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A B S T R A C T   

The quality of surface Electromyography (sEMG) signals could be an issue if highly contaminated by Power Line 
Interference (PLI), Electrocardiogram signal (ECG), Movement Artifact (MOA) or White Gaussian Noise (WGN), 
that could lead to unsafe operation of devices that is controlled by sEMG data, such as electro-mechanical 
prothesis. There are some mitigation methods proposed for some specifics sEMG contaminants and to use 
these methods in an efficient way is important to identify the contaminant in the sEMG signal. In this work we 
propose the use of a Recurrent Neural Network (RNN) using Long Short-Term Memory (LSTM) units in the 
hidden layer with no need of features extraction with the objective to classify the signal directly from sequences 
of the band-pass filtered data. The method proposed use the NinaPro database with amputee and non-amputee 
subjects. Only non-amputee subjects are used for parameters selection and then tested on both databases. The 
results show that 98% of the non-contaminated sEMG data was corrected classified and more than 95% of the 
contaminants were identified inside the training SNR range. Also, in this work is presented a SNR sensibility 
control and the contamination analysis in the range from − 40 dB to 40 dB in 10 dB steps. The conclusion is that is 
possible to classify the contamination type in sEMG signals with a RNN-LSTM with a 112.5 ms time window and 
to predicted with a small error the classification hit rate for each SNR level in some cases.   

1. Introduction 

The surface electromyography (sEMG) signal has applications that 
could be clinic [1,2], in rehabilitation [3,4] or even in wearables [5,6]. 
The quality of the signal could be an issue for practical use in these 
applications if it is highly contaminated. There are many contaminants 
types that could lead to a misinterpreted result by a human operator or 
Computational Intelligence (CI) system for Pattern Recognition (PR). 

These contaminants could be Electrocardiogram (ECG) signal, Power 
Line Interference (PLI), Movement Artifact (MOA) and additive White 
Gaussian Noise (WGN) that could represent thermal noise or a loose 
electrode. There are others type of contaminants, but the ones cited 
previously are presented in almost every paper dealing with sEMG 
quality analysis [7–16]. 

Not every action is the same to mitigate the contamination, and the 
knowledge of the contamination type could be useful. For example, in 
[17] is presented a method to remove ECG contamination from sEMG 
signals with an adaptive neuro-fuzzy inference system (ANFIS) and 

wavelets transforms. This method could have more time-processing ef-
ficiency if triggered only when the sEMG is contaminated by ECG. 

Even simple actions for mitigation, like a 20 Hz corner filter for MOA 
mitigation [9,18] or a notch filter for PLI mitigation could be very costly 
if the number of channels increases. For electrode displacement, that has 
similar behavior as an additive WGN [12,14,15], could be very useful in 
clinical applications, alerting the operator to replace the electrode. 

Our objective is limited to a main contaminant in the data, that is 
possible to occur, as in Targeted Muscle Reinnervation (TMR) when the 
procedure reinnervate in the chest muscle, that is highly contaminated 
with ECG [19] or MOA in wearables devices. The methodology pre-
sented in this paper is a basis for future analysis of contaminants mix-
tures, where a model will have to deal with multiples output classes 
containing the contaminants and its possible mixtures. 

In [7] the authors made studies in the diaphragm muscles with 
invasive EMG signals and developed a quadratic regression model that 
uses four features being that two are in time-domain and the others in 
frequency domain. The contaminants used in this study were ECG and 
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MOA, and no information about the contaminant type where given. 
Other study that uses the diaphragm EMG signal and ECG contami-

nation is [8] and the objective were to identify the degree of contami-
nation with four indexes, all in frequency domain. In [9], the objective 
was to mitigated the contamination by ECG and baseline noise, such as 
MOA and a high pass corner filter with cutoff frequency from 20 Hz was 
proposed for applications involving isometric contractions or natural 
and common movements. 

There are some works that uses outliers identification [10,11,13], 
with the main advantage that previous information about the contami-
nation is not needed. Statistical tools or CI is used for outliers identifi-
cation, such as normality test [11], Mahalanobis Distance [13] and an 
one class Support Vector Machine (SVM) [10]. None of the outlier de-
tectors could identify the contamination type and all of them uses 
extracted features from the sEMG signal. 

The SVM was used in [15] with binary classification separating the 
clean signal and signal contaminated, without SNR control, with ECG, 
electrode displacement, simulated as an additive WGN, PLI, MOA and 

Saturation using five time domain features 
In [12] the SVM is also used, but in this case it was used as a multi 

class classifier with a one vs one configuration. The SVM did not 
differentiate the clean signal from the contaminated, it only classify the 
contamination type in different SNR levels. For a whole automatic sys-
tem, it is needed a previous quality analysis, such as the outlier de-
tectors. ECG, PLI, MOA, WGN and Saturation were used as contaminants 
for detection and seven features were used. 

Self-Organizing Maps (SOM) are a unsupervised machine learning 
method that is used by [16] to identify contamination type in sEMG data 
from 4 channels in the back muscles and synthetic data. The baseline 
noise, artificially generated MOA, ECG interference, PLI and a mixture of 
anomalies were used. 

The SOM method was designed using wavelet decomposition co-
efficients and features selection by a robust Principal Component 
Analysis (rPCA). The perform for was measured by recall and precision, 
obtaining a recall above 95%, except MOA contamination, and precision 
above 80%. No SNR range was reported and for an Intel i7 CPU it took 
25 ms to run the algorithm. In Table 1, is summarized the principal 
publications about contaminant identification on sEMG data. 

The use in real time is essential for robotic based rehabilitation 
systems, avoiding any unsafe operation that could occur from the pro-
cessing of the contaminated sEMG signal [14]. A way to improve the 
time efficiency is to reduce processing steps, such as feature extraction. 

One way to make quality analysis in sEMG signal without feature 
extraction is using sequence prediction tools such as the Recurrent 
Neural Networks (RNN). Considering that the sEMG signal and its 
mixture with contaminants in different SNR levels will have different 
sequences in a time window, we make the hypothesis that it is possible 
to differentiate contaminated from non-contaminated signal and, if 
contaminated, the main contamination type using a sequence window of 
the sEMG data. 

This paper is organized as follows: in Section 2 the methodology is 
presented; Section 3 evaluates and analyses the results; the discussion is 
presented in Section 4 and the conclusions are made in Section 5. 

Table 1 
Summarization on sEMG contaminant identification papers.  

Paper Contaminats SNR 
Levels 

# 
Features 

Model 

[7] ECG; MOA; WGN Not 
specified 

4 Quadratic 
Regressor 

[8] ECG; MOA; WGN Not 
specified 

4 Features index 

[10] PLI; MOA; ECG; A/D 
clipping; quantization 
error; saturation 

− 20 dB to 
20 dB 

10 SVM 

[12] MOA, PLI, ECG, 
Saturation and WGN 

− 20 dB to 
20 dB 

6 SVM one-vs-one 
for 5 classes 

[13] MOA; Displaced 
Electrode; WGN 

Not 
specified 

4 Mahalanobis 
outlier detector 

[15] MOA; Saturation; WGN; 
PLI; ECG 

Not 
specified 

5 SVM 

[16] WGN; ECG; PLI; MOA Not 
specified 

12 SOM  

Fig. 1. Proposed pipeline for sEMG contamination detection.  
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2. Methodology 

In Fig. 1 is presented the proposed processing pipeline for all sEMG 
channels. One RNN model is used in each channel and classify a N size 
sequence. The label is assigned using major voting in the last 5 classified 
sequences without overlapping. There are five classes to be assigned to 
Final Label: Clean, WGN, PLI, MOA and ECG. All algorithms were made 
in Python 3.7.7 using mainly the following libraries: GPU tensorflow, 
numpy and scipy. 

The results are presented for three main objectives:  

1. Model Selection: A methodology based in the standard deviation is 
used to define the series length for each RNN input and the channel 
used to train a general model. A statistical analysis to define the 
LSTM hidden units is applied as well. More details about the model 
architecture is provided in Section II.  

2. Model Testing: The efficiency of the model is tested for nine SNR 
levels, using non-amputee and amputee individuals. The metric used 
is the hit rate accuracy.  

3. SNR Sensitive: Considering that the expect behavior of the curve SNR 
x hit rate is given by the non-amputee testing data. 

2.1. NINAPro sEMG database 

The publicly available NINAPro (Non-Invasive Adaptive Prosthetics) 
database of sEMG signals was used in this study. The NINAPro database 
uses 12 active wireless electrodes (Delsys TM Trigno Wireless System®). 
NINAPro data is acquired through National Instruments® NI-DAQ 
PCMCIA 6024E platform at a rate of 2 kHz, 12 bits and with a noise 
lower than 750 nV RMS [4,20]. It is important to highlight that this 
study does not use any feedback system and does not monitor the force 
neither the way the volunteer performs the movements. 

The sEMG database of each subject consists of one session with 17 
movements for exercise 1 and 22 movements for exercise 2. Each one of 
the distinct movements is repeated 6 consecutive times, during 5 s each 
movement, separated by 3 s rest time. The sEMG data is acquired 
through 12 surface electrodes. The twelve electrodes are divided into 
eight electrodes uniformly spaced just beneath the elbow at a fixed 
distance from the radio-humeral joint, two electrodes on the flexor 
digitorum and the extensor digitorum, and two electrodes on the main 
activity spots of the biceps and the triceps. 

There are 40 intact-upper-member volunteers, consisting of 28 men 
and 12 women, 34 right-handed and 6 left-handed with 29.9 ± 3.9 y 
mean age. Data from another 11 volunteers with some level of ampu-
tation in the upper members from the same database were used [21]. A 
postprocessing stage was performed with a Hampel filter to remove 
50 Hz interference. 

2.2. Artifact contamination 

To remove or attenuate low and high frequency contamination that 
could be present, all data were filtered between 20 and 500 Hz with a 
fourth order Butterworth, normalized by the maximum absolute value of 
each channel and labeled as non-contaminated sEMG data. 

A simple band-pass filtering will not remove all possible artifacts, but 
in studies that uses this database for movement type recognition in the 
non-amputee subjects [22] achieved overall accuracy (movement type 
and rest period) of 94.4% ± 7.6% using a regularized version of an 
Extreme Learning Machine (R-ELM). This is an indicative that no sig-
nificant contamination affects the data. 

For other side, using the same R-ELM with the NinaPro amputee 
database, an overall accuracy of 76.3% ± 18.2% was achieved, indicate 
a less integrity in the data that could be caused by artifact contamination 
or a more difficult characterization of the sEMG data from an amputated 
muscle. 

Before contaminating the data, a method to control the SNR level was 
defined. Previous research showed no standard way on how to determine the 
signal SNR for contamination. The Consensus for Experimental Design in 
Electromyography (CEDE) project [23] defines the SNR as the amplitude of 
the EMG signal relative to the recording noise. 

The SNR method used by [12] depends on fractions of the Maximum 
Voluntary Contraction (MVC) that were measure for the five analyzed subjects 
in the study. In NINAPro database, no MVC information was given and since 
different subjects will have different contraction levels, in order to make a 
standard way for all individual, the mean power from each subject was 
calculated by Eq. (1), where xn is the n-th sample from the N size rest samples 
from one individual. Fig. 2 shows the contamination effect at SNR = − 10 dB 
for a 2.5 s rest segment. 

Rest Power Subject =
1
N
∑

N
x2

n (1)  

2.2.1. Movement artifact 
An experimental setup, with 12 channels disposed the same way as in 

Fig. 2. Contamination effect at SNR = − 10 dB.  
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the NinaPro protocol, was built. It was used 24 disposable surface 
electrodes and a reference electrode, placed on the individual’s fore-
head. The channels were connected to a battery-powered commercial 
sEMG device (EMG 830 C, from EMG System do Brasil). The signal was 
digitalized at a 2-kHz sample frequency and 18 bits of quantization by a 
NI USB-6289 platform from National Instruments. The acquisition was 
performed using a notebook running LabVIEW 9 on a Windows 10 
environment. 

With no contraction, a sequence of 10 taps with 1 s interval were 
performed from one individual, age of 37y, 183 cm height and 80 kg 
weight to physically dislocate the electrode from the muscle to produce 
the MOA. A similar methodology was used in [9]. This was repeated for 
each channel. A moving-average filter with 11 samples was used to 
smooth the data. 

The Clean Data for each channel is added with a vector containing 
randomly selected MOA from the same channel. The MOA power is 
calculated with same method from Eq. (1) and then the data is multi-
plied by a factor to meet the desired SNR. 

2.2.2. Electrocardiogram artifact 
The ECG data was acquired in the publicity available Physionet data 

bank [24]. Segments of 10 s were randomly selected from one channel 
for 17 individuals. An up-sample procedure was necessary to fit sEMG 
data sample rate. 

Then a vector with the 10 s segments was multiplied by a factor to 
meet the desire SNR and added to the Clean Data. The ECG power is 
calculated with the same method from Eq. (1). 

2.2.3. Power line interference 
A 50 Hz wave, with power given by Eq. (2) is added to the Clean 

Signal. The amplitude A is multiplied by a factor to meet the desired 
SNR. 

PPower Line =
A2

2
(2)  

2.2.4. Additive White Gaussian Noise 
A normally distributed random vector with zero mean is added. The 

variance is adjusted to meet the desired SNR. 

2.3. Recurrent neural network 

The RNN is a network with memory specialized in time series clas-
sification as speech [25], forecasting [26], fault detection [27] and 
others applications where one label is assigned for a sequence of data 
points. The proposed architecture is detailed in Fig. 3 and the memory 

element is present in the H layer where the information passes through 
time by the W set of weights. The input layer passes a sequence X(N) ∈

RF×N by the U set of weights, where F is the number of features, N is the 
sequence total length and x(n) is the n-th sample with F features from the 
input sequence. 

The D layer represents a Dropout layer. In this layer, that is a fully 
connect layer by the V set of weights, each unit has a probability p that 
the set of weights will be trained per epoch. This improves the gener-
alization capability of the network [28]. The S layer applies a softmax 
function in the output y and the class is selected by applying the argmax 
function in the softmax output. 

The output from layer H is given by Eqs. (3) and (4), where an
h is the 

output from unit h in time sample n, considering F features and H’ 
recurrent connections. ufh and wh’h are the input and recurrent weights, 
respectively. The hyperbolic tangent (tanh) activation function θ(∙)
gives the h unit its final output in time sample n, bn

h. 

an
h =

∑F

f=1
ufhxn

f +
∑H’

h’=1

wh’hbn− 1
h’ (3)  

bn
h = θ

(
an

h

)
(4) 

The memory units used in layer H were the Long Short-Term Memory 
(LSTM) type in order to avoid known issues from RNN that is the ex-
ploding and/or the vanishing gradient effect [29,30]. There are variants 
of the LSTM, but [31] show that none of them improved the standard 
LSTM-RNN. 

The LSTM unit has 3 gates that is used to control the information flow 
named Input Gate, Output Gate and Forget Gate. The Input Gate and the 
Output Gate determines where an input or output from a unit is relevant 
for the network output label. The Forget Gate determines where an in-
formation from a previous time step is relevant for the network label 
output. 

The Eq. (3) must be transformed in a set of equation, to handle the 
new parameters added to the model by the control gates. The Eqs. (5)– 
(9) for the forget, input and output gates and input layer, respectively, 
gives the bn

h LSTM unit output. θs(∙) and θt(∙) are the sigmoid activation 
function and the hyperbolic tangent activation function. 

Fgn
φ = θs

(
∑F

f=1
uf φxn

f +
∑H’

h=1
whφbn− 1

h

)

(5)  

Ign
i = θs

(
∑F

f=1
ufixn

f +
∑H’

h=1
whibn− 1

h

)

(6)  

Ogn
o = θs

(
∑F

f=1
ufoxn

f +
∑H’

h=1
whobn− 1

h

)

(7)  

ILn
γ = θt

(
∑F

f=1
uf γxn

f +
∑H’

h=1
whγbn− 1

h

)

(8)  

bn
h = θt

(
cn− 11Fgn

φ + Ign
i 1ILn

γ

)
1Ogn

o (9) 

In the Eq. (9) is clear that the forget gate controls the importance of 
the last memory cell state and the input gate controls the importance 
from the actual input. At last, the output gate defines the output 
importance, based on the input and past output. 

After all N data points were presented to the network, the data passes 
to a dropout dense layer, with dropout rate equals to 0.5, providing the 
output s = softmax(y) and an argmax(s) gives the final class. 

There are many parameters that could be tuned in the LSTM-RNN 
proposed, such as the p probability in the Dropout layer, number of 
LSTM units in the H layer, the N sequence size, the mini-batch training 
size, and the number of epochs, among others concerning the 
architecture. 

Fig. 3. RNN architecture. a) folded b) unfolded.  
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To limit the scope of analysis in this paper, only the LSTM and the N 
sequence length will be tested in 3 levels each, as Table 2 shows. 

2.4. Training and testing data 

Considering that the PLI contaminant data is periodic, the ECG is 
quasi-periodic as the MOA during gait, for example, and is composed by 
low frequencies components [32], a small dataset could be sufficient for 
data generalization with 9 individuals randomly chosen from the 
non-amputee database. As WGN has a spectral power different from all 
other classes, we suppose that the model will differentiate all classes 
even with a small dataset, compared as the test dataset. 

From the 9 individuals of the non-amputee exercise 1 database, 12 
models were trained from each channel using 3 SNR levels according to 

Fig. 4. To be clearer, the model #7, for example, is trained using the 
clean data from the channel 7 from all 9 individuals. Groups of 3 in-
dividuals will have the channel 7 data contaminated with 3 different 
SNR levels. 

For the SNR control, it is used three different training set to test the 
data with different SNR ranges, according Table 2. For optimal model 
parameters selection presented in Table 1 (LSTM units and Sequence 
Length), only the Training Data C, described in Table 3 is used. The 
Training Data A and B are used to test the SNR-sensitive control feature. 

To format the data to feed the RNN input, a 3-dimensional array was 
used, consisting in [samples, time steps (N), features (F)]. The one- 
dimensional vector with F = 1 feature for each class was split in k 
samples of time series, that belong to one of the five class, with N steps in 
each sample, generating one feature and a five-class data array with 5*k 

Table 2 
LSTM-RNN Parameters Settings.  

Dropout rate 0.5 for all configurations 
LSTM Units 50, 75 and 150 
Sequence Length (N) 15, 30, 45 and 60 
Epochs 20 for all configurations 
Mini-batch size 128 for all configurations 
Features (F) 1 for all configurations  

Fig. 4. Generating training data with Clean Data and different SNR Levels.  

Table 3 
SNR Training Levels.   

SNR Level 1 SNR Level 2 SNR Level 3 

Training Data A − 20 dB − 10 dB 0 dB 
Training Data B − 30 dB − 20 dB − 10 dB 
Training Data C − 40 dB − 30 dB − 20 dB  

J. Machado et al.                                                                                                                                                                                                                               
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samples. In Fig. 5 is presented an example of data segmentation from one 
channel, using N = 45 with k = 10 time series samples, i.e. the classifi-
cation will result in 2 class label from the major voting process (one for 
each 5 time series samples). The method used to train was the Back- 
Propagation Through Time (BPTT) [33] using the Adam optimizer [34]. 

The testing data were composed by clean and contaminated data 
from the 31 volunteers that were not used for training (exercise 1) and 
the 11 amputee volunteers (exercise 1), split in sequences with the same 
process used for the training data. The contamination is made equally 
for all the test volunteers in 9 SNR levels ranging from -40 dB to 40 dB in 
10 dB steps. All models were used to classify all volunteers’ channels. 

In time series classification, the sequence length N is a critical 
parameter, as the number of LSTM hidden units for LSTM-RNN. To 
choose a well-balanced architecture, the sequence length N from Table 2 
was selected with an analysis on the lower standard deviation (SD) of the 
classification hit rate in the same SNR interval used for training. All 
individuals, channels, models, and classes in the non-amputee test 
database were used. The process is repeated for all number of LSTM 
units from Table 2. 

With 12 channels to train, there are some options to train a model, 
such a model per-channel, but for sake of simplification only one 
channel is used to train the final model. Considering the selected N 
sequence length, the data from the classification of all 12 models in the 
Training Data C range are used for a Levene’s variance homogeneity test 

with significance level equal 5% Considering that the models have at 
least two non-homogeneous variances, it means that has at least two 
different variances, and the model with the lower variance (or SD) will 
be selected. 

With the sequence size and channel used for model training selected, 
a statistical analysis was performed in the classification hit rate for the 
different number of LSTM units and SNR intervals. It was used the 
General Linear Model (GLM) procedure of SAS/STUDIO® 5.2 statistical 
software for each combination of channel and class, considering each 
subject as an observation. 

The LSTM-SNR Interval analysis were made between − 40 dB and 
10 dB because, a 20 dB or higher SNR is almost equal to the non- 
contaminated sEMG data, accordingly Table 4. The goal is to choose 
the model with the minimum possible LSTM units because each unit 
insert more parameters for the gates, impacting in time-processing and 
memory consuming. 

After all parameters were selected, the model is tested for the 
amputee and non-amputee database with the three different training 
data shown in Table 3, to evaluate the sensibility. The results obtained 
for the non-amputee database exercise 1, the same used to train the 
model, is used as standard to predict the expected hit rate in each SNR 
point for each training set. The use of non-amputee subjects is thinking 
in a future real application, where is easier to find non-amputee subjects 
for data acquisition. 

Fig. 5. Example of sEMG data segmentation from one channel to input the RNN-LSTM. In this example, N = 45 and 10 series samples are presented (k = 10).  

Table 4 
Mean Autocorrelation for all channels from -40 dB to 40 dB.    

CHANNELS   

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10 Ch11 Ch12 

SNR INTERVAL 

− 40 dB 0.24 0.04 0.03 0.06 0.02 0.02 0.08 0.08 0.03 0.06 0.01 0.01 
− 30 dB 0.60 0.13 0.09 0.17 0.05 0.06 0.23 0.23 0.10 0.17 0.05 0.03 
− 20 dB 0.91 0.36 0.26 0.46 0.14 0.15 0.53 0.56 0.30 0.46 0.14 0.08 
− 10 dB 0.99 0.71 0.60 0.81 0.38 0.36 0.84 0.83 0.65 0.80 0.37 0.24 

0 dB 1.00 0.93 0.88 0.97 0.71 0.71 0.97 0.94 0.89 0.96 0.70 0.57 
10 dB 1.00 0.99 0.98 1.00 0.93 0.91 1.00 0.99 0.97 1.00 0.91 0.86 
20 dB 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1.00 0.99 1.00 0.98 0.97 
30 dB 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 
40 dB 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00  
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The difference between the expected hit rate in each SNR value and 
the classification on non-amputee exercise 2 and amputee exercise 1 and 
2 is presented in a graphic for each class. 

3. Results 

In Table 5 is presented the results for the classification for all in-
dividuals from the non-amputee database, for all possible configurations 
on Table 2 trained with the Training Data C from Table 3. The results 
from Table 5 are used to select the series length N, and are coherent with 
autocorrelation values presented on Table 4. 

To select the channel used to train the general model, the SD for all 
models is presented in Table 6. The SD’s were calculated over the data 
classified from all 12 models considering all LSTM configurations and 
times series with length N = 45. The Levene test show that the variances 
are not homogeneous with a p-value equal to 2.2 × 10− 16 and w-value 
equal to 32.18. Considering that model 8 has the lower SD, is the one 
chosen to classify all testing data. 

Sixty GLM procedure were made for the classification hit rate in all 
12 channels and 5 classes combinations, using the model trained with 
the channel 8 and using Training Data C. The hypothesis tested were the 
difference between means in LSTM and SNR interval for each channel- 
class combination. The frequency of p-value greater than 0.05 for the 
different factors of LSTM was 56, showing no relevant difference be-
tween the means. 

In the cases were p < 0.05, two were found for PLI class (channels 7 
and 9) and other two for WGN (channels 8 and 11). In Fig. 6 is presented 
a graphical interaction between LSTM and SNR interval for Channel 7 

Table 5 
Mean hit rate and Standard Deviation, in % of correct classified sEMG for a major voting for 5 segments.    

SNR Interval 

N LSTM − 40 dB − 30 dB − 20 dB − 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 

15 50 82.40 ± 37.11 85.48 ± 33.06 75.89 ± 34.57 46.68 ± 43.59 24.05 ± 41.15 20.05 ± 39.43 20.01 ± 39.44 20.01 ± 39.44 20.01 ± 39.44  
75 84.81 ± 35.13 86.03 ± 32.63 76.16 ± 34.45 47.53 ± 43.52 24.55 ± 41.42 20.06 ± 39.43 20.01 ± 39.44 20.01 ± 39.44 20.01 ± 39.44  
150 92.09 ± 25.98 86.07 ± 32.56 77.18 ± 33.63 48.60 ± 43.37 25.22 ± 41.76 20.06 ± 39.45 20.01 ± 39.44 20.01 ± 39.44 20.01 ± 39.44 

30 50 90.71 ± 28.08 93.51 ± 23.41 85.6 ± 30.86 53.80 ± 42.22 24.29 ± 41.28 20.08 ± 39.55 20.00 ± 39.57 20.00 ± 39.57 20.00 ± 39.57  
75 90.27 ± 28.68 94.66 ± 21.01 88.26 ± 27.74 55.26 ± 41.87 24.95 ± 41.35 20.12 ± 39.49 20.01 ± 39.50 20.01 ± 39.50 20.01 ± 39.50  
150 92.28 ± 25.79 93.57 ± 23.04 84.69 ± 32.12 56.42 ± 41.97 25.87 ± 41.92 20.11 ± 39.51 20.01 ± 39.52 20.01 ± 39.51 20.01 ± 39.52 

45 50 98.45 ± 11.10 99.60 ± 3.39 96.32 ± 16.49 58.93 ± 42.12 23.51 ± 40.67 20.15 ± 39.74 20.02 ± 39.74 20.02 ± 39.74 20.02 ± 39.74  
75 98.71 ± 9.79 99.54 ± 3.50 96.17 ± 16.57 61.29 ± 41.73 24.17 ± 41.10 20.15 ± 39.67 20.02 ± 39.68 20.02 ± 39.68 20.02 ± 39.68  
150 98.75 ± 9.48 99.15 ± 6.51 95.63 ± 18.00 65.02 ± 40.97 26.58 ± 42.16 20.19 ± 39.62 20.02 ± 39.61 20.02 ± 39.61 20.02 ± 39.61 

60 50 92.79 ± 24.74 96.94 ± 15.77 94.69 ± 21.10 60.42 ± 43.90 24.38 ± 41.21 20.18 ± 39.80 20.01 ± 39.80 20.01 ± 39.80 20.01 ± 39.80  
75 92.72 ± 24.80 97.65 ± 13.48 95.17 ± 19.97 64.84 ± 42.76 24.69 ± 41.23 20.22 ± 39.80 20.02 ± 39.79 20.02 ± 39.79 20.02 ± 39.79  
150 93.96 ± 22.77 95.05 ± 20.27 94.35 ± 21.36 68.45 ± 41.81 27.17 ± 42.52 20.24 ± 39.72 20.02 ± 39.70 20.02 ± 39.70 20.02 ± 39.70  

Table 6 
SD in (%) for channel model training 
selection in crescent order.  

δ8  8.31 
δ11  8.34 
δ9  8.91 
δ2  9.02 
δ1  9.22 
δ7  9.44 
δ5  9.59 
δ3  10.05 
δ10  10.11 
δ4  10.49 
δ6  18.06 
δ12  12.09  

Fig. 6. Result from the GLM analysis for channel 7 and PLI class.  
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and PLI class. 
For the test on the SNR-sensitive feature, the results using all training 

data set from Table 3 for the amputee and non-amputee subjects (ex-
ercise 1) is presented in Fig. 7 as fractions of correctly classified data for 
all SNR range from all subjects and channels. Using the model trained 
with the Training Data B as example, confusion matrix with the mean 
value and standard deviation for the fraction of each data type in per-
centage and with the SNR values ranging from − 40 dB to 20 dB in 20 dB 
steps is presented in for the non-amputee and amputee subjects in Ta-
bles 7 and 8. 

In Figs. 8 and 9 are presented the difference between the expected 

SNR hit rate for the standard (non-amputee, exercise 1 results) and the 
hit rate for the non-amputee exercise 2 and amputee exercise 1. This 
result is going to show if its possible to predicted the behavior of the 
model for each SNR level for the different training datasets. Low values 
indicate a good prediction on the expected behavior, and negatives 
values above 10 dB indicate a false-positive for contamination. 

4. Discussion 

Sequence length is a critical parameter for a data-series specialized 
network and thus was the first parameter analyzed using the results from 

Fig. 7. Fraction of the correctly classified data for all contaminants type and the three SNR data training. (a) for non-amputee subjects and (b) for amputee subjects.  

Table 7 
Training Data B Confusion Matrix (in %) for Non-Amputee Subjects for a SNR ranging from − 40 to 20 dB in 20 dB steps.     

Non-Amputee Subjects 

SNR   Predicted    

EMG WGN PLI MOA ECG 

− 40 dB True EMG 98.49 ± 8.84 0.05 ± 0.08 0.06 ± 0.41 0.09 ± 0.46 1.31 ± 8.7   
WGN 0.07 ± 0.09 95.21 ± 19.89 0.02 ± 0.06 4.69 ± 19.89 0.0 ± 0.01   
PLI 0.00 ± 0.00 0.06 ± 0.09 41.74 ± 49.0 58.2 ± 49.01 0.0 ± 0.00   

MOA 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.06 99.91 ± 0.1 0.06 ± 0.09   
ECG 0.32 ± 0.15 0.00 ± 0.00 0.0 ± 0.00 0.08 ± 0.09 99.6 ± 0.18 

− 20 dB True EMG 98.48 ± 8.84 0.06 ± 0.09 0.06 ± 0.41 0.09 ± 0.46 1.31 ± 8.7   
WGN 0.06 ± 0.09 99.87 ± 0.13 0.06 ± 0.09 0.0 ± 0.00 0.0 ± 0.01   
PLI 0.00 ± 0.00 0.06 ± 0.08 99.89 ± 0.13 0.04 ± 0.09 0.0 ± 0.00   

MOA 0.01 ± 0.14 0.0 ± 0.00 0.1 ± 0.09 99.81 ± 0.19 0.07 ± 0.11   
ECG 0.66 ± 1.51 0.0 ± 0.00 0.0 ± 0.00 0.11 ± 0.36 99.23 ± 1.54 

0 dB True EMG 98.5 ± 8.84 0.03 ± 0.08 0.06 ± 0.41 0.09 ± 0.46 1.31 ± 8.7   
WGN 29.38 ± 44.65 70.56 ± 44.64 0.02 ± 0.05 0.04 ± 0.26 0.0 ± 0.01   
PLI 72.76 ± 36.36 0.05 ± 0.15 25.92 ± 35.3 0.98 ± 4.37 0.29 ± 1.98   

MOA 87.66 ± 25.62 0.0 ± 0.04 0.02 ± 0.14 12.24 ± 25.39 0.07 ± 0.35   
ECG 78.54 ± 23.11 0.0 ± 0.07 0.01 ± 0.09 0.14 ± 0.71 21.31 ± 22.85 

20 dB True EMG 98.54 ± 8.83 0.0 ± 0.04 0.06 ± 0.41 0.09 ± 0.46 1.31 ± 8.69   
WGN 99.33 ± 3.14 0.01 ± 0.08 0.0 ± 0.03 0.66 ± 3.14 0.0 ± 0.01   
PLI 98.55 ± 8.88 0.01 ± 0.08 0.05 ± 0.3 0.11 ± 0.48 1.29 ± 8.66   

MOA 98.49 ± 8.98 0.0 ± 0.04 0.06 ± 0.35 0.12 ± 0.61 1.33 ± 8.77   
ECG 98.42 ± 9.29 0.0 ± 0.00 0.05 ± 0.38 0.08 ± 0.41 1.45 ± 9.15  
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Table 5. The ideal sequence length is always the shorter one because is 
computationally more efficient. As could see in Table 5, the lengths 
different of 45 time-steps presented a standard deviation above 20%, an 
indication that at least one class is not well characterized by that 
sequence length size, so the 45 time-steps model is going to be used. 

As state in Section II-B, the data from amputee subjects is more 
problematic than the non-amputee, which is reflect in the results pre-
sented in Fig. 7 and Table 8. It is probably that the amputee is 

contaminated with MOA, as the electrodes cannot be fixed in the ideal 
locations, but more investigation is needed to analyze the correlation 
between amputation and more occurrence of MOA in sEMG data. 

The WGN impact the sensibility in the amputee data more than in the 
non-amputee. For the amputee, the signal with 30 dB SNR still got more 
than 20% identification using Training Data A (the most sensitive to 
high SNR), whereas in non-amputee the identification is 0%. This could 
be view as a false contamination detection, because a 30 dB SNR could 

Table 8 
Training Data B Confusion Matrix (in %) for Amputee Subjects for a SNR ranging from -40 to 20 dB in 20 dB steps.     

Amputee Subjects 

SNR   Predicted    

EMG WGN PLI MOA ECG 

− 40 dB True EMG 86.26 ± 30.27 0.09 ± 0.08 0.0 ± 0.00 11.47 ± 29.3 2.18 ± 10.03   
WGN 0.02 ± 0.03 99.93 ± 0.1 0.03 ± 0.08 0.02 ± 0.07 0.0 ± 0.01   
PLI 0.00 ± 0.00 4.66 ± 20.4 27.47 ± 44.51 67.87 ± 46.33 0.0 ± 0.00   

MOA 0.00 ± 0.00 0.0 ± 0.01 0.03 ± 0.06 99.91 ± 0.08 0.06 ± 0.08   
ECG 0.26 ± 0.16 0.0 ± 0.00 0.0 ± 0.00 0.44 ± 1.49 99.31 ± 1.55 

− 20 dB True EMG 86.26 ± 30.27 0.09 ± 0.08 0.0 ± 0.00 11.47 ± 29.3 2.18 ± 10.03   
WGN 0.02 ± 0.03 99.92 ± 0.1 0.06 ± 0.11 0.0 ± 0.00 0.0 ± 0.01   
PLI 0.0 ± 0.00 0.1 ± 0.09 98.82 ± 9.31 1.08 ± 9.32 0.0 ± 0.00   

MOA 0.0 ± 0.00 0.0 ± 0.00 0.07 ± 0.07 99.86 ± 0.07 0.07 ± 0.09   
ECG 0.39 ± 0.41 0.0 ± 0.00 0.0 ± 0.00 0.16 ± 0.62 99.46 ± 0.77 

0 dB True EMG 86.28 ± 30.28 0.06 ± 0.08 0.0 ± 0.0 11.47 ± 29.3 2.18 ± 10.03   
WGN 22.39 ± 41.2 77.6 ± 41.19 0.0 ± 0.01 0.0 ± 0.0 0.0 ± 0.01   
PLI 52.61 ± 42.67 0.11 ± 0.11 30.63 ± 35.95 16.14 ± 33.17 0.52 ± 2.18   

MOA 61.65 ± 42.44 0.0 ± 0.00 0.01 ± 0.02 38.07 ± 42.07 0.28 ± 1.11   
ECG 62.08 ± 34.79 0.0 ± 0.00 0.0 ± 0.0 14.0 ± 30.83 23.92 ± 25.23 

20 dB True EMG 86.34 ± 30.29 0.0 ± 0.00 0.0 ± 0.00 11.48 ± 29.32 2.18 ± 10.03   
WGN 85.21 ± 27.92 3.61 ± 18.1 0.0 ± 0.00 10.59 ± 21.93 0.58 ± 2.98   
PLI 85.94 ± 30.85 0.0 ± 0.00 0.0 ± 0.00 11.8 ± 29.58 2.26 ± 10.33   

MOA 85.5 ± 31.21 0.0 ± 0.00 0.0 ± 0.00 12.34 ± 29.72 2.16 ± 9.98   
ECG 85.54 ± 31.41 0.0 ± 0.00 0.0 ± 0.00 11.78 ± 29.75 2.69 ± 12.62  

Fig. 8. Difference between the expected value and amputee test subjects, exercise 1.  
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be considered a good quality signal, as indicate in Table 4. 
In [35] there are some evidence that an amputation in upper limbs 

could shift the power spectrum to low frequencies, so the WGN will 
insert high frequencies components that is detectable even with a high 
SNR. Also, in our study we found that the power average for all in-
dividuals and channels from both database is around 5 time great for 
frequencies until 500 Hz in the non-amputee database, that could be 
another reason for the amputee sensibility to WGN. 

Using the results from non-amputee, exercise 1 as standard, the 
Figs. 8 and 9 shows a small error, principally for the non-amputee in all 
classes, exercise 2 data, except for the − 40 dB WGN, Training Data A and 
all − 40 dB PLI for Training Data B and C. 

For the amputee, exercise 1, the Training Data A showed too sensi-
tive for WGN, giving more false-positive for contamination above 
SNR = 10 dB than the others contaminants and it is probably not so 
adequate to identify WGN in amputee subjects. An error in 0 dB and 
10 dB is expected, as the signal is transitioning to non-contaminated. 

Compared with two other state of the art works that identify 
contamination type in sEMG signals [12,16], our outperforms with a 
112.5 ms data (5 times 45 time-steps with 2 kHz sample frequency). In 
[12], three time widow were used: 1 s, 2 s and 5 s with the best results for 
2 and 5 s windows and in [16] the time window was 4 s. 

Since such contamination can cause an unexpected action from the 
assistive device, like a prothesis for example, the time window for 
contamination identification could be critical to avoid dangerous 
operation. 

To classify 5 sequence samples with N = 45 took 5μs and 1 ms for the 
major voting algorithm (mode function from scipy.stats Python library) in 
a Windows® PC with AMD Ryzen® 5 CPU and a NVidia RTX 2060 
Super® GPU. 

Farrell and Weir [36] states that the optimal processing delay 
without significantly decreasing prosthesis performance is around 
100 ms, and thus, the application based in SOM developed by Ijaz and 

Choi [16] could be impractical for a multi-channel application, as the 
processing time is around 25 ms. 

Some sEMG PR based system are robust to noise [37] or have a 
mitigation procedure [13,15]. These techniques could be improved if 
the detector has a SNR level control, because not all contamination 
levels will affect the system. In Fig. 7 is clear that WGN and PLI are more 
affected by the SNR range of training data and MOA and ECG are less 
sensitive, but as can see in the contamination with − 10 dB, the classi-
fication is improved from 60% to almost 100% detection. 

The PLI contamination is the most unstable outside the training SNR 
range, been often classified as MOA, as shown in Table 8, but can 
differentiate MOA and ECG that is known issue in systems build for MOA 
mitigation in ECG signals [38,39]. 

5. Conclusions 

In this study was presented a novel method for contamination 
detection in sEMG that has no need of feature extraction and has a SNR 
sensibility control that provide a small predict error for Training Data B 
and C in most cases (see Figs. 8 and 9). Also, the use of an upper limb 
sEMG with amputee and non-amputee subjects was a novelty. The 
proposed system could be used as a general contaminant detector if turn 
to a binary classifier with a small amount of false negative, considering 
the non-contaminated as the positive class. 

One weak point from all supervised training models for contaminant 
identification is that not all possible contaminants are known in advance 
and in our work we decide to use the most common ones found in the 
sEMG quality analysis literature [7–16]. One way to get around this 
limitation is to use a non-supervised method to identify the different 
contaminations that is presented in the signal, like the one implemented 
by Ijaz and Choi [16], and then use this data to train a supervised 
method. 

The methodology presented by our study found promising results 

Fig. 9. Difference between the expected value and non-amputee test subjects, exercise 2.  
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that is in accordance with the current literature [12,15,16] and advance 
the field proposing a faster algorithm by using the raw signal instead of a 
set of features. 
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