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ABSTRACT

The Optimum Communication Spanning Tree problem (OCT) has applications in many

fields of study such as logistics, telecommunications and bioinformatics. This problem

receives as input an undirected graph with weighted edges and requirement value for each

pair of nodes, and seeks for a spanning tree that minimizes the communication cost, given

by the sum of requirement of each pair of nodes times the distance separating them in the

tree. In this work we design a new integer formulation for OCT as well as four different

strategies of evolutionary algorithms and a combined strategy with simulated annealing.

We give public access to our implementations. We test our approaches on instances from

the literature and from real-world data sets. The experiments show that our best strategies

were able to obtain very accurate solutions, getting close to the best known value for all

tested instances, improving the results of previous metaheuristics from the literature.

Keywords: Optimum Communication Spanning Tree. Linear Integer Programming.

Evolutionary Algorithm. Simulated Annealing. Combinatorial Optimization.



RESUMO

O problema da árvore geradora de comunicação ótima possui aplicação em diver-

sos campos de estudo como logística, telecomunicações e bioinformática. Esse problema

recebe como entrada um grafo com pesos nas arestas e um valor de requerimento entre

cada par de nodos do grafo, e procura por uma árvore geradora que minimiza o custo de

comunicação que é calculado pela soma dos requerimentos de cada par de nodos vezes a

distância que os separa na árvore. Neste trabalho propomos uma nova formulação inteira

para o problema e desenvolvemos quatro estratégias diferentes de algoritmos evolutivos

e uma combinada com o método simulated annealing, dando acesso público às nossas

implementações. Testamos nossos algoritmos com instâncias da literatura e com outras

baseadas em conjuntos de dados do mundo real. Os experimentos mostram que nossas

melhores estratégias foram capazes de obter soluções muito precisas para todas as instân-

cias testadas, melhorando os resultados de metaheurísticas anteriores da literatura.

Palavras-chave: Árvore Geradora de Comunicação Ótima. Programação Linear Inteira.

Algoritmo Evolutivo. Simulated Annealing. Otimização Combinatória.
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1 INTRODUCTION

Communication networks have experienced a remarkable rise in the last decades,

demanding new and efficient solutions to optimize the communication costs. In this con-

nection many problems emerge that model a network by a weighted undirected graph and

seek for a spanning tree that optimizes some cost function. One of these problems is

the Optimum Communication spanning Tree problem (OCT). OCT receives a weighted

graph where the nodes may represent cities, the edges roads, and each edge has associated

a weight value (e.g., length of the road, average time to cross the road or fuel consumption

to travel the road). Additionally, between each pair of nodes a requirement value is known

(e.g., a value that represents how often cars travel between cities). The objective of OCT

is to find a spanning tree that minimizes the communication cost, which can be computed

by the sum of travel costs between each pair of cities, where the travel cost between two

cities is given by the requirement between the cities times the distance separating them in

the spanning tree.

OCT finds practical applications in several different areas. In logistics, OCT ap-

pears as subproblem of the Tree-of-Hubs Location problem (CONTRERAS; FERNAN-

DEZ; MARÍN, 2010). The input of Tree-of-Hubs Location problem receives a complete

weighted simple digraph G = (V,A), where the nodes represent a set of locations, some

of them being origins and destinations of products to be routed through other nodes called

hubs. For each pair of nodes u, v ∈ V , a demand of productsWuv is known, and an integer

p (3 ≤ p ≤ |V |−1) is given, representing the number of hubs that must be selected among

all nodes in V . Every non-hub node should be connected to a hub for transshipment and

the hubs are connected by means of an undirected tree. The objective is to find the hub

nodes, find the allocation pattern from non-hub nodes to hub nodes and find the undirected

tree that connects the hub nodes and minimizes the operational cost. The operational cost

per unit of flow between two nodes u and v is equal to the sum of the arc weights in the

unique path of T connecting the nodes, applying a discount α (0 ≤ α ≤ 1) when both end

points of the arc are hubs. The subproblem when both the set of hubs and the node-to-hub

allocation pattern are given is OCT and, which was used to prove the NP-hardness of

Tree-of-Hubs Location problem. Figure 1.1 shows an example of the reduction for p = 3,

Figure 1.1a exposes an initial digraph that does not have arrows because it is easier to

see. Then, Figure 1.1b exhibits the case when both the set of hubs represented by the

nodes C, D and F and the node-to-hub allocation pattern is fixed. Since the connections
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between hubs are unidirectional, this subproblem is OCT because the objective is to find

the spanning tree that connects the hubs with minimum objective function. Since both

endpoints are hubs, the length of every selected edge has the discount factor α.

Figure 1.1: Example of the Tree-of-Hubs Location problem. Source: Author.

(a) example of an initial graph G
(b) Fixed set of hubs and node-to-hub allo-
cation pattern.

OCT can be also applied in telecommunications, to minimize the total cost of

link harness while satisfying the communication requirements in an embedded network

as described in (Sommer, 2010). According to (Sommer, 2010), the use of Ethernet in an

embedded network reduces the development cost as well as the time needed to build new

components. The problem of minimizing link harness in an embedded Ethernet network

has the same properties as OCT with the additional constraint that the links are organized

in bundles and installed in ducts. The problem has a set of nodes which are endpoints of

the network, a set of switches and a set of junction points, such that each node can only

be connected to switches or junction points. Therefore, first the switches and junction

points are connected by ducts using a spanning tree algorithm and the nodes are greedily

connected to the nearest switch or junction point. The second part of the algorithm is

a local search where an edge that connects switches and junctions is removed from the

solution and a new edge that restores the connection is selected if the cost of the spanning

tree is lower than the previous cost. This step tries to find an OCT with a modified cost

function to take into account that using the same duct reduces the overall cost.

Another area that applies OCT is bioinformatics, for example in the multiple

sequence alignment problem (WU et al., 2000); (FISCHETTI; LANCIA; SERAFINI,

2002). This problem receives n sequences of arbitrary length, a match, a mismatch and

a gap value, the objective is to align the sequences with a length of at least the largest
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sequence by adding gaps to the sequences such that the similarity between all pairs is

maximized. The similarity function is the sum over all positions and all pairs of se-

quences by the corresponding value: match if the letters are the same, mismatch if the

letters are different and gap if a gap is introduced in at least one of the two sequences in

that position. This problem is commonly used to verify how similar these sequences are.

The Feng-Doolittle (FENG; DOOLITTLE, 1987) procedure is used for finding multiple

sequence alignments by repeating multiple pairwise alignments and merging them. How-

ever the order that these strings are joined determines its cost, therefore the objective is to

find an ordering, represented as a spanning tree, which minimizes the cost over all pair-

wise alignments with all requirements equal to 1. This is the special case of OCT where

all requirements have the same value, and this problem is called Minimum Routing Cost

spanning Tree problem (MRCT). Figure 1.2 shows an example of the multiple sequence

alignment of the sequences α =CTTGA, β =AAAACTGA and γ =CTTGT using trees.

Figure 1.2a exposes one possible alignment by aligning sequences α and β first, then γ,

while Figure 1.2b exhibits other possible alignment. After selecting the best alignment of

two sequences then each distance is equal to an approximate pairwise evolutionary dis-

tances between them given in (FENG; DOOLITTLE, 1987). Then, a new node is created

that represents the alignment of the cluster. When a new node wants to align with a cluster

it will choose the best possible alignment between all sequences in the cluster. Whenever

a gap is inserted in the alignment, it should be added to all sequences in that cluster, these

gaps are represented by the letter X in the image.

Figure 1.2: Example of the Multiple Sequence Alignment problem. Source: Author.

(a) One possible alignment (b) Other possible alignment

Our proposal is to design a new mathematical formulation for OCT as well as

five different strategies based on evolutionary algorithms to solve the problem. The main

objective of this work is to develop new approaches for OCT, comparing our results with

earlier works found in the literature.
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The remainder of the document is organized as follows: In Section 1.1 a formal

definition of the problem is given. Section 1.2 presents a literature review showing pre-

vious researches for OCT. Chapter 2 presents previous mathematical formulations for

OCT and a new mixed integer linear programming formulation is proposed. Chapter 3

presents five different strategies. Those use an evolutionary approach to solve the OCT.

Chapter 4 reports and analyzes the computational experiments, comparing the findings

with the previous analysis found in the literature. Finally, Chapter 5 gives the conclusions

and future work directions.

1.1 Definitions and Notation

OCT considers networks modeled by simple undirected graphs. A simple graph

is a pair G = (V,E), where V is a set of elements called nodes, and E is a set of pairs of

different nodes (i.e., E ⊆ V × V \ {(u, u)|u ∈ V }). If any edge (u, v) ∈ E is considered

equal to (v, u), then the graph has no orientation (or direction) and it is called undirected

graph or simply graph.

The objective of OCT is related with a special type of subgraph of a given graph.

The subgraph relation is defined between two graphs G = (VG, EG) and H = (VH , EH),

where H is subgraph of G (H ⊆ G) if the set of nodes of H is subset of the nodes of G

(VH ⊆ VG) and the set of edges of H is subset of the edges of G (EH ⊆ EG). If every

edge of G with both nodes in H is also in the set of edges of H , then H is the induced

subgraph of G over the nodes in VH (i.e., H ⊆ G is the induced subgraph of G over VH

if for every u, v ∈ VH with (u, v) ∈ EG, we have (u, v) ∈ EH).

Three other graph concepts used in this thesis are paths, cycles and spanning trees.

A path is defined as a sequence of nodes P = {vi}ni=1, such that no node is repeated (vi 6=

vj for any 1 ≤ i < j ≤ n) and any two consecutive nodes define an edge ((vi, vi+1) ∈ E

for any 1 ≤ i < n). Usually we can represent a path by its sequence of nodes, or by its

edges, and when the edges have length associated, the length of a path is the sum of the

length of its edges.

The definition of cycle is very similar to paths, the only differences are that the

first and last nodes are equal in a cycle (v1 = vn) and the sequence must contain at least

three different nodes (n− 1 ≥ 3).

A tree T = (VT , ET ) is a special graph that is connected (i.e., for any two nodes

u, v ∈ VT there exists a path p = v1v2 . . . vn from u = v1 to v = vn) and acyclic (i.e.,
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there are no cycles in T , implying that for any two nodes u, v ∈ VT there exist at most

one path from u to v). Since there is a unique path between any pair of nodes in a tree,

the length of this path is the distance between the nodes in the tree, the distance from

any node to itself is equal to zero. Given a graph G = (V,E), a spanning tree of G, is

a tree T = (VT , ET ) ⊆ G, that contains each node of G (VT = V ). Similarly to paths, a

spanning tree of a graph G can be represented by the set of its edges.

With the graph terminology well defined, we can formally define OCT as follows:

Problem 1. Optimum Communication spanning Tree problem (OCT).

Input: A tuple I = 〈G = (V,E), r, `〉, where:

• G = (V,E) is a graph.

• r : V × V → Q+ is a symmetric non-negative requirement function between each

pair of nodes (r(u, v) = r(v, u) for all u, v ∈ V ).

• ` : E → Q+ is a non-negative length function over the edges.

Output: A spanning tree T = (VT , ET ) of G that minimizes the communication

cost C(T ) = 1
2

∑
u∈V

∑
v∈V

r(u, v)δT (u, v), where δT (u, v) is the distance u and v in T .

The above definition considers only instances of OCT where the requirements are

symmetric. The reason is that any instance with asymmetric requirements can be easily

transformed in an equivalent instance with symmetric requirements. If ra : V ×V → Q+

is an asymmetric requirement function, then r(u, v) = 1
2

(ra(u, v) + ra(v, u)) defines an

equivalent symmetric requirement function for OCT.

In the literature several special cases for OCT were studied. The Minimum Rout-

ing Cost spanning Tree problem (MRCT) is a particular case of OCT when r(u, v) = 1

for all u, v ∈ V . Another specific case of OCT is the Optimal Sum-Requirement Commu-

nication spanning Tree problem (SROCT) that receives a value σ(u) for each u ∈ V

and r(u, v) = σ(u) + σ(v). Similar as SROCT, the Optimal Product-Requirement

Communication spanning Tree problem (PROCT) also receives σ(u) for each u ∈ V ,

defining r(u, v) = σ(u)σ(v). A generalization of SROCT and PROCT is the Opti-

mum Weighted Source–Destination Communication spanning Tree problem (WSDOCT),

which receives a σ(u) and ρ(u) values associated with each u ∈ V and defines r(u, v) =

σ(u)ρ(v) +σ(v)ρ(u). There are other particular cases of OCT where only a subset of the

nodes may have non-zero requirements. They are generalized by the p-source Optimum

Communication spanning Tree problem (p-OCT), which receives and integer p and a sub-

set S ⊂ V with |S| = p, and r(u, v) = 0 for all u, v ∈ V \ S. Similarly to special cases
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of the OCT, special cases of p-OCT are p-MRCT, p-SROCT (also known as weighted

p-MRCT), and p-WSDOCT. Figure 1.3 shows these problems relationship from more

general cases at the top to specific cases at the bottom. This image generalizes the one

given by (WU, 2004).

Figure 1.3: The relationship between OCT problems. Source: Author.

For all the above problems were also studied their metric cases, which consider the

lengths of the edges satisfy the triangular inequality (i.e, `uv + `vw ≥ `uw,∀u, v, w ∈ V ).

1.2 Literature review

OCT was first introduced by (HU, 1974). In this paper Hu solved in polynomial

time two special cases of OCT that consider complete graphs. The first case supposed

that the lengths of all edges were equal to one. The proposed algorithm for solving this

particular problem was called Gomory–Hu (GOMORY; HU, 1961), returning the cut-tree

which is an optimal tree for this specific case, and it is calculated by solving |V |−1 maxi-

mum flow problems (e.g., Ford Fulkerson (FORD; FULKERSON, 1957), Dinic (DINITZ,

1970) and Edmonds and Karp (EDMONDS; KARP, 1972)). The second problem solved

by Hu was the metric case of MRCT, where the graph also satisfied two other conditions:

|V | ≥ 4 and there exists a positive value t ≤ |V |−2
2|V |−2 such that auvw + tbuvw ≥ cuvw for all

u, v, w ∈ V, |{u, v, w}| = 3, where auvw, buvw and cuvw are the distances of the triangle

u, v, w in the graph with auvw ≤ buvw ≤ cuvw. For that problem Hu proved the existence

of a star which is an optimum spanning tree, therefore a solution consisted of finding a

minimum cost star among the |V | spanning stars.
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The NP-hardness for OCT was only proved four years after its introduction in

(JOHNSON; LENSTRA; KAN, 1978) by showing a reduction from the 3-exact cover

problem to MRCT. Other theoretical results for OCT studied the problem and its special

cases approximability. In (WU et al., 1998) a PTAS for MRCT was presented, proving

that the metric case of MRCT is also NP-hard, and a O(log2(|V |))-approximation for

OCT was given, later improved to a O(log(|V |))-approximation in (FAKCHAROEN-

PHOL; RAO; TALWAR, 2003). In (WU; CHAO; TANG, 2000a), a 2-approximation for

SROCT and a 1.577-approximation for PROCT were given. In (WU, 2004), the NP-

hardness of p-OCT was proved for any p ≥ 2, even for the metric case, and the authors

also presented a 2-approximation for the metric p-OCT and a 3-approximation for 2-

OCT. In (RAVELO; FERREIRA, 2015) some properties for special cases of p-OCT were

proved, allowing to obtain several approximation algorithms for these particular cases. In

(RAVELO; FERREIRA, 2017), a PTAS for the metric case of SROCT was shown, and

it was used to obtain a more general PTAS for the metric case of WSDOCT in (RAV-

ELO; FERREIRA, 2019). Also in (RAVELO; FERREIRA, 2019) the authors proposed a

2-approximation for WSDOCT.

Other researches explored exact algorithms and mathematical formulations for

solving the OCT. An exact combinatorial algorithm was proposed by (AHUJA; MURTY,

1987), while the first mathematical model was presented twenty years later by (ROTH-

LAUF, 2007). After that, other models were given such as the flow-based and path-based

formulations of (CONTRERAS, 2009), and the rooted tree based formulation of (MOTA,

2015). These formulations will be discussed in Chapter 2.

Finally, some studies focused on metaheuristics approaches for OCT. (ROTH-

LAUF, 2009) used a combined genetic algorithm that constructs solutions leading towards

minimum spanning trees (KRUSKAL, 1956), and after the genetic algorithm execution

a simulated annealing algorithm was used to improve the solution. In (STEITZ; ROTH-

LAUF, 2011) a guided local search (i.e. a local search that avoids reaching the same

local minima by increasing the weight of the edges in an already found local minima)

for OCT was presented. In (SATTARI; DIDEHVAR, 2013) and (SATTARI et al., 2015)

were given, respectively, a VNS and GRASP metaheuristic for MRCT. One of the most

recent heuristics for MRCT was presented in (MASONE et al., 2019), where minimum

path spanning trees (DIJKSTRA, 1959) were used to rank the nodes in priority layers,

used to generate an initial solution, later improved by a local search.
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2 MATHEMATICAL FORMULATIONS

Mathematical models have been a strategy to approach many combinatorial op-

timization problems (CONFORTI; CORNUEJOLS; ZAMBELLI, 2014), being used in

matheuristics (MANIEZZO; STÜTZLE; VOSS, 2009), as part of polyhedral studies of

the problems (SCHRIJVER, 2003), to obtain approximation results (BELLMAN; ROTH,

2012), or to produce bounds during exact algorithms executions (FOMIN; KRATSCH,

2010). Additionally, several solvers have being developed to explore these formulations

in the attempt of solving difficult combinatorial optimization problems (e.g., Gurobi (OP-

TIMIZATION, 2021) and CPLEX (CPLEX, 2009)). In this chapter, we present a new

mixed integer linear programming formulations for OCT and discuss the previous formu-

lations from literature.

2.1 Formulations from the literature

The first mathematical formulation for OCT was presented in (ROTHLAUF, 2007).

This formulation uses the binary variables xe to represent if edge e belongs to the solu-

tion, yeuv to represent if the path between u and v in the solution contains edge e, and zwuv
to represent if node w is on the path from u to v.
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min
∑
u∈V

∑
v∈V

∑
e∈E

ruv`ey
e
uv (2.1)

s.t. : ∑
(u,w)∈E

yuwuv = 1, ∀u, v ∈ V, u 6= v, (2.2)

∑
(v,w)∈E

yvwuv = 1, ∀u, v ∈ V, u 6= v, (2.3)

∑
(w,z)∈E

ywzuv = 2zwuv, ∀u, v, w ∈ V, u 6= v 6= w, (2.4)

∑
u∈V

∑
v∈V

yeuv ≥ xe, ∀e ∈ E, (2.5)

∑
u∈V

∑
v∈V

yeuv ≤Mxe, ∀e ∈ E, (2.6)

∑
e∈E

xuv = |V | − 1, (2.7)

xuv, y
wz
uv , z

w
uv ∈ {0, 1}, ∀u, v, w, z ∈ V. (2.8)

In the above formulation, M is an upper bound on the number of times an edge

can be used in a path between any two vertices, thus,M may be equal to |V |2. Constraints

2.2 and 2.3 guarantee that there are only one start and one end for every pair of paths in

solution. Constraints 2.4 ensure that if a node w is in the path from u to v then such a

path contains two consecutive edges incident in w. Notice that, constraints 2.2, 2.3 and

2.4 guarantee the existence of an unique path between every two vertices. Constraints 2.5

and 2.6 ensure that any selected edge is used in at least one path. Finally, constraint 2.7

defines that exactly n − 1 edges are used in the solution, all these restrictions make sure

that the final solution is a tree.

2.1.1 Flow-based Formulation

(CONTRERAS, 2009) presented a flow-based formulation. It uses the binary vari-

ables xuv to represent whether the edge (u, v) is present in the spanning tree and the integer

variables f ouv whose value is the total flow with origin at o traversing the arc (u,v). The

set R is defined as R = {(u, v)|u, v ∈ V, ruv > 0}.
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min
∑
o∈V

∑
(u,v)∈A

`uvf
o
uv (2.9)

s.t. : ∑
(u,v)∈E

xuv = |V | − 1, (2.10)

∑
(u,o)∈A

f ouo = 0, ∀o ∈ V, (2.11)

∑
(u,v)∈A

f ouv −
∑

(v,w)∈A

f ovw = rov, ∀o ∈ V, ∀v ∈ V \ {o}, (2.12)

∑
(o,w)∈A

f oow =
∑

(o,d)∈R

rod, ∀o ∈ V, (2.13)

f ouv + f ovu ≤ (
∑

(o,d)∈R

rod)xuv, ∀o ∈ V, ∀(u, v) ∈ E, (2.14)

xuv ∈ {0, 1}, ∀(u, v) ∈ E, (2.15)

f ouv ≥ 0, ∀o ∈ V, ∀(u, v) ∈ A. (2.16)

The above formulation was transcribed from (MOTA, 2015). The objective func-

tion 2.9 defines the minimization of the product between the length of each arc and the

flow passing by this arc for each origin. Constraint 2.10 ensures only n− 1 edges are se-

lected. Constraints 2.11, 2.12 and 2.13 guarantee that the origin does not receive flow, the

flow conservation and that the origin sends the sum of all its requirements as initial flow,

respectively. Constraints 2.14 ensure that the flows from each origin can not be greater

than the initial flow if the edge is used, otherwise the flow must be zero.

2.1.2 Path-based Formulation

Another mathematical model presented in (CONTRERAS, 2009) is the path based

formulation, using the binary variables xuv to represent whether the edge (u, v) is present

in the spanning tree and the continuous variables yruv to determine if the arc (u, v) is in

the path used to satisfy the communication requirement r.
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min
∑
s∈R

∑
u∈V

∑
v∈V \{u}

rscuvy
s
uv (2.17)

s.t. : ∑
w∈V \{u}

ysuw = 1, ∀s = (u, v) ∈ R, (2.18)

∑
v∈V \{u}

ysvu −
∑

v∈V \{u}

ysuv = 0, ∀s ∈ R, ∀u ∈ V \ {os, ds}, (2.19)

ysuv + ysvu ≤ xuv, ∀s ∈ R, ∀(u, v) ∈ E, (2.20)∑
(u,v)∈E

xuv = |V | − 1, (2.21)

ysuv ≥ 0, ∀s ∈ R, ∀u, v ∈ V, u 6= v ∈ E, (2.22)

xuv ∈ {0, 1}, ∀(u, v) ∈ E. (2.23)

In the above formulation, constraints 2.18 and 2.19 guarantee the connection be-

tween the vertices and the flow conservation, respectively. Constraints 2.20 ensure that

only arcs in the solution can be in the path. Finally, constraint 2.21 defines that n − 1

nodes are used in the solution.

2.1.3 Root-based Formulation

A new model was presented in (MOTA, 2015) that was named root-based formu-

lation where o ∈ V is the root and it uses the binary variables xuv to represent whether

the edge (u, v) is present in the solution, the binary variables puv to indicate if there is a

directed path from u to v, and the integer variable duv whose value represents the unique

distance between nodes u and v in the spanning tree. The notation for the following

formulation is as follows: M is an upper bound on the length of the longest path in G,

δov = 1 if v = o, otherwise δov = 0, and (u, v, w) ∈
(
V
3

)
means that u, v, w ∈ V and

|{u, v, w}| = 3.
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min
∑

(u,v)∈R

ruvduv (2.24)

s.t. : ∑
(u,v)∈A

xuv = 1− δov, (2.25)

xuv ≤ puv, ∀(u, v) ∈ A, (2.26)

puv + pvu ≤ 1, ∀(u, v) ∈ A, (2.27)

puv + xvw ≤ 1 + puw, ∀(u, v, w) ∈
(
V

3

)
, (2.28)

puw + xvw ≤ 1 + puv, ∀(u, v, w) ∈
(
V

3

)
, (2.29)

duv ≥ duw + `wv −M(2− xwv − puw), ∀(u, v, w) ∈
(
V

3

)
, (2.30)

duv ≥ duw + `wv −M(1− xwv + puv + pvu), ∀(u, v, w) ∈
(
V

3

)
, (2.31)

xuv ∈ {0, 1}, ∀(u, v) ∈ A, (2.32)

puv ∈ {0, 1}, ∀(u, v) ∈ A, (2.33)

duv ≥ cuv(xuv + xvu), ∀(u, v) ∈ E. (2.34)

In the above formulation, constraint 2.24 defines the minimization of the objective

function. Constraint 2.25 ensures that every node that is not the root o has an incoming

edge, hence the solution has n−1 edges. Constraints from 2.26 to 2.29 ensure the variable

p is correct for every pair of nodes. Constraints 2.30, 2.31 and 2.34 guarantee that the

distance lower bound is equal to the distance in the tree for each pair of nodes.
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2.2 New formulation

In this section, we propose a new mixed integer linear program based on common

ancestors. We define the root to be node o and the binary variables are defined as:

xa =

 1, if arc a is used in the solution

0, otherwise.

yuv =

 1, if u is ancestral of v

0, otherwise.

zwuv =

 1, if w is ancestral of both u and v

0, otherwise.

Besides the binary variables, we use the following integer variables:

ηu = number of nodes in the unique path from node u to o.

Also, we use the continuous non-negative variables defined below:

δu = distance from node u to o.

ρwuv =

 length of incoming arc of w, if w is ancestral of both u and v

0, otherwise.

Finally, we use a constant value to represent the sum of all edge lengths:

D =
∑
e∈E

`(e)

To ensure every node except the root has an incoming arc, we use the constraints

2.35 and 2.36: ∑
a∈N−(o)

xa = 0, (2.35)

∑
a∈N−(u)

xa = 1, ∀u ∈ V \ {o}, (2.36)

Constraint 2.37 sets the distance from the root to 0, while constraints 2.38 and

2.39 ensure that the distance δu from any node u ∈ V to the root is set correctly.

δo = 0, (2.37)

δv >= δu + xa`uv − (1− xa)D, ∀a = (u, v) ∈ A, (2.38)

δv <= δu + xa`uv + (1− xa)D, ∀a = (u, v) ∈ A, (2.39)
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Similarly to the constraints above, constraints 2.40, 2.41 and 2.42 set the correct

values for ηu for all u ∈ V .

ηo = 0, (2.40)

ηv >= ηu + xa − (1− xa) ∗ |V |, ∀a = (u, v) ∈ A, (2.41)

ηv <= ηu + xa + (1− xa) ∗ |V |, ∀a = (u, v) ∈ A, (2.42)

We add the constraints 2.43 to ensure the number of ancestors of a node is equal

to the number of nodes between the path from root to itself. Every node is considered

ancestor of itself and this is represented by the constraints 2.44. If there is an arc between

nodes u and v then u is ancestor of v and this is defined by the constraints 2.45. Con-

straints 2.46 guarantee that the transitive property of ancestors is satisfied. Therefore, the

following set of constraints ensure the correctness of the y variables.∑
u∈V

yuv = ηv + 1, ∀v ∈ V, (2.43)

yuu = 1, ∀u ∈ V, (2.44)

yuv >= xa, ∀a = (u, v) ∈ A, (2.45)

yuv + yvw <= 1 + yuw, ∀u ∈ V, ∀v ∈ V \ {u},∀w ∈ V, (2.46)

To correctly assign zwuv to true if both zwu and zwv are true, we add the constraints

2.47 and 2.48 that use the logical AND operator.

2zwuv <= ywu + ywv, ∀u ∈ V, ∀v ∈ V \ {u},∀w ∈ V, (2.47)

zwuv + 1 >= ywu + ywv, ∀u ∈ V, ∀v ∈ V \ {u},∀w ∈ V, (2.48)

The final constraints 2.49 and 2.50 enforce that ρwuv is equal to lxw if and only if

the arc a=(x,w) is used and w is ancestor of both u and v.

ρwuv <=
∑

a∈N−(w)

`axa, ∀u ∈ V, ∀v ∈ V \ {u}, ∀w ∈ V, (2.49)

ρwuv <=
∑

a∈N−(w)

`azwuv, ∀u ∈ V, ∀v ∈ V \ {u}, ∀w ∈ V. (2.50)

Finally, 2.51 is the objective function for our mathematical model, which must

satisfy all the above constraints. Note that the distance between nodes u and v is calculated

as δu + δv − 2ruv
∑|V |

w=1 ρwuv, this is due to the fact that arcs incident in an ancestor of

both u and v arc is counted twice, one in δu and another in δv and we subtract this value
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if w is ancestral of u and v.

min
∑

(u,v)∈(V
2)

ruv(δu + δv)− 2ruv
∑
w∈V

ρwuv (2.51)
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3 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms have been used to approach several combinatorial prob-

lems (YU; GEN, 2012) and (ROTHLAUF, 2006). These algorithms are based on Dar-

win’s evolution principle and natural selection (DARWIN, 2009). They start creating an

initial population of solutions, assigning to each individual a fitness value which repre-

sents the quality of the solution that is measured with its objective function. Then, some

individuals in the population are selected based on their fitness to be the parents who

crossover to obtain a child that shares features from different parents. Then, the parents

and the offspring can mutate (i.e., apply changes to the solution). Finally, the fitness

values are re-evaluated and (based on those values) the solutions with high fitness value

from the parents and the offspring are selected to form the new generation. These al-

gorithms have presented a good performance for several optimization problems, finding

optimal and almost optimal solutions in a very short time. Therefore we propose four

evolutionary algorithms and a combined strategy in this chapter.

3.1 Evolutionary algorithm for OCT

In this section we attempt to solve OCT by proposing four different strategies for

an evolutionary algorithm. Each strategy has different procedures for the generation of

the initial population and for the crossover operation. Also, a combined strategy using

evolutionary algorithm and simulated annealing is presented. Algorithm 1 is common for

all strategies and describes our evolutionary approach.

In addition to the instance of OCT, Algorithm 1 receives the following parameters:

• POPULATION_SIZE, to indicate the size of the population at the beginning of

each iteration;

• MAX_ITERATIONS and MAX_NO_UPDATE, to indicate, respectively, the maxi-

mum number of generations and the maximum number of generations without up-

dating the best solution found;

• CROSSOVER_NUMBER, to indicate the number of new solutions generated by crossover

operations at each generation;

• MUTATION_NUMBER, to indicate the number of times the mutation operation is

executed at each generation;
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Input : 〈G, r, `〉, instance of OCT.
Output: A∗, solution of OCT with instance 〈G, r, `〉.

1 begin
2 A∗ ← ∅
3 S0 ← ∅
4 while |S0| < POPULATION_SIZE do
5 A←GENERATE(G, r, `)
6 S0 ← S0 ∪ {A}
7 end
8 i← 0
9 j ← 0

10 while i ≤MAX_ITERATIONS and j ≤MAX_NO_UPDATE do
11 for each A ∈ Si do
12 fitness[A]← compute fitness of A in Si
13 if C(A) < C(A∗) then
14 A∗ ← A
15 j ← 0

16 end
17

18 end
19 S ′ ← Si
20 for l← 1 to CROSSOVER_NUMBER do
21 A1, A2 ← pair of different solutions from Si
22 A←CROSSOVER(A1, A2, G, r, `)
23 S ′ ← S ′ ∪ {A}
24 if C(A) < C(A∗) then
25 A∗ ← A
26 j ← 0

27 end
28 end
29 for l← 1 to MUTATION_NUMBER do
30 A← random solution from S ′

31 A←MUTATION(A,G, r, `)
32 if C(A) < C(A∗) then
33 A∗ ← A
34 j ← 0

35 end
36 end
37 Si+1 ←POPULATION_SIZE solutions from S ′

38 i← i+ 1
39 j ← j + 1

40 end
41 return A∗

42 end
Algorithm 1: Evolutionary algorithm for OCT.
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Algorithm 1 begins with an empty solution Ā at line 2, which is updated in lines

13-16 and 24-27 every time a better solution is found (i.e, a solution with lower objec-

tive value). Hence, at the end of the algorithm, the returned value Ā represents the best

solution found. The first generation of solutions, denoted S0, is initialized as an empty

collection in line 3, and POPULATION_SIZE generated solutions are added between

lines 4 and 7. The different generation procedures will be explained for each strategy in

the following subsections.

After generating the initial population, the variables i and j are initialized (lines 8

and 9) and they reference, respectively, the current number of generations and the number

of generations without updating the best solution found. The values of i and j are updated

between lines 38 and 39 of the algorithm main loop (lines 10 to 40) and, whenever a new

best solution is found, variable j is reset (lines 26 and 34).

At the beginning of every iteration of the main loop, the fitness function for each

solution A is calculated at line 12 and defined as:

fitness[A] =

 1.2− C(A)−minV
maxV−minV , if minV 6= maxV

1.0, if minV = maxV .

where minV = mins∈Si
C(s) and maxV = maxs∈Si

C(s). This fitness function ensures

that solutions with low communication cost values have high fitness value associated.

Succeeding the fitness computation, the set S ′ of candidate solutions for the next

generation is initialized as Si (line 19), and between lines 20 and 28 the crossover opera-

tions are executed. Each crossover starts at line 21 where two different solutions A1 and

A2 are randomly selected from Si, being the probability of selecting a solution s ∈ Si

equal to fitness[s]∑
s′∈Si

fitness[s′]
. The different crossover operations will be explained in the sub-

sections of their their respective strategies.

Between lines 29 and 36 all mutation operations are executed. A solution from

S ′ is selected uniformly at random at line 30, then at line 31 the mutation operation is

performed. We propose, two different mutation operators for all strategies, which are

randomly selected by our algorithm for each solution to be mutated. Both mutations will

be explained after the algorithm explanation.

Finally, at line 37, POPULATION_SIZE solutions are selected from S ′ for

the next generation. The solutions are chosen with a tournament selection algorithm,

where the number of tournaments is 10×OFFSPRING_SIZE (POPULATION_SIZE +

CROSSOVER_NUMBER), the number of participants of each tournament is 2 plus an in-
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teger chosen uniformly at random in the interval
[
0,max

{
0, POPULATION_SIZE

10
− 1
}]

. For

each tournament, a probability multiplier parameter p = 0.9 is used, being p0 = 0.8

the initial probability of selecting the best offspring solution. If the best solution is not

selected, then the second best will be selected with probability p0 × p, and if both are

not selected, then the probability of selecting the next best solution is p0 × p2, and so

on. The POPULATION_SIZE solutions with most wins from S ′ are selected for the next

generation where repetitions are allowed.

3.1.1 Mutations

The first mutation operator is described by Algorithm 2, which starts by randomly

selecting an edge e ∈ E \ET , to be inserted in solution T at line 2. Then, the subproblem

that only considers the edges inET ∪{e} is optimally solved at line 3, being its solution T̄

the result of this mutation. The time complexity of the implemented algorithm isO(|V |2).

Input : a solution T and a instance 〈G, r, `〉 of OCT.
Output: T̄ , mutation of solution T for OCT with instance 〈G, r, `〉.

1 begin
2 e← select a random edge from E \ ET
3 T̄ ← optimal solution considering only edges ∈ ET ∪ {e}
4 return T̄
5 end

Algorithm 2: Mutation by edge insertion.

The second mutation is shown in Algorithm 3, and starts with a random selection

of an edge e ∈ ET , to be removed from the solution T at line 2. The selected edge is

removed from T at line 3, partitioning the tree in two sub-trees T1 and T2. Then, at

line 4, we fix to be in the solution all the edges of T1 and T2, and we optimally solve

the subproblem considering only the edges of E with one extreme in T1 and the other in

T2. The optimal solution T̄ for the described subproblem is returned as the result of the

second mutation. The time complexity of the implemented algorithm is O(|E| × |V |2).

In the next subsections we describe the procedure for generating the initial popu-

lation and the crossover operator of each strategy.
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Input : a solution T and a instance 〈G, r, `〉 of OCT.
Output: T̄ , mutation of solution T for OCT with instance 〈G, r, `〉.

1 begin
2 e← select a random edge from ET
3 T ← T \ {e}
4 T̄ ← select optimal solution considering the best edge ∈ E to add to T
5 return T̄
6 end

Algorithm 3: Mutation by edge removal.

3.2 Random strategy

The generation of the initial population with random strategy is very similar to

Kruskal’s algorithm for minimum spanning trees (KRUSKAL, 1956), but the list of edges

is shuffled instead of being sorted in ascending length order. Algorithm 4 describes this

idea, whose time complexity is O(|E| × log |V |).

Input : 〈G, r, `〉, instance of OCT.
Output: T , initial solution

1 begin
2 shuffle E
3 T ← ∅
4 i← 0
5 while T is not a spanning tree of G do
6 if Ei does not form a cycle when added to T then
7 add Ei in T
8 end
9 i← i+ 1

10 end
11 return T
12 end

Algorithm 4: Initial solution generation with random strategy.

Algorithm 4 starts randomly shuffling all edges inE at line 2, initializing an empty

solution T at line 3 and a variable i to iterate the shuffled list of edges at line 4. To ensure

that the created solution is valid, in the main loop between lines 5 and 10, we add the

current edge Ei (line 7) iff the addition of Ei to T maintains the solution T acyclic. Then,

at line 9 the current edge is updated. Finally, the output of the algorithm is the constructed

spanning tree T .

The crossover operator for the random strategy only considers the edges of both

parents. The idea is given by Algorithm 5 and consist of shuffling the adjacency list of
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each node, and then to iterate over the nodes selecting those edges that do not form cycles.

Input : two parent solutions T1, T2 and an instance 〈G, r, `〉 of OCT.
Output: T , new solution constructed by the crossover between T1 and T2.

1 begin
2 G′ ← T1 ∪ T2
3 for v ∈ V do
4 shuffle adjacency list of v in V
5 end
6 T ← ∅
7 v ← 0
8 while T is not a spanning tree of G′ do
9 e← first edge in adjacency list of node v

10 if e exists then
11 if T ∪ {e} is acyclic then
12 add e in T
13 end
14 end
15 remove e from adjacency list of v
16 v ← next node that contains edges in its adjacency list
17 end
18 return T
19 end

Algorithm 5: Crossover with random strategy.

Algorithm 5 starts creating a subgraph G′ with only the edges of both parents at

line 2, and shuffling the adjacency lists of the nodes in G′ at line 4. Then, the new empty

solution T is initialized at line 6 and edges are added to the solution at line 12 only if they

do not form cycles. To iterate over the nodes we use the variable v, initialized as the first

node at line 7, whose value is updated at line 9. The idea is that each node will have a

chance to select an edge of its adjacency list to the solution. Since only the first edge of

the adjacency lists are analyzed (line 9) and after the analysis the edges are removed from

the list (line 15), it follows that the edges are selected in the order they were shuffled and

that the new solution T is randomly constructed. The time complexity of the implemented

algorithm is O(|V | × log |V |) because the number of edges of two trees is O(|V |).
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3.3 Greedy probabilistic strategy

The greedy probabilistic strategy is based in the fact that the communication cost

C(T ) of a tree T = (VT , ET ) can be written as:

C(T ) =
∑
e∈ET

`(e)×
∑
u∈VTe

1

∑
v∈VTe

2

r(u, v),

where T e1 = (VT e
1
, ET e

1
) and T e2 = (VT e

2
, ET e

2
) are the sub-trees of T obtained after remov-

ing the edge e. Since C(T ) depends on the length `(e) of each edge e ∈ ET , this strategy

attempts to minimize the communication cost by selecting the shorter edges with greater

probability.

Thus, the idea for the generation of the initial population is very similar to the

random strategy, but the edges are selected with probability depending on their lengths

instead of being randomly shuffled. Algorithm 6 shows this procedure.

Input : 〈G, r, `〉, instance of OCT.
Output: T , initial solution

1 begin
2 T ← ∅
3 for e ∈ E do
4 capability[e]← compute capability of e in E
5 end
6 while T is not a spanning tree of G do
7 e← select an edge from E
8 E ← E \ {e}
9 if T ∪ {e} is acyclic then

10 add e in T
11 end
12 end
13 return T
14 end
Algorithm 6: Solution generation with greedy probabilistic strategy.

Algorithm 6 starts with an empty initial solution T at line 2, and a capability value

is associated to each edge at line 4. The edge capability is defined as follows:

capability[e] =

 1.4− `(e)−minV
maxV−minV , if minV 6= maxV

1.0 , otherwise,

where minV = mine′∈E `(e
′) and maxV = maxe′∈E `(e

′). The above function ensures

that shorter edges have high capability values. Then, the edge selection at line 7 depends

on the edges capabilities, where an edge e is chosen with probability capability[e]∑
e′∈E capability[e

′]
.
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After that, the selected edge is removed from E at line 8, and included in the solution T

if it does not form cycles with the previously added edges. Finally, the algorithm stops

when a spanning tree T is constructed, being the time complexity O(|E|2).

Similar to the random strategy, a graph considering only the edges of both parents

is used for the crossover of the greedy probabilistic strategy. Therefore, given two parent

solutions T1 = (V,E1) and T2 = (V,E2), the graph G′ = (V,E1 ∪ E2) is considered as

input of Algorithm 6, and the output of that algorithm is the new solution resulting from

the crossover of T1 and T2. Since the number of edges in G′ is 2 × (|V | − 1), the time

complexity of each crossover is O(|V |2).

3.4 Minimum path strategy

This strategy emerges from theoretical results for particular classes of OCT that

include some generalizations of MRCT. In (RAVELO; FERREIRA, 2019) and (WU;

CHAO; TANG, 2000a), the authors proved that for some NP-hard variants of OCT, a

node u exists in the graph, such that a minimum path tree from u to the rest of nodes

guarantees a 2-approximation of the optimal value. Therefore, the idea of the minimum

path strategy is based on generating minimum paths trees and combining them.

The initial population is generated by picking nodes from the graph and then gen-

erating their minimum path tree with Dijkstra’s algorithm for minimum paths from a

source to the rest of the graph (DIJKSTRA, 1959). Algorithm 7 illustrates this idea.

Input : 〈G, r, `〉, instance of OCT.
Output: T , initial solution

1 begin
2 v ← select a node from V
3 T ←Dijkstra(v, G, `)
4 return T
5 end

Algorithm 7: Solution generation with minimum path strategy.

In Algorithm 7 a node is selected at line 2 if it was not previously selected to

generate a minimum path tree. If all nodes were already selected to generate initial solu-

tions, a node is randomly chosen at line 2 and, before calling Dijkstra algorithm at line 3

an edge removal procedure is called, where each edge of the minimum path tree has 0.1

probability of being removed. Hence, some edges may be removed generating variability

to the new constructed solution. The time complexity of the implemented algorithm is
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O(|V | log |V |).

Analogously to previous strategies, the crossover is executed over the subgraph

G′ that only considers the edges of both parents. For the crossover we call the same

Algorithm 6 with the graph G′ constructed from the two given parents (similar to the

greedy probabilistic strategy), where at line 2 the node is always randomly selected and

no edge is removed from G′ before performing Dijkstra algorithm. The time complexity

of the implemented algorithm is O(|V | log |V |).

Figure 3.1: Example of the minimum path strategy. Source: Author.

(a) example of an initial graph G
(b) minimum path tree of G for A as starter
node

3.5 Minimum k-core strategy

Similar to the previous strategy, this strategy explores ideas from theoretical re-

sults for the special cases of OCT. In (RAVELO; FERREIRA, 2015), (RAVELO; FER-

REIRA, 2017), (RAVELO; FERREIRA, 2019) and (WU; CHAO; TANG, 2000b), the

authors proved that polynomial time approximation schemes (PTAS) can be obtained for

several variants of OCT, that guarantee solutions whose values are (1+ε)-approximations

for each ε > 0, where the time complexity is polynomial in the graph size but exponential

in ε. The proposals select a set of k nodes named core (where k is a function on ε), and

enumerate all possible trees over the core adding the other n − k nodes as leaves. Al-

though the results of the PTAS are very good, the time complexity is impractical because

the required values of k are usually large. Hence, we bound k to be small and select the

nodes to form the core, hybridizing this approach with minimum path trees.
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To generate a new solution we randomly select a small core and disconnect it

(remove the edge between its nodes). Then, we obtain a minimum path forest from the

core nodes to the rest of the graph, and select the best tree connecting the core nodes to

obtain the solution. Algorithm 8 describes this idea.

Input : 〈G, r, `〉, instance of OCT.
Output: T , initial solution

1 begin
2 k ← a random integer between [2, 5]
3 core← select k random different and connected nodes
4 remove edges of G that has both endpoints are at the core
5 F ←Multi-source Dijkstra(core, G, `)
6 T ← F∪ edges of the best tree that connects the core
7 return T
8 end

Algorithm 8: Solution generation with k-core strategy.

Algorithm 8 starts by picking a random core size k ∈ [2, 5] at line 2. Then, the core

is selected at line 3 by choosing k random different nodes such that the induced subgraph

over them is connected. After the core selection, all edges from G with both endpoints

in the core are removed from the graph at line 4. At line 5 a version of multi-source

Dijkstra (DIJKSTRA, 1959) is executed over the core nodes, so the result is a forest F

with k disconnected trees, each one having one node from the core. Thus, at line 6 we

select a tree on the core nodes that minimizes the communication cost of the constructed

solution. Such a selection is done by enumerating all possible trees on the core nodes

with Prüfer code (PRÜFER, 1918). Finally, the new solution T is obtained by adding to

the forest F the tree connecting the core nodes. Since k = O(1), to find the best tree

for the core requires O(|V |2) computational time, dominating the multi-source Dijkstra

algorithm whose time complexity is O(|V | × log |V |).

The crossover of this strategy randomly selects a K core, identically to lines 2

and 3 of Algorithm 8. Then, a graph G′ is constructed from both parents, likewise the

previous strategies, and executes Algorithm 8 considering G′ from line 4 to 7. The time

complexity of the implemented algorithm is O(|V |2).
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Figure 3.2: Example of the k-core strategy. Source: Author.

(a) example of an initial
graph G

(b) minimum path tree of G
when k-core is {A, C, E}

(c) one possible tree that con-
nect the k-core

3.6 Combined strategy

We designed a combined approach with elements of both the minimum path strat-

egy and a slightly modified simulated annealing from (ROTHLAUF, 2009). Algorithm 9

describes this idea.

In addition to the instance of OCT, Algorithm 9 receives the following extra pa-

rameters:

• POP_SIZE, to indicate the size of the population to calculate the standard devia-

tion;

• ITER_MAX and ITER_TERM, to indicate, respectively, the maximum number of

generations and the maximum number of generations without updating the best

solution found;

• MAX_NOT_IMPROVING, to indicate the number of times the simulated annealing

should run without improvement;

Algorithm 9 begins with a starter solution that is obtained by running Algorithm

1 for the minimum path strategy without mutations and is stored in T̄ at line 3, which

is updated in lines 15-19 every time a better solution is found (i.e, a solution with lower

objective value). Hence, at the end of the algorithm, the returned value T̄ represents

the best solution found. The current solution represented by Tc is initialized at line 4

and it is updated between lines 20-24 whenever Ta has a lower objective function than

Tc or with probability exp(C(Tc)−C(Ta)
µ

) if C(Ta) ≥ C(Tc). Also, the current solution

has a perturbation procedure at line 27 where the solution randomly keeps half of the

current edges e ∈ ETc in the tree and adds the rest of the shortest edges e ∈ E that

can be inserted in the solution with the objective to avoid local minima. The variable Ta
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Input : 〈G, r, `〉, instance of OCT.
Output: T̄ , solution of OCT with instance 〈G, r, `〉.

1 begin
2 σ ← standard deviation of the objective function of POP_SIZE random

initial solutions
3 T̄ ← EVOLUTIONARY(G, r, `)
4 Tc ← T̄
5 i← 0
6 while i ≤MAX_NOT_IMPROVING do
7 i← i+ 1
8 j ← 0
9 k ← 0

10 µ← 2× σ
11 while j ≤ITER_MAX and k ≤ITER_TERM do
12 j ← j + 1
13 k ← k + 1
14 Ta ←MUTATION(Tc, G, r, `)
15 if C(Ta) < C(T̄ ) then
16 T̄ ← Ta
17 i← 0
18 k ← 0

19 end
20 if C(Ta) < C(Tc) then
21 Tc ← Ta
22 else
23 Tc ← Ta with probability exp(C(Tc)−C(Ta)

µ
)

24 end
25 µ← µ× 0.99

26 end
27 Tc ← perturbate Tc
28 end
29 return T̄
30 end

Algorithm 9: Simulated Annealing for OCT.
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represents the neighborhood of a solution and it is obtained by executing the mutation

operator (Algorithm 3), however at most 100 edges were analyzed because of its time

complexity.

The variables i, j and k are initialized (lines 5, 8 and 9) and they reference, re-

spectively, the current number of simulated annealing without improvement, the current

number of generations and the number of generations without updating the best solution

found. The values of i, j and k are updated at lines 7, 12 and 13 and, whenever a new best

solution is found, variable i and k are reseted (lines 17 and 18).

The standard deviation σ at line 2 is calculated by computing the objective func-

tion of POP_SIZE random initial solutions that are created by Algorithm 4. Then, the

temperature µ is initialized at line 10 every time a new simulated annealing runs and, this

value is updated at each iteration of the simulated annealing at line 25.
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4 COMPUTATIONAL EXPERIMENTS

To test the applicability of our proposals, this section presents computational ex-

periments over instances from the literature and real-world datasets. We also compare our

results with the metaheuristics from (ROTHLAUF, 2009) and (STEITZ; ROTHLAUF,

2011). Our implementations can be accessed through GitHub hosting platform (FON-

SECA, 2021).

The rest of this section describes the computational environment for the experi-

ments, the selected datasets, the parameters used by our algorithms, and finishes with the

tests results and their analysis.

4.1 Computational environment

We implemented our algorithms in the C++ programming language using the com-

piler g++ 5.4.0, and executed all tests in a processor Intel Core i5-4690K with 4 cores of

3,50GHz each, and 8 GB of RAM, under Ubuntu Linux 16.04 LTS 64 bits. To gener-

ate pseudo-random float values we used the Mersenne Twister algorithm (SAITO; MAT-

SUMOTO, 1993) implemented in C++ as std::mt19937, and for pseudo-random integer

values we used the default C++ function rand().

Since our algorithms use pseudo-random generation, for each instance we exe-

cuted each algorithm 10 times with the seeds given by the table 4.1 that were randomly

generated by Google random number generator (GOOGLE, 2021).

Table 4.1: Seed values used in the experiments.
Number Seed Number Seed

0 280192806 5 316851227
1 871237442 6 619606212
2 2540188929 7 1078082709
3 107472404 8 916212990
4 3957311442 9 698598169

4.2 Instances

The literature instances we consider were previously tested in (MASONE et al.,

2019) and (Tan; Due, 2013), and consist of non-euclidean networks with edge lengths
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in [0, 10]. These instances can be found in the OR-Library (BEASLEY, 1990), they

were originally proposed for the Steiner tree problem (GAREY; GRAHAM; JOHNSON,

1977), and were adapted to MRCT by the authors of (MASONE et al., 2019) and (Tan;

Due, 2013). For OCT, we included integer requirement values randomly selected in the

interval [0, 10]. The algorithm used to generate such values can be found in (FONSECA,

2021). The instances can be grouped by their network sizes as follows:

• small instances, STEIB1-STEIB7, up to 75 nodes and 100 edges;

• medium instances, STEIC1-STEIC7, up to 500 nodes and 1000 edges;

• large instances, STEID1-STEID7, up to 1000 nodes and 2000 edges;

For the mathematical formulation testing we consider the well known literature

instances for OCT that are available in (ROTHLAUF, 2006) that are small enough to test

this formulations, all these instances are complete graphs.

The real-world datasets were obtained from two different repositories, where the

larger instances can be found in the Stanford Large Dataset Collection (LESKOVEC;

KREVL, 2014) while the smaller are from the Internet Topology Zoo (KNIGHT et al.,

2011). All instances are described in Table 4.2 where BKV represents the best known

value for that instance. These instances can be accessed in (FONSECA, 2021).

The instances from the Stanford Large Dataset Collection represent temporal in-

formation exchange relations between the nodes, thus the requirement communication

values were set equal to the number of times the nodes interacted, and the edge lengths

equal to 1. Notice that OCT remains NP-hard even when the edge lengths are equal

to 1 (JOHNSON; LENSTRA; KAN, 1978). For the test cases bitcoinalpha and

bitcoinotc we considered a different requirement function, because for these in-

stances the network interactions had a feedback value between [−10, 10]. Therefore, the

requirement between two nodes is calculated as follows:

ruv =

 20 + feedbackuv + feedbackvu, if an edge exists

0, otherwise.

For the Internet Topology Zoo instances, each node had associated longitude and

latitude coordinates, hence the edge length were calculated by projecting the coordinates

to the plane and computing the euclidean distance between their nodes, with precision of

three decimal cases. Since for these instances no requirement information was known, we

set all requirements equal to 1 turning the problem into MRCT.
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Table 4.2: Instances used in the experiments.
Instance Reference # of nodes # of edges MRCT BKV
palmer6 (ROTHLAUF, 2006) 6 15 No 693180∗
palmer12 (ROTHLAUF, 2006) 12 66 No 3428509∗
palmer24 (ROTHLAUF, 2006) 24 276 No 1086656∗
berry6 (ROTHLAUF, 2006) 6 15 No 534∗
berry35 (ROTHLAUF, 2006) 35 595 No 16915∗
berry35u (ROTHLAUF, 2006) 35 595 No 16192

raidl10 (ROTHLAUF, 2006) 10 45 No 53674∗
raidl20 (ROTHLAUF, 2006) 20 190 No 157570∗
raidl50 (ROTHLAUF, 2006) 50 1225 No 813628

STEIB1 (BEASLEY, 1990) 50 63 No 137623

STEIB2 (BEASLEY, 1990) 50 63 No 154760

STEIB3 (BEASLEY, 1990) 50 63 No 123155

STEIB4 (BEASLEY, 1990) 50 100 No 103860

STEIB5 (BEASLEY, 1990) 50 100 No 88085

STEIB6 (BEASLEY, 1990) 50 100 No 111335

STEIB7 (BEASLEY, 1990) 75 94 No 353516

STEIC1 (BEASLEY, 1990) 500 625 No 25830411

STEIC2 (BEASLEY, 1990) 500 625 No 24941878

STEIC3 (BEASLEY, 1990) 500 625 No 30462144

STEIC4 (BEASLEY, 1990) 500 625 No 27963296

STEIC5 (BEASLEY, 1990) 500 625 No 28397460

STEIC6 (BEASLEY, 1990) 500 1000 No 18161548

STEIC7 (BEASLEY, 1990) 500 1000 No 17424693

STEID1 (BEASLEY, 1990) 1000 1250 No 104716691

STEID2 (BEASLEY, 1990) 1000 1250 No 110763595

STEID3 (BEASLEY, 1990) 1000 1250 No 114788009

STEID4 (BEASLEY, 1990) 1000 1250 No 111314217

STEID5 (BEASLEY, 1990) 1000 1250 No 117925269

STEID6 (BEASLEY, 1990) 1000 2000 No 75058079

STEID7 (BEASLEY, 1990) 1000 2000 No 78840144

Palmetto (KNIGHT et al., 2011) 45 64 Yes 3289.568∗

Tw (KNIGHT et al., 2011) 71 115 Yes 70152.022

Deltacom (KNIGHT et al., 2011) 113 161 Yes 302217.508

TataNld (KNIGHT et al., 2011) 145 186 Yes 203685.234

GtsCe (KNIGHT et al., 2011) 149 193 Yes 727643.130

Colt (KNIGHT et al., 2011) 153 177 Yes 324569.658

UsCarrier (KNIGHT et al., 2011) 158 189 Yes 528612.034

Cogentco (KNIGHT et al., 2011) 197 243 Yes 1898917.778

Kdl (KNIGHT et al., 2011) 754 895 Yes 8672954.483

email (LESKOVEC; KREVL, 2014) 986 16064 No 767470

CollegeMsg (LESKOVEC; KREVL, 2014) 1893 13835 No 179131

bitcoinalpha (LESKOVEC; KREVL, 2014) 3775 14120 No 823838

bitcoinotc (LESKOVEC; KREVL, 2014) 5875 21489 No 1222814
* indicates the optimal solution value.
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4.3 Results and analysis of mathematical models

Table 4.3 shows the performance of the Gurobi solver (OPTIMIZATION, 2021)

over three mathematical models for (ROTHLAUF, 2006) instances. In Table 4.3, NF

represent our new formulation, FB means the flow based formulation presented in (CON-

TRERAS, 2009) and RB is the root based formulation described in (MOTA, 2015), obj

means the best value found in the given time limit and t(s) means the time the algorithm

took to finish in seconds. We set a time limit of 2 hours for each instance. Note that if the

time to execute is less than 7200 seconds than the formulation found the optimal value for

the instance.

Table 4.3: Mathematical models test using Gurobi (OPTIMIZATION, 2021).
Instance NF FB RB

obj t(s) obj t(s) obj t(s)
palmer6 693180 0 693180 0 693180 0
palmer12 3457952 7200 3428509 0 3457952 7200
palmer24 1542292 7200 1086656 0 1091506 7200
berry6 534 0 534 0 534 0
berry35 50636 7200 16915 0 20177 7200
berry35u 19084 7200 16192 7200 17721 7200
raidl10 53674 7200 53674 0 53674 795
raidl20 157570 7200 157570 4 157570 7200
raidl50 43517513 7200 813628 7200 1243664 7200

From Table 4.3 we realized that our new formulation was the worst of the three

tested formulations reaching the BKV only 44.4% of the instances and only 50% of those

ended before the time limit. Therefore, the new proposed formulation presented in Section

2.2 seems weaker than the previous formulations. In the future, new constraints such as

families of valid inequalities may be added in order to improve our mathematical model.

4.4 Parameters

For the small and medium instances from OR-Library (BEASLEY, 1990) and

for all instances from Internet Topology Zoo (KNIGHT et al., 2011), we executed our

algorithms fixing the parameters as follows:

• POPULATION_SIZE = 75,

• MAX_ITERATIONS = 100,
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• MAX_NO_UPDATE = 25,

• CROSSOVER_NUMBER = 150,

• MUTATION_NUMBER = 75.

We modified some of the above parameters for the larger instances (STEID1-STEID7

and those from Stanford Large Dataset Collection (LESKOVEC; KREVL, 2014)), be-

cause for these instances the large number of edges turns much slower the crossover and

mutation operators. Therefore, to increase the computational efficiency, we limited the

second mutation operator (Algorithm 3) to a maximum of 100 random edges, because Al-

gorithm 3 presented the higher time complexityO(|E|× |V |2), and only for the instances

from Stanford Large Dataset Collection (LESKOVEC; KREVL, 2014) the probability of

executing this operator was also reduced to 10% of its previous value. We also adjusted

some other parameters, whose values are shown in Table 4.4.

Table 4.4: Algorithm parameters for instances for larger instances.
STEID* email CollegeMsg bitcoinalpha bitcoinotc

POPULATION_SIZE 50 50 50 50 25
MAX_ITERATIONS 100 400 125 100 100
MAX_NO_UPDATE 25 25 25 25 25
CROSSOVERS 100 100 100 50 25
MUTATIONS 50 100 50 25 5

Finally, Algorithm 9 requires additional parameters and we executed our algo-

rithms fixing these values for all instances as follows:

• POP_SIZE = 100,

• ITER_MAX = 200000,

• ITER_TERM = 10000,

• MAX_NOT_IMPROVING = 10.

4.5 Results and analysis of algorithms

To evaluate the quality of our proposals, first we compare the four different evolu-

tionary strategies with the algorithms from (ROTHLAUF, 2009), (STEITZ; ROTHLAUF,

2011) as well as a combination between the minimum path strategy using a similar sim-

ulated annealing from (ROTHLAUF, 2009). Table 4.5 shows the average gap for each

approach, calculated by the expression |C(T )−BKV |
C(T )

× 100, where C(T ) is the value ob-

tained by the approach andBKV the best known value for the instance. The columns RD,
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GP, MP and KC represent, respectively, the results of our evolutionary algorithm with the

random strategy, the greedy probabilistic strategy, the minimum path strategy, and the k-

core strategy. The metaheuristic from (ROTHLAUF, 2009) is represented by GA+SA, the

algorithm from (STEITZ; ROTHLAUF, 2011) is represented by GLS and the combined

approach is represented by MSA.

Table 4.5: Average gap values for each instance.
Instance gap(%)

RD GP MP KC GA+SA GLS MSA
STEIB1 0.0 0.0 0.0 0.0 0.0 1.1 0.0
STEIB2 0.2 0.0 0.0 0.0 0.0 1.3 0.0
STEIB3 0.1 0.0 0.0 0.0 0.5 2.8 0.0
STEIB4 4.6 0.0 0.0 0.0 0.0 2.0 0.0
STEIB5 2.5 0.0 0.0 0.0 1.6 1.8 0.0
STEIB6 1.1 0.4 0.1 0.0 1.7 4.1 0.0
STEIB7 0.0 0.0 0.0 0.0 0.0 1.8 0.0
STEIC1 18.1 0.7 0.2 0.2 0.1 6.5 0.1
STEIC2 20.8 0.1 0.3 0.3 0.0 6.0 0.0
STEIC3 18.0 1.4 0.0 0.0 1.8 7.3 0.0
STEIC4 19.0 0.2 0.0 0.0 0.2 8.4 0.0
STEIC5 18.4 3.3 0.0 0.0 0.3 8.7 0.3
STEIC6 47.0 7.6 0.1 0.1 3.9 7.5 0.2
STEIC7 48.1 5.6 0.0 0.0 3.9 11.5 0.0
STEID1 30.0 2.9 0.0 0.0 0.8 12.1 0.0
STEID2 29.6 3.4 0.0 0.0 3.2 9.3 0.0
STEID3 29.3 3.6 0.5 0.6 0.5 10.6 0.0
STEID4 29.9 4.4 0.0 0.0 1.1 14.7 0.0
STEID5 28.8 2.6 0.0 0.0 0.2 15.5 0.0
STEID6 60.2 23.0 0.1 0.1 15.9 19.2 0.0
STEID7 57.1 21.5 1.2 1.0 9.8 14.3 0.2
Palmetto 0.0 0.0 0.0 0.0 0.0 1.6 0.0
Tw 0.2 0.0 0.8 0.4 0.3 2.1 0.1
Deltacom 0.5 0.0 0.0 0.0 0.5 1.7 0.0
TataNld 2.8 0.0 0.0 0.0 0.1 9.9 0.0
GtsCe 0.5 0.0 0.0 0.0 0.1 1.4 0.0
Colt 0.0 0.0 0.0 0.0 0.0 7.5 0.0
UsCarrier 0.1 0.0 0.0 0.0 0.0 3.0 0.0
Cogentco 1.6 0.0 0.0 0.0 0.0 2.6 0.0
Kdl 22.0 0.1 0.0 0.0 0.0 13.9 0.0
email 65.2 19.9 11.6 11.7 29.4 18.5 1.7
CollegeMsg 67.5 47.3 9.9 9.8 23.3 32.8 2.8
bitcoinalpha 61.2 51.7 4.2 4.7 29.2 53.2 3.7
bitcoinotc 65.5 57.2 4.3 3.8 59.4 69.1 4.6
Average 22.1 7.6 1.0 1.0 5.5 11.3 0.4

From Table 4.5 we observe that the combined strategy generally obtained solu-
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tions with the lowest average gap, then the minimum path and minimum k-core strategies

obtained the same average gap in second, followed by the algorithm proposed by (ROTH-

LAUF, 2009), then our greedy probabilistic approach. Next is the algorithms proposed

by (STEITZ; ROTHLAUF, 2011). Moreover, in 88.2% of the tests the best gaps were

presented by the combined strategy, in 73.5% by our minimum k-core strategy, in 67.6%

by our minimum path strategy, in 41.2% by our greedy probabilistic strategy, in 32.4%

by the GA+SA metaheuristic of (ROTHLAUF, 2009), in 0.0% by the GLS metaheuristic

of (ROTHLAUF, 2009), and in 11.8% by our random approach. The superiority of the

results obtained by the combined strategy as well as our evolutionary algorithm with the

minimum k-core and minimum path strategies is also given by the average gap obtained

over all instances, which was less or equal to 1.0% for those three strategies, 5.5 times

smaller than the 5.5% presented by the GA+SA approach of (ROTHLAUF, 2009), and

11.3 times smaller than the 11.3% presented by the GLS approach of (STEITZ; ROTH-

LAUF, 2011).

A deeper comparison can be done by analysing the algorithms stability. Table 4.6

shows the stability for each instance. The σ values represents the coefficient of variation

obtained by the strategy with the different seeds.

Table 4.6 shows that the coefficient of variation was very low (less than 0.4%)

for the combined, the minimum path and the minimum k-core strategies, implying that

our evolutionary algorithm with these strategies as well as the combined strategy were

very stable and its solutions did not depended on the seeds for the random generation.

The less stable strategy was the random strategy, where the average standard deviation

of the mean was 4.3%, while for the greedy probabilistic strategy this value was 1.3%

less than the 3.4% and 5.1% of the metaheuristics from (STEITZ; ROTHLAUF, 2011)

and (ROTHLAUF, 2009). Therefore, our evolutionary algorithm with the combined, the

minimum path, the minimum k-core strategies obtained higher quality solutions, and was

more stable than the other proposals.

The average computational times required by each strategy are given by Table

4.7, where the three best strategies are slightly faster than the other strategies. We observe

that the worst computational times were presented by the evolutionary algorithm with the

random and greedy probabilistic strategies, while the rest of the approaches required very

similar times for their executions.

The above discussion allows us to conclude that the combined, the minimum path

strategy as well as the minimum k-core strategy outperformed our other strategies and
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Table 4.6: Average standard deviation for each algorithm.
Instance σ(%)

RD GP MP KC GA+SA GLS MSA
STEIB1 0.0 0.0 0.0 0.0 0.0 1.3 0.0
STEIB2 0.6 0.0 0.0 0.0 0.0 1.4 0.0
STEIB3 0.2 0.0 0.0 0.0 0.4 2.7 0.0
STEIB4 2.4 0.0 0.0 0.0 0.0 2.5 0.0
STEIB5 1.9 0.0 0.0 0.0 3.3 1.6 0.0
STEIB6 1.5 0.7 0.1 0.1 2.3 4.2 0.1
STEIB7 0.1 0.0 0.0 0.0 0.0 1.2 0.0
STEIC1 6.4 0.8 0.0 0.1 0.1 4.5 0.1
STEIC2 5.3 0.0 0.1 0.2 0.1 3.3 0.0
STEIC3 3.1 2.4 0.0 0.0 2.8 4.5 0.0
STEIC4 5.6 0.1 0.0 0.0 0.5 4.8 0.0
STEIC5 4.6 1.7 0.0 0.0 1.0 4.8 1.0
STEIC6 6.7 2.7 0.2 0.3 4.0 4.8 0.3
STEIC7 9.1 1.2 0.0 0.0 17.4 6.8 0.0
STEID1 7.4 1.0 0.0 0.0 1.4 4.7 0.0
STEID2 9.3 0.4 0.0 0.0 13.2 4.4 0.0
STEID3 7.8 1.9 0.2 0.2 0.8 4.5 0.0
STEID4 7.2 3.2 0.0 0.0 1.9 21.1 0.0
STEID5 6.2 0.4 0.0 0.0 0.4 8.9 0.0
STEID6 10.2 5.4 0.0 0.1 21.7 4.2 0.0
STEID7 13.4 6.3 0.7 0.1 18.9 2.8 0.5
Palmetto 0.0 0.0 0.0 0.0 0.0 1.3 0.0
Tw 0.4 0.0 0.7 0.6 0.5 1.6 0.4
Deltacom 0.3 0.0 0.0 0.0 0.6 1.3 0.0
TataNld 1.3 0.0 0.0 0.0 0.2 13.9 0.0
GtsCe 0.4 0.0 0.0 0.0 0.1 2.4 0.0
Colt 0.0 0.0 0.0 0.0 0.0 6.8 0.0
UsCarrier 0.1 0.0 0.0 0.0 0.0 6.1 0.0
Cogentco 1.4 0.0 0.0 0.0 0.0 2.1 0.0
Kdl 6.2 0.1 0.0 0.0 0.0 11.3 0.0
email 5.7 5.0 2.5 3.1 3.3 8.4 1.7
CollegeMsg 7.9 4.1 1.6 2.2 4.3 6.5 2.0
bitcoinalpha 5.4 3.1 0.5 1.8 4.0 4.7 3.6
bitcoinotc 7.9 2.6 1.6 2.6 12.7 7.2 3.6
Average 4.3 1.3 0.2 0.3 3.4 5.1 0.4

Table 4.7: Average execution time in seconds for each instance.
RD GP MP KC GA+SA GLS MSA

Average 370.4 351.7 210.1 222.2 286.2 319.0 243.8

were capable of obtaining much better solutions than the metaheuristics of (ROTHLAUF,

2009) and (STEITZ; ROTHLAUF, 2011). Thus, to propose evolutionary algorithms that

explore theoretical results seems to be an adequate approach for OCT.
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5 CONCLUSIONS

In this work we approached OCT, anNP-hard problem with applications in many

different areas such as logistics, telecommunications and bioinformatics. To find good so-

lutions for the problem, we designed an evolutionary algorithm with four different strate-

gies: the random, the greedy probabilistic, the minimum path, and the minimum k-core

strategies as well as a combined strategy. We also proposed a new mixed integer linear

programming formulation for OCT. To assess the applicability of our proposals we tested

them over instances from the literature and from real-world datasets. All tested instances

can be found in public-access datasets and we also give public access to our implementa-

tions.

Our best proposals, the combined, minimum path and the minimum k-core strate-

gies, were able to find optimal or near optimal solutions for all the experiments, presenting

a very good stability for the different seeds and requiring a reasonable amount of time for

the execution. Furthermore, we compared our strategies with previous metaheuristics

found in literature, obtaining much higher quality solutions.

In future work we will compare the impact of different operators (e.g., mutation

and crossover) and algorithms (e.g., simulated annealing). We also intend to add new valid

restrictions to our common ancestor based mathematical formulation, with the objective

of reducing the search space. Another research direction will consider to use an automatic

solver (e.g., irace (LÓPEZ-IBÁÑEZ et al., 2016)) to find parameters for our metaheuristic

proposals.
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