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Abstract Given a Lipschitz function f : {1, . . . , d}N → R, for each β > 0 we denote
by μβ the equilibrium measure of β f and by hβ the main eigenfunction of the Ruelle
Operator Lβ f . Assuming that {μβ}β>0 satisfy a large deviation principle, we prove the
existence of the uniform limit V = limβ→+∞ 1

β
log(hβ). Furthermore, the expression

of the deviation function is determined by its values at the points of the union of the
supports of maximizing measures. We study a class of potentials having two ergodic
maximizing measures and prove that a L.D.P. is satisfied. The deviation function is
explicitly exhibited and does not coincide with the one that appears in the paper by
Baraviera-Lopes-Thieullen which considers the case of potentials having a unique
maximizing measure.

Keywords Equilibrium measure · Maximizing measure · Large deviation principle

1 Introduction

We denote by X the Bernoulli space {1, . . . , d}N, N = {1, 2, 3, . . .}, and by σ the
shift map acting on X . The metric considered satisfies dθ (x, y) = θmin{i, xi �=yi },
where x = (x1x2x3 · · · ), y = (y1y2y3 · · · ) and θ ∈ (0, 1) is fixed. If x1, . . . , xn ∈
{1, . . . , d} and y = (y1y2y3 · · · ) ∈ X, the notation (x1 · · · xn y) represents the
element (x1x2 · · · xn y1y2y3 · · · ) ∈ X . A cylinder is a subset of X of the form
[x1 · · · xn] := {(x1 · · · xn y) | y ∈ X}. We denote by C(X) the set of continuous func-
tions from X to R and by P(X) the set of probabilities on X .
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18 J. K. Mengue

Let f : X → R be a Lipschitz function and, for each β > 0, denote by Lβ f the
Ruelle operator associated with β f , which is defined by

Lβ f : C(X) → C(X), (Lβ f (w))(x) =
∑

a∈{1,...,d}
eβ f (ax)w(ax).

We denote by νβ the eigenmeasure of Lβ f , that is, the probability satisfying∫
Lβ f (u) dνβ = eP(β f )

∫
u dνβ for any continuous function u : X → R, and by hβ

the main eigenfunction of Lβ f . More precisely, hβ is Lipschitz, Lβ f (hβ) = eP(β f )hβ

and
∫
hβ dνβ = 1. Let gβ := β f + log(hβ) − log(hβ ◦ σ) − P(β f ). The functions

gβ and β f − P(β f ) are cohomologous and Lgβ1 = 1. The eigenmeasure μβ of Lgβ

is σ−invariant and coincides with the equilibrium measure of β f , that is,

∫
β f dμβ + h(μβ) = P(β f ) = sup

{μ∈P(X);μ is σ−invariant }

∫
β f dμ + h(μ).

Furthermore dμβ = hβ dνβ . Classical results on thermodynamic formalism can be
found in Bowen et al. (2008) and Parry and Pollicott (1990).

At the zero temperature case, in thermodynamic formalism, the above objects are
studied for large β. In this case some intersections with ergodic optimization appear
(Baraviera et al. 2013; Contreras et al. 2001; Conze and Guivarc’h 1993; Jenkinson
2006). It is well known, for instance, that limβ→+∞ P(β f )

β
= m( f ), where

m( f ) := sup
{μ∈P(X);μ is σ−invariant}

∫
f dμ. (1)

Any possible limit (weak* topology) of a subsequence of (μβ)β>0 attains the supre-
mum in (1) that is, is a maximizing measure of f . Furthermore, the family of functions
( 1
β
log(hβ)) is equicontinuous and uniformly bounded and any possible uniform limit

V of a subsequence of ( 1
β
log(hβ)) is a calibrated subaction (Contreras et al. 2001),

that is, it satisfies, for any x ∈ X , the equation

sup
σ(y)=x

[ f (y) + V (y) − V (x) − m( f )] = 0.

The limit function V is Lipschitz and R− := f + V − V ◦ σ − m( f ) is the uniform
limit of the corresponding subsequence of gβ

β
, which satisfies:

(1) R− is Lipschitz and R− ≤ 0,
(2) R− and f − m( f ) are cohomologous,
(3) For any x ∈ X there exists y ∈ σ−1(x) satisfying R−(y) = 0.

Define R+ := −R−, Rn+(x) := ∑n−1
j=0 R+(σ j (x)) and R∞+ (x) := limn→+∞ Rn+(x)

(R∞+ can assume the value +∞).
Subactions and maximizing measures are dual objects linked in a particular form

when we study the speed of convergence of μβ to a maximizing measure. From
Baraviera et al. (2006) is known that, when the maximizing measure of f is unique,
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Large Deviations for Equilibrium Measures… 19

there exists the uniform limit R− of gβ

β
, (β → +∞). Furthermore, the measures

(μβ)β>0 satisfy a large deviation principle (LDP), in the following sense, also used
in the present work: there exists a lower semi-continuous function I : X → [0,+∞]
satisfying, for any cylinder k ⊂ X ,

lim
β→+∞

1

β
log(μβ(k)) = − inf

x∈k I (x).

The deviation function I in Baraviera et al. (2006) is given by I = R∞+ . It can assume
the value +∞.

In Lopes and Mengue (2014); Mengue (2010) this result has been generalized.
Given x ∈ X , n ∈ N and β > 0, consider the probability mx,β,n ∈ P(X) defined by∫

w dmx,β,n = Ln
gβ

(w)(x). If the maximizing measure of f is unique, then1

lim
n,β→+∞

1

β
log(mx,β,n(k)) = lim

n,β→+∞
1

β
log(Ln

gβ
(χk)(x)) = − inf

z∈k R
∞+ (z) (2)

for any cylinder k ⊂ X . Given a continuous function w, Ln
gβ

(w) converges uniformly

to
∫

w dμβ (n → +∞). Therefore, for any x ∈ X , the probabilities μx,β,n converge
to μβ in the weak* topology (n → +∞). Consequently, from (2), for any x ∈ X ,

lim
β→+∞

1

β
log(μβ(k)) = lim

β→+∞ lim
n→+∞

1

β
log(mx,β,n(k)) = − inf

z∈k R
∞+ (z).

In Bissacot et al. (2016b) the main result of Baraviera et al. (2006), stated above,
was studied for a more general class of functions (satisfying the Walters condition)
on a countable mixing subshift with the BIP property. However, in both works it was
assumed the existence of a unique maximizing measure to f .

If we do not assume the hypothesis of unicity, then there are some natural questions
to be considered:

Question 1: there exists V := limβ→+∞ 1
β
log(hβ)?

Question 2: there exists limβ→+∞ 1
β
log(μβ(k)) for any cylinder k?

Question 3: there are relations between V and the deviation function I?
Initially, it is natural to assume that the answer to the question 3 can be obtained

generalizing the results in Baraviera et al. (2006). In the case of existing the uniform
limit R+ = limβ→+∞ −gβ/β, we could try to prove that μβ satisfies a LDP with
deviation function I = R∞+ . However, in Baraviera et al. (2013) it is proved that this
assertion is false. Even in the case there exist the limits in questions 1 and 2, one can
get an explicit example where I �= R∞+ .

1 we write limn,β→+∞ aβ,n = a, with a ∈ R, if for any ε > 0 there exists L > 0 such that n, β > L ⇒
|aβ,n − a| < ε.
In the Eq. (2), even though R∞+ can assume the value +∞, we have that infz∈k R∞+ (z) is finite because
for any point p that belongs to the support of the maximizing measure we have R∞+ (p) = 0 and the set
∪n≥1σ

−n{p} is dense.
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20 J. K. Mengue

We will show that, when the assertion in question 2 is satisfied, an affirmative
answer to the question 1 exists. In this case, we also present an answer to the question
3, determining relations between R+ and I . Several results are known concerning
the problem of selection of a maximizing measure (Baraviera et al. 2013; Bissacot
et al. 2016a; Brémont 2003; Chazottes and Hochman 2010; Coronel and Rivera-
Letelier 2015; Kempton 2011; Leplaideur 2005, 2012). In this work we present an
improvement in the study of selection of the subaction as a consequence of our results
on large deviations on the first part of the paper.

Define

Mmax ( f ) := {μ ∈ P(X) : μ is σ − invariant and
∫

f dμ = m( f )}

and

Xmax ( f ) :=
⋃

μ∈Mmax ( f )

supp(μ).

Xmax ( f ) is called the Mather set of f . It is compact, non-empty and for any invariant
probability ν, supp(ν) ⊂ Xmax ( f ) iff ν is a maximizing measure of f (Morris 2007,
2013).

In the Sect. 2. we will prove the following theorem:

Theorem 1 With the above notations, suppose that for any cylinder k ⊂ X, there

exists lim
β→+∞

1

β
log(μβ(k)). Then, denoting x = (x1x2x3 · · · ),

1. The family of probabilities (μβ)β>0 satisfies a LDP with deviation function
I : X → [0,+∞],

I (x) := − lim
n→+∞ lim

β→+∞
1

β
log(μβ([x1 · · · xn])). (3)

2. There exists the uniform limit R+ := − limβ→+∞
gβ

β
. It satisfies

I = R+ + I ◦ σ and I ≥ R∞+ .

3.
I (x) = inf

y∈Xmax ( f )
lim inf
n→+∞

(
Rn+(x1 · · · xn y) + I (y)

)
. (4)

If R∞+ (x) < +∞, there exists at least one point y ∈ Xmax ( f ) which is an accu-
mulation point of {σ nx}n=1,2,.... For any such y

I (x) = R∞+ (x) + I (y).

4. There exists the uniform limit V = limβ→+∞ 1
β
log(hβ).
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Large Deviations for Equilibrium Measures… 21

5. The eigenmeasures νβ satisfy a LDP with deviation function I + V .

Some remarks:

1. In the Eq. (3) we do not exclude the possibility I (x) = +∞. When we write
I (x) = R+(x) + I (σ x) we may have +∞ = R+(x) + ∞. Following the above
discussion, the function R+ is real-valued, nonnegative, Lipschitz and for any
x ∈ X , mina∈{1,...,d} R+(ax) = 0.

2. Under the hypothesis of the theorem we get:
2.1. There exists at least one point ỹ ∈ Xmax ( f ) satisfying I (ỹ) = 0. Indeed, let

μ∞ be a probability on X such that, for an increasing sequence βi → +∞,
μβi → μ∞ (weak* topology). Let ỹ ∈ supp(μ∞), that is,μ∞([y1 · · · yn]) > 0
for any cylinder [y1 · · · yn] containing ỹ. In this way, from the hypothesis of
the theorem,

lim
β→+∞

1

β
log(μβ([y1 · · · yn])) = lim

βi→+∞
1

βi
log(μβi ([y1 · · · yn])) = 0,

because μβi ([y1 · · · yn]) → μ∞([y1 · · · yn]) > 0. It follows from item 1. of
the theorem that I (ỹ) = 0.

2.2. If R∞+ (x) < +∞ then I (x) < +∞. Consequently, as R∞+ (x) = 0 for any
x ∈ Xmax ( f ), we conclude that I (x) < +∞ for any x ∈ Xmax ( f ).
Indeed, in the proof of the Theorem 1 we will show that (see eq. (10) below)

I (x) ≤ lim inf
n→+∞ Rn+(x1 · · · xn y) + I (y) ∀ y ∈ X.

As I (ỹ) = 0 at some point ỹ ∈ Xmax ( f ) and R+ is Lipschitz, there exists a
constant c > 0 satisfying

I (x) ≤ lim inf
n→+∞ Rn+(x1 · · · xn ỹ) ≤ lim inf

n→+∞ Rn+(x) + c(θ + · · · + θn)

≤ R∞+ (x) + cθ

1 − θ
.

2.3. In the Eq. (4), if R∞+ (x) = +∞ then, following computations as above, we
get

lim inf
n→+∞

(
Rn+(x1 · · · xn y) + I (y)

) = +∞ ∀y ∈ Xmax ( f ).

In this case we write

inf
y∈Xmax ( f )

lim inf
n→+∞

(
Rn+(x1 · · · xn y) + I (y)

) = +∞.

If R∞+ (x) < +∞ then

lim inf
n→+∞

(
Rn+(x1 · · · xn y) + I (y)

)
< +∞ ∀y ∈ Xmax ( f ).
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22 J. K. Mengue

2.4. If I (y) = 0 for all y ∈ Xmax ( f ) then I (x) = R∞+ (x) for all x ∈ X (it follows
from item 3. of the theorem). This is the case, for instance, if the maximizing
measure of f is unique, following the discussion in 2.1.

2.5. The Eq. (4) remains valid if we replace y ∈ Xmax ( f ) by y ∈ X . It follows a
similar argument with inf y∈Xmax ( f ) replaced by inf y∈X in the proof.

3. There exist constants C1,C2 > 0 satisfying, for any x, y ∈ X , n ≥ 1, and β

sufficiently large,

−βC1 < log(hβ(x)) < βC1, | log(hβ(x))− log(hβ(y))| < βC1dθ (x, y) (5)

and
e−βnC2 < μβ([x1 · · · xn]) < eβnC2 . (6)

For a proof of (5), see Contreras et al. (2001) p. 1404 or Mengue (2010) Lemma
28. For a proof of (6), see Parry and Pollicott (1990), proof of the Corollary 3.2.1.,
observing that μβ is the equilibrium measure of β f + log(hβ) − log(hβ ◦ σ) −
P(β f ), and use (5).
If the hypothesis of the theorem is not satisfied, from (6), applying a Cantor’s
diagonal argument, we obtain the existence of a sequence β j for which all limits
limβ j→+∞ 1

β j
log(μβ j (k)) exist. A similar result is valid for this subsequence,

with all β replaced by β j in the statement of the theorem.
4. If X is a subshift of finite type defined from an aperiodic matrix, the theorem

remains valid except by the Eq. (4) which must be replaced by the following Eq.

I (x) = inf
y∈Xmax ( f )

⎡

⎢⎣ lim
ε→0+ inf

n≥1
inf

d(x,z)<ε
σ n(z)=y

Rn+(z) + I (y)

⎤

⎥⎦ . (7)

We will prove the Eq. (7) after the proof of the Theorem 1. Particullarly, both the
Eqs. (4) and (7), are valid if X = {1, . . . , d}N.
In the section 3. we will apply the above theorem studying the L.D.P. for the

equilibrium measures of a class of Lipschitz functions f : {0, 1}N → R satisfying2

f |[01] = b, f |[10] = d, f (0∞) = f (1∞) = 0, f |[0n1]=an, f |[1n0]=cn, n≥2

where b, d, an, cn < 0. The deviation function I is presented and, in the case∑
j≥2 a j < b + d + ∑

j≥2 c j , this function differs from the one that appears in
Baraviera et al. (2006) [see also Baraviera et al. (2013)].

2 we use the following notations

02 = 00, 03 = 000, . . . , 0∞ = (0000 · · · ), 12 = 11, 13 = 111, . . . , 1∞ = (1111 · · · ).
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Large Deviations for Equilibrium Measures… 23

2 Proof of Theorem 1

The following general result is very helpful and proves item 1. of Theorem 1.

Lemma 2 Let ηβ be a sequence of probabilities on X. Suppose that for any cylinder

k ⊂ X there exists the limit lim
β→+∞

1

β
log(ηβ(k)). Then, denoting x = (x1x2x3 · · · ),

1. The function I : X → [0,+∞],

I (x) := − lim
n→+∞ lim

β→+∞
1

β
log(ηβ([x1 · · · xn]))

is lower semi-continuous.
2. For any cylinder k ⊂ X,

lim
β→+∞

1

β
log(ηβ(k)) = − inf

x∈k I (x).

Remark In Bissacot et al. (2016b) this result is generalized for Gibbs measures when
considering a countable mixing subshift with the BIP property.

Proof The function I is well defined because ψx (n) := limβ→+∞ 1
β
log(ηβ([x1 · · ·

xn])) exists and it is not increasing with n. The function I : X → [0,+∞], I (x) =
− limn→+∞ ψx (n) assume the value +∞ if limn→+∞ ψx (n) = −∞. Furthermore,
denoting zn = (zn1z

n
2z

n
3 · · · ) ∈ X ,

I (x) = lim inf
n→+∞[− lim

β→+∞
1

β
log(ηβ([x1 · · · xn]))]

= lim inf
n→+∞ inf

zn∈[x1···xn ]
[− lim

m→+∞ lim
β→+∞

1

β
log(ηβ([x1 · · · xn]))]

≤ lim inf
n→+∞ inf

zn∈[x1···xn ]
[− lim

m→+∞ lim
β→+∞

1

β
log(ηβ([zn1 · · · znm]))]

= lim inf
n→+∞ inf

zn∈[x1···xn ]
I (zn),

therefore I is lower semi-continuous.
Given a cylinder k = [x1 · · · xn], for any z = (z1z2z3 · · · ) ∈ k we have

lim
β→+∞

1

β
log(ηβ(k)) ≥ lim

m→+∞ lim
β→+∞

1

β
log(ηβ([z1 · · · zm])) = −I (z).

Thus, we get

lim
β→+∞

1

β
log(ηβ(k)) ≥ sup

z∈k
−I (z) = − inf

z∈k I (z).
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24 J. K. Mengue

On the other hand, as

lim
β→+∞

1

β
log(ηβ([x1 · · · xn])) = lim

β→+∞
1

β
log(

d∑

j=1

ηβ([x1 · · · xn j]))

= max
j∈{1,··· ,d} lim

β→+∞
1

β
log(ηβ([x1 · · · xn j])),

there exists y = (y1y2y3 · · · ) ∈ X satisfying

lim
β→+∞

1

β
log(ηβ([x1 · · · xn])) = lim

β→+∞
1

β
log(ηβ([x1 · · · xn y1]))

= lim
β→+∞

1

β
log(ηβ([x1 · · · xn y1y2])) = · · ·

Therefore, we finally get

lim
β→+∞

1

β
log(ηβ(k)) = −I (x1 · · · xn y) ≤ sup

z∈k
−I (z) = − inf

z∈k I (z).

Lemma 3 Under the hypotheses of the Theorem 1 the deviation function I in (3)
satisfies I (x) ≥ I (σ (x)) ∀x ∈ X. Particularly, the function

I0 : X → [0,+∞], I0(x) := lim
n→+∞ I (σ n(x)) (8)

is constant on each orbit 
x = {σ n(x) | n ∈ {0, 1, 2, 3, . . .}}, x ∈ X.

Proof Denoting x = (x1x2x3 . . .), as μβ is σ−invariant, for n ≥ 2,

1

β
log(μβ([x1 · · · xn])) ≤ 1

β
log(

d∑

j=1

μβ([ j x2 · · · xn])) = 1

β
log(μβ([x2 · · · xn])).

Then

I (x) = − lim
n→+∞ lim

β→+∞
1

β
log(μβ([x1 · · · xn]))

≥ − lim
n→+∞ lim

β→+∞
1

β
log(μβ([x2 · · · xn])) = I (σ (x)).

We write y ∈ ω(x), x, y ∈ X , if there exists an increasing sequence ni → +∞
such that σ ni (x) → y.

Corollary 4 Under the hypotheses of Theorem 1, let I be the deviation function
defined in (3) and I0 be the function defined in (8).

1. If y ∈ ω(x), then I (y) ≤ I0(x) ≤ I (x),
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Large Deviations for Equilibrium Measures… 25

2. I is constant on each periodic orbit,
3. If x ∈ ω(y) and y ∈ ω(x), then I0(x) = I (x) = I (y) = I0(y).

Proof In order to prove 1. we suppose σ n j (x) → y. From the above lemma and using
the lower semi-continuity of I we get

I (x) ≥ I0(x) = lim
n j→+∞ I (σ n j (x)) ≥ I (y).

The proof of 2. consists in observing that for a periodic orbit {x, . . . , σ n(x)}we have:

I (x) ≥ I (σ (x)) ≥ · · · ≥ I (σ n(x)) ≥ I (x).

Analogously, to prove 3. we observe that from 1. we have

I (x) ≥ I0(x) ≥ I (y) ≥ I0(y) ≥ I (x).

Proof of Theorem 1:

proof of 1.
It is a consequence of Lemma 2.

proof of 2.
The existence of the limit R− is a consequence of corollary 48 in Mengue (2010).

Furthermore, following the Proposition 47 in Mengue (2010), for x = (x0x1x2 · · · ),
we get

R+(x) = lim
β,n→+∞

1

β
log

μβ [x1 · · · xn]
μβ [x0 · · · xn]

= lim
n→+∞

(
lim

β→+∞
1

β
logμβ [x1 · · · xn] − lim

β→+∞
1

β
logμβ [x0 · · · xn]

)
.

Therefore, using Lemma 2, we have

I (x) = R+(x) + I (σ (x)).

It follows that for each n,

I (x) = Rn+(x) + I (σ n(x)), (9)

and, taking n → +∞,

I (x) = R∞+ (x) + I0(x)

[see also Bissacot et al. (2016b)].
proof of 3.
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26 J. K. Mengue

Denoting x = (x1x2x3 · · · ), we want to show that

I (x) = inf
y∈Xmax ( f )

lim inf
n→+∞

(
Rn+(x1 · · · xn y) + I (y)

)
.

For a fixed y ∈ X we have from (9) that

I (x1 · · · xn y) = Rn+(x1 · · · xn y) + I (y).

As I is lower semi-continuous,

I (x) ≤ lim inf
n→+∞

(
Rn+(x1 · · · xn y) + I (y)

)
. (10)

Then, (considering an infimum on the right side)

I (x) ≤ inf
y∈Xmax ( f )

lim inf
n→+∞

(
Rn+(x1 · · · xn y) + I (y)

)
.

Now, we will prove the reverse inequality.
If R∞+ (x) = +∞, then I (x) = R∞+ (x) + I0(x) = +∞ and, as R+ is a Lipschitz

function, for any y ∈ Xmax ( f ),

lim inf
n→+∞ Rn+(x1 · · · xn y) = +∞.

So the main equality (4) holds.
If R∞+ (x) < +∞, there exists at least one point y ∈ Xmax ( f ) such that is an accu-

mulation point of the sequence {σ n(x)}n=0,1,... [see Lopes et al. (2009) or Lemma 42
and Cor. 43 in Mengue (2010) or Bissacot et al. (2016b)]. We write y = (y1y2y3 · · · ).
It follows that for each j ∈ N there exists some m j > j such that

x = (x1 · · · xm j y1 · · · y j xm j+ j+1xm j+ j+2 · · · ).

Then

I (x) = (R
m j
+ (x1 · · · xm j y1 · · · y j xm j+ j+1 · · · ) + I (y1 · · · y j xm j+ j+1 · · · ).

When j → +∞, using the fact that I is lower semi-continuous and R+ is Lipschitz,
we get

I (x) ≥ lim inf
j→+∞(R

m j
+ (x1 · · · xm j y1 · · · y j xm j+ j+1 · · · )) + I (y)

= lim inf
j→+∞(R

m j
+ (x1 · · · xm j y)) + I (y)

≥ lim inf
n→+∞(Rn+(x1 · · · xn y)) + I (y).
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Large Deviations for Equilibrium Measures… 27

Therefore,

I (x) ≥ inf
y∈Xmax ( f )

lim inf
n→+∞

(
Rn+(x1 · · · xn y) + I (y)

)
,

proving the reverse inequality. This concludes the proof of (4).
As we see above, if R∞+ (x) < +∞, there exists at least one point y ∈ Xmax ( f )

which is an accumulation point of {σ nx}n=1,2,.... For any such y, from corollary 4, we
have

I (x) = R∞+ (x) + I0(x) ≥ R∞+ (x) + I (y).

On the other hand, following the notations above

I (x) ≤ lim inf
j→+∞ I (x1 · · · xm j y)

= lim inf
j→+∞ R

m j
+ (x1 · · · xm j y) + I (y) = lim

m j→+∞ R
m j
+ (x)+I (y)=R∞+ (x)+I (y),

where we use that I is lower semi-continuous, Rn+(x) is increasing with n,
xm j+1 · · · xm j+ j = y1 · · · y j and that R+ is Lipschitz. This concludes the proof of
the equation

I (x) = R∞+ (x) + I (y).

Proof of 4. and 5.
We denote by νβ the eigenmeasure of the Ruelle Operator Lβ f . The probabilities

νβ and μβ satisfy hβ dνβ = dμβ , that is,
∫

w · hβ dνβ =
∫

w dμβ ∀w ∈ C(X).

Consequently, given a cylinder k ⊂ X , from (5) and (6), there exists a constant Ck

such that, for β sufficiently large, −βCk < log(νβ(k)) < βCk .
We suppose initially the existence of the uniform limit

V1 := lim
β j→+∞

1

β j
log(hβ j ).

For a cylinder k0 and an accumulation point a of 1
β j

log(νβ j (k0)), there exists a sub-
sequence β ji such that

lim
β ji →+∞

1

β ji
log(νβ ji

(k0)) = a.

Using a Cantor’s diagonal argument we can suppose that for any cylinder k there exists
the limit of 1

β ji
log(νβ ji

(k)). By hypothesis,μβ satisfies a LDPwith deviation function

I . Fixed any point z = (x1x2x3 · · · ), for each n,
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1

β ji
log(νβ ji

([x1 · · · xn]) + inf[x1···xn ]
1

β ji
log(hβ ji

) ≤ 1

β ji
log(μβ ji

([x1 · · · xn]))

≤ 1

β ji
log(νβ ji

([x1 · · · xn]) + sup
[x1···xn ]

1

β ji
log(hβ ji

).

Taking β ji → +∞, we have

lim
β ji →+∞

1

β ji
log(νβ ji

([x1 · · · xn]) + inf[x1···xn ]
V1 ≤ lim

β ji →+∞
1

β ji
log(μβ ji

([x1 · · · xn]))

≤ lim
β ji →+∞

1

β ji
log(νβ ji

([x1 · · · xn]) + sup
[x1···xn ]

V1.

When n → +∞ (applying Lemma 2) we have

− lim
n→+∞ lim

β ji →+∞
1

β ji
log(νβ ji

([x1 · · · xn]) = I (z) + V1(z).

Using Lemma 2 again, we conclude that νβ ji
satisfies a LDP with deviation function

I + V1. Then

a = − inf
x∈k0

(I (x) + V1(x)).

As a is any possible accumulation point of 1
β j

log(νβ j (k0)) we conclude that

lim
β j→∞

1

β j
log(νβ j (k0)) = − inf

x∈k0
(I (x) + V1(x)).

Now we will prove the existence of the limit function V . Suppose that for subse-
quences βi and β j we have

lim
βi→+∞

1

βi
log(hβi ) = V1 and lim

β j→+∞
1

β j
log(hβ j ) = V2.

Applying 2. of the Theorem 1 we obtain V2 − V2 ◦ σ = V1 − V1 ◦ σ . Therefore,
V2 = V1 + C for some constant C .

Applying the above conclusions on the LDP for the set X (the full space) we get

0 = lim
βi→+∞

1

βi
log(νβi (X)) = − inf

x∈X(I (x) + V1(x))

and

0 = lim
β j→+∞

1

β j
log(νβ j (X)) = − inf

x∈X(I (x) + V2(x)).
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Thus, we have

0 = − inf
x∈X(I (x) + V2(x)) = − inf

x∈X(I (x) + V1(x) + C)

= − inf
x∈X(I (x) + V1(x)) + C = 0 + C = C,

proving thatV2 = V1. This shows that exists the uniform limitV = limβ→∞ 1
β
log(hβ),

proving 4.
The previous arguments on the LDP for the measures νβ j can be applied to the

general family of measures νβ , proving 5. 
�
Proof of Remark 4 and Eq. (7): If X is a subshift of finite type defined from an ape-
riodic matrix, the arguments used in the above proof are also valid except by some
estimates in the proof of (4). In this case the Eq. (4) can be replaced by the Eq. (7),
that is,

I (x) = inf
y∈Xmax ( f )

⎡

⎢⎣ lim
ε→0+ inf

n≥1
inf

d(x,z)<ε
σ n(z)=y

Rn+(z) + I (y)

⎤

⎥⎦ .

Indeed, from (9),

inf
d(x,z)<ε
σ n(z)=y

Rn+(z) + I (y) = inf
d(x,z)<ε
σ n(z)=y

I (z).

As I is lower semi-continuous, for any x, y ∈ X , we have

I (x) ≤
⎡

⎢⎣ lim
ε→0+ inf

n≥1
inf

d(x,z)<ε
σ n(z)=y

I (z)

⎤

⎥⎦ ,

and, then

I (x) ≤ inf
y∈Xmax ( f )

⎡

⎢⎣ lim
ε→0+ inf

n≥1
inf

d(x,z)<ε
σ n(z)=y

Rn+(z) + I (y)

⎤

⎥⎦ .

In order to prove the reverse inequality we remark that if R∞+ (x) = +∞, then
I (x) = R∞+ (x) + I0(x) = +∞ and using the above inequality, the Eq. (7) corre-
sponds to the equality +∞ = +∞. Suppose R∞+ (x) < ∞ and consider η > 0.
As R+ is Lipschitz, there exists a constant C > 0 such that |R+(a) − R+(b)| ≤
Cdθ (a, b), ∀a, b ∈ X . Let j0 be such that Cθ j0

1−θ
< η. Take y ∈ Xmax ( f ) ∩ ω(x).

Then, from corollary 4,

I (x) = R∞+ (x) + I0(x) ≥ R∞+ (x) + I (y).
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Given ε > 0, let j > j0 be such that θ j < ε. For this j there exists m j > j such that

x = (x1 · · · xm j y1 · · · y j xm j+ j+1xm j+ j+2 · · · ).
Let zε = (x1 · · · xm j y). Then,

I (x) ≥ R∞+ (x) + I (y) ≥ R
m j
+ (x) + I (y)

≥ R
m j
+ (x1 · · · xm j y) + I (y) − η = R

m j
+ (zε) + I (y) − η.

Therefore, d(x, zε) < ε, σm j (zε) = y and I (x) ≥ (R
m j
+ (zε) + I (y)) − η. This

construction shows that

I (x) ≥ inf
y∈Xmax ( f )

⎡

⎢⎣ lim
ε→0

inf
n≥1

inf
d(x,z)<ε
σ n(z)=y

Rn+(z) + I (y)

⎤

⎥⎦ − η.

As η can be arbitrarily small, we conclude the proof. 
�

3 Application for an Explicit Example

Now we use the results described above in order to complete the study of Large
Deviations for the equilibrium measures of a family of functions previously studied
in Baraviera et al. (2013).

Definition 5 We write f ∈ W if f : {0, 1}N → R is a Lipschitz function and there
exist negative numbers b, d, {cn}n≥2, {an}n≥2, such that, for n ≥ 2,

f |[01] = b, f |[10] = d, f (0∞) = f (1∞) = 0, f |[0n1] = an, f |[1n0] = cn .
(11)

Any function f ∈ W belongs to the class of potentials defined by P. Walters
Walters (2007) where 0 = a = c, b = b1 = b2 = · · · and d = d1 = d2 = · · · .
We remark that

∑
i≥2 ai > −∞ and

∑
i≥2 ci > −∞, because f is Lipschitz and

f (0∞) = f (1∞) = 0.
In the analysis of the zero temperature case for these functions, the exponential

limit of P(β f ) plays an important role.

Lemma 6 If f ∈ W satisfies (11), then

lim
β→+∞

1

β
log(P(β f )) = A

where

A =

⎧
⎪⎨

⎪⎩

b + d + ∑∞
j=1 c1+ j , when

∑∞
j=1 a1+ j ≤ b + d + ∑∞

j=1 c1+ j ,

b + d + ∑∞
j=1 a1+ j , when

∑∞
j=1 c1+ j ≤ b + d + ∑∞

j=1 a1+ j ,

b+d
2 + ∑∞

j=1
a1+ j
2 + ∑∞

j=1
c1+ j
2 , in the other cases.
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Proof See Prop. 12 in Baraviera et al. (2013). 
�
Given f ∈ W satisfying (11) and β > 0, in order to simplify the computations, we

will consider the function Hβ(x) = hβ(x)
hβ(0∞)

. This normalization of the eigenfunction

was used in Baraviera et al. (2013). Observe that Hβ(0∞) = 1 and log(Hβ)−log(Hβ ◦
σ) = log(hβ) − log(hβ ◦ σ). Therefore

gβ=β f + log(hβ) − log(hβ ◦ σ)−P(β f )=β f + log(Hβ) − log(Hβ ◦ σ) − P(β f ).

Following Walters (2007) (see Theo. 3.1 and p. 1341), we obtain

Hβ(0∞) = 1

Hβ(1∞) = eβb

eP(β f )

⎛

⎝1 +
∞∑

j=1

eβ(a2+···+a1+ j )− j P(β f )

⎞

⎠

Hβ |[0q1] = (eP(β f ) − 1)

eP(β f )

⎛

⎝1 +
∞∑

j=1

eβ(aq+1+···+aq+ j )− j P(β f )

⎞

⎠ , q ≥ 1

Hβ |[1q0] = Hβ(1∞)(eP(β f ) − 1)

eP(β f )

⎛

⎝1 +
∞∑

j=1

eβ(cq+1+···+cq+ j )− j P(β f )

⎞

⎠ , q ≥ 1.

The next lemma can be used in order to get the function R∞+ that appears in the
formulation of the deviation function in Theorem 1.

Lemma 7 Under the above notations, for f ∈ W satisfying (11), there exists the
uniform limit U = limβ→+∞ 1

β
log(Hβ). This function U is a calibrated subaction

for f and satisfies

U (0∞) = 0,

U (1∞) = b + max

⎧
⎨

⎩0,
∞∑

j=1

(a1+ j ) − A

⎫
⎬

⎭ ,

U |[0q1] = A + max

⎧
⎨

⎩0,
∞∑

j=1

(aq+ j ) − A

⎫
⎬

⎭ , q ≥ 1,

U |[1q0] = b + A + max

⎧
⎨

⎩0,
∞∑

j=1

(a1+ j ) − A

⎫
⎬

⎭ + max

⎧
⎨

⎩0,
∞∑

j=1

(cq+ j ) − A

⎫
⎬

⎭ , q ≥ 1.

Proof The result can be obtained as a particular case of Prop. 2 in Baraviera et al.
(2013). 
�
Remark if V = limβ→+∞ 1

β
log(hβ) then U = V − C , with C = V (0∞).
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We want to study the LDP for the equilibrium measures μβ and naturally any
maximizing measure of f ∈ W is a convex combination of the ergodic measures
supported in the periodic orbits 0∞ = (000...) and 1∞ = (111...). From the above
lemma there exists the limit function

R+ = − lim
β→+∞

gβ

β
= − f −U +U ◦ σ + m( f ) = − f −U +U ◦ σ.

We want to use Theorem 1. In order to do that we need to find the expression of
deviation function. More precisely, we need to compute I (0∞) and I (1∞). In this
way, considering the Lemma 2, we first study μβ([0n]) and μβ([1n]).
Lemma 8 Let f ∈ W satisfying (11). Then, for β > 0 and n ≥ 1,

μβ([0n]) = Sn0 (β)

S0(β) + S1(β)
and μβ([1n]) = Sn1 (β)

S0(β) + S1(β)
, (12)

where

S0(β) = S10(β) := 1 + ∑∞
j=1( j + 1)eβ(a2+···+a1+ j )− j P(β f )

1 + ∑∞
j=1 e

β(a2+···+a1+ j )− j P(β f )
,

S1(β) = S11(β) := 1 + ∑∞
j=1( j + 1)eβ(c2+···+c1+ j )− j P(β f )

1 + ∑∞
j=1 e

β(c2+···+c1+ j )− j P(β f )
,

and for n ≥ 2

Sn0 (β) := eP(β f ) ∑∞
j=n( j − n + 1)eβ(a2+···+a j )− j P(β f )

(
1 + ∑∞

i=1 e
β(a2+···+a1+i )−i P(β f )

) ,

Sn1 (β) := eP(β f ) ∑∞
j=n( j − n + 1)eβ(c2+···+c j )− j P(β f )

(
1 + ∑∞

i=1 e
β(c2+···+c1+i )−i P(β f )

) .

Proof Following Baraviera et al. (2013), page 1351,

S0(β) := 1 + ∑∞
j=1( j + 1)eβ(a2+···+a1+ j )− j P(β f )

1 + ∑∞
j=1 e

β(a2+···+a1+ j )− j P(β f )

= 1 +
∞∑

j=2

eβ(a2+···+a j )+log(Hβ |[0 j 1])−log(Hβ |[01])−( j−1)P(β f )

and

S1(β) := 1 + ∑∞
j=1( j + 1)eβ(c2+···+c1+ j )− j P(β f )

1 + ∑∞
j=1 e

β(c2+···+c1+ j )− j P(β f )
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= 1 +
∞∑

j=2

eβ(c2+···+c j )+log(Hβ |[1 j 0])−log(Hβ |[10])−( j−1)P(β f )
.

For j ≥ 2, [see p. 1352 in Baraviera et al. (2013)]

μβ([0 j1]) = μβ([01])eβ(a2+···+a j )+log(Hβ |[0 j 1])−log(Hβ |[01])−( j−1)P(β f ) (13)

and

μβ([1 j0]) = μβ([10])eβ(c2+···+c j )+log(Hβ |[1 j 0])−log(Hβ |[10])−( j−1)P(β f )
. (14)

Then

μβ([0]) =
∞∑

j=1

μβ([0 j1]) = μβ([01])S0(β),

and

μβ([1]) =
∞∑

j=1

μβ([1 j0]) = μβ([10])S1(β).

As μβ([01]) = μβ([10]) (because μβ is σ−invariant) and μβ([0])+μβ([1]) = 1 we
obtain

μβ([01]) = μβ([10]) = 1

S0(β) + S1(β)
. (15)

As a consequence,

μβ([0]) = S0(β)

S0(β) + S1(β)
and μβ([1]) = S1(β)

S0(β) + S1(β)
.

From (13) and (15), for any n ≥ 2,

μβ([0n]) =
∞∑

j=n

μβ([0 j1])

= μβ([01])
∞∑

j=n

eβ(a2+···+a j )+log(Hβ |[0 j 1])−log(Hβ |[01])−( j−1)P(β f )

=
∑∞

j=n e
β(a2+···+a j )+log(Hβ |[0 j 1])−log(Hβ |[01])−( j−1)P(β f )

S0(β) + S1(β)
.
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Furthermore,

∞∑

j=n

eβ(a2+···+a j )+log(Hβ |[0 j 1])−log(Hβ |[01])−( j−1)P(β f )

=
∞∑

j=n

eβ(a2+···+a j )−( j−1)P(β f )Hβ |[0 j1]
Hβ |[01]

=
∞∑

j=n

eβ(a2+···+a j )−( j−1)P(β f )
(
1 + ∑∞

i=1 e
β(a j+1+···+a j+i )−i P(β f )

)
(
1 + ∑∞

i=1 e
β(a2+···+a1+i )−i P(β f )

)

=
∑∞

j=n
∑∞

i=0 e
β(a2+···+a j+i )−( j+i−1)P(β f )

(
1 + ∑∞

i=1 e
β(a2+···+a1+i )−i P(β f )

)

= eP(β f ) ∑∞
m=n(m − n + 1)eβ(a2+···+am)−mP(β f )

(
1 + ∑∞

i=1 e
β(a2+···+a1+i )−i P(β f )

) = Sn0 (β).

Therefore, we finally get

μβ [0n] = Sn0 (β)

S0(β) + S1(β)
.

The computation for μβ [1n] is similar. 
�
As we want to determine the limit of 1

β
log(μβ([0n])) and 1

β
log(μβ([1n])) (see

Lemma 2) the next lemma is useful.

Lemma 9 Let f ∈ W satisfying (11). Denote A = limβ→+∞ 1
β
log(P(β f )). Under

the above notations,

lim
β→+∞

1

β
log(S0(β)) = max{0,

∞∑

j=2

a j − 2A} − max{0,
∞∑

j=2

a j − A},

lim
β→+∞

1

β
log(S1(β)) = max{0,

∞∑

j=2

c j − 2A} − max{0,
∞∑

j=2

c j − A}

and for n ≥ 2

lim
β→+∞

1

β
log(Sn0 (β)) = max{a2 + · · · + an,

∞∑

j=2

a j − 2A} − max{0,
∞∑

j=2

a j − A},

lim
β→+∞

1

β
log(Sn1 (β)) = max{c2 + · · · + cn,

∞∑

j=2

c j − 2A} − max{0,
∞∑

j=2

c j − A}.

123



Large Deviations for Equilibrium Measures… 35

Proof We only present the prove of the first equation, because the arguments are
similar for the other cases. Initially, observe that for any j1 ≥ 0,

lim
β→+∞

1

β
log

⎛

⎝
∑

j≥ j1

( j + 1)e− j P(β f )

⎞

⎠ = −2A

and

lim
β→+∞

1

β
log

⎛

⎝
∑

j≥ j1

e− j P(β f )

⎞

⎠ = −A

(see Cor. 14 in Baraviera et al. (2013)).
As

1

β
log(S0(β)) = 1

β
log[1 +

∞∑

j=1

( j + 1)eβ(a2+···+a1+ j )− j P(β f )]

− 1

β
log[1 +

∞∑

j=1

eβ(a2+···+a1+ j )− j P(β f )],

wewill study the limit for 1
β
log[1+∑∞

j=1( j+1)eβ(a2+···+a1+ j )− j P(β f )] and 1
β
log[1+

∑∞
j=1 e

β(a2+···+a1+ j )− j P(β f )].
As ai < 0 ∀i ∈ {2, 3, 4, . . .} we have,

lim inf
β→+∞

1

β
log

⎛

⎝1 +
∞∑

j=1

( j + 1)eβ(a2+···+a1+ j )− j P(β f )

⎞

⎠

≥ max

⎧
⎨

⎩0 , lim inf
β→+∞

1

β
log

⎛

⎝eβ
∑

i≥2 ai
∞∑

j=1

( j + 1)e− j P(β f )

⎞

⎠

⎫
⎬

⎭

= max{0,
∑

i≥2

ai − 2A}.

Furthermore, for any fixed j0, rewriting

⎛

⎝1 +
∞∑

j=1

( j + 1)eβ(a2+···+a1+ j )− j P(β f )

⎞

⎠

in the form
⎡

⎣1 +
j0−1∑

j=1

( j + 1)eβ(a2+···+a1+ j )− j P(β f )

⎤

⎦ +
⎡

⎣
∞∑

j= j0

( j + 1)eβ(a2+···+a1+ j )− j P(β f )

⎤

⎦
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we have

lim sup
β→+∞

1

β
log

⎛

⎝1 +
∞∑

j=1

( j + 1)eβ(a2+···+a1+ j )− j P(β f )

⎞

⎠

= max

⎧
⎨

⎩0 , lim sup
β→+∞

1

β
log

⎛

⎝
∞∑

j= j0

( j + 1)eβ(a2+···+a1+ j )− j P(β f )

⎞

⎠

⎫
⎬

⎭

≤ max

⎧
⎨

⎩0 , lim sup
β→+∞

1

β
log

⎛

⎝eβ(a2+···+a j0 )
∞∑

j= j0

( j + 1)e− j P(β f )

⎞

⎠

⎫
⎬

⎭

= max{0, a2 + ... + a j0 − 2A}.

Thus, as we can consider j0 large enough,

lim sup
β→+∞

1

β
log

⎛

⎝1 +
∞∑

j=1

( j + 1)eβ(a2+···+a1+ j )− j P(β f )

⎞

⎠ ≤ max{0,
∞∑

j=2

a j − 2A}.

The conclusion is that

lim
β→+∞

1

β
log

⎛

⎝1 +
∞∑

j=1

( j + 1)eβ(a2+···+a1+ j )− j P(β f )

⎞

⎠ = max{0,
∞∑

j=2

a j − 2A}.

With similar arguments we obtain

lim
β→+∞

1

β
log

⎛

⎝1 +
∞∑

j=1

eβ(a2+···+a1+ j )− j P(β f )

⎞

⎠ = max{0,
∞∑

j=2

a j − A}.


�
Now we show that the family of measures μβ satisfies a L.D.P. and present the

expression of the deviation function. We remark that, when the maximizing measure
of a potential f is unique, the deviation function in Baraviera et al. (2006) is equal to
R∞+ . For the class of potentials that we consider in this section, we have R∞+ (0∞) =
R∞+ (1∞) = 0. However in the theorem below I (0∞) �= 0, which means, I �= R∞+
(see also Theo. 3 and p. 1343 in Baraviera et al. (2013)).

Theorem 10 Let f ∈ W satisfying (11). Suppose
∑

j≥2 a j < b+d+∑
j≥2 c j . Then

(μβ)β>0 satisfies a Large Deviation Principle with deviation function I defined by

I (0∞) = b + d +
∑

j≥2

c j −
∑

j≥2

a j , I (1∞) = 0
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and for any x ∈ {0, 1}N,

I (x) =
⎧
⎨

⎩

Rn+(x) + I (0∞) if x = (x1 · · · xn0∞)

Rn+(x) if x = (x1 · · · xn1∞)

+∞ else
,

where R+ = − f −U +U ◦ σ and U satisfies

U (0∞) = 0, U |[0q1] = max

⎧
⎨

⎩b + d +
∞∑

j=2

c j ,
∞∑

j=1

aq+ j

⎫
⎬

⎭ , q ≥ 1,

U (1∞) = b, and U |[1q0] = b +
∞∑

j=1

cq+ j , q ≥ 1.

Proof First note that, with the hypothesis
∑

j≥2 a j < b+d +∑
j≥2 c j , from Lemma

6, A := limβ→+∞ 1
β
log(P(β f )) = b + d + ∑

j≥2 c j . Then,

∑

j≥2

a j < A <
∑

j≥2

c j (16)

and this function U coincides with the one in Lemma 7, which means, U =
limβ→+∞ 1

β
log(Hβ). Particularly, R+ = − f − U + U ◦ σ is the uniform limit

of − gβ

β
, when β → +∞.

claim:

lim
n→+∞ lim

β→+∞
1

β
log(μβ([0n])) =

∑

j≥2

a j − A

and

lim
n→+∞ lim

β→+∞
1

β
log(μβ([1n])) = 0.

Indeed, from (16), Lemma 8 and Lemma 9 we get, for n large enough,

lim
β→+∞

1

β
log(μβ([0n])) = lim

β→+∞
1

β
log

(
Sn0 (β)

S0(β) + S1(β)

)

= lim
β→+∞

1

β
log(Sn0 (β)) − max

{
lim

β→+∞
1

β
log(S0(β)), lim

β→+∞
1

β
log(S1(β))

}

=
⎡

⎣
∞∑

j=2

a j − 2A

⎤

⎦ − max

⎧
⎨

⎩max{0,
∞∑

j=2

a j − 2A} , −A

⎫
⎬

⎭
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=
⎡

⎣
∞∑

j=2

a j − 2A

⎤

⎦ − (−A) =
∞∑

j=2

a j − A

and

lim
β→+∞

1

β
log(μβ([1n])) = lim

β→+∞
1

β
log

(
Sn1 (β)

S0(β) + S1(β)

)

= lim
β→+∞

1

β
log(Sn1 (β)) − max{ lim

β→+∞
1

β
log(S0(β)), lim

β→+∞
1

β
log(S1(β))}

= (−A) − (−A) = 0.

This concludes the proof of claim.
Let I : X → [0,+∞] be defined by

I (0∞) = − lim
n→+∞ lim

β→+∞
1

β
log(μβ([0n])) = b + d +

∑

j≥2

c j −
∑

j≥2

a j ,

I (1∞) = − lim
n→+∞ lim

β→+∞
1

β
log(μβ([1n])) = 0

and, for any x = (x1x2x3 · · · ), x /∈ {0∞, 1∞},

I (x) = inf
y∈{0∞,1∞} lim inf

n→+∞
(
Rn+(x1 · · · xn y) + I (y)

)
. (17)

(It can be checked that Eq. (17) is satisfied for x = 0∞ and x = 1∞, but this is not
necessary).

For any cylinder k ⊂ {0, 1}N, we claim that

lim
β→+∞

1

β
log(μβ(k)) = − inf

x∈k I (x). (18)

Indeed, for a given cylinder k0, from (3), the family ( 1
β
log(μβ(k0))) is bounded.

If for a sequence βi → +∞, we have that 1
βi
log(μβi (k0)) converges, then (following

the Remark 3., which appears below the Theorem 1) for some subsequence βi j of βi

and for any cylinder k ⊂ X , we have

lim
βi j →+∞

1

βi j
log(μβi j

(k)) = − inf
x∈k I (x).

Particularly, we get

lim
βi→+∞

1

βi
log(μβi (k0)) = lim

βi j →+∞
1

βi j
log(μβi j

(k0)) = − inf
x∈k0

I (x).
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This argument proves that

lim
β→+∞

1

β
log(μβ(k0)) = − inf

x∈k0
I (x),

which concludes the proof of (18).
Now we study the function I . Given a point x = (x1x2x3...) for which 01 occurs

infinitely many times, we have I (x) = +∞ because I ≥ R∞+ and for each occurrence
of 01 in x ,

R+(01xs xs+1 · · · ) = −b −U (01xs · · · ) +U (1xs · · · )
≥ −b − (b + d +

∑

j≥2

c j ) + (b +
∑

j≥2

c j )

= −b − d > 0.

Then, from (9),

I (x) =
⎧
⎨

⎩

Rn+(x) + I (0∞) if x = (x1 · · · xn0∞)

Rn+(x) + I (1∞) if x = (x1 · · · xn1∞)

+∞ else
.


�
Assuming

∑
j≥2 c j < b + d + ∑

j≥2 a j we get a symmetric result.

Theorem 11 Let f ∈ W satisfying (11). Suppose
∑

j≥2 a j ≥ b + d + ∑
j≥2 c j and∑

j≥2 c j ≥ b + d + ∑
j≥2 a j . Then, μβ satisfies a Large Deviation Principle with

deviation function I (x) = R∞+ (x). More precisely,

I (0∞) = 0, I (1∞) = 0

and for any x ∈ {0, 1}N,

I (x) =
{
Rn+(x) if x = (x1 · · · xn0∞) or x = (x1 · · · xn1∞)

+∞ else
,

where R+ = − f −U +U ◦ σ and U satisfies

U (0∞) = 0,

U (1∞) = b

2
− d

2
+ 1

2

∑

j≥2

a j − 1

2

∑

j≥2

c j ,

U (0q1z) =
∑

j≥1

aq+ j ,
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U (1q0z) = b

2
− d

2
+ 1

2

∑

j≥2

a j − 1

2

∑

j≥2

c j +
∑

j≥1

cq+ j .

Remark The above formulas for U can have a more symmetric expression if we add
the constant d

2 + 1
2

∑
j≥2 c j . This is irrelevant when we consider the coboundary

U −U ◦ σ in R+. Thus we can consider U defined by the formulas

U (0∞) = d

2
+ 1

2

∑

j≥2

c j , U (1∞) = b

2
+ 1

2

∑

j≥2

a j ,

U (0q1z) = d

2
+ 1

2

∑

j≥2

c j +
∑

j≥1

aq+ j , U (1q0z) = b

2
+ 1

2

∑

j≥2

a j +
∑

j≥1

cq+ j .

Proof We remark that in the present case (see Lemma 6),

A = lim
β→+∞

1

β
log(P(β f )) = b + d

2
+

∞∑

j=1

a1+ j

2
+

∞∑

j=1

c1+ j

2
.

The proof of this theorem follows the same lines of the above one. We only present
some of the steps.

first: I (0∞) = I (1∞) = 0. Indeed, as

∑

j≥2

a j ≥ A ≥ 2A and
∑

j≥2

c j ≥ A ≥ 2A,

then, from lemmas 8 and 9 we get, for n large enough,

lim
β→+∞

1

β
log(μβ([0n]))

= lim
β→+∞

1

β
log(Sn0 (β)) − max{ lim

β→+∞
1

β
log(S0(β)), lim

β→+∞
1

β
log(S1(β))}

= −A − max{−A,−A} = 0

and, similarly,

lim
β→+∞

1

β
log(μβ([1n])) = −A − max{−A,−A} = 0.

second: given a point x = (x1x2x3 · · · ) in which 01 occurs infinitely many times,
we have I (x) = +∞. Indeed, as in this case we have 10 occurring infinitely many
times too, considering R∞+ (x), for each occurrence of 01 or 10 in x , we get
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R+(01xs xs+1 · · · ) ≥ −b −
∑

j≥2

a j +
⎛

⎝b

2
− d

2
+ 1

2

∑

j≥2

a j − 1

2

∑

j≥2

c j +
∑

j≥1

c1+ j

⎞

⎠

= 1

2

⎛

⎝
∑

j≥2

c j − b − d −
∑

j≥2

a j

⎞

⎠ ≥ 0;

R+(10xs xs+1 · · · ) ≥ −d −
⎛

⎝b

2
− d

2
+ 1

2

∑

j≥2

a j + 1

2

∑

j≥2

c j

⎞

⎠ +
∑

j≥2

a j

= 1

2

⎛

⎝
∑

j≥2

a j − b − d −
∑

j≥2

c j

⎞

⎠ ≥ 0.

This numbers are not zero simultaneously, because their sum results in−b−d. There-
fore R∞+ (x) = +∞.

From this computations we conclude that the deviation function satisfies,

I (x) =
⎧
⎨

⎩

0 if x = 0∞ or x = 1∞
Rn+(x) if x = (x1 · · · xn0∞) or x = (x1 · · · xn1∞)

+∞ else


�
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