ X0.

Remark 7. Aiming the comparison with other candidate functions V , to include the level

sets L(VQ, ρ) and L(VL, ρ) in (72), we adapt the inequalities (74) from Lemma 7 by

considering P =

[
P11 0

? 0

]
and Λ̃ = 0. Observe that the conditions for the function

VL are reduced to the inclusion of the level set L(VQ, ρ) in X0. Note that L(VQ, ρ) is an

outer approximation of L(VL, ρ). To guarantee the inclusion of the level set L(VQG, ρ) in

(72), it suffices to consider Λ̃ = 0. For the special case where Dφj = 0, inequalities (74)
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to guarantee the inclusion of the level sets L(VQ, ρ) and L(VL, ρ) in X0, are simplified by

the following ones: −(σjyjyj + ρ) σj
y
j
+yj

2
Cj 0

? P11 σjC
T
j

? ? σj

 � 0. (80)

In the sequence, we will present the inclusion of level sets in a domain which repre-
sents symmetric validity regions.

4.3.2 Symmetric Validity Regions

If the validity region defined by the variables y
j

and yj is symmetric, i.e., y
j

= yj , then
simplified set inclusions can be considered. In this case, X0 can be generically defined as
follows:

X0 = {x ∈ Rn| |yj(x)| ≤ yj, j = 1, . . . ,m}, (81)

In the following lemma, we provide conditions that guarantee generic inclusions for the
level set L(V, ρ) of a function V in X0, as defined in (81).

Lemma 8. If there exist a scalar ρ > 0 such that the following inequalities are satisfied

yj(x)Tρ y−2
j yj(x) < V (x), (82)

for j = 1, . . . ,m, then L(V, ρ) ⊂ X0 holds, with X0 given by (81).

Proof. If x ∈ L(V, ρ) then V (x) ≤ ρ. Thus, from (82), one has ρ ≥ yj(x)Tρy−2
j yj(x),

that is, yj(x)Tyj(x) ≤ y2
j , which implies that x ∈ X0.

The following lemma provides the inclusion of the level set of the generalized Lure
function VLG(x) expressed by L(VLG, ρ) in the set (81).

Lemma 9. If there exist matrices P ∈ Sn+m, Λ̃ ∈ Dm
�0, Sc,j ∈ Dm

�0 and a positive scalar

ρ such that the following inequalities are satisfiedP11 − 1
2
CT (∆−∆)Λ̃C P12 − 1

2
CT (∆−∆)Λ̃Dφ ρCT

j

? P22 − 1
2
DT
φ (∆−∆)Λ̃Dφ ρDT

φj

? ? ρy2
j


+ He

1

2

 (∆C)T

(∆Dφ − I)T

0

Sc,j [∆C (∆Dφ − I) 0

] � 0, (83)

for j = 1, . . . ,m, then L(VLG, ρ) ⊂ X0, with X0 given by (81).
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Proof. From (81), we have |yj(x)|2 ≤ y2
j . Expanding this terms by considering yj(x) =

Cjx + Dφjφ(y(x)) and then multiplying both sides of the resulting inequality by ρ, we
have that |yj(x)|2 ≤ y2

j is equivalent to

ρ(xTCT
j + φTDT

φj
)ρ−1y−2

j (Cjx+Dφjφ)ρ ≤ ρ. (84)

Applying Schur’s Complement to the terms on the third row and third column of
the matrix on the left of (83), then pre- and post-multiplying the resulting inequality,
respectively by diag(xT , φT , I) and its transpose, respectively, one obtains:[

x

φ

]T[
P11 P12

? P22

][
x

φ

]
− 1

2
yT (∆−∆)Λ̃y − S∆(Sc,j, φ, y)

≥ ρ(xTCT
j + φTDT

φj
)ρ−1y−2

j (Cix+Dφjφ)ρ. (85)

Suppose that (85) is satisfied. As S∆(Sc,j, φ, y) ≥ 0, one has[
x

φ

]T[
P11 P12

? P22

][
x

φ

]
− 1

2
yT (∆−∆)Λ̃y ≥ ρ(xTCT

j + φTDT
φj

)ρ−1y−2
j (Cjx+Dφjφ)ρ.

(86)

From (76), we can thus conclude that[
x

φ

]T[
P11 P12

? P22

][
x

φ

]
+

m∑
i=1

λi

∫ yi

0

(φi(s)− δis)ds > yj(x)Tρy−2
j yj(x). (87)

Hence, if x ∈ L(VLG, ρ), one has yj(x)Tρy−2
j yj(x) ≤ ρ, that is, yj(x)Tyj(x) ≤ y2

j ,
which implies that x ∈ X0.

Remark 8. Aiming the comparison with other candidate functions, to include the level

sets L(VQ, ρ) and L(VL, ρ) in (81), we adapt the inequalities (83) from Lemma 9 by

considering P =

[
P11 0

? 0

]
and Λ̃ = 0. Observe that the conditions for the function

VL are reduced to the inclusion of the level set L(VQ, ρ) in X0. Note that L(VQ, ρ) is an

outer approximation of L(VL, ρ). To guarantee the inclusion of the level set L(VQG, ρ) in

(81), it suffices to consider Λ̃ = 0. For the special case where Dφj = 0, inequalities (83)

to guarantee the inclusion of the level sets L(VQ, ρ) and L(VL, ρ) in X0, are replaced by:[
P11 ρCT

j

? ρy2
j

]
� 0. (88)

From the given inclusion conditions, we present below the main result of this section,
which provides conditions to guarantee asymptotic convergence of the trajectories of the
closed-loop Lure system (50) to the origin in a regional context.
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4.3.3 Main Results

The following theorem presents sufficient conditions to assess the asymptotic stability
of the origin of the sampled-data closed-loop system (50) in a regional context, under
aperiodic sampling satisfying Tk ∈ [T1,T2]. In this case, the sector nonlinearity φ is
supposed to satisfy (19) only for y ∈ Y0, or equivalently for x ∈ X0, as defined in (72).

Theorem 7. For given 0 < T1 ≤ T2, assume that there exist matrices P ∈ Sn+m, Λ ∈ Dm,

Λ̃ ∈ Dm
�0, Uh ∈ Dm

�0, h = 0, . . . , 3, Fx ∈ Sn�0, Fφ ∈ Sm�0, Rx ∈ Sn�0, Rφ ∈ Sm�0,

Qx ∈ R(3n)×n, Qφ ∈ R(3m)×m, X ∈ Sn+m
�0 , L ∈ R3(n+m)×n that satisfy, for i = 1, 2:

Ψ1(Ti) = Π1 + TiΠ2 + TiΠ3 ≺ 0 (89)

Ψ2(Ti) =

Π1 − TiΠ3 TiM
T
135Qx TiM

T
246Qφ

? −TiRx 0

? ? −TiRφ

 ≺ 0 (90)

Λ � −Λ̃ (91)

P − 1

2

[
CT

DT
φ

]
(∆−∆)Λ̃

[
C Dφ

]
+ He

{
1

2

[
(∆C)T

(∆Dφ − I)T

]
U0

[
∆C (∆Dφ − I)

]}
� 0,

(92)

with

Π1 = He{MT
12PM34} −MT

15FxM15 −MT
26FφM26

− He

{
1

2
(MT

1 (∆C)T +MT
2 (∆Dφ − I)T )ΛCM3

}
− He

{
1

2
(MT

1 (∆C)T +MT
2 (∆Dφ − I)T )ΛDφM4

}
+ He{MT

2 (I − (∆Dφ)T )−MT
1 (∆C)T )U1(∆CM1 + (∆Dφ − I)M2)}

+ He{MT
4 (I − (ΓDφ)T )−MT

3 (ΓC)T )U2(ΓCM3 + (ΓDφ − I)M4)}

+ He{MT
6 (I − (∆Dφ)T )−MT

5 (∆C)T )U3(∆CM5 + (∆Dφ − I)M6)}

− He{MT
135QxM15} − He{MT

246QφM26}+ He{LM0}

Π2 = MT
3 RxM3 + He{MT

3 FxM15}+ He{MT
4 FφM26}+MT

4 RφM4

Π3 = MT
56XM56, (93)

where

M0 = [A Bφ − I 0 BuKx BuKφ]

M1 = [I 0 0 0 0 0] M2 = [0 I 0 0 0 0] M3 = [0 0 I 0 0 0]

M4 = [0 0 0 I 0 0] M5 = [0 0 0 0 I 0] M6 = [0 0 0 0 0 I]

M15 = M1 −M5 M26 = M2 −M6

M12 = [MT
1 MT

2 ]T M34 = [MT
3 MT

4 ]T M56 = [MT
5 MT

6 ]T

M135 = [MT
1 MT

3 MT
5 ]T M246 = [MT

2 MT
4 MT

6 ]T .
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Then, the corresponding trajectories of the closed-loop system, (50), with φ satisfying

(19) and Tk ∈ [T1,T2] converge asymptotically to the origin for all initial conditions

belonging to L(VLG, ρ) ⊂ X0.

Proof. The proof follows the same steps as demonstrated in Theorem 6. The inequalities
(89)-(92) ensures the positivity of VLG and that Ẇ (τ, xk, Tk) < 0. However, by virtue
of Theorem 5, in this case we need the functional W0 to be positive definite. With this
aim, we consider in the developments a particular structure of the functional W0 defined
in (42), with Gx = 0, Gφ = 0 and we assume X � 0, Fx � 0 and Fφ � 0, which implies
the positivity of the crossed terms between xk(τ) and xk(0) and between φk(τ) and φk(0),
guaranteeing, by consequence, the positivity of the functional.

Remark 9. The inclusion of the level set L(VLG, ρ) ⊂ X0 is ensured by inequalities (74)

from Lemma 7 for the case where the validity region is asymmetric (X0 as in (72)), or by

inequalities (83) from Lemma 9 for the symmetric case (X0 as in (81)). For comparison

results with different structures of V , the reader can refer to Remark 5.

4.3.4 Optimization Problems

From the above conditions, we can formulate the following optimization problems.

P4. Given T1, the sector and slope bounds and the domain of validity of the sector
conditionsX0, find the maximal T2 and obtain an estimate of the region of attraction
for which the stability of the closed-loop system (50) is ensured.

P5. Given a nominal sampling time Tnom, the sector and slope bounds and the
domain of validity of the sector conditions X0, find a bound on the maximum sym-
metrical allowable jitter, denoted by σ, (i.e., T1 = Tnom − σ, T2 = Tnom + σ) and
obtain an estimate of the region of attraction for which the stability of the closed-
loop system (50) is ensured.

P6. Given T1, T2 and the domain of validity of the sector conditions X0, compute
the maximum sector and slope bounds given by the diagonal matrix Ω and obtain an
estimate of the region of attraction for which the stability of the closed-loop system
(50) is ensured.

As seen in the previous chapter, inequalities (89), (90), (91) and (92) are LMIs by
fixing T1, T2 and the parameters defining the sector and slope bounds. Moreover, in-
equalities (74) and (83) are also LMIs, which allow us to evaluate the conditions from
Theorem 7 through feasibility LMI problems and bisection techniques. A procedure to
solve problems P4-P6 is given by the following steps:
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Step 1/3 - Solve the corresponding optimization problem: max T2 (or σ, or Ω)

subject to (89), (90), (91), (92).
(94)

Step 2/3 - From the matrices obtained in Step 1, determine the maximum level set
of the Lyapunov function such that L(VLG, ρ) ⊂ X0. This can be accomplished
through the following optimization problem:

max ρ

subject to (74). (Asymmetric case)

(83). (Symmetric case)

(95)

Step 3/3 - If the obtained level set does not touch at least one of the boundaries of
the validity region X0, then increase ρ until this condition is satisfied. Therefore,
this new level set defines an estimate of the region of attraction.

Observe that first step basically consists in solving similar LMIs to the global case,
with a difference of the positivity assumptions in some matrices of the functional W0. In
the second step, we search for the maximum level set that is included in X0. However, it
does not necessarily touches the boundaries delimited by the validity region. Note that the
inclusion conditions from Lemma 7 and Lemma 9 uses in its developments a lower bound
for VLG(x) to incorporate its integral terms and then ensure the inclusion of the level sets
in X0. This lower bound implies that an outer approximation of L(VLG, ρ) is actually
contained in X0. From these facts, the third step becomes necessary, which searches, for
example, for a new level set of VLG that in fact gives a better idea about the estimate of
the region of attraction.

4.3.5 Numerical Examples

Example 1: Consider Lure system (18) with the following matrices:

A =

[
−8 −3

1 0

]
, Bu =

[
2

0

]
, Bφ =

[
0.5

0

]
C =

[
0.1 0.1

]
, Dφ =

[
0
]
,

and the control law (20) with the following gains

Kx =
[
−1 1

]
, Kφ = [0.25].

Suppose that the system is fed back by the nonlinearity φ(y) = ln(1 + y) with sector
and slope bounds that support the set inclusion X0 as in (72) only in the interval [y, y],
with −1 < y < 0 and 0 < y < ∞, where the sector and slope bounds are defined by
δ = ln(1+y)

y
, δ =

ln(1+y)

y
, γ = 1

1+y
and γ = 1

1+y
.
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We take y = −0.99 and y = 2 and use the corresponding bounds to perform the local
analysis, i.e., δ = 0.5493, δ = 4.6517, γ = 0.3333 and γ = 100. The obtained results
for problems P4-P6 are detailed in Table 6 by considering different structures of function
V (see Table 1). For P4, we fixed T1 = 0.1 ms. For P5, we defined Tnom = 0.75 s and
for P6 we defined T1 = 0.1 ms and T2 = 0.8 s, but we change the sector conditions to
δ = γ = 0, δ = Ω and γ = 100 (y and y were kept).

Table 6: Regional analysis, Ex. 1 - Results for problems P4-P6.
Problem Parameter VQ VQG VL VLG

P4 T2 0.9543 0.9640 0.9543 1.0046

P5 σ 0.2043 0.2140 0.2043 0.2546

P6 Ω 7.2321 8.3597 7.2321 8.7868

For P4, using the generalized Lure function VLG we obtain the larger value of T2. For
P5, we guaranteed the stability for T1 = 0.4954 s and T2 = 1.0046 s, with σ greater
18.9%, 24.6% and 24.6% than the ones obtained with VQG, VL and VQ, respectively. For
the last problem, the upper sector bound represented by Ω was 5.1%, 21.4% and 21.4%
bigger than the ones obtained with VQG, VL and VQ, respectively. The estimate of the
region of attraction concerning problem P4 and different structures of V is presented in
Fig. 16, along with the boundaries of the region of validity of the sector conditions given
by the lines x2 = −x1 + 20 and x2 = −x1 − 9.9.

Figure 16 – Regional analysis, Ex. 1 - Estimate of the region of attraction for P4 with
different structures of V .

Font: Author.
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The obtained level set for the function VLG was ρ = 92254.92, with the matrices

P =

6576.65 558.61 −0.0467

558.61 1134.12 0.0000

−0.0467 0.0000 −0.0148

 , Λ = −5990.38, Λ̃ = 6950.39.

In the sequence, we simulate the closed-loop system (50) by considering the solution
obtained for P4 with VLG and Tk ∈ [0.0001, 1.0046]. Aiming to show that stability is guar-
anteed for the obtained region, different trajectories starting on the boundary of L(VLG, ρ)

are depicted in Fig. 17. To obtain the values of Tk, we used a pseudo-random algorithm
(function rand(·) from MATLAB, with default seed) that generates its numbers from the
standard uniform distribution over the defined interval.

Figure 17: Regional analysis, Ex. 1 - Trajectories of the closed-loop system for P4.

Font: Author.

Observe that with the function VLG we could guarantee stability for a larger T2 for
almost the same region. Moreover, when the system is initialized with conditions inside
this region, the trajectories converge to the origin and do not leave L(VLG, ρ), as expected.
The resulting effect of the sampled-data control can be noted in the pattern of the trajec-
tories of the system when the states get closer to the origin.

Example 2: Consider the following MIMO system, taken from (VALMORBIDA;
DRUMMOND; DUNCAN, 2018):

ẋ1 = −x2 + ln(1 + y1) + 2 y2
1+y2

ẋ2 = x1 − 0.65x2 + ln(1 + y1) + y2
1+y2

y1 = 0.1(x1 + x2)− 0.2 y2
1+y2

y2 = 0.1(x2 − x1)

.
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This system can be put in the form (18) with the sampled-data control law (20) by
choosing a realization for the closed-loop system, with φ1(y1) = ln(1 + y1), φ2(y2) =
y2

1+y2
, as detailed below:

A =

[
0.5 1.5

0.5 1.35

]
, Bu =

[
1 0.5

0.5 1

]
, Bφ =

[
1 1.25

−0.5 1

]
, C =

[
0.1 0.1

−0.1 0.1

]
,

Dφ =

[
0 −0.2

0 0

]
, Kx =

[
−1 −2

1 −1

]
, Kφ =

[
−1 1

2 −0.5

]
.

This system satisfies Proposition 1, i.e., the algebraic loop is well-posed. The nonlin-
earities present sector and slope bounds that, as presented in (VALMORBIDA; DRUM-
MOND; DUNCAN, 2018), hold only in the intervals demonstrated in Table 7.

Table 7 – Regional analysis, Ex. 2 - Local sector and slope bounds for ln(1+yi) and yi
1+yi

.

φ(yi) δ δ γ γ

ln(1 + yi)
ln(1+yi)

yi

ln(1+y
i
)

y
i

1
1+yi

1
1+y

i
yi

1+yi
1

1+yi

1
1+y

i

1
(1+yi)

2
1

(1+y
i
)2

Note that for both nonlinearities, (19) holds with Y = (−1,∞), thus Y0 = [y
i
, yi] is

defined for −1 < y
i
< 0 and 0 < yi. Suppose that we are interested in the interval y1 ∈

[−0.4, 50], y2 ∈ [−0.5, 50], which define the sector and slope bounds for the nonlinearities
according to Table 7. The obtained results for problems P4-P6 are detailed in Table 8 by
considering different structures of V . For P4, we fixed T1 = 0.1 ms. For P5, we defined
Tnom = 0.1 s and for P6 we defined T1 = 0.1 ms and T2 = 0.1 s, but we change the sector
conditions to δi = γ

i
= 0, δi = Ω and γi = 5, ∀i (y

i
and yi were kept for all i).

Table 8: Regional analysis, Ex. 2 - Results for problems P4-P6.
Problem Parameter VQ VQG VL VLG

P4 T2 0.1298 0.1361 0.1302 0.1943

P5 σ 0.0298 0.0361 0.0302 0.0943

P6 Ω 1.5164 1.6472 1.5187 2.1627

For P4, using the generalized Lure function, we achieve values for T2 that are greater
42.7%, 49.2% and 49.6% than the ones obtained with VQG, VL and VQ, respectively. For
P5, we guaranteed stability for T1 = 0.0057 s and T2 = 0.1943 s, with σ greater 161.2%,
212.2% and 216.4% than the ones obtained with VQG, VL and VQ, respectively. For the last
feasibility problem, the upper sector bounds, represented by Ω were 31.2%, 42.4% and
42.6% bigger than the ones obtained with VQG, VL and VQ, respectively. The estimates of
the region of attraction concerning obtained from the solution of P5 for different structures
of V are presented in Fig. 18, along with the boundaries of the region of validity.
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Figure 18 – Regional analysis, Ex. 2 - Estimate of the region of attraction for P5 with
different structures of V .

Font: Author.

The obtained level set for the function VLG was ρ = 0.8650, with the matrices

P =


0.2208 −0.0707 −0.0103 −0.0427

−0.0707 0.1766 −0.0025 −0.0363

−0.0103 −0.0025 0.0542 0.0210

−0.0427 −0.0363 0.0210 0.2470

 ,

Λ =

[
−1.3979 0

0 −4.6468

]
, Λ̃ =

[
2.2889 0

0 5.3729

]
.

In this case, the validity region of y2 is bounded by the lines x2 = −5 + x1 (shown
in Fig. 18) and x2 = 500 + x1. On the other hand, the presence of the algebraic loop
affects y1 (see the matrix Dφ), which implies that an analytical expression for the bounds
of the validity region of y1 cannot be directly obtained. To overcome this problem, we
make a grid on the states x1 and x2 (that is, we test the possible combination of the
states with a sufficient spacing and range) and then we solve the implicit function y(t) =

Cx(t)+Dφφ(y(t)) for y through iterative methods. If the obtained values for y1 are equal
(or almost equal, given some tolerance) to its respective lower and upper limits given by
−0.4 and 50, then we save the corresponding states that generates these outputs. This
way, we map Y0 to X0, which allow us to visualize the validity region in the plane of
states. One of these bounds corresponding to y1 = −0.4 can be seen Fig. 18, given by the
curve depicted in black. The other bound coming from the algebraic loop cannot be seen
by the graph due to the scale.

Also, from Fig. 18, observe that the estimate of the region of attraction were almost
the same for every function V , but we emphasize that with the function VLG we guaranteed
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stability for a larger jitter (see Table 8). This is justified by the fact that the function VLG
relaxes the positivity requirement on the Lure coefficients.

Aiming to show that stability is guaranteed for the computed estimate of the region
of attraction, in the sequence we simulate the closed-loop system (50) by considering
the solution obtained for P5 with VLG and Tk ∈ [0.0057, 0.1943]. Once again, when the
system is initialized with conditions on the boundary, we observe that the trajectories
converge to the origin, which is corroborated by the obtained results.

Figure 19: Regional analysis, Ex. 2 - Trajectories of the closed-loop system for P5.

Font: Author.

Example 3: Consider system (18) given by the following matrices:

A =

[
−2 1

1 1

]
, Bu =

[
1 0

0 1

]
, Bφ =

[
1 0

0 2

]
C =

[
0 1

1 0

]
, Dφ =

[
0 0

0 0

]
,

and the control law (20) with the following gains

Kx =

[
−1 −2

−0.5 −2

]
, Kφ =

[
0 1

−0.5 1

]
.

Suppose that this system is fed back by the nonlinearities φ(y1) = sin(y1), φ(y2) =

sin(y2). This nonlinearities lie in a sector given by δ1 = δ2 = 0, δ1 = δ2 = 1, with slope
bounds γ

1
= γ

2
= −1 and γ1 = γ2 = 1, provided that y1, y2 ∈ [−π, π]. In this case,

the obtained results for problems P4-P6 are detailed in Table 9 by considering different
structures of V . For P4, we fixed T1 = 0.1 ms. For P5, we defined Tnom = 0.25 s and for
P6 we defined T1 = 0.1 ms and T2 = 0.2 s, but we change the sector conditions to δi = 0,
γ
i

= −Ω, δi = γi = Ω, ∀i (y
i

and yi were kept ∀i).



71

Table 9: Regional analysis, Ex. 3 - Results for problems P4-P6.
Problem Parameter VQ VQG VL VLG

P4 T2 0.3403 0.3464 0.3437 0.4052

P5 σ 0.0904 0.0965 0.1513 0.1553

P6 Ω 1.2902 1.3063 1.3750 1.4397

Using the generalized Lure function VLG, for P4 we achieve values for T2 that are
greater 16.9%, 17.8% and 19.0% than the ones obtained with VQG, VL and VQ, respec-
tively. For P5, we guaranteed the stability for T1 = 0.0947 s and T2 = 0.4053 s, with σ
greater 2.6%, 60.9% and 71.7% than the ones obtained with VL, VQG and VQ, respectively.
For the last problem, the sector and slope bounds represented by Ω were 4.7%, 10.2% and
11.5% bigger than the ones obtained with VL, VQG and VQ, respectively. The estimates of
the region of attraction corresponding to the solution of P6 for the different functions V
are presented in Fig. 20, along with the boundaries of the region of validity. The obtained
level set for the function VLG was ρ = 0.4550, with the matrices

P =


0.1233 −0.0040 −0.0161 0.0175

−0.0040 0.0478 −0.0013 −0.0227

−0.0161 −0.0013 0.0022 0.0070

0.0175 −0.0227 0.0070 0.0140

 ,

Λ =

[
−0.0340 0

0 0.0501

]
, Λ̃ =

[
0.0386 0

0 0.0379

]
.

Figure 20 – Regional analysis, Ex. 3 - Estimate of the region of attraction for P6 with
different structures of V .

Font: Author.
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In this case, the validity region in Rn can be described as X0 = {x ∈ R2| − π ≤ xi ≤
π, i = 1, 2}, as shown in Fig. 20. Observe that with the function VLG, we enlarge the
estimate of the region of attraction in comparison to the other functions. Furthermore, we
increase the sector and slope admissible bounds.

To show that stability is guaranteed for the obtained region, we simulate the closed-
loop system (50), as presented in Fig. 21, by considering the solution of P6 with VLG,
Tk ∈ [0.0001, 0.2] and the nonlinearities φ(y1) = 1.4 sin(y1) and φ(y2) = 1.4 sin(y2),
which satisfies the sector conditions for δ1 = δ2 = 0, δ1 = δ2 = 1.4, γ

1
= γ

2
= −1.4

and γ1 = γ2 = 1.4.

Figure 21: Regional analysis, Ex. 3 - Trajectories of the closed-loop system for P6.

Font: Author.

As observed, all the trajectories starting at the boundary of the obtained estimate of
the region of attraction converge to the origin.

4.4 Final Comments

The main contribution of this chapter was the proposition of new methods for stability
analysis of sampled-data Lure systems. Conditions in the form of LMIs were derived to
ensure that the generic conditions provided by Theorem 4 and Theorem 5 are satisfied,
thus guaranteeing the global or regional convergence of the trajectories of the continuous-
time system to the origin.

Optimization problems are stated for global and regional contexts. In the first one,
we aim to maximize the admissible intersampling intervals or the maximal sector bounds,
such that stability holds globally. In the latter, the solution of these optimization problems
also provide an estimate of the region of attraction of the origin for the continuous-time
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trajectories of the closed-loop system. Numerical examples are provided for both contexts
with a comparative result with (SEIFULLAEV; FRADKOV, 2015) on the global analysis.

The obtained results are significantly better with the function VLG in comparison to
those achieved with other functions V . Regarding the local analysis, for instance, it has
been shown that the reduction in conservatism provided by VLG, in addition to improving
the maximal T2, σ or Ω can also lead to better estimates of the region of attraction in some
cases, which highlights the potentialities of the method.
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5 SYNTHESIS OF STABILIZING CONTROLLERS

5.1 Introduction

In this chapter, the synthesis of a controller for system (18), given by the control
law (20) is tackled. The global and regional results from the Chapter 4 underpin the
developments presented here, aiming at obtaining sufficient conditions for the constraints
of Theorem 4 and Theorem 5, respectively, in the form of matrix inequalities from which
solutions the gains Kx and Kφ can be computed.

The main obstacle to achieve this goal is to manipulate the stability conditions pre-
sented in the last chapter in an appropriate manner to provide optimization problems in
SDP formulation. As it will be seen, LMI constraints can only be obtained by considering
some particular structures of the involved variables. Furthermore, some of this variables
need to be fixed. To overcome this problem, we propose a Particle Swarm Optimization
(PSO) algorithm to test the feasibility of the LMIs while searching for the best combina-
tion of the variables that need to be fixed according to each optimization problem.

5.2 Global Results

To obtain global synthesis conditions, some extra assumptions need to be made. Let
us consider without loss of generalization (as a loop transformation can always be done)
∆ = 0. Besides, assume that the nonlinearities are monotonically increasing, that is,
Γ = 0. We also consider a Lure function VR : Rn → R+, recalled as follows, which is a
particular case of function VLG given in (43) with δi = 0 and λi > 0, ∀i, i = 1, . . . ,m.

VR(x) = VQG(x) +
m∑
i=1

λi

∫ yi

0

φi(s)ds, λi > 0, (96)

The positivity of VR is guaranteed by the following lemma:

Lemma 10. Consider VR(x) in (96), where φ satisfies (19a)-(19b) with δi = 0, ∀i. If

there exist a matrix L ∈ Dm
�0 such that[

P11 P12

P T
12 P22

]
+ He

{
1

2

[
0

−I

]
L−1
[
∆C (∆Dφ − I)

]}
� 0, (97)
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then VR(x) > 0,∀x ∈ Rn, x 6= 0.

Proof. Note that (97) implies that

VQG(x) > S∆(L−1, φk(τ), yk(τ)) ≥ 0. (98)

Hence, from Lemma 2, and the fact that
m∑
i=1

λi

∫ yi

0

φi(s)ds ≥ 0, ∀x ∈ Rn, we con-

clude that VR(x) > 0, ∀x ∈ Rn.

The following theorem provides conditions to obtain gains Kx and Kφ that ensure the
asymptotic stability of the origin of the closed-loop system under aperiodic sampling.

Theorem 8. If there exist matrices P̃ ∈ Sn+m, Ỹ ∈ Rn×n, Ũ ∈ Dm
�0, F̃x ∈ Sn, G̃x ∈

Rn×n, F̃φ ∈ Sm, G̃φ ∈ Rm×m, R̃x ∈ Sn�0, R̃φ ∈ Sm�0, Q̃x ∈ R3(n+m)×n, Q̃φ ∈ R3(n+m)×m,

X̃ ∈ Sn+m, K̃x ∈ Rq×n, K̃φ ∈ Rq×m, Λ ∈ Dm
�0 and positive scalars ε, β, that satisfy, for

i = 1,2:

Ψ̃1(Ti) = Π̃1 + TiΠ̃2 + TiΠ̃3 ≺ 0 (99)

Ψ̃2(Ti) =

Π̃1 − TiΠ̃3 TiQ̃x TiQ̃φ

? −TiR̃x 0

? ? −TiR̃φ

 ≺ 0 (100)

[
2P̃11 2P̃12 − Ỹ TCT∆

? 2P̃22 + 2(I −∆Dφ)Ũ

]
� 0, (101)

with

Π̃1 = He
{
MT

12P̃M34

}
−MT

15F̃xM15 − He{MT
15G̃xM5}+ He

{
1

2
MT

2 ΛCỸ M3

}
+ He

{
1

2
MT

2 ΛDφŨM4

}
− (M2 − βM6)T F̃φ(M2 − βM6)

− He{β(M2 − βM6)T G̃φM6}+ He
{
MT

2 (∆CỸ M1 + (∆Dφ − I)ŨM2)
}

+ He
{
MT

4 (ΓCỸ M3 + (ΓDφ − I)ŨM4)
}

+ He
{
MT

6 (∆CỸ M5 + (∆Dφ − I)βŨM6)
}
− He{Q̃xM15} − He{Q̃φ(M2 − βM6)}

+ He{(εMT
1 +MT

3 )(AỸM1 +BφŨM2 − Ỹ M3 +BuK̃xM5 +BuβK̃φM6)}

Π̃2 = MT
3 R̃xM3 + He{MT

3 (F̃xM15 + G̃xM5)}

+MT
4 R̃φM4 + He{MT

4 [F̃φ(M2 − βM6) + G̃φβM6]}

Π̃3 = MT
56X̃M56, (102)
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where1

M1 = [I 0 0 0 0 0] M2 = [0 I 0 0 0 0] M3 = [0 0 I 0 0 0]

M4 = [0 0 0 I 0 0] M5 = [0 0 0 0 I 0] M6 = [0 0 0 0 0 I]

M15 = M1 −M5 M26 = M2 −M6

M12 = [MT
1 MT

2 ]T M34 = [MT
3 MT

4 ]T M56 = [MT
5 MT

6 ]T

M135 = [MT
1 MT

3 MT
5 ]T M246 = [MT

2 MT
4 MT

6 ]T

M0 = [A Bφ − I 0 BuKx BuKφ] (103)

Then, the gains Kx = K̃xỸ
−1 and Kφ = K̃φŨ

−1 ensures that the origin of the

sampled-data closed-loop system (50) with φ satisfying (19) with ∆ = Γ = 0 and Tk ∈
[T1,T2] is globally asymptotically stable.

Proof. Considering the result of Theorem 8, the idea is to prove that (30) is satisfied,
∀k ∈ N, considering a functional W0 as given in (42) and a Lure-type function (96)
provided that (99) and (100) are verified. With this aim, the expression of Ẇ is obtained
as follows:

Ẇ (τ, xk, Tk) = 2

[
xk(τ)

φk(τ)

]T
P

[
ẋk(τ)

φ̇k(τ)

]
+ [φTk (τ)ΛC]ẋk(τ) + [φTk (τ)ΛDφ]φ̇k(τ)

− (xk(τ)− xk(0))T [Fx(xk(τ)− xk(0)) + 2Gxxk(0)]

+ (Tk − τ)ẋTk (τ)[Rxẋk(τ) + 2Fx(xk(τ)− xk(0)) + 2Gxxk(0)]−
∫ τ

0

ẋTk (θ)Rxẋk(θ)dθ

+ (Tk − 2τ)

[
xk(0)

φk(0)

]T
X

[
xk(0)

φk(0)

]
− (φk(τ)− φk(0))T [Fφ(φk(τ)− φk(0)) + 2Gφφk(0)]

+ (Tk − τ)φ̇Tk (τ)[Rφφ̇k(τ) + 2Fφ(φk(τ)− φk(0)) + 2Gφφk(0)]−
∫ τ

0

φ̇Tk (θ)Rφφ̇k(θ)dθ.

(104)

Using the sector conditions defined in Lemma 1 and Lemma 2, and considering U1 =

U2 = U and U3 = β−1U (see the proof of Theorem 6), we have that

Ẇ (τ, xk, Tk) ≤ Ẇ (τ, xk, Tk) + 2S∆(U, φk(τ), yk(τ))

+ 2SΓ(U, φ̇k(τ), ẏk(τ)) + 2S∆(β−1U, φk(0), yk(0)), (105)

or, equivalently,

Ẇ (τ, xk, Tk) ≤ Ẇ (τ, xk, Tk) + 2φTk (τ)U(∆Cxk(τ) + (∆Dφ − I)φk(τ))

+ 2φ̇Tk (τ)U(ΓCẋk(τ) + (ΓDφ − I)φ̇k(τ))

+ 2φTk (0)β−1U(∆Cxk(0) + (∆Dφ − I)φk(0)). (106)

1The matrices Mi are not of the same dimension. The notations 0 and I correspond to the zero and
identity matrices of appropriate dimension.
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Consider the vector ηk(τ) = [xTk (τ) φTk (τ) ẋTk (τ) φ̇Tk (τ) xTk (0) φTk (0)]T , the vectors
ζk(τ) = M135 ηk(τ), ψk(τ) = M246 ηk(τ) and matrices Qx ∈ R(3n)×n and Qφ ∈ R(3m)×m.
It follows that∫ τ

0

ẋk
T (θ)Rxẋk(θ)dθ − 2ζTk (τ)Qx(xk(τ)− xk(0)) + τζTk (τ)QxR

−1
x QT

x ζk(τ) ≥ 0,

(107)∫ τ

0

φ̇Tk (θ)Rφφ̇k(θ)dθ − 2ψTk (τ)Qφ(φk(τ)− φk(0)) + τψTk (τ)QφR
−1
φ QT

φψk(τ) ≥ 0.

(108)

On the other hand, from (27), and considering L = εMT
1 Y

T +MT
3 Y

T it follows that

2(xTk (τ)εY T + ẋTk (τ)Y T )(Axk(τ) +Bφφk(τ)− ẋk(τ) +Bu(Kxxk(0) +Kφφk(0)) = 0,

(109)

along the trajectories of (27) for any matrix Y ∈ Rn×n, where ε is a positive free scalar.
This null term can be added to (106). Hence, combining (106), (107), (108) and (109),
one obtains that

Ẇ ≤ ηTk (τ)[Π1 + (Tk − τ)Π2 + τ(MT
135QxR

−1
x QT

xM135 +MT
246QφR

−1
φ QT

φM246)

+ (Tk − 2τ)Π3]ηk(τ), (110)

with

Π1 = He{MT
12PM34} −MT

15FxM15 − He{MT
15GxM5}+ He

{
1

2
MT

2 ΛCM3

}
+ He

{
1

2
MT

2 ΛDφM4

}
−MT

26FφM26 − He{MT
26GφM6}

+ He{MT
2 U(∆CM1 + (∆Dφ − I)M2)}+ He{MT

4 U(ΓCM3 + (ΓDφ − I)M4)}

+ He{MT
6 β
−1U(∆CM5 + (∆Dφ − I)M6)} − He{MT

135QxM15}

− He{MT
246QφM26}+ He{(MT

1 εY
T +MT

3 Y
T )M0}

Π2 = MT
3 RxM3 + He{MT

3 (FxM15 +GxM5)}+ He{MT
4 (FφM26 +GφM6)}

+MT
4 RφM4

Π3 = MT
56XM56. (111)

Suppose that Y is nonsingular and define the matrices Ỹ = Y −1, Ũ = U−1 and
Ξ = diag{Ỹ , Ũ , Ỹ , Ũ , Ỹ , βŨ}. Consider now the vector η̃k(τ) = Ξ−1ηk(τ). Rewriting
(110), using η̃k leads to

Ẇ ≤ η̃Tk (τ)[ΞTΠ1Ξ + (Tk − τ)ΞTΠ2Ξ

+ τΞT (MT
135QxR

−1
x QT

xM135 +MT
246QφR

−1
φ QT

φM246)Ξ + (Tk − 2τ)ΞTΠ3Ξ]η̃k(τ).

(112)
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From the definition of the matrices in (103), note that

M1Ξ = Ỹ M1, M2Ξ = ŨM2, M3Ξ = Ỹ M3,

M4Ξ = ŨM4, M5Ξ = Ỹ M5, M6Ξ = βŨM6,

M15Ξ = Ỹ M15, M26Ξ = ŨM2 − βŨM6,

M135Ξ = Ỹ M135, M246Ξ = ŨM246,

M12Ξ =

[
Ỹ 0

0 Ũ

]
M12, M34Ξ =

[
Ỹ 0

0 Ũ

]
M34, M56Ξ =

[
Ỹ 0

0 βŨ

]
M56,

M0Ξ = AỸM1 +BφŨM2 − Ỹ M3 +BuKxỸ M5 +BuβKφŨM6.

Consider the following change of variables: P̃ =

[
Ỹ 0

0 Ũ

]T [
P11 P12

P T
12 P22

][
Ỹ 0

0 Ũ

]
,

F̃x = Ỹ TFxỸ , G̃x = Ỹ TGxỸ , F̃φ = ŨTFφŨ , G̃φ = ŨTGφŨ , Q̃x = ΞTMT
135QxỸ , Q̃φ =

ΞTMT
246QφŨ , R̃x = Ỹ TRxỸ , R̃φ = ŨTRφŨ , X̃ =

[
Ỹ 0

0 βŨ

]T [
X11 X12

XT
12 X22

][
Ỹ 0

0 βŨ

]
,

Λ = ŨΛ, K̃x = KxỸ and K̃φ = KφŨ . Then, (112) can be re-written as follows

Ẇ ≤ η̃Tk (τ)[Π̃1 + (Tk − τ)Π̃2 + τ(Q̃xR̃
−1
x Q̃T

x + Q̃φR̃
−1
φ Q̃T

φ ) + (Tk − 2τ)Π̃3]η̃k(τ),

(113)

where Π̃1, Π̃2, Π̃3 are defined in (102). Hence, we can conclude that if

Π̃1 + (Tk − τ)Π̃2 + τ(Q̃xR̃
−1
x Q̃T

x + Q̃φR̃
−1
φ Q̃T

φ ) + (Tk − 2τ)Π̃3 ≺ 0, (114)

then Ẇ < 0. As (114) is affine with respect to τ , a necessary and sufficient condition to
satisfy it ∀τ ∈ [0, Tk), is given by{

Π̃1 + Tk(Π̃2 + Π̃3) ≺ 0 (115)

Π̃1 − TkΠ̃3 + Tk(Q̃xR̃
−1
x Q̃T

x + Q̃φR̃
−1
φ Q̃T

φ ) ≺ 0. (116)

Finally, as (115) and (116) are affine in Tk and Tk ∈ [T1,T2], applying the same
reasoning and the Schur’s Complement to (116), we conclude that Ψ̃1(Ti) ≺ 0 and
Ψ̃2(Ti) ≺ 0, i = 1, 2 guarantee that (114) is verified ∀τ ∈ [0, Tk), ∀Tk ∈ [T1,T2] provided
that Ỹ and Ũ are nonsingular matrices. This is implicitly ensured by (99) and (100). Note
that as (115) is ensured by (99), it follows that

M3[Π̃1 + Tk(Π̃2 + Π̃3)]MT
3 (117)

This leads to a term −Ỹ − Ỹ T + TkR̃x ≺ 0 in the diagonal of (115), which implies
that −Ỹ − Ỹ T is negative definite, and thus Ỹ is a nonsingular matrix. Moreover, Ũ is
nonsingular by assumption. To conclude the proof, we must ensure the positivity of V .
Left- and right-multiplying (97) by a factor of 2, and then left- and right- multiplying
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the expression by

[
Ỹ 0

0 Ũ

]T
and its transpose, respectively, one obtains (101). Hence,

from Lemma 10, we conclude that (101) ensures that VR is positive definite, ∀x ∈ Rn.
Furthermore, from (96) and (97) it is possible to show that there exist µ1 and µ2 satisfying
(28) for p = 2. The proof is therefore complete, as (99)-(101) implies that conditions of
Theorem 8 are satisfied.

Remark 10. We may consider an additional condition to improve the time response of the

closed-loop system in terms of the decay rate of the function VR at the sampling instants.

This may be done by replacing (30) by the following (PALMEIRA et al., 2016):

Ẇ (τ, xk, Tk) + µVR(xk(0)) < 0, (118)

with µ ∈ [0, 1/T2). Integrating the above expression over the interval [0, Tk] leads to

VR(xk+1(0)) < (1− Tkµ)VR(xk(0)) < (1− T1µ)VR(xk(0)), (119)

which guarantees that the states at the sampling instants converge to the origin with a

decay rate at least of ν = 1 − T1µ. Note that to satisfy (118), it is sufficient to replace

(99) and (100), respectively, by the following matrix inequalities

Ψ̃1(Ti) = Π̃1 + TiΠ̃2 + TiΠ̃3 + µMT
5 P̃11M5 ≺ 0, (120)

Ψ̃2(Ti) =

Π̃1 − TiΠ̃3 + µMT
5 P̃11M5 TiQ̃x TiQ̃φ

? −TiR̃x 0

? ? −TiR̃φ

≺ 0. (121)

Note that conditions (120) and (121) ensure that VR(x(tk)) < µkVR(x(0)).

Remark 11. The conditions presented in Theorem 8 consider in its developments the use

of the function VR. However, the conditions can be easily modified to deal with special

cases of this function. With this aim, for the numerical examples presented in subsection

5.2.2, inequality (101) is substituted, respectively, by P̃11 � 0 for VQ and for VL. For

the functions VQ and VQG, which does not have the Lure-Postnikov coefficients, the terms

related on Λ in (102) are eliminated.

5.2.1 Optimization Problems

From the conditions stated in Theorem 8, we can formulate the following optimization
problems:

P7. Given T1, the sector and slope bounds, compute the gains Kx and Kφ in order
to maximize T2, for which the global stabilization of the origin of the closed-loop
system (50) is ensured.
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P8. Given a nominal sampling period Tnom, the sector and slope upper bounds,
compute the gainsKx andKφ in order to find a bound on the maximum symmetrical
allowable jitter, denoted by σ (i.e., T1 = Tnom − σ, T2 = Tnom + σ), for which the
global stabilization of the origin of the closed-loop system (50) is ensured.

P9. Given T1 and T2, compute the gains Kx and Kφ in order to maximize the
sector and slope upper bounds given by the diagonal matrix Ω, for which the global
stabilization of the origin of the closed-loop system (50) is ensured.

P10. Given T1, T2, the sector and slope bounds, compute the gains Kx and Kφ

in order to improve the temporal response by maximizing µ, for which the global
stabilization of the origin of the closed-loop system (50) is ensured and the decay
rate at the sampling instants is maximized.

Problems P7 and P8 can be seen as a network design problem, as the network designer
will consider the maximum allowable sampling time or jitter as a constraint in the network
scheduling. Problem P9 is useful for systems where nonlinearities are not completely
known, thus providing a certain security margin for which stability of the system can
be guaranteed. In the last problem, the network constraints and the nonlinearities are
completely known and the designer wishes to obtain gains to improve the time response
of the closed-loop trajectories.

Observe that the conditions from Theorem 8 are quasi-LMIs, since there exist non-
linearities which comes from the product between ε, β and Λ and the other decision
variables. On the other hand, for a given µ and fixed ε, β and Λ, the matrix inequalities
(101), (120), (121), become LMIs. In addition, for P7 we should test, in an iterative way,
the feasibility for T2 given, while for P8, P9 and P10 we should consider, respectively, σ,
Ω and µ given.

We point that finding an optimal solution for the combination of these parameters
may be a challenging task. Grid-based solutions, for instance, are poor from an efficiency
perspective. An alternative to deal with this problem is to use a BMI solver, however ac-
cording to (CHIU, 2016), the existing BMI solution methods can suffer from drawbacks,
some of which are enumerated as follows: 1) In some methods, the decision variables are
expressed solely in a vector, when a matrix form is more convenient in control problems;
2) Solution methods are originally designed to fit particular problem structures. Applying
developed methods to other problem structures, if not impossible, requires extra efforts to
reformulate the problem; 3) Prior derivations such as approximations or decompositions
must be performed before algorithms are applied (e.g. linearize the BMI constraints and
then solve a sequence of SDPs), and these derivations can be burdensome and sometimes
heuristic and 4) only local optimization is performed while BMI problems inherently
have multiple local optima. Moreover, few MATLAB toolboxes for BMI problems are
available online and when found, they deal with particular problems (as discussed in the
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second drawback). In this work, we propose a new approach for solving the optimization
problems through the use of a Particle Swarm Optimization algorithm, which has been
shown to be suitable to handle the limitations imposed by the synthesis conditions.

Although the PSO algorithm is an heuristic one and do not guarantee optimality for the
solutions, some good practices seen in many BMI solvers can also be applied to improve
the results. For instance, efforts can be directed to choose adequate initial values for
the search variables, which is important for convergence to an optimal or suboptimal
solution. Furthermore, reducing the ranges of the problem variables as much as possible,
is frequently the key to tight an objective function bounding. Hereupon, we emphasize
that we do not intend to exhaust the discussion about the numerical method, since there
exist different levels of complexity and computational costs involved and a good tradeoff
between them is usually desired.

5.2.1.1 Particle Swarm Optimization Algorithm

To solve the problems stated previously, we will use the PSO algorithm. This algo-
rithm was originally introduced by KENNEDY; EBERHART (1995), inspired by artifi-
cial life, bird flocking, fish schooling, and swarming theory (social/nature behavior). It
comprehends a population-solution based method, which can be applied to continuous,
nondifferentiable, nonlinear, multidimensional search space problems (BANSAL et al.,
2011).

The choice of this heuristic stands on (BANSAL et al., 2011), (KENNEDY; EBER-
HART, 1995): 1) code efficiency, as it can be executed in a few lines of code. Moreover,
considering that time of execution of a solution for a set of LMIs can be already computa-
tionally expense, in the PSO algorithm the optimization function is evaluated only once,
differently from other evolutionary algorithms such as the genetic one, where the op-
timization function is evaluated after applying some operations e.g. elitism, tournament,
and others; 2) ease to implement; 3) robustness in the control parameters of the algorithm,
i.e., the solution does not deteriorate too much under slightly different parameter choices;
4) stability, since the explosion of the variables can be controlled and the algorithm can
be parameterized in such a way that the particle system consistently converges on local
optima with a sufficient number of iterations (CLERC; KENNEDY, 2002); 5) allows to
reach all space of solutions over the defined interval, as it has real codification; 6) has the
ability to perform a local search in the neighbourhood of the incumbent solution, which
is the best feasible solution so far, and 7) combines individual and collective experience
throughout iterations.

The main idea behind the PSO algorithm is to search the space of solutions by adjust-
ing trajectories of individual vectors, called “particles”, as they are conceptualized moving
points into a multidimensional space (CLERC; KENNEDY, 2002). The jth particle of the
swarm l in a nd-dimensional search space, is represented byM j(l) = [mj1 mj2 . . . mjnd ],
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M(l) = [M
T

1 (l)M
T

2 (l) . . . M
T

np(l)]
T , where np is the number of particles in each swarm.

The velocity of each particle in swarm l is denoted by Sj(l) = [sj1 sj2 . . . sjnd ] and
S(l) = [S

T

1 (l) S
T

2 (l) . . . S
T

np(l)]
T . The previously best position visited by the jth particle

is represented by Ej(l) = [ej1 ej2 . . . ejnd ] and E(l) = [E
T

1 (l) E
T

2 (l) . . . E
T

np(l)]
T ,

while the best particle among all the others in the swarm (classified according to a fitness
function) receives the index g, that is, G(l) = Eg(l) = [eg1 eg2 . . . egnd ]. Particles evolve
through iterations according to the following velocity and position equations:

sjd(l + 1) = ωsjd(l) + c1r1(ejd(l)− ejd(l)) + c2r2(egd(l)−mjd(l)) (122)

mjd(l + 1) = mjd(l) + sjd(l + 1), (123)

where d = 1, 2 . . . , nd, j = 1, 2 . . . , np, l = 1, 2, . . . , nsw, with nsw being the maximum
number of swarms. These parameters are kept constant during the execution of the code.
Velocity is updated in (122) which depends on its previous weighted velocity, the dis-
tances of its current position from its own best position experience and the best swarm
position experience. Then, particle uses the obtained velocity and goes toward a new
position, as indicated in (123).

The positive scalar ω is the inertia weight parameter, conceived by (SHI; EBERHART,
1998) to balance exploration i.e., the capability to a particle search new areas into the
variables space far from the incumbent solution, and exploitation, that is, the hability to
search the surrounding area nearby the incumbent solution. As ω multiplies the velocity
term, large inertia weights give emphasis to global search, while small inertia weights
favors local search. Thus, there exists a trade-off. According to (BANSAL et al., 2011), a
constant inertia weight is a good strategy to minimize errors, compared to other weighting
techniques.

Components c1 and c2 are positive constant values corresponding, respectively, to the
cognitive and social scaling parameters. Usually, it is adopted c1 = c2, as (KENNEDY;
EBERHART, 1995) afirms that this combination seems to result in the most effective
search of the problem domain. Parameters r1 and r2 are random numbers uniformly
distributed in the interval [0,1] and independently generated. The term (ejd −mjd) is the
cognition part of the particle, which represents its individual experience (autobiographical
memory), whereas (egd − mjd) is the social part, representing the swarm or collective
experience (KENNEDY, 1997).

For optimization problems P7, P8, P9 and P10, the particles are defined by [ε, β, Λ̃,T2],
[ε, β, Λ̃, σ], [ε, β, Λ̃,Ω], [ε, β, Λ̃, µ], respectively. To evaluate the performance of the par-
ticles Xj , we must assign to each optimization problem a fitness function f(·) in order
to identify which particle has the best solution among all. The fitness function tests the
feasibility of the LMIs (99)-(101) for the input particle, where each element of the parti-
cle corresponds to an optimization parameter. Two possible outcomes are assigned to the
fitness function for the problems P7-P10, as detailed in Table 10.
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Table 10: Global Synthesis - Outputs of the fitness function for each optim. problem.
Problem Fitness Function Feasible Infeasible

P7 f1([ε, β,Λ,T2]) f1 = T2 f1 = −1

P8 f2([ε, β,Λ, σ]) f2 = σ f2 = −1

P9 f3([ε, β,Λ,Ω]) f3 = Ω f3 = −1

P10 f4([ε, β,Λ, µ]) f4 = µ f4 = −1

The explanation is therefore simple: if the LMIs are feasible for a given particle, f1,
f2, f3 and f4 will return, respectively, T2, σ, Ω and µ. Otherwise, the respective functions
will return −1, as we do not admit negative solutions from the above variables. In other
words, for infeasible particle solutions, we just penalize in the objective function, without
discarding the particle, as it may be closer to an optimal or suboptimal solution.

Remark 12. In the case of multivariable control input, aiming to reduce the number of

optimization parameters, one may assume equal values for the elements on the diago-

nal matrix Λ, with the drawback of increasing the conservativeness for the optimization

problem.

Next we will present our PSO algorithm implementation, given by Algorithm 1. At
a first moment, we define the maximum and minimum position and velocities limits over
the search space for each optimization variable and the parameters of the PSO algorithm.
Then, the initial population of positions and velocities are generated in lines 2-7, where
md and md are, respectively, the lower and upper position limits for the dth optimization
variable, md ≥ 0, ∀d, whereas sd and sd are, respectively, the minimum and maximum
initial velocities for the dth optimization variable, sd ≤ 0, sd ≥ 0, ∀d. The function rand()
generates a random number uniformly distributed in the interval [0,1].

We will start with swarm (1). In line 8, the best position ever visited it will simply be
the current/initial position of the particle. Then, we evaluate the fitness function for each
particle inside population E(1) according to the desired optimization problem (f1, f2, f3

or f4), and obtain the particle index associated with the best fitness value. In possession
of the index g, we update the global best position. Next step consists in evolving the
swarms until it reaches nsw, which will be the stopping criterion. Note that in lines 16-21
we implemented an explicit position control of variables to restrict the search space. We
do not restrict velocities limits. Then, we evaluate the fitness function for the new particle
and if the result is better than its previous value, we update the particle’s best own position
experience. These steps are repeated for all optimization variables (particle elements) and
all particles in the swarm. Once finished, we update the global best position experience
and move on to the next swarm. At the end of the process, the best solution encountered
by the algorithm in the variables space is given by G(l + 1).

It should be noticed that we cannot ensure that the whole search space of solutions
will be covered, thus we cannot guarantee optimality, as any other heuristic technique.
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Algorithm 1 Particle Swarm Optimization
1: Define md, md, sd, sd, ∀d, ω, c1, c2;
. Random initialization of the particle population, within the admissible intervals.

2: for d = 1 to nd do
3: for j = 1 to np do
4: mjd = md + (md −md) · rand()

5: sjd = sd + (sd − sd) · rand()

6: end
7: end
.Update of the particle’s and global best position, through solving the LMIs forE(1).

8: E(1) = M(1);
9: g = [index]max(f(E(1)));

10: G(1) = Eg(1));
. Start of the iterative process.

11: for l = 1 to nsw do
12: for j = 1 to np do
13: for d = 1 to nd do
14: Generate random numbers r1, r2;
15: Evaluate (122) and then evaluate (123);

. Position control.
16: if mjd(l + 1) < md then
17: mjd(l + 1) = md;

18: end
19: if mjd(l + 1) > md then
20: mjd(l + 1) = md;

21: end
22: end

. Check particle improvement. Solve the LMIs for the particle.
23: if f(M j(l + 1)) > f(M j(l)) then
24: Ej(l + 1) = M j(l + 1);
25: else
26: Ej(l + 1) = Ej(l);

27: end
28: end

. Update the global best position.
29: g = [index]max(f(E(l + 1)));
30: G(l + 1) = Eg(l + 1));

31: end
. Solution is given by G(l + 1).
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However, the algorithm can be seen as an efficient way of finding at least suboptimal
solutions to P7-P10.

5.2.2 Numerical Examples

Example 1: Consider system (18) given by the following matrices:

A =


−0.5 −6.2 −0.105 −1.2

1 0 0 0

0 1 0 0

0 0 1 0

, Bu =


1

0

0

0

,Bφ =


0.5

0

0

0

,
C =

[
0 0.2 0 0

]
, Dφ = [0],

and the bounds on φ given by δ = γ = 0, δ = γ = Ω. Regarding the PSO algorithm,
a possible way to select the weighting parameters ω, c1 and c2 is presented in (CLERC;
KENNEDY, 2002). In that way, we may choose ω = χ, c1 = χϕ1 and c2 = χϕ2, where
χ is defined by (124), with 0 ≤ h ≤ 1 and ϕ = ϕ1 + ϕ2 ≥ 4. Arbitrarily, we choose
h = 1, ϕ1 = 2.05 and ϕ2 = 2.05, which are common values used in the literature.

χ =
2h

|2− ϕ−
√
ϕ2 − 4ϕ|

. (124)

Computing these coefficients, one obtains ω = 0.7298, c1 = c2 = 1.4962. The
number of particles and the number of swarms were defined as np = 100, nsw = 75. For
this example, we defined the range of the search variables in the interval ε ∈ [0.01, 2],
β ∈ [0.01, 10000] and Λ ∈ [0, 100] for P7, P8 and P9. For P10, we defined the interval
ε ∈ [0.01, 3], β ∈ [0.01, 50000] and Λ ∈ [0, 10]. Initial velocities sd, sd were set until 5%
of the maximal value of the interval for each optimization variable.

The results for P7 are detailed in Table 11, by considering T1 = 0.1 ms and Ω = 1√
2
.

In Table 11, the result “∞∗” means that for the tests that we made, we increased T2

and found no upper bound. However, there should exist control updates that bring the
control input (and by consequence the states) to zero. Moreover, observe that there exists
a tradeoff between µ, the maximal intersampling time and the sector bounds. For µ = 0,
the additional degree of freedom provided by the variable Λ significantly improved the
results for VR and VL in comparison to VQG and VQ, but when some performance was
required, no improvement was observed.
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Table 11: Global synthesis, Ex. 1 - Maximum T2 for different µ and function V .
Parameter VQ VQG VL VR

µ = 0

β 5690.95 4933.76 242.91 75.6818
ε 0.3755 0.3772 1.4571 0.4047
Λ - - 7.7201 16.9366
T2 4.8038 4.8055 ∞∗ ∞∗

µ = 0.5

β 2652.89 5430.09 1226.91 1790.05
ε 1.3739 1.3767 1.3745 1.3793
Λ - - 0.0000 0.0000
T2 0.7440 0.7444 0.7440 0.7444

µ = 1.0

β 6238.01 7435.78 3818.39 6648.50
ε 1.8041 1.8065 1.8068 1.8018
Λ - - 0.0000 0.0000
T2 0.4651 0.4655 0.4651 0.4655

The results for P8 are detailed in Table 12, by considering Tnom = 3.5 s and Ω = 1√
2
.

Note that for µ = 0, we guarantee stability for a small enough sampling time and for
T2 = 7.0 s. In the cases of µ = 0.01 and µ = 0.05, the results of σ with the function
VR were better than the ones obtained with VQ, VQG and VL, showing that the variable Λ

improved the solutions.

Table 12: Global synthesis, Ex. 1 - Maximum σ for different µ and function V .
Parameter VQ VQG VL VR

µ = 0

β 2875.62 8123.71 205.95 131.65
ε 0.3891 0.3910 1.8371 0.3460
Λ - - 6.5099 10.7621
σ 1.3697 1.3709 3.5000 3.5000

µ = 0.01

β 3503.05 3384.47 5653.58 2253.67
ε 0.3365 0.3346 0.3419 0.3435
Λ - - 1.6102 5.9785
σ 1.1439 1.1450 1.1555 1.1712

µ = 0.05

β 9789.44 1708.08 293.29 6925.21
ε 0.3155 0.3123 0.3141 0.3166
Λ - - 0.0000 0.9585
σ 0.6196 0.6232 0.6196 0.6252

For P9, we defined T1 = 0.1 ms and T2 = 4.5s. The results are depicted in Table 13.
Considering µ = 0, with the VR function we obtained Ω greater 17.9%, 10.8% and 17.9%
than the ones obtained with VQ, VQG and VL, respectively. For µ = 0.015, the percentage
increase of the results of Ω get even better, 32.8%, 28.1% and 23.7% than the ones with
VQ, VQG and VL, respectively.
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Table 13: Global synthesis, Ex. 1 - Maximum Ω for different µ and function V .
Parameter VQ VQG VL VR

µ = 0

β 32.92 5064.21 33.4892 443.78
ε 0.3229 0.3172 0.3172 0.3286
Λ - - 0.0000 7.2131
Ω 2.8029 2.9824 2.8029 3.3056

µ = 0.01

β 39.50 5864.74 43.9983 5722.05
ε 0.3137 0.3108 0.3158 0.3158
Λ - - 0.6022 4.6237
Ω 1.5170 1.5958 1.5321 1.8106

µ = 0.015

β 71.66 7593.90 652.09 1340.88
ε 0.3119 0.3132 0.3148 0.3144
Λ - - 0.8848 3.6167
Ω 0.7209 0.7471 0.7735 0.9575

Finally, the obtained results for P10 are presented in Table 14, with T1 = 0.1 ms,
T2 = 0.3 s and Ω = 1√

2
. The combination of parameters that yields in greater µ were

β = 40448.16, ε = 2.5793 and Λ = 0, achieved with the VR function.

Table 14: Global synthesis, Ex. 1 - Maximum µ for different function V .
Parameter VQ VQG VL VR

β 10685.48 32455.55 27510.29 40448.16

ε 2.5780 2.5756 2.5770 2.5793

Λ - - 0.0000 0.0000

µ 1.6478 1.6494 1.6478 1.6494

Let us consider the results from P9 (Table 13, VR function). The gains obtained with
performance constraint µ = 0, µ = 0.01 and µ = 0.015 are given in Table 15.

Table 15: Global synthesis, Ex.1 - Gains obtained from P9 with the function VR.
Kx Kφ

µ = 0 [-0.0881 0.0666 -0.4888 0.2561] [-0.0031]

µ = 0.01 [-0.1272 0.0766 -0.7085 0.4139] 10−5·[5.9588]

µ = 0.015 [-0.1410 0.0833 -0.7841 0.4786] 10−5·[4.5509]

Note that as µ grows, the magnitude of the gains Kx also increase, without change on
the signal, which is justified due to the fact that the performance restrictions are imposed
over the states of the system. On the other hand, the gains Kφ tends to a small value,
for this example. We simulate now the system considering the result from P9, i.e., Tk ∈
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[0.0001,4.5], and the piecewise affine nonlinearity defined below

φ(y(t)) =


0.2 y(t), sgn(y(t))y(t) ≤ 0.1

0.5 y(t)− 0.03 sgn(y(t)), 0.1 < sgn(y(t))y(t) ≤ 0.5

0.9575 y(t)− 0.25875 sgn(y(t)), sgn(y(t))y(t) > 0.5,

(125)

that satisfies (19) with sector and slope restrictions δ = γ = 0, δ = γ = 0.9575. The
control action u(t) and the nonlinearity input y(t) are presented in Figs. 22 and 23 for the
different values of µ, by considering x(0) = [10 10 − 10 10]T . Note that for higher µ,
the rate of convergence of the trajectories to the origin is increased at the cost of a higher
control action.

Figure 22: Global synthesis, Ex. 1 - Control action of the closed-loop system.

Font: Author.

Figure 23: Global synthesis, Ex. 1 - Nonlinearity input of the closed-loop system.

Font: Author.
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To qualitatively characterize the solutions obtained with the PSO algorithm, Fig. 24
shows the evolution of the solutions (left axis) given by the fitness function associated to
the optimization problem P8 (see Table 10), with µ = 0.01 and VR(x) and the number of
feasible particles and infeasible particles (right axis) along the swarms or iterations. In
this case, a new random particle population initialization was considered.

Figure 24: Evolution of solutions and particles over iterations.

Font: Author.

From Fig. 24, we have that the best solution found by the algorithm was σ = 1.1712

s, which was equal to the one given in Table 12. This indicates that the solution may
be near to the optimal one from the given range of the search variables in the interval
ε ∈ [0.01, 2], β ∈ [0.01, 10000], Λ ∈ [0, 100] and σ ∈ [0.01, 2]. Observe that in the first
swarm approximately 90% of the particles presents an infeasible solution, while in the
end of the process almost all solutions are feasible, which shows the stability of the PSO
algorithm. Furthermore, note that along the process it is interesting to have infeasible so-
lutions, and do not discard the corresponding particles, since their solutions may be near
to an optimal one. Indeed, this characteristics of the algorithm allows the search space of
the variables to be better explored.

Example 2: Consider system (18) given by the following matrices

A =

[
−1.1 −2

1 0

]
, Bu =

[
1

0

]
,Bφ =

[
0.5

0

]
, C =

[
−0.95 1.50

]
, Dφ = [−0.5],

and the bounds on φ given by δ = γ = 0, δ = γ = Ω. This system satisfies Proposition 1,
i.e., the algebraic loop is well-posed. The parameters chosen for the PSO algorithm were
ω = 0.7298 and c1 = c2 = 1.4962. Also, we defined np = 100, nsw = 75 and the search
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space over ε ∈ [0.01, 2], β ∈ [0.01, 50000] and Λ ∈ [0, 100]. Initial velocities sd, sd were
set until 5% of the maximal value of the interval for each optimization variable.

The results for P7 are detailed in Table 16, by considering T1 = 0.5 s and Ω = 1√
2
.

Observe that we guarantee stability for any T2 (as an upper bound could not be found) for
all the functions, but we emphasize that there should exist other control updates that leads
the control input to zero. Moreover, the functions VR and VQG leads to the same results
for the optimization problems with µ = 0.5 and µ = 1.0, which are slightly greater than
those obtained with VL and VQ.

Table 16: Global synthesis, Ex. 2 - Maximum T2 for different µ and function V .
Parameter VQ VQG VL VR

µ = 0

β 14788.22 22837.86 19947.38 38163.67
ε 0.6627 1.6798 0.6982 1.4332
Λ - - 0.0000 0.0000
T2 ∞∗ ∞∗ ∞∗ ∞∗

µ = 0.5

β 18984.67 9677.81 25830.82 7880.04
ε 1.3740 1.3762 1.3736 1.3802
Λ - - 0.0000 0.0000
T2 1.3877 1.4035 1.3877 1.4035

µ = 1.0

β 5201.66 14374.22 22428.28 4800.50
ε 1.8992 1.8077 1.9018 1.8023
Λ - - 0.0000 0.0000
T2 0.7550 0.7665 0.7550 0.7665

The results for P8 are detailed in Table 17, by considering Tnom = 3.0 s and Ω = 1√
2
.

Note that for µ = 0 we guarantee stability for a small enough sampling time and for
T2 = 6.0 s. For µ = 0.15, the results of σ with the functions VR and VQG were 2.4%
greater than the ones obtained with VL and VQ. For µ = 0.20, this percentage increases to
7.8%.

Table 17: Global synthesis, Ex. 2 - Maximum σ for different µ and function V .
Parameter VQ VQG VL VR

µ = 0

β 14585.99 11735.03 23643.86 7816.50
ε 1.2598 0.2179 0.0863 0.2375
Λ - - 0.0000 0.0000
σ 3.0000 3.0000 3.0000 3.0000

µ = 0.15

β 48784.82 47169.81 41525.35 46850.01
ε 1.4179 1.3885 1.4190 1.3898
Λ - - 0.0000 0.0000
σ 1.8386 1.8844 1.8386 1.8844

µ = 0.20

β 13500.08 33601.56 12972.28 24318.98
ε 1.4161 1.3873 1.4168 1.3885
Λ - - 0.0000 0.0000
σ 0.5305 0.5722 0.5305 0.5722
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For P9, we defined T1 = 0.1 ms and T2 = 4.0 s, which results are depicted in Table
18. Observe that for this intersampling interval and µ = 0, we ensure stability for nonlin-
earties with sector and slope bound restrictions in [0,∞∗], since an upper bound was not
found. The quadratic terms that depend on the nonlinearities in the functions VQG and VL
improved substantially the results for µ = 0.15 and for µ = 0.18 in comparison to the
ones obtained with VQ and VL, respectively, in a order of 29.6% and 15.5%.

Table 18: Global synthesis, Ex. 2 - Maximum Ω for different µ and function V .
Parameter VQ VQG VL VR

µ = 0

β 22959.92 46584.06 25268.30 44978.74
ε 0.1999 1.3943 0.5353 2.0000
Λ - - 34.0958 26.6681
Ω ∞∗ ∞∗ ∞∗ ∞∗

µ = 0.15

β 11566.76 36910.01 50000.00 45534.47
ε 1.2623 1.1996 1.2623 1.1996
Λ - - 0.0000 0.0000
Ω 3.0714 3.9817 3.0714 3.9817

µ = 0.18

β 13124.27 47084.42 23086.02 38293.34
ε 1.4368 1.3993 1.4370 1.4002
Λ - - 0.0000 0.0000
Ω 0.6088 0.7033 0.6088 0.7033

Finally, for P10, the results are presented in Table 19, with T1 = 0.1 ms, T2 = 1.2071

s and Ω = 1√
2
. Again, the results with the function VQG and VR were less conservative

than the ones with VQ and VL. The variable Λ did not help to improve the solutions.

Table 19: Global synthesis, Ex. 2 - Maximum µ for different function V .
Parameter VQ VQG VL VR

β 6055.11 48338.96 16014.40 19884.33

ε 1.4250 1.4173 1.4250 1.4160

Λ - - 0.0000 0.0000

µ 0.5864 0.5925 0.5864 0.5925

The results show that the function VR leads to greater values of T2, σ, Ω and µ in all
cases, for being less conservative. The function VQG performed better than VQ and VL
due to the quadratic terms on the nonlinearities in all cases. In this examples, the variable
Λ did not contribute to improve the solutions, i.e., the Lure terms in VL and VR did not
provide an improvement in relation to the results obtained with VQ and VQG.

Let us now consider the results from P7 (Table 16, VR function). The gains obtained
with performance constraint µ = 0.5 and µ = 1.0 are given in Table 20.



92

Table 20: Global synthesis, Ex.2 - Gains obtained from P7 with the function VR.
Kx Kφ

µ = 0.5 [-0.3237 0.1440] [-0.0845]

µ = 1.0 [-1.1079 -0.3397] [-0.2931]

Differently from the gains shown in the previous example, in this case there was sig-
nal change on an element of the gain Kx and on the magnitude of the gains Kφ when
increasing µ. As the gains for µ = 0 depend on the fixed T2, and as a maximal T2 could
not be determined, this case will not be considered for presentation purposes.

To show that asymptotic stability holds for these cases, we choose the intersampling
interval in the range Tk ∈ [0.5, 0.7765], which is the result for µ = 1. The control action
and the nonlinearity input for different values of µ are presented in Figs. 25 and 26, by
considering x(0) = [−10 5]T and the piecewise linear nonlinearity defined below

φ(y(t)) =


0.2 y(t), sgn(y(t))y(t) ≤ 1

0.4 y(t)− 0.2 sgn(y(t)), 1 < sgn(y(t))y(t) ≤ 3

1√
2
y(t)− 3−

√
2√

2
sgn(y(t)), sgn(y(t))y(t) > 3,

(126)

which satisfies (19) with sector and slope restrictions δ = γ = 0, δ = γ = 1√
2
.

Figure 25: Global synthesis, Ex. 2 - Control action of the closed-loop system.

Font: Author.
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Figure 26: Global synthesis, Ex. 2 - Nonlinearity input of the closed-loop system.

Font: Author.

As noted in the same way in the previous example, with µ = 1 we have that trajectories
converge to the origin in approximately 1.5 s, about 3 times lesser than with µ = 0.5.
However, the magnitude of the control action is increased.

We highlight that from the obtained gains Kx and Kφ via synthesis procedures, one
can apply the analysis methods with the intent to obtain less conservative bounds for T2,
σ or Ω. This is motivated by the fact that some assumptions and changes of variables
are required to derive the stabilization conditions, such as U1 = U2 = U , U3 = β−1U

and L = εMT
1 Y

T +MT
3 Y

T , which introduces conservatism in the synthesis methods (for
more details, see the proof of Theorem 8). Applying this reasoning with the gains obtained
from P7 as given in Table 20, we then solve P1 considering the generalized Lure function
VLG(x). In this case, for Kx = [−0.3237 0.1440] and Kφ = [−0.0845] we obtained
T2 = 16.8406 s and for Kx = [−1.1079 − 0.3397] and Kφ = [−0.2931], we obtained
T2 = 1.5878 s, which are greater than the values presented in Table 16, respectively,
T2 = 1.4035 s and T2 = 0.7665 s.

5.3 Regional Results

In this section, we present conditions in the form of quasi-LMIs to guarantee the
stabilization of the origin of the sampled-data closed-loop system (50) in a local context,
under aperiodic sampling satisfying Tk ∈ [T1,T2] and subject to nonlinearities that verify
the sector and slope restrictions (19) provided y ∈ Y0, or equivalently x ∈ X0, with X0 as
defined in (24). Moreover, as in the global case, we assume that ∆ = Γ = 0. For this, we
consider the function VR(x) (96) used in the global synthesis and a particular structure of
the functional (42) with Gx = 0, Gφ = 0, X � 0, Fx � 0 and Fφ � 0, which ensures its
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positivity as done in the regional analysis.

In this context, the following theorem provides conditions to obtain gains Kx and Kφ

that ensure the asymptotic stability of the origin of the closed-loop system.

Theorem 9. If there exist matrices P̃ ∈ Sn+m, Ỹ ∈ Rn×n, Ũ ∈ Dm
�0, F̃x ∈ Sn�0, F̃φ ∈ Sm�0,

R̃x ∈ Sn�0, R̃φ ∈ Sm�0, Q̃x ∈ R3(n+m)×n, Q̃φ ∈ R3(n+m)×m, X̃ ∈ Sn+m
�0 , K̃x ∈ Rq×n,

K̃φ ∈ Rq×m, Λ ∈ Dm
�0 and positive scalars ε, β, that satisfy, for i = 1,2:

Ψ̃1(Ti) = Π̃1 + TiΠ̃2 + TiΠ̃3 ≺ 0 (127)

Ψ̃2(Ti) =

Π̃1 − TiΠ̃3 TiQ̃x TiQ̃φ

? −TiR̃x 0

? ? −TiR̃φ

 ≺ 0 (128)

[
2P̃11 2P̃12 − Ỹ TCT∆

? 2P̃22 + 2(I −∆Dφ)Ũ

]
� 0, (129)

with

Π̃1 = He
{
MT

12P̃M34

}
−MT

15F̃xM15 + He

{
1

2
MT

2 ΛCỸ M3

}
+ He

{
1

2
MT

2 ΛDφŨM4

}
− (M2 − βM6)T F̃φ(M2 − βM6) + He

{
MT

2 (∆CỸ M1 + (∆Dφ − I)ŨM2)
}

+ He
{
MT

4 (ΓCỸ M3 + (ΓDφ − I)ŨM4)
}

+ He
{
MT

6 (∆CỸ M5 + (∆Dφ − I)βŨM6)
}
− He{Q̃xM15} − He{Q̃φ(M2 − βM6)}

+ He{(εMT
1 +MT

3 )(AỸM1 +BφŨM2 − Ỹ M3 +BuK̃xM5 +BuβK̃φM6)}

Π̃2 = MT
3 R̃xM3 + He{MT

3 F̃xM15}+MT
4 R̃φM4 + He{MT

4 F̃φ(M2 − βM6)}

Π̃3 = MT
56X̃M56, (130)

where2

M1 = [I 0 0 0 0 0] M2 = [0 I 0 0 0 0] M3 = [0 0 I 0 0 0]

M4 = [0 0 0 I 0 0] M5 = [0 0 0 0 I 0] M6 = [0 0 0 0 0 I]

M15 = M1 −M5 M12 = [MT
1 MT

2 ]T M34 = [MT
3 MT

4 ]T M56 = [MT
5 MT

6 ]T .

Then, the gains Kx = K̃xỸ
−1 and Kφ = K̃φŨ

−1 ensures that the origin of the

sampled-data closed-loop system (50) with φ satisfying (19) with ∆ = Γ = 0 and Tk ∈
[T1,T2] is locally asymptotically stable for all initial conditions inside L(VR, ρ) ⊂ X0,

with VR as defined in (96) with P =

[
Ỹ 0

0 Ũ

]−T
P̃

[
Ỹ 0

0 Ũ

]−1

and Λ = Ũ−1Λ.

2The matrices Mi are not of the same dimension. The notations 0 and I correspond to the zero and
identity matrices of appropriate dimension.
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Proof. The proof follows the same steps from the proofs of Theorem 8 and Theorem

5. Note, however, that the assumptions on the functional imply that G̃x = 0, G̃φ = 0

and that F̃x, F̃φ and X̃ are positive definite matrices, thus ensuring the positivity of the
functional.

Remark 13. Inspired in Lemma 7, the inclusion of the level set L(VR, ρ) ⊂ X0 is ensured

if there exist matrices P ∈ Sn+m, Sc,j ∈ Dm
�0 and positive scalars σj and ρ, such that the

following inequalities are satisfied
−(σjyjyj + ρ) σj

y
j
+yj

2 Cj σj
y
j
+yj

2 Dφj 0

? P11 P12 σjC
T
j

? ? P22 σjD
T
φj

? ? ? σj



+ He


1

2


0

(∆C)T

(∆Dφ − I)T

0

Sc,j [0 ∆C (∆Dφ − I) 0

] � 0, (131)

for j = 1, . . . ,m. On the other hand, if the validity region is symmetric, i.e., for X0

given by (81) then, inspired from Lemma 9, the inclusion L(VR, ρ) ⊂ X0 is ensured if the

following inequalities are satisfiedP11 P12 ρCT
j

? P22 ρDT
φj

? ? ρy2
j

+ He

1

2

 (∆C)T

(∆Dφ − I)T

0

Sc,j [∆C (∆Dφ − I) 0

] � 0, (132)

for j = 1, . . . ,m. Observe that in both cases the conditions for the function VR are

reduced to the inclusion of the level set L(VQG, ρ) in X0, as discussed in Remark 7 and

Remark 8, respectively. In fact, L(VQG, ρ) is an outer approximation of L(VR, ρ).

5.3.1 Optimization Problems

From the above conditions, we can formulate the following optimization problems.

P11. Given T1, the sector and slope bounds and the domain of validity of the sector
conditions X0, compute the gainsKx andKφ in order to maximize T2 and obtain an
estimate of the region of attraction for which the stability of the closed-loop system
(50) is ensured.

P12. Given a nominal sampling time Tnom, the sector and slope bounds and the
domain of validity of the sector conditions X0, compute the gains Kx and Kφ in
order to find a bound on the maximum symmetrical allowable jitter, denoted by σ
(i.e., T1 = Tnom − σ, T2 = Tnom + σ) and obtain an estimate of the region of
attraction for which the stability of the closed-loop system (50) is ensured.
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P13. Given T1, T2 and the domain of validity of the sector conditions X0, compute
the gains Kx and Kφ in order to maximize the sector and slope upper bounds given
by the diagonal matrix Ω, and obtain an estimate of the region of attraction for
which the stability of the closed-loop system (50) is ensured.

P14. Given T1, T2, the sector and slope bounds and the domain of validity of the
sector conditionsX0, compute the gainsKx andKφ in order to improve the temporal
response by maximizing µ, and obtain an estimate of the region of attraction for
which the stability of the closed-loop system (50) is ensured and the decay rate at
the sampling instants is maximized.

Observe that the conditions in Theorem 9 are quasi-LMIs, since there exists involved
nonlinearities which comes from the product of ε, β and Λ with the decision variables.
To handle this issue, we will use the PSO algorithm described by Algorithm 1. As in
the previous section, we must assign to each optimization problem a fitness function f(·)
in order to identify the combination of the optimization parameters that leads to the best
solution. The fitness function tests the feasibility of the LMIs (127)-(129) for the input
particle, where each element of the particle corresponds to an optimization parameter.
Two possible outcomes are assigned to the fitness function for the problems P11-P14, as
detailed in Table 21.

Table 21: Regional Synthesis - Outputs of the fitness function for each optim. problem.
Problem Fitness Function Feasible Infeasible

P11 f5([ε,β,Λ,T2]) f5 = T2 f5 = −1

P12 f6([ε,β,Λ, σ]) f6 = σ f6 = −1

P13 f7([ε,β,Λ,Ω]) f7 = Ω f7 = −1

P14 f8([ε,β,Λ, µ]) f8 = µ f8 = −1

From Table 21, we have that if the LMIs are feasible for a given particle, f5, f6, f7

and f8 will return, respectively, T2, σ, Ω and µ. Otherwise, the respective functions will
return −1. Following the same reasoning as in the previous section, a procedure to solve
problems P11-P14 is given by the following steps:

Step 1/3 - Solve the corresponding optimization problem: max T2 (or σ, or Ω, or µ)

subject to (127), (128), (129).
(133)

Step 2/3 - From the matrices obtained in Step 1, recover P and Λ and then determine
the maximum level set of the Lyapunov function such that L(VR, ρ) ⊂ X0. This can
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be accomplished through the following optimization problem:
max ρ

subject to (131). (Asymmetric case)

(132). (Symmetric case)

(134)

Step 3/3 - If the obtained level set does not touch at least one of the boundaries of
the validity region X0, then increase ρ until this condition is satisfied. Therefore,
this new level set defines an estimate of the region of attraction.

In the first step, we solve the quasi-LMIs as in the global synthesis case with the help
of the PSO algorithm. Then, we recover the matrices P and Λ from the matrices obtained
by the synthesis according to the relations detailed in the proof of Theorem 8 to search
a posteriori for the maximum level set that is included in X0. Since the conditions that
guarantee this inclusion are based on an outer approximation of L(VR, ρ), in the last step
we increase ρ until the level set touches the boundaries of the validity region, thus giving
a better estimate of the region of attraction.

5.3.2 Numerical Examples

Example: Consider system (18) given by the following matrices:

A =

[
−2 1

1 1

]
, Bu =

[
1 0

0 1

]
, Bφ =

[
1 0

0 2

]
C =

[
0 1

1 0

]
, Dφ =

[
0 0

0 0

]
.

Suppose that this system is fed back by nonlinearities φ1(y1) = sgn(y1)y2
1 and φ2(y2) =

sgn(y2)y2
2 and that we are interested to stabilize it in the interval y1, y2 ∈ [−1, 1]. The

sector and slope bounds are given by δ1 = δ2 = 0, δ1 = δ2 = Ω, γ
1

= γ
2

= 0 and
γ1 = γ2 = 2Ω. The parameters chosen for the PSO algorithm were ω = 0.7298 and
c1 = c2 = 1.4962. Also, we defined np = 100, nsw = 75 and the search space over
ε ∈ [0.01, 2], β ∈ [0.01, 50000] and over the diagonal elements of Λ in [0, 10]. To reduce
the number of optimization variables, we assume in this case equal values for the diagonal

elements of Λ, that is, Λ =

[
λ 0

0 λ

]
, as discussed in Remark 12. Initial velocities sd, sd

were set until 5% of the maximal value of the interval for each optimization variable.

The results for P11 are detailed in Table 22, by considering T1 = 0.1 ms and Ω = 1.
The maximum intersampling time that we guarantee stability was T2 = 0.4758 s. More-
over, the functions VR and VQG leads to the same results for the optimization problems
with µ = 0, µ = 0.5 and µ = 1.0, which are greater about 6.8%, 8.6% and 8.6% than
those obtained with VQ and VL, respectively.
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Table 22: Regional synthesis, Ex. 1 - Maximum T2 for different µ and function V .
Parameter VQ VQG VL VR

µ = 0

β 49895.44 42185.35 31910.32 38624.45
ε 0.1650 0.1409 0.1658 0.1408
λ - - 0.0000 0.0000
T2 0.4455 0.4758 0.4455 0.4758

µ = 0.5

β 50000.00 26549.95 38794.50 6800.99
ε 0.5517 0.3886 0.5513 0.3884
λ - - 0.0000 0.0000
T2 0.3897 0.4236 0.3897 0.4236

µ = 1.0

β 3769.74 50000.00 8678.69 26415.92
ε 1.0094 0.7325 1.0086 0.7330
λ - - 0.0000 0.0000
T2 0.3476 0.3776 0.3476 0.3776

The results for P12 are detailed in Table 23, by considering Tnom = 0.3 s and Ω = 1.
Note that for µ = 0 we could guarantee stability for T1 = 0.1240 s and T2 = 0.4760 s.
For µ = 0.05, the results of σ with the functions VR and VQG were 22.4% greater than the
ones obtained with VL and VQ. For µ = 0.15, this percentage increases to 25.7%.

Table 23: Regional synthesis, Ex. 1 - Maximum σ for different µ and function V .
Parameter VQ VQG VL VR

µ = 0

β 35488.32 45778.99 49600.35 26123.27
ε 0.1652 0.1397 0.1655 0.1400
λ - - 0.0000 0.0000
σ 0.1456 0.1760 0.1456 0.1760

µ = 0.05

β 50000.00 11238.27 50000.00 49710.49
ε 0.1991 0.1628 0.1987 0.1627
λ - - 0.0000 0.0000
σ 0.1393 0.1706 0.1393 0.1706

µ = 0.15

β 32211.20 45781.19 48093.45 40380.92
ε 0.2711 0.2087 0.2717 0.2094
λ - - 0.0000 0.0000
σ 0.1272 0.1599 0.1272 0.1599

For P13, considering T1 = 0.1 ms and T2 = 0.5 s, results are depicted in Table 24.
In this case, for µ = 0, µ = 0.05 and µ = 0.15, the results of Ω with the functions VR
and VQG were 10.2%, 10.8% and 12.1% greater than the ones obtained with VL and VQ,
respectively.
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Table 24: Regional synthesis, Ex. 1 - Maximum Ω for different µ and function V .
Parameter VQ VQG VL VR

µ = 0

β 23407.53 23241.00 32518.99 46866.68
ε 0.1598 0.1387 0.1596 0.1389
λ - - 0.0000 0.0000
Ω 0.8467 0.9331 0.8467 0.9331

µ = 0.05

β 39589.07 34242.51 48809.92 32656.42
ε 0.1919 0.1610 0.1914 0.1612
λ - - 0.0000 0.0000
Ω 0.8272 0.9170 0.8272 0.9170

µ = 0.15

β 10357.67 19423.37 50000.00 41529.69
ε 0.2615 0.2074 0.2612 0.2073
λ - - 0.0000 0.0000
Ω 0.7877 0.8836 0.7877 0.8836

Finally, for P14, the results are presented in Table 25, with T1 = 0.1 ms, T2 = 0.3 s
and Ω = 1. Again, the results with the function VQG and VR were less conservative than
the ones with VQ and VL. Note that the variable Λ does not help to improve the solutions.

Table 25: Regional synthesis, Ex. 1 - Maximum µ for different function V .
Parameter VQ VQG VL VR

β 26722.32 33441.68 26938.03 25328.33

ε 1.8318 1.9988 1.8311 1.9994

λ - - 0.0000 0.0000

µ 1.7548 2.0897 1.7548 2.0897

Let us consider the results from P11 (Table 22, µ = 0). The estimate of the region of
attraction corresponding to the solutions of P11 for different functions V is presented in
Fig. 27, along with the boundaries of the region of validity. The obtained level set for the
function VR was ρ = 3.1390 · 104, with the matrices

P = 105 ·


2.1687 −0.9072 −0.0257 0.2695

−0.9072 0.6934 0.0730 −0.0122

−0.0257 0.0730 −0.0074 −0.1157

0.2695 −0.0122 −0.1157 −0.0721

 , Λ =

[
0 0

0 0

]
.

In this case, the validity region in Rn can be described as X0 = {x ∈ Rn| − 1 ≤
xi ≤ 1, i = 1, 2}, as shown in Fig. 27. Observe that with the functions VQG and VR the
estimates cover a smaller region in comparison to the estimates with VQ and VL, but we
emphasize that this area ensures stability for a larger T2. Furthermore, the estimates of the
region of attraction with the functions VQG and VR do not touches the validity region. It
was observed that occurs an atypical, unexpected behavior when we increase ρ in relation
to the previous computed. This is illustrated in Fig. 28, through the level sets of VR.



100

Figure 27 – Regional synthesis, Ex. 1 - Estimate of the region of attraction for P11 with
different V .

Font: Author.

Figure 28: Regional synthesis, Ex. 1 - Level sets of VR.

Font: Author.

Figure 28 depicts the level sets of VR. Note that for a value of ρ slightly greater than
the one obtained from problem (134), the level set is no longer compact and does not
belong to the domain X0. So the computed ρ is actually the maximal one. Moreover,
some “sawtooth” behavior can be observed at the level sets which crosses the validity
region.
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To show that stability is guaranteed for the obtained region, we simulate the closed-
loop system (50), as presented in Fig. 29, by considering the solution of P11 with VR and
Tk ∈ [0.0001, 0.4758]. As observed in Fig. 29, the continuous-time trajectories starting
at ∂L(VR, ρ) with ρ = 3.1390 · 104 converge to the origin. Finally, we aim to show the
effectiveness of the synthesis method which allows to improve the time-response of the
closed-loop system in terms of decay rate through the parameter µ. In this case, the gains
obtained with performance constraint µ = 0, µ = 0.5 and µ = 1.0 are given in Table 26.

Figure 29: Regional synthesis, Ex. 1 - Trajectories of the closed-loop system for P11.

Font: Author.

Table 26: Regional synthesis, Ex.1 - Gains obtained from P11 with the function VR.
Kx Kφ

µ = 0

[
−0.0805 −0.4091

0.1567 −1.9873

] [
−0.6923 −0.0356

−0.1205 −1.6127

]

µ = 0.5

[
−0.0317 −0.4139

0.1147 −2.2404

] [
−0.7461 −0.1133

−0.1318 −1.7026

]

µ = 1.0

[
−0.4846 −0.2309

0.3811 −2.6941

] [
−0.7896 −0.1875

−0.1293 −1.7253

]

To show that asymptotic stability holds for these cases, we choose the intersampling
interval in the range Tk ∈ [0.0001, 0.3776], which is the result for µ = 1. The con-
trol action and the states for different values of µ are presented in Figs. 30 and 31, by
considering x(0) = [0.4 0.8]T .
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Figure 30: Regional synthesis, Ex. 1 - Control action of the closed-loop system.

Font: Author.

Figure 31: Regional synthesis, Ex. 1 - States of the closed-loop system.

Font: Author.

Note that with µ = 1 the states x1 and x2 converge faster to the origin, as expected, at
the cost of higher control action.

5.4 Final Comments

This chapter presented the latest contributions of this dissertation, which provides new
conditions for the synthesis of stabilizing controllers in the form of quasi-LMIs for both
global and regional contexts, based on the results of the previous chapter.
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Optimization problems are stated aiming to compute the gains Kx and Kφ in a way to
maximize the intersampling intervals, the sector bounds or to improve the time-response
of the closed-loop system. An estimate of the region of attraction is also provided for the
regional case. Since there exists involved nonlinearities between the product of β, ε and
Λ with the decision variables in the presented conditions, we propose a heuristic-based
algorithm called Particle Swarm Optimization to search for the best combination of these
ones while testing the feasibility of the LMI constraints.

The results from the numerical examples shows that the function VR reduce the con-
servatism in comparison to the other functions in some cases. However, we should point
out that the requirement on the positivity of the Lure coefficients and on the nonlinearities
to be monotonically increasing are limiting factors to obtain less restrictive results.
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6 CONCLUSIONS

This dissertation presented a new method for stability analysis and synthesis of sam-
pled-data control for Lure systems subject to aperiodic sampling and nonlinearities that
are sector and slope restricted. The method is based on a looped-functional approach that
relates the discrete and continuous-time behavior of the SDC, combined with a general-
ized Lure function. The motivation for this study is given by the lack of results concerning
stability and stabilization of sampled-data control Lure systems and due to the fact that
many physical systems can be represented in this form. In the sequence, we summarize
the main conclusions from each chapter of this dissertation and, afterwards, some future
perspectives are discussed.

In Chapter 3, a representation of the sampled-data Lure system was given in the
looped-functional framework. As preliminary results, we stated two main theorems that
provides asymptotic stability conditions for the trajectories of the continuous-time closed-
loop system under a generic sampled-data control law, respectively, in global and local
contexts. From these theorems, we started addressing the choice of the functional candi-
date, which has terms that depend both on the states, nonlinearities and its derivatives. A
main feature of this approach is that we do not need to impose the positivity of the func-
tional in the global case, differently from LKF-based approaches. Next, we presented the
generalized Lure function, which structure contains a quadratic term on the states and on
the nonlinearities and has a Lure-Postnikov integral term, allowing the relaxation on the
positivity of the Lure-Postnikov coefficients as well of the quadratic terms. From these
results and from the classical sector conditions, we obtained the necessary ingredients to
proceed to the analysis and synthesis problems.

In Chapter 4, preliminary results given by Theorem 4 were initially used to derive
conditions in the form of linear matrix inequalities to ensure the global asymptotic sta-
bility of the origin of the sampled-data Lure system. Optimization problems regarding
the maximization of the admissible intersampling intervals or the maximal sector bounds
were formulated, which could be solved through LMI feasibility tests and bisection algo-
rithms. Numerical examples were provided. Also, the method was compared to the one
of (SEIFULLAEV; FRADKOV, 2015), yielding in greater results on the upper intersam-
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pling bound. Afterwards, we treated about the stability in a regional context, based on the
results of Theorem 5. In this case the sector and slope bounds hold only in a domain of
validity, and the main interest is to obtain an estimate of the region of attraction for which
stability is ensured. On this basis, we provided sufficient conditions to guarantee the in-
clusion of the level sets of a function V into symmetric or asymmetric validity regions
and then we formulated different optimization problems. Numerical examples illustrated
the efficiency of the results.

Finally, in Chapter 5, the conditions obtained in the analysis problems are modified
in an appropriate way to derive synthesis conditions in both global and regional contexts,
i.e., to compute feedback gains such that the stabilization of the closed-loop system is
guaranteed. The resulting inequalities are quasi-LMIs, that is, are LMIs by fixing some
variables, which implies that nonlinearities arises from the product between some decision
variables. To tackle this problem, we proposed a Particle Swarm Optimization algorithm,
which searches for the best combination of the optimization variables while supporting
feasibility of LMIs. Optimization problems analogous to analysis ones were provided,
highlighting the potentialities of the method. An additional condition to improve the time
response of the closed-loop system in terms of decay rate at the sampling instants was
also presented. It should be highlighted that, after the synthesis procedures, the analysis
methods which are based on less conservative assumptions, can be used to still improve
the bounds on T2, σ or Ω obtained.

Finally, we conclude that this work provides an evolution of the theory for stability as-
sessment and stabilization of sampled-data control Lure systems. In addition, it attempts
to fill a gap in the literature, since to date synthesis results considering SDC have been
lacking in both global and local cases.

6.1 Perspectives and Future Work

The results presented in the previous chapters point to some perspectives and themes
that can be explored in the continuation of this work, as described below:

• The use of new looped-functionals. If the functional satisfies the conditions stated
in Theorem 4 and Theorem 5, then it can be directly incorporated into the LMIs.
Moreover, the development of less restrictive functionals is still an open field of
research;

• Analysis and synthesis for a given region of stability. In this case, the choice of the
optimization criteria is essential so that the estimates of the region of attraction are
not conservative;

• Systems with uncertain parameters. This can be incorporated to the LMI condi-
tions by considering polytopic or norm bounded uncertainties. From a practical
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viewpoint, the resulting conditions will be more restrictive and the difficulty to find
feasible solutions is increased;

• Analysis and synthesis of dynamic output feedback controllers. This extension
could be explored by considering a more realistic hypothesis that the controller is a
function of a generic output z(tk). Thus, the available information for sampling is
reduced to what is in the output of the plant, and static or dynamic output feedback
control laws should be investigated (GOMES DA SILVA JR et al., 2016).

• A sampled-data control system with delayed inputs. In this case, u(t) = Kxx(tk −
τ(t))+Kφφ(tk−τ(t)) for the states and nonlinearities feedback or u(t) = Kz(tk−
τ(t)) for the dynamic output feedback. This extension would represent more accu-
rately the delays coming from the NCS, since the delay induced by the communi-
cation protocols and data acquisition, along with the uncertain sampling intervals
already considered, is a major aspect of this topology;

• Multi-rate sampled-data under aperiodic sampling. Inspired in (PARK; PARK,
2020), in some cases the measurements from the sensors are acquired with dif-
ferent sampling rates, due to different sensing methods or due to calculus of data
coming from different sensors. In addition, the data of the sensors are transferred
aperiodically in the networks even under uniformly sampling, since network delays
and packet losses may occur;

• Sampling as a control parameter. As discussed in (HETEL et al., 2017), this con-
cerns the case when the sampling interval tk, or equivalently the sequence of sam-
pling {tk}k∈N, is considered to be a control parameter that can be modified in order
to ensure desired properties in terms of stability and resource/network utilization.
This formulation corresponds to design a scheduling mechanism in real time control
that triggers the sampler.

6.2 Publications

This work allowed the following article to be prepared, describing the preliminary
results obtained:

• TITTON, M. G.; GOMES DA SILVA JR., J. M.; VALMORBIDA, G. Stability
of sampled-data control for Lurie systems with slope-restricted nonlinearities. In:
CONGRESSO BRASILEIRO DE AUTOMÁTICA XXIII, 23., 2020. Anais [...]
SBA, 2020. v2. n.1.



107

REFERENCES

ANTSAKLIS, P.; BAILLIEUL, J. Special issue on technology of networked control
systems. Proceedings of the IEEE, New York, v. 95, n. 1, p. 5–8, 2007.
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APPENDIX A BASIC CONCEPTS

In this section, it will be presented some concepts related to the stability of nonlinear
systems, considering Lyapunov’s theory.

A.1 Stability in the sense of Lyapunov

Characterization of the stability of nonlinear systems is a fundamental problem in
control theory. For the case where systems does not have disturbances or exogenous
signals, the main focus is in ensuring the stability of the equilibrium point. The following
statements makes precise the notion of stability in the sense of Lyapunov to conceptualize
internal stability for the nonlinear, continuous-time system:

ẋ(t) = f(x(t)), x(t0) = x(0), (135)

where x ∈ Rn, t ≥ 0.

Definition 3 (Equilibrium Point). A point x = xe in the state space is defined as a equi-

librium point if whenever the state of the system start xe, it will remain at xe for all future

time, or equivalently, f(xe) = 0,∀t ≥ 0.

In general, it is supposed that the equilibrium point of the system is the origin. How-
ever, if it is not, the equilibrium point xe can be translated to the origin, making 0 the
equilibrium point of the translated system (KHALIL, 2002).

Definition 4 (Stability). The equilibrium point xe = 0 is a stable equilibrium point if

∀t0 ≥ 0 and ε > 0, there exists δ(t0, ε) such that

‖x(0)‖ < δ(t0, ε)⇒ ‖x(t)‖ < ε, ∀t ≥ t0, (136)

where x(t) is the solution of the system starting in x(0), on time t = t0.

If an equilibrium point is not stable, then it is unstable.

Definition 5 (Asymptotic stability). The equilibrium point xe = 0 is an asymptotically

stable equilibrium point if
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i) xe = 0 is a stable equilibrium point;

ii) xe = 0 is attractive , i.e., there exists a δ(t0) such that

‖x(0)‖ < δ(t0)⇒ lim
t→∞
‖x(t)‖ = 0. (137)

Define now

B(r) = {x ∈ Rn| ‖x− xe‖ ≤ r, r > 0}. (138)

Consider regions B(δ) and B(ε) similarly to that presented in (138). According to
Definition 4, for an equilibrium point to be stable, the trajectories starting inside from the
region represented by B(δ) with radius δ must not leave the region B(ε) with radius ε,
which is centred on the equilibrium point xe. Thus, it can be said that the system has a
stable equilibrium point. Moreover, if the trajectories converge to the equilibrium point xe
and stays there for all t, then the equilibrium point is asymptotically stable. This definition
of stability is illustrated in Figure 32.

Figure 32: Stability in the sense of Lyapunov.

Font: Author.

Definition 6 (Global asymptotic stability). The equilibrium point xe = 0 is a globally

asymptotically stable equilibrium point if it is stable and

lim
t→∞

x(t) = 0, ∀x(0) ∈ Rn. (139)
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A.2 Linear Matrix Inequality

This section will present the theory related to linear matrix inequalities (LMIs), which
are used to solve a wide variety of problems arising in system and control theory. The
main feature of this approach is that many of control problems which does not have an
analytic solution can be solved numerically through LMI restrictions in a reliable way
(BOYD et al., 1994).

Definition 7 (Linear Matrix Inequality). A linear matrix inequality has the following

structure:

F (x) = F0 +
m∑
i=1

xiFi � 0, (140)

where x ∈ Rn is a vector of decision variables and the symmetric matrices Fi ∈ Sn,

i = 0, . . . ,m are given. The inequality symbol in (140) means that F (x) is positive

definite, i.e., uTF (x)u > 0 for all nonzero u ∈ Rn, which is equivallent to a set of n

polynomial inequalities in x, or in other words, the leading principal minors of F (x) must

be positive. Inequality (140) can be also strictly negative, i.e., F (x) ≺ 0 or nonstrict, in

the form F (x) � 0 or F (x) � 0.

The main interest of developing problems in an LMI form is that (140) is a convex
constraint on x, i.e., the set {x|F (x) � 0} is convex. This property is fundamental to
treat constraints and optimization problems that arises in control theory as SDP problems,
i.e., convex optimization problems that minimizes a linear objective function of a decision
variable vector x ∈ Rn, as for examplemin

x
cTx

subject to F (x) � 0,
(141)

with F an affine function of x, or evaluate the feasibility of LMI restrictions.

A.3 Finsler’s Lemma

Finsler’s Lemma allows to obtain equivalent conditions in LMI forms by adding or
eliminating some variables. This lemma is stated as follows.

Lemma 11 (Finsler’s Lemma (OLIVEIRA; SKELTON, 2001)). Let ξ ∈ Rn, L ∈ Sn, B ∈
Rq×n, with rank(B) < n and BB⊥ = 0. Then the following statements are equivalent:

i) ξTLξ < 0, ∀ξ ∈ Rn, ξ 6= 0, Bξ = 0; (142)

ii) BT⊥LB⊥ < 0; (143)

iii) ∃µ ∈ R : L − µBTB ≺ 0; (144)

iv) ∃X ∈ Rn×q : L+ XB + BTX T ≺ 0. (145)
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A.4 Schur’s Complement

The Schur Complement (BOYD et al., 1994) is used to convert non-linear convex
inequalities into a LMI form and vice-versa. This artifice is formally presented below.

Lemma 12 (Schur’s Complement (BOYD et al., 1994)). Let Q(x) = Q(x)T , R(x) =

R(x)T and S(x) real matrices of appropriate dimensions. Then:

i) Q(x)− S(x)R(x)−1S(x)T � 0, R(x) � 0, (146)

ii)

[
Q(x) S(x)

S(x)T R(x)

]
� 0, (147)

are equivalent.

Thus, the set of non-linear inequalities (146) can be represented by the LMI (147),
which allows the treatment through computational methods.

A.5 S-Procedure

The S-Procedure is used to obtain an LMI formulation that guarantees that a function
will be defined in signal whenever another function is defined in signal (BOYD et al.,
1994). The case for strict inequalities and quadratic forms, i.e., quadratic functions with-
out constant or linear terms, will be presented below.

Lemma 13 (S-Procedure (BOYD et al., 1994)). Let T0, . . . ,Tp ∈ Sn. If there exists

scalars τ1 ≥ 0, . . . , τp ≥ 0, such that

T0 −
p∑
i=1

τiTi � 0, (148)

then

ζTT0ζ � 0 for all ζ 6= 0 such that ζTTiζ � 0, i = 1, . . . , p (149)

holds.

Note that (148) is an LMI in the variables T0 and τ1 . . . , τp.

A.6 Other concepts

Lemma 14 (Strictly Positive Real Transfer Function (KHALIL, 2002)). Let G(s) be a

m×m proper rational transfer function matrix, and suppose det[G(s) +GT (−s)] is not

identically zero. Then, G(s) is strictly positive real if and only if

• G(s) is Hurwitz, that is, poles of all elements of G(s) have negative real parts;
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• G(jω) +GT (−jω) is positive definite for all ω ∈ R, and

• either G(∞) + GT (∞) is positive definite or it is positive semidefinite and

limω→∞ ω
2MT [G(jω) +GT (−jω)]M is positive definite for any m× (m− q) full-

rank matrix M such that MT [G(∞) + GT (∞)]M = 0, where q = rank[G(∞) +

GT (∞)].


