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RESUMO

A emergência de novos perfis de aplicação ocasionou um aumento abrupto no volume
de dados gerado na atualidade. A heterogeneidade de tipos de dados é uma nova tendên-
cia: encontram-se tipos não-estruturados, como vídeos e imagens, e semi-estruturados,
tais quais arquivos JSON e XML. Consequentemente, novos desafios relacionados à ex-
tração de valores importantes de corpos de dados surgiram. Para este propósito, criou-se
o ramo de big data analytics. Nele, a performance é um fator primordial pois garante
análises rápidas e uma geração de valores eficiente. Neste contexto, arquivos são utiliza-
dos para persistir grandes quantidades de informações, que podem ser utilizadas posteri-
ormente em consultas analíticas. Arquivos de texto têm a vantagem de proporcionar uma
fácil interação com o usuário final, ao passo que arquivos binários propõem estruturas
que melhoram o acesso aos dados. Dentre estes, o Apache ORC e o Apache Parquet são
formatos que apresentam uma organização orientada a colunas e compressão de dados,
o que permite aumentar o desempenho de acesso. O objetivo deste projeto é avaliar o
uso desses arquivos na plataforma SAP Vora, um sistema de gestão de base de dados dis-
tribuído, com o intuito de otimizar a performance de consultas sobre arquivos CSV, de
tipo texto, em cenários de big data analytics. Duas técnicas foram empregadas para este
fim: file pruning, a qual permite que arquivos possuindo informações desnecessárias para
consulta sejam ignorados, e block pruning, que permite eliminar blocos individuais do
arquivo que não fornecerão dados relevantes para consultas. Os resultados indicam que
essas modificações melhoram o desempenho de cargas de trabalho analíticas sobre o for-
mato CSV na plataforma Vora, diminuindo a discrepância de performance entre consultas
sobre esses arquivos e aquelas feitas sobre outros formatos especializados para cenários
de big data, como o Apache Parquet e o Apache ORC. Este projeto foi desenvolvido
durante um estágio realizado na SAP em Walldorf, na Alemanha.

Keywords: Sistemas distribuídos, Big Data Analytics, Formatos de arquivo.



ABSTRACT

The emergence of new application profiles has caused a steep surge in the volume of
data generated nowadays. Data heterogeneity is a modern trend, as unstructured types of
data, such as videos and images, and semi-structured types, such as JSON and XML files,
are becoming increasingly widespread. Consequently, new challenges related to analy-
zing and extracting important insights from huge bodies of information arise. The field of
big data analytics has been developed to address these issues. Performance plays a key
role in analytical scenarios, as it empowers applications to generate value in a more effici-
ent and less time-consuming way. In this context, files are used to persist large quantities
of information, which can be accessed later by analytic queries. Text files have the ad-
vantage of providing an easier interaction with the end user, whereas binary files propose
structures that enhance data access. Among them, Apache ORC and Apache Parquet are
formats that present characteristics such as column-oriented organization and data com-
pression, which are used to achieve a better performance in queries. The objective of this
project is to assess the usage of such files by SAP Vora, a distributed database management
system, in order to draw out processing techniques used in big data analytics scenarios,
and apply them to improve the performance of queries executed upon CSV files in Vora.
Two techniques were employed to achieve such goal: file pruning, which allows Vora’s
relational engine to ignore files possessing irrelevant information for the query, and block
pruning, which disregards individual file blocks that do not possess data targeted by the
query when processing files. Results demonstrate that these modifications enhance the
efficiency of analytical workloads executed upon CSV files in Vora, thus narrowing the
performance gap of queries executed upon this format and those targeting files tailored for
big data scenarios, such as Apache Parquet and Apache ORC. The project was developed
during an internship at SAP, in Walldorf, Germany.

Keywords: Distributed Systems, Big Data Analytics, File Formats.
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1 INTRODUCTION

1.1 Context

In the era of Big Data, new challenges arise from the need of analyzing and extracting
important insights from large datasets. There has been a shift in the profile of modern
applications, which now increasingly deal with sheer amounts of information, generated
in an accelerated rate (KAMBATLA et al., 2014). The advent of video streaming, social
media and wearable devices, for instance, have facilitated such phenomenon. With this
new paradigm, the need of handling data efficiently - and more importantly, draw value
from it - has become a recurrent task. Furthermore, the proliferation of unstructured (e.g.,
videos, images, PDF) and semi-structured (e.g., XML, JSON) data took place, as opposed
to the traditional relational models, which were the norm in previous decades.

These three dimensions - velocity, volume and variety (LEE, 2017) - have called for
a new class of highly-scalable and distributed systems, which need to cope with sizable
quantities of data. In this scenario, resources need to be made scalable and broadly avail-
able for usage. Cloud computing has emerged as a solution which abstracts and provides
capabilities on-demand over the Internet: some examples are Software-as-a-service (or
SaaS) which makes applications available over the cloud (e.g., Google Drive, Dropbox)
and Platform-as-a-service (or PaaS), in which computing resources such as virtual ma-
chines and storage are provisioned via a network connection (e.g., Amazon EC2, Google
App Engine).

In this context, data has been made accessible via distributed storage systems that
can accommodate large volumes of information. These repositories, also known as data
lakes, represent a novel method of integrating data, in which many kinds of informa-
tion are stored: text documents, images, audio are a few examples. To the detriment of
classical approaches that force every record to be placed in a common schema, this so-
lution relaxes standardization and delegates modeling to client components that consume
its content, resulting in extended operational insight. Many companies started then to
uncover the value hidden in data. Amassing and storing it has little value: in fact, this in-
formation has to be cleansed, processed and analyzed until the true value behind it comes
to light. This realization paved the way for big data analytics, which groups a set of tech-
nologies and techniques for extracting valuable insights from huge datasets. Descriptive
analytics is employed to reveal what has occurred, and it is placed at the core of big data
analytics. OLAP and data visualization are tools used to that end. On the other hand,
predictive analytics serves to anticipate and explain what may occur based on existing
records. Techniques and methods of machine learning and document mining are actively
applied in that sense.

Therefore, many modern applications are heavily data-oriented. In the business land-
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scape, however, this profile is even more apparent: according to a study conducted by the
MIT Sloan School of Management (LAVALLE et al., 2011), senior executives state that
their organizations have more data than they can use effectively. Moreover, they strive for
data-driven business decisions, and want analytics to exploit their growing collection of
information and computational power to improve efficiency and innovate their companies.
Hence, more than ever, it is important to measure and optimize how computing solutions
designed for analytical processing behave, in regards to how data is accessed and stored.

1.2 Motivation & Objectives

The project was developed during an internship at SAP in Walldorf, Germany. It’s
centered around Vora (SAP Vora, 2021), an in-memory, distributed database management
system built for ingesting sizable volumes of information and dealing with big data sce-
narios. This platform is a key component in the company’s landscape, as it provides a
solution for scalable storage, and SAP’s main products use it. A SQL-based language for
executing queries called VORA SQL is provided.

Vora has the ability of consuming data from external databases and, more importantly
for the project, from different data lakes. In such systems, information is often stored in
raw binary data or in files. The former approach is mostly used when unstructured data is
involved, such as audio, image and video contents. The latter option is employed when a
certain data organization is present, but it is not enforced by a higher level schema. For
instance, in a power plant, time-based records may be generated by sensors and grouped
in log files, which later can be persisted in data lakes.

Generally, files can be classified into two types - binary and text. The former cate-
gory presents sequences of bytes arranged in a custom way which gives meaning to the
information conveyed in the file. They often contain headers, which are special sections
of bytes that identify the file’s contents and represent metadata, such as the file extension
and other descriptive information. Text files, in their turn, possess textual data, meaning
that the bytes stored by them represent a certain text character. Different encodings can
be used in that sense, such as UTF-8 or ASCII. These files contain control characters,
which have no visual representation and are used to exert a certain effect in the file. Some
examples are the End-of-file (EOF) character and line feed (LF).

Vora has a built-in functionality called SQL on Files, allowing queries to be performed
upon semi-structured data stored in other databases or data lakes. Hence, it is lever-
aged in analytical scenarios, in which queries are used to profile information contained
in files. In that context, different file types are supported. Among them, Apache ORC
and Apache Parquet are binary formats which present characteristics such as high com-
pression, columnar organization and embedded statistics to increase performance when
handling data. In fact, they are widely adopted in many organizations to optimize read
and write times (ORC Adopters, 2019) (Parquet Adopters, 2019). Due to this fact, they
are often referred to as “big data file formats”. Another widely used format is CSV (which
stands for Comma Separated Values), a widespread text file format due to its readability
and simplicity. It can easily be used to represent spreadsheets, for instance.

Hence, motivated by an increasing interest in big data analytics as a way to generate
business value, performance is a crucial requirement as it enables a time effective and
efficient processing of analytical workloads. When considering queries made upon files,
format particularities play a central role in the efficiency. While Parquet and ORC are
tailored for fast data processing, text formats incur a costly overhead of parsing textual
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information and converting it to data types supported by the target system (PALKAR
et al., 2018). Another challenge is the lack context when dealing with raw data chunks
(GE et al., 2019): text formats do not possess any header or metadata section that indicate
the size of a column, how many records it possesses, start and end offsets for lines or what
data type is encompassed. All of these issues need to be addressed when handling text
files. Yet, there is an increasing interest in extracting insights from raw data, such as text
files (IDREOS et al., 2011), as many applications generate textual information. Among
them, CSV is widely used due to its simple format (TAPSAI, 2018).

Thus, the first objective of this work is to analyze how big data file formats are handled
in Vora. From this analysis, two techniques are derived: predicate pushdown, which re-
lies on the query predicate to skip the parsing of unnecessary file blocks, and file pruning,
which eliminates the processing of entire files that are not relevant to the query. Given
that parsing CSV files suffers from a hefty processing - which involves steps such as find-
ing line positions and transforming raw data into textual information - these techniques
are extended to this format. With the help of predicate pushdown, a new technique called
block pruning is proposed, which is used to skip the download and parsing of CSV file
blocks. Moreover, file pruning is used to omit irrelevant CSV files that do not possess
relevant data for the query. The implementation of both techniques relies on calculating
minimum and maximum statistical values for CSV columns. A final evaluation of pro-
cessing times and performance of analytical queries with CSV will be done to assess the
proposed solutions.

1.3 Organization

This work is organized as follows: Chapter 2 introduces concepts relevant to the
project’s development: technical aspects about Vora, the field of big data analytics, data
lakes, file formats and related work. Chapter 3 elaborates the work objectives, while
Chapter 4 explains how the solutions proposed in this work were devised. Chapter 5
demonstrates what improvements in the CSV processing were implemented in Vora.

In Chapter 6, the results obtained after the solution implementation are analyzed and
performance evaluations are made. Finally, Chapter 7 presents conclusions and future
work.
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2 RELATED CONCEPTS

This chapter introduces concepts relevant to the current work. Details about the
Vora platform which will aid in comprehending the proposed solutions will be discussed.
Moreover, the subject of big data analytics, file formats and data lakes will be character-
ized, an their relation to the project will be presented.

2.1 SAP Vora

As introduced previously, this component is a distributed database management sys-
tem designed for a massive scale-out, which supports a SQL-like language for interac-
tion, called SAP Vora SQL. It serves as a base element offering scalable storage, upon
which systems can build their functionalities. Vora targets clusters possessing a number
of commodity hardware, which can range from a single-digit up to hundreds of machines.
Aiming to serve the needs of Big Data, such as large data volumes, fast processing and
data variety, Vora has adopted some important design principles:

• Support of multiple data models and engines, configuring a poly-store model, de-
signed to unify querying over multiple data schemes.

• Embracing other open-source Big Data systems, such as Hadoop, HDFS and Spark,
allowing the system to deal with existing solutions.

• Use the Kubernetes platform to run on all major cloud vendors (eg., AWS, Azure).

• Shared-nothing architecture, meaning that the system is ready for deployment in
nodes that are independent and self-sufficient. This mitigates the influence of single
points of failure and alleviates bottlenecks for scaling.

This platform uses a multi-component approach instead of presenting a monolithic ar-
chitecture. For instance, the database system is composed of different services interacting
with each other, which are designed for accomplishing different tasks. To name a few,
Vora has separate processes for metadata handling, persistence and processing. To the
outside, it behaves like one logical system. This organization is achieved by container-
izing the different components present in the platform. Vora clusters use Kubernetes for
container orchestration, and its services are containerized using Docker.

Multiple processing engines are embedded in this product. They are responsible for
taking care of incoming requests, performing the actual processing work on the data, and
finally forwarding it to be stored in a persistent way. The in-memory relational engine
is responsible for loading relational data into main memory to achieve a fast access and
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efficient query processing. Also, there are dedicated engines for graph and time-series
processing, as well as a disk-based engine.

The system can load data from third-party data lakes, such as Google Cloud Storage,
HDFS and Amazon S3, which can be later used in queries and analyzed via Vora’s en-
gines. It also integrates with Spark, which allows the reuse of data processing solutions
written for this framework.

2.1.1 Architecture

The strongest architectural trait of Vora is the ability to support online transaction
processing (OLTP) while being able to scale out to handle online analytical processing
(OLAP) for large data flows. In fact, these two capabilities in a single data management
system that can be scaled to multiple nodes to better manage memory utilization was the
primary motivation for the product’s creation. Figure 2.1 illustrates the overall architec-
ture of Vora.

Figure 2.1: Overview of SAP Vora architecture. Source: SAP Vora documentation

Three major components interact to manage the data and conduct query execution.
The query engine (referred to as engine nodes) is a core constituent which relies on
SQL-to-C code generation to seek for high-performance. Its main task is to apply the
demanded operations on the appropriate data, and it resides in the compute nodes. The
transaction coordination is carried out by a transaction broker. Its purpose is to hold a
shared state, which is used to process transactions. Finally, the distributed log tends to
the durability of transactions. It is shared by the different architectural entities of Vora,
and it is built out of servers called storage units - usually aggregated in a individual cluster.
In this organization, a transaction executor modifies this log by writing results in it, and a
commit occurs when the correspondent commit log entry is made persistent.

To favor query processing, tables are horizontally divided in slices, which correspond
to a disjoint set of rows. This organization is important since these slices are large enough
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to exploit compressed data processing, but small enough to permit an effective distribution
and swift replication among nodes. They are directly placed in engine nodes, which may
hold data for many snapshots simultaneously. In that context, a design choice was made
so that these nodes are not aware and hence do not participate directly in the database
transactions. Theoretically, they operate on read-only database snapshots. The architec-
tural construction of the Vora cluster proposes two distinct subsets of engine nodes: one
for handling OLAP workloads, and another for OLTP ones. This allows different trade-
offs to be made for each type of node, as OLTP deals with frequently accessed ( or "hot")
data, while OLAP wants to process its entirety.

2.1.1.1 Transaction coordination

The transaction broker is the component responsible for the transaction management
in the system. It keeps a table of running transactions and their state, issuing read times-
tamps to incoming ones, as well as a version table which is used for storing write-sets
and detecting possible write conflicts. It is important to note that the broker does not
maintain a persistent state - all information needed for describing it is stored in the log.
Consequently, any node can be elected as the new broker after a failure.

In Vora, read-only transactions receive a read timestamp from the transaction broker,
and then are marked as running in the transaction table. Then, they are forwarded to the
query engine cluster responsible for the database. If the data slices are not up-to-date with
the desired version, the log is consulted for updates, and the data is refreshed. It may be
that the compute nodes has the required updates in its cache: in that case, there is no need
to consult the log.

Once the data slices receive the desired version, the query can be executed against
the correct data, and the result is passed to the application. This scenario configures a
pull-based, or lazy execution. Instead, the engines may subscribe to changes at the log,
so modifications can be forwarded and applied to the local snapshot without any outside
request from a query. In that way, a push-based strategy, or eager execution, is adopted.
Vora can shift between these modes of execution, according to the workload nature.

In the context of read-write transactions, the same execution path is followed: the
transaction broker assigns a read timestamp to it, and the queries are also passed to the
engine node cluster. However, the execution in these nodes does not modify any database
entity. Alternatively, the updates are executed in a read-only mode (changes are cached
locally), and the engine returns a set of row IDs modified by the executed operations.

When the transaction completes, the broker checks for conflicts in the write set. If
no issue is found, a commit timestamp is created, changing the transaction state to pre-
commit. The transaction writes a commit record in the log, at the position given by the
previous timestamp. Upon success, the broker publishes this commit timestamp, and the
transaction is marked as committed.

2.1.1.2 Data replication and consistency

The distributed shared log is the sole mechanism used by transactions to commit their
changes in the data. This component is essential as it represents the truthful copy of the
database. It ensures data replication, as any node can consult the log to build updated
snapshots for query processing. Also, it is used in disaster recovery situations, in order to
reestablish the system state. Due to its importance, the log is implemented as a cluster of
storage units, possessing features such as partitioning and replication.

The log is composed of entries, which hold all the updates and modifications per-
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formed by a specific transaction. These records are indexed by commit timestamps, also
known as log sequence numbers (LSN). Therefore, each transaction is mapped to a unique
log entry. In this way, the broker can use them to reference a specific slice in the compute
nodes, thus creating consistent copies of data across the system.

A compute node can read from the log in order to build new versions of the hosted
snapshot slices. It should be pointed out that there is no need for different snapshot repli-
cas to be synchronized to the same LSN, since any replica can be updated by simply
reading the log. In this configuration, the system assumes an eventual consistency proto-
col.

The interface exposed by the distributed log provides a total ordering over all writes
(by the log sequence number). To that end, write-once semantics and chain replication
(VAN RENESSE; SCHNEIDER, 2004) are employed.

2.1.1.3 Distributed Query Processing

The system possesses a cluster of dedicated nodes that adhere to a robust distributed
query processing service. Its main purpose is to manage the mapping of table slices to the
compute nodes. In addition, it also produces a distributed execution plan so that incoming
queries can be executed via the query engines located in the nodes. Although the in-
memory relational engine is the most important and optimized one, Vora also supports
a disk-based engine.

The query engine is equipped with an execution stack, composed of units such as a
parser, a semantic analyzer and an optimizer. This mechanism is used to transform the
query plan into C code, followed by a translation into an executable binary format. The
main benefit gained from this approach is the reduction of data transfers between CPU
and the main memory, given that many operations (such as filter, project, join) can be
applied on cached data objects.

2.2 Big data analytics

Many authors use three dimensions to characterize the field of Big Data: velocity, due
to the accelerated rhythm of data generation, variety, as different types of data in various
degrees of structuring are observed, and volume, given that the amount of information
available is immense (LANEY, 2001). Beside these three, another equally relevant di-
mension is value.

With the recent advance of Web technologies and the dissemination of portable de-
vices, data has become widely available. However, static information has little to no
interest in real-world applications. Frequently, datasets need to be cleaned, analyzed and
even compared against others so that new insights can emerge - consequently, data is re-
garded as a precious asset nowadays. For that reason, increased attention is being given to
big data analytics, which encompasses tools and techniques dedicated to examine datasets
and extract value from large bodies of data. The field of analytics, nonetheless, is by no
means a recent development. Its very meaning is broad and susceptible to many inter-
pretations (WATSON, 2013). In the 1970’s, the Decision Support System (DSS) concept
was consolidated as a category of interactive information systems that used data and mod-
els to help managers analyze semi-structured problems. In the following decades, many
decision support tools and techniques became popular, which led to the establishment of
business intelligence. The latter term groups systems, methodologies, and applications
that analyze critical data to help an enterprise make timely business decisions (CHEN;
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CHIANG; STOREY, 2012). Online Analytical Processing (OLAP) is an example of
approach that is used to process multi-dimensional data in that context. As these data
analysis tools and techniques developed and scaled out, the term analytics became to be
used interchangeably. More recently, big data analytics has been used to describe appli-
cations in which datasets are so large and diverse (data types are complex and disparate)
that special storage, management and analysis are required. Advances in CPU capabili-
ties, storage, virtualization and distributed computing have enabled this kind of analytical
workload.

There are three main types of analytical processing:

• Descriptive analytics is used when users need to understand what has occurred; in
this situation, new findings of past activities often emerge from the collected data.
For instance, a company might analyze yearly sales reports from many branches and
find out the most profitable location, and what products were the most demanded.

• Predictive analytics is employed for finding trends that the stored data may express;
in that way, users may have clues of what will occur. Financial applications are no-
tably prominent in that area, in which past financial markers are analyzed to extract
a possible forthcoming market tendency. Methods and algorithms of machine learn-
ing, for instance, are widely used for that purpose.

• A rising method of analytics, which derives from the predictive variation, is be-
havioral analytics . It involves processing large amounts of behavioral data (i.e.,
associated with actions of people), collected from sources such as wearable devices
and ambient sensors, in order to identify patterns and foresee customer actions.

These forms of analysis are often used together to extract new information from
datasets, and have been sought out by many businesses. In regards to their implemen-
tation, many strategies can be adopted to enhance analytical processing. In-memory
analytics leverages the faster access times offered by random access memory (RAM) to
attain fast query processing. By storing data on RAM instead of the physical disk, access
time is improved by orders of magnitude (Garber, 2012). This is useful in OLAP sce-
narios, for instance, in which many dimensions need to be handled. However, as it relies
on costly technologies, such as DRAM, it is still considered to be relatively expensive
price-wise, so it is not well suited for all use cases. In-database analytics offers a way
to mitigate data movement through a network, as analytical tools are embedded in the
database software. This avoids migrating datasets to a central server, making the totality
of data, not just a representative subset, available for analysis. It can be implemented
through libraries or user created functions that offer analytic or data mining capabilities.

The placement of rows can be another point for performance improvement. Colum-
nar databases hold their records in a column-oriented organization, instead of the tra-
ditional row-oriented format observed in many relational databases. In most cases, this
variation improves the overall processing time of analytical workloads, because they typ-
ically access a large number of rows, but a reduced amount of columns. Thus, by holding
data in a column-oriented fashion, columns can be accessed individually, as their values
are stored separately, and hence information that is irrelevant to the query can be skipped.
For instance, in a row-oriented database, the processing would possibly be less efficient,
since all rows would be scanned, and many column values would be skipped, as they
would not be needed in the analytical query’s context. This results in a better utilization
of data by columnar storages, as there is little need to read and discard columns that are
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not needed, resulting in a better utilization of available I/O and CPU-memory bandwidth
for analytical queries.

Another advantage of columnar databases is that they can leverage a greater compres-
sion ratio when using compressing techniques. Since column values pertain to the same
domain, better ratios can be achieved, as data is naturally related. Also, since columns
may often present repeated or frequent values, encodings can benefit from the repeti-
tion. In big data analytics scenarios, even though improving storage usage is important,
speeding up query processing times takes precedence. Hence, encodings that yield a non-
optimal compression ratio, but offer fast decompression are preferred. Some examples are
Dictionary Encoding, Run Length Encoding (RLE), delta encoding and bit-vector encod-
ing. Moreover, as columns are stored independently, each one of them can be compressed
with a compression scheme most suitable for their data type.

2.2.1 Areas of application

The extensive generation of data in many application domains has caused the adoption
of large-scale analytical solutions. Some areas that are increasingly adopting big data
analytics are:

• Natural and geographical applications: a variety of data related to humankind’s
environmental footprint is being created. This information is gathered by sensing
devices, satellites and monitoring equipment (e.g., drones, marine probes), to name
a few. Researchers and governments use this kind of material to track events such as
deforestation, ice-cap coverage, and weather phenomena, which may have a direct
economic impact. For instance, the Sentinel project, coordinated by the European
Space Agency, provides a data repository of satellite imagery which are used in
real-world applications, such as crop monitoring (Farm Sustainability Tool (FaST),
2020) and to measure droughts (Drought monitoring in Romania, 2020).

• Business and commercial systems: one of the most prominent usages of analytics
is business and commerce applications. Inherently, enterprises that use such ap-
pliances gather a vast amount of customer data - location, preferences, age, etc. -
which can create new economic opportunities. Predictive analytical methods are
crucial in that area. Nowadays, a typical use case is recommendation systems that
apply machine learning models trained upon large quantities of data to suggest new
products to customers. Descriptive methods can also be applied, which help busi-
nesses to better understand their operation, summarize different aspects and provide
new market insights or points of improvement.

• Social networks and Internet: as more people make use of social networking
platforms, more effort is spent in analyzing interactions and user activity in order
to understand the emergence of behavioral patterns, shape information flow, predict
future trends and manage resources (PENG; WANG; XIE, 2016). Big data analytics
provides important tools for analyzing unstructured data - graph mining techniques,
image and video indexing are some examples.

By no means these applications are exhaustive. The adoption of analytical technolo-
gies grows by the year, and are used in many other fields.



19

2.2.2 Big data analytics in Vora

Many companies face the challenge of having to combine their in-house data (stored
in databases or data warehouses, for instance) with other "big data sources" (e.g., stored
in data lakes, in Hadoop clusters, etc.). Hence, Vora is designed to address this issue.
By providing such integration, combined with the in-memory capabilities of the platform,
companies can execute their analytical workloads on a heterogeneous data landscape. It
also allows Spark to be used for data analysis.

Therefore, one use case in which Vora is used is the ingestion of IoT data. Figure 2.2
illustrates such scenario. Sensor information generated from IoT devices are distributed
by a message broker, which writes information to a set of topics (e.g., location, type of
measurement, etc.). In this case, MQTT, a network protocol based on broker-message
communication, is used. Then, Kafka is used to process such streams of information,
which can then be consumed by Spark or by a component called vFlow - a proprietary
software which allows the construction of data pipelines. Once in this system, Vora can
consume this data via its Spark integration, for instance, and combine it with data coming
from external relational databases - in the figure, HANA, a SAP database is used. Further-
more, additional data coming from data lakes (e.g., Amazon S3) can be integrated. The
query engine can be used to construct queries upon the combined dataset, and information
can be stored back in Vora or in the data lake of choice.

Figure 2.2: Overview of a scenario in which Vora is used to ingest IoT data.

Another analytical capability of Vora is SQL on Files, which resides in the core sub-
ject of the presented work. With this functionality, queries can be executed upon files
coming from external data lakes, and the results may be used in conjunction with other
sources of data (for instance, in-house data or relational data coming from other database,
for which Vora provides a connectivity).

2.2.3 State of the art

This section present some alternatives to Vora that also provide similar analytical and
storage capabilities in big data scenarios.

In the big data analytics sphere, one of the most fundamental and evolving paradigm is
MapReduce, used for processing and handling large data sets. This programming model
is centered around two basic routines: map, that processes a key/value pair to generate a
set of intermediate key/value pairs, and reduce, which combines all intermediate values
associated with the same key. It has been essential in the big data field as it allowed
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to scale computations to many machines in a distributed manner, and thus permitting
applications to deal with a larger amount of information in a scalable fashion.

Although also integrated with Vora, Apache Hadoop is a framework that gained no-
toriety for leveraging the MapReduce model. It manages the data spread across various
machines in a cluster through its distributed file system, HDFS (Hadoop Distributed File
System). Typically, the Hadoop infrastructure runs MapReduce programs (written in a
certain programming language, such as Scala or Java).

Apache Pig is platform that offers a high-level procedural programming language,
called Pig Latin, which allows users to write MapReduce programs that run on Hadoop.
It has a SQL-like notation, which makes building parallel programs that run in a cluster
easier. Another tool that is part of the Hadoop ecosystem is Apache Hive. Similar to Pig,
it offers a SQL-like language for building data reports; however, it abstracts the complex-
ity of building MapReduce programs, offering a declarative language for analyzing data
in a Hadoop cluster. It can also be considered a data warehousing solution.

Another tool for performing analytics on large data sets is Apache Spark. It can be
defined as an analytical engine for data processing (Apache Spark Official Website, 2020),
offering libraries to deal with structured and semi-structured data, streaming analytics,
machine learning and graph processing.

Among proprietary software solutions, Amazon Athena (Amazon Athena, 2021) is a
query service that allows analyzing data in Amazon S3 using standard SQL language. It
includes support for many file formats, including Parquet, ORC and CSV. Another similar
solution is Amazon Redshift Spectrum (Amazon Redshift Spectrum, 2021), retrieve
structured and semi-structured data from files in Amazon S3. It allows concurrent queries
to the same dataset without having to copy the layer in the cluster nodes. An example of
tool which can also query files in data lakes is Dremio (Dremio Query Engine, 2021), an
analytical engine designed for fast data access envisioning use cases such as data science
and business applications.

Regarding columnar databases, HBase is a solution that features in-memory compu-
tation, column compression and a NoSQL operation model, in which data is presented as
key-value pairs. It is built on top of Hadoop, and its tables may be used as input for Map-
Reduce jobs. HBase is often used in scenarios in which a small portion of items needs
to be located among a huge quantity of data. Another similar alternatives are Amazon
Dynamo and Cassandra. These two provide a highly available, distributed, fault-tolerant
column store. Lastly, MongoDB is a document-oriented database representing informa-
tion in a JSON-like structure.

2.3 Data lakes

As a consequence of an increased generation of unstructured data, a new category
of systems to store and organize this information has been created - they are called data
lakes. They refer to scalable storage repositories that contain raw data, or in other words,
information that does not abide by a higher level fixed schema. Instead, it is stored in its
native format, and may be consumed by other applications for tasks such as visualization,
and analytics, for instance. These systems can be found as on-premise solutions, meaning
that data centers within an organization are used to implement them, or as cloud products.
In the latter category, Google Cloud Storage and Amazon S3 are examples of proprietary
data lakes available as Infrastructure-as-a-service (IaaS) offerings. A Hadoop cluster can
also be used to implement a data lake, as HDFS provides a scale-out architecture that can
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accommodate large influxes of data.
Information is often found in the form of files in data lakes. This is because files

are used in many cases to record values generated by a given application, and persisted
in these repositories to be used in other scenarios. Notably, files are used to convey
important information such as logs and sensor data, customer records and website click-
streams. Thus, there is an increasing interest in using files stored in data lakes in analytical
workloads. As these repositories can accommodate files coming from different sources,
organizations may use them for analysis and reporting, without incurring the cost of trans-
forming these data collections - that may differ in format and nature - in a common schema
(Fang, 2015).

2.4 File formats and organizations

The format of the file chosen to be used in a given application may impact perfor-
mance, as many formats and organizations can be employed.

One of the most straightforward ways to convey information is by representing it via
text files. Being a simple and human-readable type, it can be used to display information
for the end-user easily. However, its organization poses some drawbacks when it comes
to the processing of the data. These files include control characters to separate values,
which increase their total size and require extra computation when parsing. Another issue
is the multiple encodings that a text file can take, which increases the complexity to handle
them. Some examples of these files are CSV and JSON.

Most Big Data tools support the usage of text file formats. They can be ingested from
a certain source, and stored in persistent storage (such as in a data lake). Nevertheless,
they are far from being considered as the most appropriate file format in this domain. Text
ingestion is slower to process if compared to other formats, mainly because encoding and
text formats are not bound to each other, and thus are not easily detected at runtime. For
instance, a CSV file may come with an ASCII, UTF-8 or any other kind of encoding.

Consequently, queries made upon a text file become less efficient. A naive query
engine would have to scan the whole file to get the result, as the values selected could
be anywhere in the file. This fact, added up with the delimiter character handling, makes
this kind of file inefficient in terms of query execution, if not handled properly. Thus, it
is essential to apply processing techniques to enhance the performance of these types in
Big Data applications.

When dealing with large-scale data, very often intermediate tables are generated.
These contain transitional information representing a step in the chain of data treatment.
Hence, they are not ready to be used by the end-system; yet, they need to be stored, so
further computation can be executed upon them. As pointed out previously, text files are
not an optimal choice of file format to represent such tables. The memory and calculation
overhead that they bear would be a considerable performance penalty for the targeted sys-
tems,and especially when answers are demanded within a few minutes and not potentially
hours.

Consider a table represented in a file which contains numerous rows with user inter-
actions and only some few of columns. One common case in analytical applications is
a query or a report interested in fetching and reading a small amount of the data (e.g.,
values of a single column). If performance is a concern, it would not be feasible to scan
the whole table to retrieve only a reduced portion. The optimal solution would be con-
centrating only on the searched slice of data, and ignoring the unwanted ones. Therefore,
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row and column skipping represent a great economy in both time and performance.
Following the requirements for efficient data handling, file formats can present mod-

ified structures to enhance the scan of data or the write performance. Row group is a
concept used in many file formats, representing a horizontal partition of data that en-
compasses several records. Within this group, the data is arranged in a column-oriented
fashion. Figure 2.3 illustrates such a structure. On the right-hand side, the row group con-
tains records for columns A, B, C and D, and the information is laid out in a column-major
order.

Figure 2.3: The RCFile illustrates the usage of row groups. Note that, on the right, the row
group displays the information in a column-oriented format Source: Facebook Code - Facebook
Engineering Blog. https://code.fb.com/core-data/scaling-the-facebook-data-warehouse-to-300-pb/

One example of format adopting this strategy is the RCFile, which stands for row
columnar file. Hadoop, for instance, makes use of this kind of file. In this case, one or
several row groups are stored in a HDFS file. A key point of using such an organization is
the parallelism used, since the row groups of different files are disseminated redundantly
across the cluster and treated simultaneously. Subsequently, each node reads only the
columns important to the query from a file - and the appropriate data portion - skipping
irrelevant ones. Additionally, more space can be saved, as the applied compression takes
advantage of the similarity in a column.

Another construct embedded in some file formats to enhance data retrieval is column
statistics. Usually, these measurements are calculated not only for the whole file, but
also for certain blocks (e.g., for each group of thousand rows). Different statistic markers
can be used: minimum, maximum, median and mode are commonly employed examples.
This allows skipping an irrelevant set of rows that may not be used for a certain file query,
and may reduce the number of data read to get the result.

2.4.1 ORC Files

The ORC (Optimized Row Columnar) (Apache ORC Specification, 2021) file format
was proposed to enhance further the time, cost and performance gain in the Big Data
storage contexts. It benefits from a columnar-based organization and makes use of row
groups and file statistics.

The ORC files retain information about the column types, as specified in the table
definition. Consequently, different compression techniques (e.g., dictionary encoding, bit
packing, RLE) can be applied according to the type of a column, as to obtain smaller files.
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In addition, there are specific readers and writers for each column type.
ORC can apply generic compression, using zlib or Snappy, on top of the aforemen-

tioned compression techniques for further reducing the size of the files. So, storage sav-
ings are considerable with this format. However, compression is not done over the whole
file, but only in some parts, as to allow individual de-compression of file chunks. There
are indexes that include the minimum and maximum values of each column, for each set
of 10,000 rows (located at a stripe’s footer) and for the entire file (locate at the file footer),
so the reader can skip sets of rows not concerned in a query. Furthermore, ORC supports
projection, which applies the query in a subset of the columns, so predicates that include
only a few of them will result in reading only the required bytes. Figure 2.4 shows the
general structure of a ORC file.

Figure 2.4: Structure of a ORC File. Source: Hortonworks Docs

The ORC file format is composed basically of three parts:

• The header: small portion of the file, composed of three bytes indicating the magic
number “ORC”

• The body of the file, which is divided into stripes. Each stripe is self contained,
meaning that it can be read separately from the rest of the file, and contain only
entire rows. Stripes are subdivided into three sections: a set of indexes for the rows
within the stripe, the data itself and a stripe footer. Both the indexes and the data
sections are divided by columns so that only the data for the required columns needs
to be read.

• The file tail, which possesses metadata about the file and other details. It contains
the file footer, which encapsulates the layout of the file’s body, the type schema
information, the number of rows, and the statistics about each of the columns. Also,
the metadata portion contains column statistics (minimum and maximum values)
at a stripe level granularity so that stripes can be skipped. Finally, the postscript has
information to interpret the rest of the file, including the length the last two sections
of the tail.

Major companies in the tech industry validate the benefits of the ORC format: Face-
book has published an article (Facebook Inc, 2019) that demonstrates the advantages of
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this file configuration when applied to a large data warehouse. It resulted in a boost in
compression ratios on the warehouse data, and a write performance increase.

2.4.2 Parquet Files

The Parquet format, similarly to ORC, aims to reduce the amount of I/O used to
read data from a file. It stores binary data in a column-oriented way, benefiting from the
advantages of compressed columnar data representation. Also, it is built to support very
efficient compression and encoding schemes. The former methods are specified on a per-
column level and are future-proofed to allow adding more encodings. Its main inspiration
is Google’s Dremel paper (ZAHARIA et al., 2012), which describes the company’s query
system for analysis of read-only nested data.

The specification defines a partitioning in row groups, whose size varies from 128MB
to 1GB. The values for these sizes are not arbitrary - they were chosen to allow row
groups to fit in one or more HDFS blocks, which are 128MB in size. Internally, a row
group is organized in “column chunks", which are batches of values belonging to a certain
column. Encoding methods can be applied to them. These chunks are further sub-divided
into pages of 1MB, to which compression algorithms (e.g., snappy, zlib and LZO) can be
applied.

2.4.3 Performance in analytic scenarios

The aforementioned file structures and formats can yield an increase in performance
when dealing with analytical workloads. However, choosing the appropriate format is a
case-by-case task, as a certain variation may be optimal for one scenario, but sub-optimal
in others. An experiment presented in the Hadoop Summit San Jose 2016 compared the
performance of certain Hive queries executed upon different file formats: JSON (text
format), ORC, Parquet and Avro (binary formats). The datasets chosen were:

• NY Taxi dataset, containing information about taxi rides in New York from 2009.
Comprised of 18 columns, having double, integers, decimals and strings as types.
The data collection is available at (TLC Trip Record Data, 2020).

• Sales dataset, constructed from a real Hive deployment. It has 55 columns with a
considerable amount of null values, and the information is randomized. The con-
tained data types are strings, longs, timestamps and booleans.

The type of query considered in the experiment was reading all columns in the file.
It is a simple test, but provides a rough comparison of the reading performance in each
format. The test measurements were done using JMH (Java Microbenchmark Harness).
By default, JMH executes 10 forks, in order to get isolated execution environments, 20
warmup cycles with no measurements, as to allow the JVM to optimize code before the
benchmark starts, and finally 20 real measurement iterations.

Figure 2.5 shows the result for full table scan scenario in the taxi ride dataset. The
JSON format presented the worst performance, as reading the records involves parsing
strings, finding delimiters and dealing with special characters. On the other hand, read-
ing the binary text formats was more efficient, mostly due to the fact that they present
structures which reduce the total size of the dataset, and they do not have to deal with the
overhead of converting text.
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Figure 2.5: Comparison of the amount of time needed to read each record when per-
forming a full table scan query in the NYC Taxi dataset. The type of compres-
sion is also a considered variable. Source: Owen O’Malley - Hadoop Summit June 2016.
https://www.slideshare.net/oom65/file-format-benchmarks-avro-json-orc-parquet

Figure 2.6: Comparison of the amount of time needed to read each record when
performing a full table scan query in the sales dataset. The type of compres-
sion is also a considered variable. Source: Owen O’Malley - Hadoop Summit June 2016.
https://www.slideshare.net/oom65/file-format-benchmarks-avro-json-orc-parquet

The results on the other dataset for the same type of query is shown in Figure 2.6.
Once again, JSON presents the worst performance among the file types. However, we
see that ORC presents a better performance in this dataset, whereas Parquet presents
a significantly larger record processing time. Another key factor is the choice of the
compression used upon the files, as it presents a space-time trade-off: a certain method
might turn the overall size of the dataset smaller, but it will incur a time overhead when
decompressing the information found in the file.
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Although simple, this experiment highlights that the choice of a file format can impact
largely the overall performance of queries, specially considering that datasets may contain
thousands or millions of rows.

2.5 Related Work

Characteristics of related works on file processing in the context of big data analytics
are presented and compared to the current work in this section.

2.5.1 Analysis

As the generation of unstructured data formats increases, many works of research
focus on applying efficient data processing techniques on such types of information. In
(ALAGIANNIS et al., 2012), authors discuss a new paradigm for achieving efficient query
processing upon raw files, called NoDB. Through an adaptive indexing mechanism im-
plemented over PostgreSQL, their work strives for efficient file data access by storing
positional information using a caching mechanism. Performance bottlenecks in file pro-
cessing are also discussed, particularly tokenizing, parsing and data conversion costs.
These challenges are also observed in Vora and are discussed in section 4.3.

The work of (JAIN; DOAN; GRAVANO, 2008) studies SQL queries over text databases,
focusing on information extraction techniques over text documents to obtain structural re-
lations that may hide in the textual information. These traits are then taken into account
by techniques that combine query predicate to enhance query execution times. A family
of select-project-join SQL queries is employed to validate their proposal. Data quality is
also considered when analyzing experiment results. In this research, authors recognize
the considerable cost incurred to extract information from text documents, and aim to
minimize irrelevant accesses to bodies of information. The proposed solution discussed
in chapter 5 presents a way of mitigating such issue.

In (KARPATHIOTAKIS; ALAGIANNIS; AILAMAKI, 2016), query engine optimiza-
tions and design techniques for dealing with heterogeneous datasets are proposed. In par-
ticular, the authors present the implementation of an engine that executes queries over
binary data, CSV and JSON, offering support to joint datasets (e.g., join on CSV and
JSON files). By using code generation, adaptations are made to the engine’s architec-
ture based on the query predicate and targeted format. The work also mentions analytical
queries over CSV data, affirming that these workloads usually require fast response times.
Authors propose structural indexes that store the binary positions of data columns in each
row for CSV files. Results showed that their implementation are suitable for analytical
scenarios, proving efficient in synthetic and real-world workloads. However, unlike Vora,
the engine supports does not support the ingestion from external data sources.

CSV processing is also at the core of (GE et al., 2019). This work highlights the
inherent costs of ingesting CSV data in the context of analytical applications. Namely,
the parsing of raw data is identified as one of the major difficulties of systems that support
analytics on text files. One problem cited by the authors is the lack of context when
processing file chunks: for instance, finding the beginnings and ends of rows and records.
In the paper, authors propose a speculation-based distributed parsing approach for the
CSV format. Their solution divide text files by chunks, which are distributed among
worker nodes that execute the parsing step in parallel. The proposed implementation
is validated in Apache Spark using real-world datasets, and yields a 2.4X speedup over
existing methods when parsing CSV files. Nevertheless, this work does not explore the
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usage of such files in analytical queries.
Authors of (MITLöHNER et al., 2016) examine characteristics of open data CSV col-

lections. More than 230 portals were analyzed, and a total of 413 GB of information was
scanned. The study concentrates on the structure of encompassed data, such as column
types and value distributions. Main findings are that an average CSV file has 365 rows
and 14 columns. Moreover, approximately 50% of columns in the study dataset consisted
of either numerical values or text IDs, and approximately 14% of the data columns were
sorted. In Vora, analytical scenarios rarely deal with open-source or publicly available
data. Instead, the observed file datasets are often structured (e.g., a file directory whose
sub-folder are partitioned by a certain column) and are property of a company (i.e., private
datasets). Nevertheless, the work provides an interesting insight on how CSV is used to
store data.

Finally, (IVANOV; PERGOLESI, 2019) discuss performance on columnar files, such
as ORC and Parquet. Authors execute a series of benchmarks for these formats on Hive
and SparkSQL. The obtained results confirm that file format selection and their config-
uration considerably affect the global performance of workloads: while ORC presented
better measurements in Hive, Parquet was the appropriate pick for SparkSQL. Compres-
sion levels were also factors that impacted performance on both file formats.

2.5.2 Discussion

The aforementioned works share some characteristics with the implementation of
techniques to enhance CSV processing in Vora. Data parsing and skipping irrelevant
data accesses are recognized challenges and considered during the implementation of the
proposed solutions in the current work. None of the works explore the execution of ana-
lytical queries upon files in data lakes nor what practices can be implemented to enhance
performance when dealing with text formats in that scenario. The present work will dis-
cuss these themes. In addition, another factor that distinguishes Vora from the presented
systems is its capability for processing data coming from heterogeneous sources, such as
data lakes, third-party databases, and even data processing frameworks, such as Apache
Spark.
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3 OBJECTIVES

The objective of the current work is to enhance the performance of queries made upon
CSV files in Vora. Modifications in the SQL on Files functionality are proposed: this fea-
ture allows querying data contained in files of various formats. For that end, the algorithm
used for processing “big data formats” (ORC and Parquet) in analytical workloads is an-
alyzed to identify what techniques are used to enhance query execution time. They are
then extended to CSV to address the main difficulties of processing this format in Vora,
namely file block fetching and raw data parsing. Finally, performance tests are made to
assess the impact of the proposed changes on queries executed upon CSV files in Vora.

3.1 SQL on Files

The SQL on Files feature in Vora (hereby denoted as SoF) allows queries upon files
stored in data lakes. These repositories hold cold data - that is, huge bodies of data that
remain unclaimed, without being accessed for long periods of time. By nature, this type
of information does not require its entirety to be accessed frequently. Hence, loading all
this data and converting it into database tables would be a waste of resources.

SoF allows loading parts of file collections during query execution to optimize the
system’s performance - thus, named SQL on files. Users can use it to aggregate data
coming from data lakes and use it alongside other sources, such as relational databases.
If needed, tables can be created in Vora to store the query results. By providing a way
to unify the data, these tables can then be consumed by other solutions to build further
data enhancements. For instance, Vora has connectivity with a data pipelining solution
provided by SAP, which allows users to cleanse the data, apply machine learning methods,
among other use cases. Thus, SoF can be considered as a data aggregation feature in Vora.

The main use case targeted by this functionality are:

• Selective queries involving wide tables, targeting a specific set of columns and a
certain value range. In these scenarios, users want to get some specific information
from the dataset (e.g., select the days in which the total income was greater than
100).

• Data profiling, in which a table is temporarily created to reference a specific file
or, in most cases, a folder of files. Descriptive queries are executed without many
filters or joins. For instance, find the minimum or maximum value in a given file
column, gather its sum, or count the occurrences of a certain value.

Typical scenarios include files whose content are static - meaning that their data is
hardly (if ever) modified. Queries are emitted in parallel and possess high selectivity - in
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other words, they concentrate on a small subset of the data, without joins.
In contrast, there are scenarios that SoF does not target. Queries involving many joins

and lacking selective filters are one of them. In this context, a user has many tables whose
content is hardly modified, and complex join-intensive queries are fired over them, often
requiring complete scans of all data due to the lack of highly selective filters. Likewise,
many tables with foreign key relations and files with data being modified regularly are not
ideal execution scenarios.

3.2 CSV file performance

Regarding the file formats, the most used binary types are ORC and Parquet; CSV is
the only text format supported by the functionality. Other kinds of less relevant files that
are not included in this project’s scope are Avro and RCFiles.

Even though text files do not represent an optimal choice in analytical workloads,
many companies that make use of Vora still use them, as they represent a simple and
widespread option for storing data, and can be used easily by the end-user (e.g., spread-
sheets represented as a CSV file). However, there is an enormous performance gap when
comparing CSV with other "big data formats" in analytical scenarios, as the former types
of file possess specific structures that improve processing time. Therefore, the changes
proposed in the current work will contribute to lower the discrepancy between execution
times of CSV queries and those executed upon ORC or Parquet, for instance.
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4 MODELLING

This chapter presents how the solutions proposed to enhance the execution time of
queries made upon CSV files in Vora are modeled. Details about how the relational en-
gine in Vora processes files are studied. Moreover, algorithms for reading big data formats
and CSV are examined. The characteristics drawn from such analysis motivated the im-
plementation of the proposed solutions.

4.1 Processing files in Vora

The SoF feature is embedded in Vora’s relational in-memory engine via direct inter-
action with Vora’s file loader, also known as the file importer or simply importer. All
processing of files is done in the main memory, and no data is swapped to the disk. Hence,
all extensions made to the relational engine are available for SQL on files, and vice-versa.

Given that SoF relies on the relational engine, which executes computations exclu-
sively in the main memory, the execution is bound by the available memory. However,
filters (such as WHERE clauses) and aggregations (GROUP BY) are implemented to be
computed in a pipelined fashion. Thus, the memory consumption can be reduced if
queries have a highly selective filter or if the applied aggregations only generate so many
groups.

When executing queries with the SoF functionality, the totality of data is not loaded
into memory (nor into the disk). Since, in many cases, the total size of the targeted file
dataset is huge, it does no t make sense to waste resources by storing all the information
in Vora. Instead, the execution is carried out by loading files by blocks. For Parquet and
ORC, they have a default size of 128MB and 250MB, respectively, whereas, for CSV,
it is 100MB. This number presents a reasonable trade-off between network bandwidth
consumption and processing time, and it was a design choice made by the importer. As
the data pointed by an SoF table is not loaded into the database, there is no entity mapping
the file data slices to nodes. In other words, no partitioning scheme is attached to the SoF
table.

The pseudo-code exposed in 4.1 presents how a file stored in a data lake can be refer-
enced in Vora.

CREATE TABLE customer (
c_cus tkey INTEGER NOT NULL,
c_name VARCHAR( 2 5 ) NOT NULL
) WITH TYPE DATASOURCE ENGINE ’FILES ’ ;

ALTER TABLE customer ADD DATASOURCE ds1 PARQUET( S3 ( ’ customer .
parquet ’ ) ) ;
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USING CONNECTION s3_conn ON ERROR ABORT;

LOAD TABLE customer ;

Listing 4.1: Example of a Vora table definition targeting a Parquet file stored in Amazon
S3

The CREATE TABLE statement describes the format of the data coming from the
source file. Next, the ALTER TABLE command adds a data source to the customer table,
by referencing the file "customer.parquet" stored in Amazon S3. Optionally, instead of
a file path, users may specify a folder, which will prompt the engine to execute queries
against all files in that directory.

Finally, the LOAD TABLE statement is required to load information about the file into
the Catalog - the metadata store for the relational engine. This command will not load the
file data into memory nor persistent storage. In contrast, it will check the given file path
and store additional information about the source. After this point, subsequent selects
may be used upon the declared data.

Striving to better serve numerous formats, the importer relies on an abstraction layer
called Abstract File System Interface (AFSI). It groups a set of basic operations for file
I/O offered by data lake providers, and supports sources such as:

• Hadoop Distributed File System (HDFS) and WebHDFS

• Amazon S3

• Google Cloud Storage (GCS)

• Azure Data Lake (ADL)

The most important functionalities provided are opening a connection, file operations
(such as seek, read, write), file properties (e.g., size, chmod) and folder operations (e.g.,
mkdir, ls). Given that many data sources are supported, the AFSI component loads a
dynamic library for correctly managing the type of connection upon opening a file. For
instance, if the user specifies an HDFS URL for a file, it will load the appropriate .so,
.dll or .dylib library responsible for dealing with the Hadoop file system.

4.1.1 SoF: processing big data formats

As presented in previous sections, SoF avoids loading the whole file dataset into main
memory, as most often queries are interested in a reduced portion of the information.
File formats such as Parquet and ORC present an excellent alternative in that context
since they possess structures that allow loading certain portions of a file. Moreover, the
embedded file statistics allow the query engine to use the column predicates and skip
loading irrelevant file blocks. This also avoids fetching whole files and not using them,
especially when queries present restrictive predicates that target value ranges that do not
pertain to the files involved in the query - selecting a column value that does not exist in
a file is a notorious example.

Another use case that benefits from the clever organization of such files is when
queries are made upon file directories. In many cases, the sub-folders have a certain
hierarchy, as data is partitioned by column value ranges. For instance, imagine a direc-
tory containing files that store temperature data coming from IoT sensors. Sub-folders can
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be organized by date: the first folder hold files whose values were measured in January,
the next one stores measurements from February, and so forth. In that case, upon firing a
query that targets the temperatures collected in May, for example, it would be reasonable
to assume that only the folder storing values from May is opened and retrieved from the
data lake. If somehow the query engine associates statistical values (e.g., minimum and
maximum values from the "Date" file column) to the folders, such execution can take
place.

Hence, Vora leverages the statistical information contained in such files and maintains
a file statistic cache to allow query optimization. Whenever a file is read, the statistics
associated with particular blocks are cached. Then, the importer can use those markers
to avoid loading file portions that contain irrelevant data in the query context, so file
processing can be optimized. In that sense, query predicates are moved "closer" to the
data, as the importer now will consider them when loading files. This technique is called
predicate pushdown. Query performance can be enhanced by using this method, as data
is handled more efficiently: only relevant file chunks are processed by the importer.

The same rationale can be applied when dealing with file directories. As stated previ-
ously, queries that are executed against a directory tree should only touch the appropriate
folders. Loading any file that does not contain pertinent information to the query would
be a performance penalty, as it would not impact the final result. Therefore, just as done
with files, folder statistics are also cached in Vora. This extends the benefits of predicate
pushdown to queries executed upon folders. However, the performance gain is consider-
ably larger: instead of skipping file chunks, whole sub-directories that do not yield actual
results to the query can be ignored. Hence, this technique is referred to as file pruning.

Figure 4.1 represents a fictional dataset represented in a file directory. Individual files
hold a certain value range, and are organized in sub-folders. In this example, there is no
overlapping of values between files. File pruning can be applied in this example when a
query is made upon the directory "/file_directory": if it selects data greater than 900 and
smaller than 3000, then only "file_20.orc", in blue, should be read. Predicate pushdown
is used when individual files are targeted - if "file_01.orc" is queried for data between 15
and 30, only the green block should be fetched and processed.

Figure 4.1: Example of a file directory that partitions data in sub-folders. Files have only
one column, and are placed on folders which represent a certain value range. Each file is
subdivided in blocks, which hold only one column value
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4.1.2 File query execution

In order to analyze how Vora deals with executing queries upon big data file formats,
and how the aforementioned techniques - predicate pushdown and file pruning - are em-
ployed, the query execution path in Vora will be presented.

The engine’s critical path for executing SoF queries is the following: a sequence of
commands is processed by the parser, which is a component that checks the syntax of
a SQL query and transforms it into an Abstract Syntax Tree (AST). Then, the semantic
analyzer checks the semantics of the SQL query and annotates the received AST with
type information. The catalog, which contains metadata about the tables, is consulted for
obtaining information about the data source and column types. Next, a logical execution
plan is generated by the plan generator, and then forwarded to the optimizer.

The latter is a key component to the importer because time-saving modifications are
made to the original logical plan. Most importantly, the pushing down of query filters
- in other words, predicate pushdown - are made here, using the cached file statistics
maintained by the engine. Pruning of irrelevant table slices and exclusion of hosts con-
taining them are taken into account on the host assignment, if the tables are maintained in
memory, in order to apply file pruning.

As output, the optimizer creates a physical plan, based on the aforementioned en-
hancements. Then, the Landscape Manager, which holds information about the worker
nodes and data slices they contain, is used to decide the optimal plan distribution as plan
fragments are sent to the assigned nodes.

One important remark is that for SoF queries, since the file data is not persisted in
the database, the nodes do not hold the data slices pertaining to the files. A query plan is
sent to nodes, containing a data source description along with the statistics (if applicable).
The importer component of the node’s relational engine opens a connection with external
source (i.e, data lakes) and retrieves the file data.

4.1.3 File statistics cache

The file statistic cache is implemented in Vora through a distributed dictionary, called
RDS (Replicated Data Structure) Map. It provides a consistently replicated map of string
keys to object payloads, and it is backed up by Vora’s distributed log. This ensures that
all operations are durable before they are applied to the in-memory structure. Moreover,
it guarantees that if an API call modifying the data structure (e.g., compare-and-swap on
an RDS Map) returns successfully, then the modification is guaranteed not to be lost, even
under client or server failure.

The cache identifies specific files by an entity tag (ETag), which most data lake
providers support. It is included in HTTP response headers when the engine accesses
files in a given data lake, and it serves to identify a specific version of a file resource. If
ever the file’s content is changed, the respective ETag is also modified. Thus, it can be
consistently used in cache validation.

The user can configure the percentage of the node memory that is allocated to the
cache. A special table called INTERNAL_FILESCAN_CACHE_DETAILS holds details
about the cache, such as filenames, hashes, access counts, among others.

Each cache entry consists of an object which contains overall statistics about the file,
such as files accesses, number of accessed blocks, number of rows read, among others. It
also holds column statistics, which are divided by file blocks. They are used by the opti-
mizer when building the execution plan, and are passed onto the importer to implement
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predicate pushdown and file pruning. Hence, every time that the importer accesses a file
specified by the query plan, the ETag contained in the response is compared to the one
associated with the received statistical information, to verify whether it can be correctly
used during the query execution. The cache uses a LRU policy to manage its entries.

The cache stores statistical data of ORC and Parquet files, since they already contain
this kind of information on their body (conveniently for the cache, they are also divided
by blocks). Prior to the project, the CSV format was not supported by the cache, as no
statistical information was available for this type of file. Hence, CSV could not leverage
the optimizations available for the previous formats.

4.2 Analysis of ORC and Parquet processing algorithm

By analyzing how the importer processes the two main "big data formats", techniques
that are used to enhance file processing become evident. This analysis was carried out to
identify them, so that these can be extended to the CSV text format, which lacks ways of
improving the processing time.

The pseudo-algorithms presented below are implemented by the importer, in C++.
Therefore, when analyzing such algorithms, the execution path presented in the previous
sections is considered have been carried out. They are executed by the importer, so file
statistics and data source descriptions are considered to be available to this component.

The processing of ORC and Parquet files is done by loading individual file blocks
and retrieving the rows which match the query predicate. Algorithm 1 describes how
the importer retrieves file data for the latter formats. A handle is used to reference the file
involved in a SoF query. It also may contain statistical information about the file columns,
as a result of the optimizer retrieving statistics associated with that file from cache. The
first step taken is to verify whether the query predicate match the statistical information
associated with the file columns, in line 3. If not, then there is no need to load any file
data, and the access information is updated.

Algorithm 1: Global query processing for ORC/Parquet files
Result: A set of result rows that satisfy the query parameters

1 Handle←− data source description object;
2 Rows←− [];
3 if !AreColumnFiltersValid(Handle.GetFileStatistics()) then
4 UpdateAccessStatistics();
5 else
6 while RetrieveNextRowGroup(Handle) do
7 while Handle.LoadNextColumnTableChunk() do
8 rows←− Handle.ProcessBlock();
9 Rows←− append(Rows, rows);

10 end
11 end
12 end
13 Handle.UpdateFileStatistics();
14 return Rows

This verification consists of creating value ranges for each column that composes the
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query predicate, and comparing with the cached minimum and maximum values of the
file columns. For instance, consider the predicate exhibited in Listing 4.2:

SELECT sensor_ id , c_date , c_temperature
FROM sensorORC
WHERE c_date >= 2020 −01 −09 AND c _ p r e s s u r e < 1

Listing 4.2: Example of a query made upon an ORC file

For such query, the range [2020-01-09, ) is created for the date column, and
(, 1) for the pressure column, as per defined in its predicate. If the overall statistics
of a given file says that it holds values greater than 3 for the pressure column, then there
is no need to read the file data. Otherwise, the importer will proceed to evaluate the file
blocks.

ORC and Parquet have a special section in their body which describes the positions
of individual blocks. This is used by the importer to retrieve one specific block at a time,
which is done inside the outermost while loop. The file handle is responsible for actually
downloading the specific portions of the file containing file statistics. Blocks are retrieved
in batches, as displayed in line 6. The innermost loop will call the processing function
for each individual file block. A specialized reader for parsing the data will be used. As a
result, a set of rows that matches the query is produced.

Finally, when all blocks are fetched and parsed, the final group of rows that satisfy the
query is returned. Furthermore, some information about the file is updated and stored in
cache, such as number of blocks read, number of rows skipped, among others.

Algorithm 2 describes in more detail how the importer parses file blocks to get rows
that are included in a SoF query. It roughly corresponds to line 8 in algorithm 1. Tech-
nically, ORC and Parquet have specific ways of parsing the block data, as their inner
structure are different. However, apart from these format-related methods, their reading
is performed in the same way - this is what algorithm 2 summarizes.

The importer receives a data source description object along with the offset within
the file that points to the beginning of the block. Firstly, the cached statistics for the
file columns of the current block are compared to the query predicate, just as presented
previously. This avoids loading blocks that contain irrelevant information.

For ORC and Parquet, the blocks are subdivided into smaller chunks, which allows a
fine-grained loading of data. In the former, chunks are called "strides", which by default
contain 10000 rows, whereas in the latter, they are called "pages". The importer loads
them one by one, and decides which rows inside them have to be returned.

There are two types of columns considered while loading file data: filter columns,
which are the ones specified in the query predicate (i.e., the where clause), and regular
columns, which are the ones being selected by the query. For instance, in query 4.2,
c_pressure is a filter column, sensor_id and temperature are regular columns, and c_date
is both a filter and regular column.

A boolean vector with size corresponding to the length of the current chunk is used to
mark which rows will be included in the query. Initially, its values are set to true, which
represents that all rows will be included. The cached statistics are used to determine if
the values of the filter columns in that chunk are completely inside the query predicate. If
that is the case, then all rows will be included, and there is no need to find out which ones
match the predicate. Contrarily, the filter columns are read in line 9, and their row values
are compared to the respective column condition set in the predicate. Due to the columnar
organization of the files, the importer can access columns individually, and it does so in
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Algorithm 2: Loading ORC/Parquet file chunks for processing query results
Result: A set of file values that satisfy the query parameters
Input: data source description, block offset

1 Reader←− ORC/Parquet file reader;
2 Rows←− []
3 if query filters are not inside block column statistics then
4 UpdateAccessStatistics();
5 else
6 while Reader.BlockHasFurtherRows() do
7 chunk←− Reader.GetCurrentChunk();
8 rows←− boolean vector set to true
9 if chunk column statistics are not completely inside query filters then

10 parallel for each filter column
11 Reader.ProcessRowsToInclude(rows);
12 end
13 wait for threads;
14 end
15 if rows is not completely set to false then
16 parallel for each column
17 Reader.ReadColumn(rows);
18 end
19 wait for threads;
20 end
21 Rows←− append(Rows, Reader.GetRows());
22 end
23 end
24 if statistics not present for file then
25 Reader.ForwardColumnStatisticsToCache();
26 end
27 return Rows
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parallel. For instance, the output of such procedure for the query 4.2 can be summarized
in Figure 4.2

Figure 4.2: Filter columns are read in parallel, and their values are compared to the re-
spective column predicates to determine which rows satisfy the query. Vectors represent
a certain column, and each case a row value. Marked in green are the values that satisfy
the query predicate set for the column, based on query 4.2

After this procedure, the importer has a vector describing which row in the chunk
will be included in the query, and which one that will not. First, if the vector rows has
no element set to “true", then no row in that chunk match the query - hence, no need to
load any value. Otherwise, the regular columns are read in parallel to retrieve the rows
specified by the vector. Again, the columnar organization allows the parallel read of data.

If a given file is processed for the first time by the importer, then the statistical infor-
mation it contains is collected while the chunks are read. These statistics are stored in
cache at the end of the query, as expressed in line 26. Consequently, if a query is executed
again upon the same file, this information can be used to skip downloading unnecessary
blocks.

Another optimization adopted by the importer is the download of upcoming blocks
in the background: while the first block begins to be parsed, the download of the second
one begins. Usually, ORC and Parquet blocks sizes are approximately the same, so the
execution is bound to the time it takes to download chunks from the data lakes.

The biggest advantages of processing such files are:

• Parallel read of columns, due to the columnar file organization, which enhances
performance while reading file blocks.

• Application of file pruning, as represented in line 3 of algorithm 1, and predi-
cate pushdown, as shown in lines 3 and 9 in algorithm 2. As the statistic cache
holds minimum and maximum values of different columns, they can be used to
skip chunks and file blocks, and thus minimize the amount of data processed.

• Greater level of customization, as ORC and Parquet files can be constructed with
different row group and chunk sizes to reflect a specific characteristic of the dataset
encapsulated by the file.
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• Possibility of using compression methods in blocks and chunks, to decrease the
quantity of downloaded data. This comes with a trade-off: while parsing the blocks,
the information will have to be decompressed. Usually, the most suitable compres-
sion method varies with the type of workload being executed.

On the other hand, some of its weaknesses are:

• Slow start of the statistical cache. When reading for the first time a file dataset
(e.g., a huge folder with multiple files in it), no statistical information is present
in the engine. This may induce longer reading times, as extraneous blocks can be
fetched and processed.

• File modifications invalidate the existing statistical information. If a source file
which has its column statistics cached in Vora is changed, then a different ETag will
be generated for it, causing the importer to ignore the existing statistical information
and gather new values when processing it. Hence, SoF queries are not optimized
for files whose content is changing constantly (i.e., hot data).

• Execution is bound to the available memory in the worker node. As the blocks are
processed in main memory, a worker node can only process so many file blocks at
a given time. This bottleneck can be alleviated by adding more worker nodes to the
Vora cluster (i.e., horizontal scaling).

4.3 Analysis of CSV processing algorithm

The processing of ORC and Parquet benefits from the usage of column minimum and
maximum statistics, as they are used to skip blocks and chunks. This increases processing
time for the SoF use cases, which targets highly selective queries made upon static files.
Hence, the statistics are used by the importer to load data effectively, by means of file
pruning and predicate pushdown. They serve to migrate computations to the portions of
the file that contain the needed data.

CSV, on the other hand, does not present such features. Being a text format, there
is a large overhead for transforming parsing the data and interpreting the encodings. It
also does not benefit from a columnar organization, which means that columns can not be
processed independently. For instance, if a CSV file has 10 columns and only 2 are being
targeted by the query, when parsing a file row, all the columns have to be parsed too, as
the delimiters have to be found in order to determine the column positions.

The following sub-sections will present how CSV was processed prior to the imple-
mentation of proposed enhancements, and the characteristics that motivated them.

4.3.1 Reading CSV files

This section presents how the importer loaded CSV files prior the introduced mod-
ifications. CSV files are also processed in chunks. However, different than ORC and
Parquet, the file body is not inherently divided in row groups. Hence, the importer loads
CSV files by blocks. In production, the block size is 100MB, which represents a com-
promise between processing times and network latency. If the block size was too small,
then the system would make more requests to fetch the file data, and thus the performance
would suffer from many accesses to the data lake, resulting in a high latency overhead.
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On the other hand, if the block size was too big, then the importer would stay idle while
the block is transferred from the data lake.

Other than being downloaded and processed, CSV blocks need to be parsed. This is
because they contain textual data, tied to a specific character encoding. Different char sets
are supported (for instance, Chinese and Japanese characters are allowed). Values need
to be transformed from a string representation to the actual column type. For example,
a CSV column might contain the text value "true", which has to be interpreted by the
importer as a boolean value. This extra calculation affects the performance of queries
executed upon CSV.

While a given block is being processed, the upcoming one is downloaded in the back-
ground, as shown in Figure 4.3. The file processing steps are comprised of parsing the
textual data, transforming it to value supported by Vora, and applying the query to it,
which involves actions such as selecting the needed columns and applying column filters.

Figure 4.3: CSV blocks are fetched in the background while others are being processed.
The latter procedure includes parsing the text data and filtering the data needed for the
query

Since parsing is a relatively costly operation, a block is further divided into row
groups, which are parsed in parallel. Figure 4.4 illustrates such division. In order to
extract complete sets of lines from chunks, the binary data is interpreted as a string of
characters, and the end-of-line markers “\n" are located. By applying this process, groups
composed of complete lines can be formed, which simulates the concept of row groups.
They are used to read the column values.
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Figure 4.4: Blocks are subdivided chunks, which are parsed in parallel.

During this processing, a concern for the importer is that not necessarily blocks con-
tain entire lines. When a is block read from the data lake source, the importer has no
gurantee that it has a full line, nor that all the lines it contains are complete. They initially
have no semantic for the importer - they are just a fixed-size sequence of bytes. There-
fore, the CSV reader can process blocks that possess partial lines, so it has to locate the
position of complete lines in a raw file block, and keep track of their positions in the file
stream.

Figure 4.5 illustrates the processing steps mentioned in the previous paragraphs. Ini-
tially, a CSV file - located on a data lake - is accessed, and its first 100MB block is
downloaded, as indicated by number 1 in the figure. After this step, a raw block of bytes
is available for the importer. Next, the end-of-line markers will be located to define how
many lines are present in the block. The total number depends on the amount of columns
and the values they hold.

Figure 4.5: The original CSV file (on the left), located on a data lake, is used to fetch a
first block. End-of-line markers are located, and row groups are formed.

The importer leverages the capabilities of Intel’s SSE (Streaming SIMD Extensions)
instructions to enhance the search of end-of-line markers in the block. SSE extends the
instruction set architecture to include operations that execute on multiple data, which fits
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Flynn’s SIMD (Single Instruction Multiple Data) classification (FLYNN, 1972). With
that approach, multiple blocks of data can be compared in parallel to a mask containing
the end-of-line markers (“\n"), and thus the offsets representing the beginning and end of
lines are located. This alternative yields better performance results if compared to reading
each character and comparing them individually to “\n".

As the line positions are found, groups of lines are formed and put in a task pool, which
will be processed in parallel. This scenario is displayed in Figure 4.6. The representa-
tion of such groups is done by a structure called CSVParallelReadingRangeItem,
which simulates a row group of a big data format. It encapsulates the beginning and the
end file offsets of the lines composing a given group, and it may contain up to 10.000 rows
or at most 20MB. This boundary condition was a design choice made by the importer, to
avoid having groups containing few lines, which would result in a big number of tasks to
be executed, or groups having all the lines in the current block, which would eliminate
the benefits of a parallel task execution.

Figure 4.6: Row groups are passed to worker threads, which will process the group lines.
In this example, each row group contains only 1 line, but normally thousands of lines are
present in them.

The library Intel Threading Building Blocks (TBB) is used to implement the par-
allel execution of tasks. After forming the row groups, an instance of the library class
tbb::task_group is responsible for processing them. A pool of worker threads is
instantiated, and each row group is assigned to a worker, whose objectives are reading the
appropriate column values, applying projections and comparing them to the query pred-
icates. A barrier waits for all the threads to complete, and finally a group or rows that
satisfy the query is returned.

In Figure 4.6, the predicate selects rows which have a value greater than 5000 in their
third columns. Consequently, workers 1 and 3 will discard their rows, and the result will
be created with the values processed by the other two workers. Also, in the beginning of
the execution, the block contains a fraction of the fifth line, as shown in Figure 4.6. The
importer, however, will ignore this portion while processing the first block, and concate-
nate it to the beginning of the second block when processing it.

The advantages of the implementation described above are:

1. The importer leverages the capabilities of Intel TBB to process the row groups of
each block in parallel.

2. SSE instructions are used to alleviate the overhead of finding the end-of-line pos-
tions in the file stream, which is a challenge inherently associated with text formats,
such as CSV.
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3. Even though each block is processed sequentially, while a block is being parsed,
the next one is fetched from the external source in the background.

Nevertheless, it also has some drawbacks:

1. There is no support for predicate pushdown. Therefore, in every execution, the
entirety of the CSV file is read. This fact also extends to file directories: queries
executed upon them will forcibly cause the importer to fetch and read all the file
data.

2. The importer does not cache any information about the data read from the file
blocks. Hence, it is not able to skip the loading of individual blocks or row groups,
as observed in the big data formats.

3. CSV requires heavy string manipulations, as it is a text format. Therefore, the
importer should avoid having to parse blocks that do not contain the needed query
information.
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5 PROPOSED SOLUTIONS

Analyzing how the importer handles the processing of big data formats and comparing
it to the CSV format processing highlighted some improvement points and techniques that
can be applied to the latter module. This chapter will now present what was implemented
to optimize the performance of queries made upon CSV files.

5.1 Enhancing CSV processing time

The following modifications were implemented in the CSV processing module of the
importer:

• Statistical calculation for CSV files. When reading a file for the first time, the
maximum and minimum values of the columns for whole file and for the individual
blocks will be computed and stored in the statistical cache.

• Partitioning CSV blocks in smaller chunks while reading them, with the help of
Intel’s TBB parallel computing library.

• Given the enhancements above, the technique of file pruning was added when per-
forming queries upon CSV. Therefore, files that do not possess relevant data for the
query can be discarded altogether.

• Block pruning for CSV files, which consists on extending the file pruning to in-
dividual blocks. This will allow the importer to have a better control of which
portions of the file needs to be ignored.

• Also, use the minimum and maximum statistics to ignore the download of unnec-
essary blocks, decreasing the amount of data transferred over the network.

5.2 Parallel reduction of CSV blocks

The importer leverages cached minimum and maximum column statistics for enhanc-
ing the processing of ORC and Parquet files. Thus, in order to have the same benefits for
CSV files, these statistics have to be collected while reading the CSV file, and passed to
the statistical cache, given that they are not naturally present for the format.

Although a parallel data read results in a significant gain in performance, it poses some
difficulties to the minimum and maximum column value calculation. For one, different
threads will be responsible for separate sub-ranges of the file. While doing its work, one
thread may find that 10 is the maximum of the first column, for instance, while another one
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may find that 7 is the maximum value. If not designed properly, the statistical calculation
for CSV files may result in race conditions and produce incorrect values.

An additional concern is the performance of the CSV reader. Parsing textual data is
for itself a costly operation. Adding a statistical calculation on top of such processing
might increase the time it takes to read the CSV rows, since individual column values
have to be tested against the minimum and maximum statistics.

The nature of the CSV statistical calculation requires a certain processing to be made
in multiple ranges of the file block, which will result in minimum and maximum values of
each column on the sub-ranges. Moreover, these results have to be compared against each
other to finally produce the overall minimum and maximum values of each column in the
whole block. These steps suggest that a reduce operation should be employed, since a set
of smaller outputs must be combined to form a final result.

Therefore, the implemented solution relies on TBB’s parallel_reduce routine, which
replaces the usage of a task group. This function computes a reduction of a given range
by recursively splitting it into sub-ranges up to the point such that each sub-range is not
divisible anymore. The divisibility criteria depends on the granularity set by the function
caller. Once a sub-range is granular enough, the library assigns a task to it, and the
processing starts.

The reduction function can be represented by a class containing the reduction logic,
expressed by an execute() method. An object of such class will be mapped to a task,
which is a library construct. Tasks are typically a small routine which are mapped to
logical threads. According to Intel’s official documentation (Task-Based Programming,
Intel TBB Documentation, 2021), tasks are much lighter than logical threads, as they
do not need to keep track of system resources such as register states and stack. Thus,
tasks have the advantage of being higher-level constructs that encapsulate a single routine,
which are consumed by threads. Instantiating and terminating a task in Linux systems is
about 18 times faster than doing so with a thread, according to the same reference.

Figure 5.1: An hypothetical split of a block range done by the TBB library. Source:
Intel Developer Zone: https://software.intel.com/content/www/us/en/develop/documentation/tbb-
documentation

Once mapped to a thread, the task is bound to it until the processing returns. Dur-
ing that time, the task may wait for the completion of some child task or nested parallel
construct. In that occasion, the thread assigned to it may run any available task, includ-
ing unrelated tasks created by other threads, instead of sitting idle. TBB’s internal task
scheduler is responsible for doing such work.

For every range split, a join method is invoked after the respective tasks finish, in order
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to merge the results from the sub-ranges. It is the caller’s responsibility to define a proper
implementation for the join procedure.

In Figure 5.1, an hypothetical split of a range is shown. Consider that initially there
is a block that ranges from byte 0 to byte 19, and that the granularity is set to 5. Once
passed to the tbb::parallel_reduce routine, a task b0 is associated with the initial range.
Since it is not granular enough, it is split in half by the library and a new sub-range from
10 to 19 is assigned to a task b2. The splitting is done recursively until the sub-ranges
attain the desired granularity, at which point the task starts processing the range bytes. In
the example, there are 4 leaves representing the final sub-ranges. They are evaluated by
three separate tasks. Notice that task b2 ends up evaluating two sub-ranges: this is one
possible execution, as the splitting depends on factors such as the amount of cores and
worker threads available. At the end, the following join operations will be invoked:

1. Range [0,5) will be merged to [5,10) through the medium of join(); The same
goes to ranges [10,15) and [15,20) . The order that such merges occur are
non-deterministic.

2. Range [0,10) will be merged to [10,20) via join() after the previous merges
have occurred.

Finally, once the last join occurs, a single task will remain, and the result of the reduc-
tion will be returned to the caller.

5.3 Implementation of statistical calculation for CSV

The parallel reduction computation is used to read the CSV blocks concurrently, and
while doing so, calculating the CSV statistics for the columns they contain. This section
describes what changes were done to the processing described in 4.3 to implement the
statistical calculation for CSV.

TBB defines a signature for classes that can be used with tbb::parallel_reduce. There-
fore, a new class CsvReaderTask, which encapsulates the operations needed for parsing
the sub-ranges, was introduced. It contains a execute() method which performs the
steps needed to process lines - parsing characters, calling the respective column readers
to read the data and applying the query filters.

After locating the end-of-line inside a block, lines are individually put into instances
of a structure that holds their beginning and end offsets. Then, these objects are put
inside a range, which will be passed to tbb::parallel_reduce to begin the processing.
After splitting the initial range recursively, a granular sub-range will contain a group of
lines to be parsed. At this point, an instance of CsvReaderTask will be assigned to a task,
which calls the execute()method. At that instant, there are multiple tasks concurrently
reading the values of CSV lines.

The statistical calculation is introduced in this phase: each CsvReaderTask object will
contain an auxiliary structure, called CsvStatisticNode, responsible for keeping track of
column statistics on a given sub-range. It possesses two attributes for storing the minimum
and maximum values of a certain column section of the file. Therefore, every time a
task reads a certain value, a local copy of this object is consulted to evaluate if such
value represents a minimum or maximum statistic for the given column. Once the task
finishes, a vector of CsvStatisticNode will have the minimum and maximum statistics of
each column for the given sub-range.
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When two sub-ranges processed by some tasks are merged, the join() operation will
compare the vectors ofCsvStatisticNode to compute the minimum and maximum statistics
for the joint range. This sequence of joins is done recursively until the full range is
reconstructed, at which point the column statistics of the whole block are returned to the
caller.

Since TBB controls task execution and the merging of tasks, race condition issues
are eliminated. Intermediate column statistic values are combined by means of the join()
method, which is invoked properly by tbb::parallel_reduce. Therefore, CsvStatisticNodes
can be compared in correct manner.

Figure 5.2 shows the processing of CSV blocks by tbb::parallel_reduce. Lines are
found inside the block and placed in a vector. Each element will contain the beginning
and end offsets of the line in the file stream. Then, the TBB library is responsible for
splitting the sub-ranges. Once they reach a certain granularity, line parsing is done. The
operations performed in that stage are the same as described in section 4.3. The only
additional step is the statistical comparison performed with the help of CsvStatisticNode
objects. This addition will incur a certain overhead, which will be measured in the next
chapter.

Figure 5.2: Line positions are located inside a block, and a range is formed. When passed
to tbb::parallel_reduce, sub-ranges processed concurrently by tasks

,

The calculation of column statistics is depicted in Figure 5.3. When a task processes a
sub-range with an instance of CsvReaderTask, the CsvStatisticNode objects are consulted
every time a new value is read from the lines. Since different tasks will have local copies
of these objects, race conditions are not injected during this computation. After processing
their lines, tasks are joined, and as a result, column statistics are combined
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Figure 5.3: Sub-range column statistics are computed and combined after a join() opera-
tion.

5.3.1 Granularity of sub-ranges

The granularity parameter controls the size of sub-ranges upon which tasks will per-
form their work. A certain range is considered to be divisible if its size exceeds the
granularity passed to the parallel reduce operation. However, TBB might produce ranges
containing fewer elements than the specified grain size. According to the official docu-
mentation, the task partitioner will ensure that the sub-range size sits between G/2 and G,
where G is the granularity.

Therefore, the parameter affects directly parallelism, since it defines a partition of
the input range, which will be distributed among tasks. Defining a large value for the
parameter may unnecessarily restrict parallelism: each task will have to process a big
amount of lines, instead of sharing this work with other threads that may be available. On
the other hand, a small granularity might result in many tasks being created, introducing
a scheduling overhead.

In the context of CSV block processing, the granularity criterion was defined in terms
of block size rather than number of lines. This is because different CSV files may have
lines possessing variable sizes. For instance, it the file defines hundreds of columns, its
lines will have a greater size than those of another file that has only one column per line,
as more text translates into a bigger line size. Therefore, processing different files would
produce distinct number of sub-ranges, which could affect parallelism.

Figure 5.4 shows how many sub-ranges would be created for a 100MB block if the
granularity criterion was “number of lines per sub-range". Three CSV files are consid-
ered, with varying line sizes: 20, 100 and 500 bytes. If the granularity was set to a 5000
lines, for instance, the red file, whose lines have 20 bytes in size, would produce 1000
sub-ranges. On the other hand, for the same parameter, the green file which possess 500
bytes lines will have only 20 sub-ranges created. This demonstrates that choosing number
of lines per block as the granularity criterion would affect the parallelism observed in the
processing of CSV files. For that reason, a different criterion was selected: amount of
bytes per sub-range. This guarantees that, no matter the line size, a similar amount of
sub-ranges will be created for every CSV file being processed.
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Figure 5.4: Graph showing how many sub-ranges would be created by parallel reduce operation for a
100MB block, depending on the line granularity. Y-axis is in logarithmic scale. Different kind of files with
varying sizes of line are shown.

The following experiment was conducted to define a fitting value for the amount of
bytes a sub-range should have:

1. Initially, a high value was picked (e.g., 10MB)

2. The tbb:parallel_reduce operation was executed on a 100MB CSV block for a fixed
number of iterations (e.g., 30). The execution times were averaged to get a final
number.

3. Finally, the size was iteratively decreased, and the last step was executed again.

Graph portrayed in Figure 5.5 displays the measured execution times:

Figure 5.5: Graph shows the execution time for processing a 100MB CSV block in function of the number
of bytes present on each sub-range (granularity) .

Therefore, the experiment shows that the execution time lowers as the granularity
value approaches 100KB. From that point on, increasing the grain size has little impact
on the measured processing time. The value of 1000kB, however, yields the best execution
time (0.927s). This value was chosen as the block granularity for the processing of CSV
files



49

5.3.2 Block and file pruning for CSV files

With the calculation of statistical values for CSV columns, the file pruning capability
of the relational engine could be extended for CSV files. Initially, the importer was mod-
ified to forward the statistical information about the whole file to the engine. This could
be achieved because an interface defined the operations needed to interact with the file
statistics cache. Therefore, after this first step, entire files could be skipped if the query
predicate did not match the overall maximum and minimum column statistics for the file.

Even tough such modification already represented an improvement, there were still
scenarios in which the statistics were not efficiently used. For instance, if only one block
of the file contained relevant data for the query, the importer would still read the entire file,
and perform unnecessary work reading the remaining blocks. That is because the block
wise statistics were not being forwarded to the cache. Therefore, the second improvement
was to also cache the statistics of each block. With that addition, block pruning was in-
troduced, and the importer could achieve a finer-grained pruning while reading the file, as
unnecessary portions could be skipped. Moreover, the block statistics can be used to avoid
not only the parsing of irrelevant data, but also downloading such kind of information.

Figure 5.6 shows the class diagram for the implemented solution. The important point
to notice is that the existing interface CImporterCacheData was implemented by a new
class CImporterCacheCsvData, that allowed file pruning to occur.

Figure 5.6: Class diagram for the file statistics cache in the importer. Classes in gray were
introduced to implement block statistics.

The cache entry associated with a given block statistic is identified by the file ETag
concatenated to the block’s byte range. Thus, the importer can individually retrieve sta-
tistical values for the block being processed. This also means that, if the file content was
changed at the data lake source, its ETag would be modified, invalidating the calculated
statistics for that file.

The statistical calculation described in this section is only executed if a certain block
does not have a statistic entry in the cache. This avoids having to recalculate statistics for
blocks which already have a valid up-to-date entry in the file statistics cache. Moreover,
given that statistics are related to a certain block range, the implementation will generate
new statistical values every time the block size is modified. For instance, when a CSV
file is processed with block size configured to 100MB, a set of statistical column values is
computed and stored in the cache. If the block size is changed to 20MB, and the same file
is read, then statistics for the 20MB blocks will be calculated. This makes the proposed
solutions extensible for many configurations of the importer.
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6 RESULTS AND PEFORMANCE EVALUATION

The modifications added to the importer module make predicate pushdown available
for CSV files through column statistic calculation. Nonetheless, the usage of threads
and auxiliary comparisons for computing minimum and maximum values introduces an
overhead when reading a file for the first time.

Therefore, this section will be dedicated to evaluating the performance variations be-
tween the original implementation, in which no statistic calculation was done, and the one
containing the new statistical features. Moreover, the performance of analytical queries
will be measured to observe how the execution time was impacted.

6.1 Statistical calculation overhead

The proposed modifications represent a trade-off to be made: at the expense of an
extra step while reading CSV blocks - calculating minimum and maximum values for
each column - unnecessary accesses to files and blocks can be avoided in subsequent
executions.

In order to better examine the extra cost for calculating statistics, execution times for
data profiling queries (as in Pseudo-code 6.1), which selects all file rows, were measured.
A bare-metal Vora cluster with a single node (Linux, 6-core Intel Core i7, 32GB main
memory) was used in this test. Two variations of the importer were taken into considera-
tion:

1. Statistical calculation for CSV is turned off; this corresponds to the original imple-
mentation of the importer.

2. Statistical calculation for CSV is enabled; thus, all modifications presented in the
previous chapter will be included in the importer.

Pseudo-code 6.1: Data profiling query used in test
SELECT MIN(col1), MAX(col2), SUM(col3), COUNT(DISTINCT col4)
FROM csv_table;

Initially, a CSV file extracted from a production system was used. It possessed a
total size of 583.8 MB, and 34 columns of different types, such as DOUBLE, INTEGER,
TIMESTAMP and VARCHAR. The file was put in the local cluster node, so the latency
of fetching blocks from an external data lake does not affect the query execution time.
Five “warm-up" iterations were executed, followed by 20 executions of the query, which
were the ones used to define execution times. Figure 6.1 presents the results gathered for
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both importer variations. It can be observed that the overhead introduced by the statistic
calculation was approximately 3% - this accounts for the extra computation that the reader
tasks have to perform. The average query processing time for each implementation is
represented by a dashed horizontal line.

Figure 6.1: Test instances executed on a 583.8MB file.

The test was also performed with 4 additional files of different sizes, generated ar-
tificially by a script. They contained 14 columns: 4 of them had an integer type, 3 of
them double, followed by 2 timestamp and 4 string ( VARCHAR) columns. They were
also stored in the local cluster node. Execution times for the test instance is displayed in
Figure 6.2.

Figure 6.2: Execution times for different file sizes. Every colored box encompasses results for 3
instances of the test.
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The median is depicted by an horizontal line, outliers are displayed as dots, and the
average execution times are shown in the annexed table. The observed overheads for
statistic calculation fluctuated around 1.7% and 3.1%, demonstrating that the extra cost
introduced by the proposed solution remains fairly stable when executed upon different
file sizes.

Notably, when the file size is small, the additional calculation performed by the reader
tasks is not substantial enough to affect execution time. The graph presented on the top
left corner of Figure 6.2 shows that the test instances performing the statistical calculation
presented a slightly smaller execution time than the ones not executing it, which in theory
were supposed to run faster.

When the amount of data increases to substantial sizes (such as 1GB and 2GB), the
overhead observed was approximately 3%, in the same margin as the one measured for
the original version of the file, with 583.8MB.

6.2 File pruning in directory queries

The main motivation for implementing predicate pushdown and file pruning for CSV
files was to minimize file accesses and irrelevant data processing when executing ana-
lytical queries. One way of evaluating the effectiveness of the implemented statistical
calculation was to execute queries upon entire directories.

The intent behind this type of test is to select a reduced portion of records contained in
the folder, as to check if files not concerned by the predicate were pruned by the engine,
based on the calculated column statistics.

6.2.1 Single-level range partitioning

The dataset used in this test instance consisted of a directory containing CSV files
placed in different sub-folders. The data was divided among files following a single-level
range partitioning, in which one column was used as the partitioning key. Files in the
directory contained disjoint ranges of values in that column, and were initialized in the
following manner:

1. An initial range R = [0,b) was chosen, where b is a positive integer. Files in the
directory would encompass values within that range.

2. A partitioning column p, which held values of R, was defined. It partitioned the
initial range into N disjoint sub-ranges, and each one of them was put inside a
different file.

Given the data partitioning scheme, the test folder was initialized by choosing N=16
and b=10000. It was structured as a balanced binary search tree with height 5 - thus
having 16 leaves, which represented the actual CSV files containing the data. Each file had
1MB in size, and possessed only the partitioning column. Figure 6.3 shows an example
of a folder with the same organization, but with N=4 (thus, with height 3).

The test consisted on executing queries selecting a particular range for the file column.
Statistical calculation for CSV blocks was enabled, and the directory was uploaded to
Google Cloud Storage. Pseudo-code 6.2 shows the test query syntax.
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Figure 6.3: Files are represented as leaves in the directory tree, and each node represents a folder.
Files hold the values of a exclusive sub-range, and no value is observed in more than one file

.

Pseudo-code 6.2: Query syntax
CREATE TABLE csv_partitioned (
col0 BIGINT
) WITH TYPE DATASOURCE ENGINE ’FILES’;

ALTER TABLE csv_partitioned ADD DATASOURCE CSV(’file_directory’)

SELECT col0 FROM csv_partitioned WHERE [predicate];

Table 6.1 shows the result for multiple executions of the test query, according to a
specific predicate that targeted a portion of the file. As a result, it can be observed that
the file statistics are used by the importer to skip files that are irrelevant to the query. This
situation is more evident in equality predicate, for instance: only one value is selected, so
the importer will use the statistics to define which file encompassed the needed data, and
only this one will be processed.

Table 6.1: Percentage of data selected in the folder compared with number of files read
by test queries

Predicate Percentage of data in folder selected Number of files read
col0 > 0 99.99 16
col0 != 0 99.99 16
col0 > 625 93.74z 15
col0 > 4999 50 8
col0 < 625 6.25 1
col0 <= 625 6.26 2
col0 > 9374 6.25 1
col0 >= 9374 6.26 2
col0 = 100 0.01 1

On the other hand, the original implementation generated 16 file reads for every query
- even if only a small percentage of the data was required for the result. In conclusion,
the benefits of having file statistics are shown by this test instance, as the implemented
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solutions resulted in less data being read by the importer while processing queries. Al-
though the data was artificially generated, there are real-world scenarios in which file data
is partitioned by a certain key (e.g., sales record per month).

6.2.2 Composite partitioning on a large dataset

While the previous test showed that file accesses can be avoided, the dataset size was
not considerable. In this test instance, IoT sensor data was sampled from a Vora customer
dataset, forming a folder with 12.1GB in CSV files. The goal is to measure the gains in
terms of execution time when querying data from a sizable directory source.

The directory is structured following a composite range-range partitioning technique.
In this approach, data is first mapped to partitions based on ranges of values of a first-level
partitioning column. Then, each generated partition is further divided in the same way,
following a second-level partitioning column. Thus, this organization enables a logical
range division along two dimensions.

The folder containing the test dataset was hosted in Amazon S3 platform, and a two-
node Vora deployment in Amazon EC2, Amazon’s cloud-computing hosting platform.
Machines were equipped with 32GB of memory and 16 virtual CPUs. Files were put
in the same region as the one in which the cluster was instantiated, in order to reduce
network latency.

Particularly, the test dataset stored measurement values for three different sensors on a
three-year observation period. The underlying file schema presented 16 different columns,
with types INTEGER, DOUBLE, TIMESTAMP and DATE. A first-level partitioning was
created using the sensor_id column: since there were three devices, their values were
put in separate folders. Then, a second-level partitioning was created on the month
column, creating three distinct sub-folders: the first one with values from January to
April; the second, ranging from May to July; and the third one, holding values from
September to December. Thus, 9 CSV files were present. Figure 6.4 illustrates the folder
organization.

Figure 6.4: A first-level partitioning was created on the “sensor_id" column, followed by a
second-level partitioning on the “month" column

.

Five queries with different levels of selectivity were executed upon the directory:

1. Select all entries measured in December by sensor 343458. Only one file holds
values for this query, with size 1242MB - thus, 12 blocks of 100MB and one with
42MB to read.
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2. Select all measurements gathered in January. Three files and 36 blocks are expected
to be processed.

3. Values for sensors other than 343455. Six files hold the query result, with a total of
115 blocks.

4. Measurements gathered in 10th of June by sensor 343455 whose ingestion time was
greater than 23PM. Only one file holds values for this query, and since it has a high
selectivity, only one block of that file should be read.

5. Values measured by sensor 343458 on January. Only one file has the required data,
which is located in the first 4 blocks.

Figure 6.5 shows the query execution times and the number of blocks that contain
the required data, represented by the bars and by the dashed yellow line, respectively.
Two importer variations are considered: the original one and the version with block wise
statistical calculation. Queries were executed on a fresh cluster - thus, the file statistic
cache was initially empty. Moreover, each query was executed 10 times, and their results
were averaged.

Figure 6.5: Execution time and expected amount of file blocks to be read for each test query.

In the first query, the proposed implementation has a higher execution time - 50.114s
versus 48.576s on the original version, even though the amount of blocks to be read is
relatively small. This is due the block statistical calculation being executed for the first
time, since there’s no information of column minimum and maximum values. After this
query, block and file statistics are cached, which impacts the subsequent queries.

In the second query, there are 36 blocks to be read. While the original implementation
takes approximately 48s, the version with statistic calculation takes 20.726s, as irrelevant
files are pruned, and only the needed file blocks are processed. The next query has a
higher selectivity, as 76 blocks are to be read. Therefore, execution time increases in the
proposed implementation version, as more blocks are processed.

The greatest improvements are observed in the last two queries, which possess high
selectivity while block statistics are present. They involve reading 1 and 4 blocks, respec-
tively, and so execution times are decreased when they are executed with the proposed
implementation. In opposition, the original version still takes around 48 seconds to exe-
cute the queries.
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6.2.3 Random and highly-repetitive file data

The last two tests executed queries on directories possessing a certain logical distri-
bution: one or more partitioning keys were defined, and files were divided in directories
that encompassed a given sub-range.

However, there are datasets in which no logical division exists. In this sub-section,
the proposed modifications will be tested against files that possess highly repetitive data
(e.g., column with the gender of a person) and random distributed values. A test dataset
which included these kinds of columns was generated. Particularly:

• A column “gender", which can assume two values only.

• A column “birth_date", an integer representing one day of the year

• A column “name", which is a string with length 4 formed by the concatenation of
letters at random.

A hundred files containing the columns above and 1000 rows each were generated
and placed in a folder. Values for the aforementioned columns were randomly generated
following a discrete uniform probability distribution function. Also, some additional pay-
load columns which will not be used in the test were introduced, as to increase the file
sizes. Each one of them had around 2MB, so the total dataset size was 210MB. The block
size was not modified, meaning that files will be processed at once. The cluster used to
perform queries was the same one as in Section 6.2.2.

A set of queries was executed upon the directory. Table 6.2 shows the query predicates
and their respective response times after averaging 10 executions. Once again, the pro-
posed implementation was compared with the original importer version, so the processing
performance can be compared: the variation is shown in the Performance variation col-
umn.

Table 6.2: Performance variation compared with execution times for the test queries

Predicate # of files read Execution time (in s) Performance variation
birth_date = 1 100 1.862 +2.873%
name like "a\%" 100 1.812 +0.165%
gender = "F" 100 1.795 -0.187%
name >= "taaa" 100 1.805 -0.102%
birth_date >= 300 100 1.817 +0.025%

Even though the query predicates select a reduced portion of the dataset, each query
results in all files being read. This is due to the nature of file columns involved in the
predicate: since they present highly-repetitive (such as the column gender) and randomly
distributed values (such as the column name), the calculated file statistics will have similar
minimum-maximum ranges, which will not be able to be leveraged by the importer to
prune files from the query execution. For instance, when executing the first query, all files
present the value "1" in their birth_date column. Therefore, the importer will have to read
every file to process the query.

In the third query, rows with the value "F" are selected. Since the gender column can
assume one of two values, and given that an uniform probability distribution was used to
generate them, the expected amount of data to be read was roughly 100MB - half of the



57

dataset. However, even with the proposed modifications, the importer reads 210MB of
data (all files), since the value "F" is repeated in every file in the directory.

Therefore, this test shows that performance improvements obtained with the file statis-
tics are directly impacted by the file data organization. Better results are obtained when
values are partitioned by range or by key, and put into separate files. However, compared
to the original version, the proposed modification will impact query processing time only
when statistics need to be calculated - as observed in the fist query, in which execution
time is 2.873% higher. When statistics are already present for the file, no additional cal-
culation is performed, so the reading performance becomes very similar to the original
version: this is observed in the variation column for the remaining queries.

6.3 Predicate pushdown and block pruning

Block statistics allow the engine to concentrate on portions of the file which have
relevant information for a given query. Therefore, the amount of data read can be reduced,
impacting the execution time - specially the predicate is highly selective.

To assess the performance of queries when block statistics are present, a public CSV
dataset containing records for taxi rides in New York City, for the month of December
2016 (TLC Trip Record Data, 2020). It consists in a 898MB file having 17 columns
which characterize a taxi journey.

Different queries targeting columns “day" and “toll" were executed. Their value
ranges by block are shown in Figure 6.6. During the experiment, block size was set to
100MB, so the file was divided in 9 blocks. As seen in the picture, column “ride_start_day"
has its values distributed in a more segmented fashion, as ranges are smaller. For instance,
only the last 4 blocks have values greater than 20. Column “toll", in the other hand, has a
larger minimum and maximum ranges in each block.

Table 6.3: Query predicates and measurements for the test instance.

Predicate % of rows selected # blocks read Speedup
13 < day < 19 21.93 5 1.831
day > 20 32.48 5 1.765
day = 15 3.86 5 1.827
day = 31 2.71 1 8.840
600 < toll < 610 4.78× 10−5 5 1.866
toll < 0 0.047 9 1.008
toll > 910 1.53× 10−4 1 8.748

Table 6.3 shows the predicates of test queries, along with the percentage of rows in
the dataset selected, number of file blocks read and the observed speedup, which was
calculated by dividing the query time prior the introduced changes by the time obtained
after the statistical calculation was introduced. In many occasions, the observed speedup
is approximately 1.8, as the predicate results in 4 blocks being pruned by the engine.
When comparing queries that obtained such speedup, there’s a discrepancy between the
selectivity of queries: for instance, predicate toll < 0 selects only five rows in the dataset,
whereas the second query selects approximately 32% of file records. However, they still
get roughly the same speedup. That is due to the data layout in the file: although there are
few values smaller than zero in the tolls column, they are located in different blocks - so,
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Figure 6.6: By using block statistics, less blocks are read, resulting in a smaller overall execution
time.

these will have to be read and processed by the importer.
On the other hand, there are predicates with high selectivity which are able to obtain

a considerable speedup: for instance, predicates day = 31 and toll > 910 select a reduced
portion of the file while obtaining a speedup close to 9. This result is once again explained
by the column value distribution in the file: all values 31 in the column “day" are located
in the last file block, and only block 9 possesses values greater than 900 in the column
“toll".

Therefore, these results show that improvements on query execution time are closely
related to the file data layout. Datasets that possess a logical column organization - such
as ordered columns or well distributed domain ranges - will benefit the most from the
proposed changes. However, even for files that do not possess such characteristic, per-
formance improvements can be observed, if the query predicate happens to select values
exclusive to a single block statistical range (such as observed in last query in table 6.3).

6.4 CSV & Parquet performances

Considering that CSV is a text format, it does not inherently possess the information
needed to apply predicate pushdown. Contrarily, Parquet files have embedded statistics
and a columnar data layout, characteristics that can be used to enhance the reading of
data.

The block statistical calculation for CSV files aims to improve performance of queries
over CSV in analytical contexts. Therefore, this section aims to measure how the CSV
format fare against Parquet, a format which is tailored for swift processing and data re-
trieval..

The test was composed of 4 selective queries upon two directories containing the same
datasets, but in different formats: one with CSV files, and the other one with Parquet files.
These folders have shipment information for the years of 1992 to 1998, where a given sub-
directory encloses data for a single year. Furthermore, for each of those sub-folders, 7
different files were created, using a hash partitioning on the integer column representing
the identifier of a shipment order (ORDERKEY). In total, 49 files are contained in this
dataset, for each format. The CSV folder has 7.8GB in size, and it was generated by a
conversion tool based on the Parquet folder, which has 1.5GB.
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The first query select records for a specific order key. The second one requests data
for the year of 1993, and the third for the years of 1992 or 1998. Finally, the last query
selects data for a specific date in 1995. By analyzing the results shown in Figure 6.7, it
can be observed that the proposed CSV reading method with block statistics calculation
is still far away from the performance presented by Parquet file version. Nevertheless, it
outperforms considerably the original implementation, as only the appropriate data will
be read in each query. Thus, the proposed modification can lower the performance gap
between CSV and Parquet formats in analytical queries, such as the ones observed in the
test.

Figure 6.7: Block statistics for CSV make query execution more effective for this format.

6.5 Additional factors which impact performance

In this chapter, performance variations were measured from the relational engine’s
perspective, considering the ingestion and processing of files made by the importer and
query predicates. However, there are some additional factors that may impact the perfor-
mance of analytical workloads made upon CSV files in data lakes. They are:

a) Data lake latency: as file blocks are fetched from an external sources over the
network, latency plays an important role in query performance. Different data lake
providers present parameters and characteristics which may impact the access to
remote files. For instance, users are able to choose the physical location in which
their data will be stored - Amazon S3, Google Cloud Storage and Microsoft Azure
are all examples of data lake systems which support multiple regions for hosting
data. Depending on the user configuration, data access may be impacted by a high
latency when downloading blocks, resulting in a decreased query performance.

Additional configuration options, such as resource quotas, download limits and type
of storage media can also play a role in the execution time of an analytical workload,
as they may increase the time required to transfer data over the network.

b) Data mutability: files can encompass information that are regularly modified, or
records can be frequently added. As discussed in Subsection 5.3.2, a certain file
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modification will cause the block statistics to be recalculated. In this occasion, the
total file processing time will be slightly increased (around 3%), as observed in tests
made in subsection 6.1. Therefore, the proposed statistical calculation is suitable
for files which are not updated with frequency.

c) Hot vs. Cold data: datasets can be categorized based on their access frequency.
Hot Data is the term employed to categorize collections of information that need
to be constantly accessed - for example, a company’s online sale catalog, which
is often updated. On the other end of the spectrum, there is cold data, which are
bodies of records that are not frequently accessed. They are suitable for storing
historical or legacy datasets, for instance.

When storing files in a data lake, one has to keep in mind that accesses incur a con-
siderable cost, as information needs to be transferred over the network. Therefore,
Vora’s SQL on files tool is suitable for cold data, as queries will result in file blocks
being downloaded from the data lake. If files storing hot data are employed with
this feature, the response time of the analytical workload will be increased.

d) Data Quality: refers to the information correctness and consistency of records ob-
served in a given dataset. An absence of such traits would mean that file data con-
tains tainted information (e.g, ill-formatted characters, empty rows) and incorrect
values (e.g., in CSV files, a certain column storing values which represent differ-
ent data types). In these scenarios, some pre-processing operations are required to
clean the data prior it can be used in analytical workloads, extending the overall
execution time.

Moreover, wrong values may impact the statistical calculation and processing of
CSV files, depending on the user configuration. SQL on files allows setting default
values for columns, which are used if a given record cannot be processed by the
relational engine (e.g., user has declared that a column stores integers, but a value
corresponding to a string was found). Block statistics are affected in these situa-
tions, as minimum and maximum column ranges can be absent: this would repre-
sent statistical intervals of (− 8,max_value] and [min_value, 8), respectively.
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7 CONCLUSION

SAP Vora is an in-memory distributed relational database management system that
supports data ingestion from multiple sources. It represents a base for the company’s big
data solution stack, as it offers an alternative to orchestrate and consolidate heterogeneous
types of information.

The project was centered around SQL on Files, a functionality that allows querying in-
formation stored in files located on data lakes. In analytical workloads, queries are made
upon these file sources to extract important information, providing insights that can be ei-
ther moved to secondary storage (e.g., relational database) or used as input to subsequent
processing steps. In this context, binary file formats such as Parquet and ORC largely
outperform text formats, such as CSV, because their inner structure allows the application
of techniques to enhance file processing. Furthermore, an intrinsic challenge of support-
ing text files in analytical processing is parsing and converting text into appropriate data
types. Nevertheless, CSV is a widespread format and continues to be used in many ap-
plication areas. Therefore, the project goal was to enhance the performance of analytical
queries involving this format.

The proposed solution was based on a technical and architectural analysis of Vora’s
relational engine and its data importer module to uncover what techniques were used
to speed up the execution time of queries targeting “big data" file formats. From such
investigation, predicate pushdown and file pruning were methods extended for CSV files.
Moreover, the technique of block pruning was proposed for the format. These solutions
relied on the parallel computation of statistical column minimum and maximum values
when reading CSV files, which were persisted in a distributed in-memory cache.

Results show that although a 3% reading time overhead can be observed when pro-
cessing the CSV file for the first time, the performance of analytical queries targeting the
format can be considerably improved with selective predicates. The main advantage of
the proposed modifications was that additional costs of fetching, parsing, and processing
irrelevant blocks are removed. In addition, tests show that performance can be further
enhanced if a logical organization is present in the file or directory storing the targeted
dataset. These outcomes conform to the use cases envisioned by the SQL on Files func-
tionality.

When executing analytical workloads in data lakes, not only the file format has to be
taken into account. Other factors and configuration details inherently present in data lake
systems, such as data locality, mutability, and quality, must be considered because they
influence the global performance of such applications.

Future work can be centered around the proposed modifications. In order to mini-
mize the impact of accessing external file sources and parsing text data, raw CSV file
blocks can be stored in the distributed cache based on access frequency. Alternatively,
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information about block offsets and row group locations can be cached. Block size is a
variable that can be experimented with: by lowering the total size of the file block, the
importer can produce finer-grained statistics, and possibly increase the pruning of blocks
on analytical queries. Also, the solution implementation can be extended to include more
statistics, such as column average, sum and value count. These can be useful in queries
that select these specific measurements. Bloom filters are data structures that can effi-
ciently determine if a given value is present in a data collection, so they can be used when
equality-based query predicates are employed, and avoid having to access a specific file
block. Moreover, one aspect that was not considered during the project was the amount of
space needed for storing CSV datasets. Future work can be based on compression tech-
niques to lower the total size of files transferred over the network. An important trade-off
to be considered in that scenario is the compression and decompression overhead versus
the download time improvement.
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