
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

ANDRÉ SALDANHA OLIVEIRA

Initial Detailed Routing Algorithms

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Microeletronics

Advisor: Prof. Dr. Ricardo Reis

Porto Alegre
March 2021



CIP — CATALOGING-IN-PUBLICATION

Oliveira, André Saldanha

Initial Detailed Routing Algorithms / André Saldanha
Oliveira. – Porto Alegre: PGMICRO da UFRGS, 2021.

110 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2021. Advisor: Ricardo Reis.

I. Reis, Ricardo. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Tiago Roberto Balen
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



AGRADECIMENTOS

Agradeço aos meus pais pelo amor e apoio incondicional.



ABSTRACT

In this work, we present a study of the problem of routing in the context of the VLSI phys-

ical synthesis flow. We study the fundamental routing algorithms such as maze routing,

A*, and Steiner tree-based algorithms, as well as some global routing algorithms, namely

FastRoute 4.0 and BoxRouter 2.0. We dissect some of the major state of the art initial

detailed routing tools, such as RegularRoute, TritonRoute, SmartDR and Dr.CU 2.0.

We also propose an initial detailed routing flow, and present an implementation of the

proposed routing flow, with a track assignment technique that models the problem as an

instance of the maximum independent weighted set (MWIS) and utilizes integer linear

programming (ILP) as a solver. The implementation of the proposed initial detailed rout-

ing flow also includes an implementation of multiple-source and multiple-target A* for

terminal andnet connection with adjustable rules and weights.

Finally, we also present a study of the results obtained by the implementation of the pro-

posed initial detailed routing flow and a comparison with the ISPD 2019 contest winners,

considering the ISPD 2019 and benchmark suite and evaluation tools.

Keywords: Microelectronics, Electronic Design Automation, Physical Design, Initial

Detailed Routing.



RESUMO

Neste trabalho, apresentamos um estudo do problema de roteamento no contexto

do fluxo de síntese física de circuitos integrados VLSI. Nós estudamos algoritmos de

roteamento fundamentais como roteamento de labirinto, A* e baseados em árvores de

Steiner, além de alguns algoritmos de roteamento global como FastRoute 4.0 e BoxRouter

2.0. Nós dissecamos alguns dos principais trabalhos de roteamento detalhado inicial do

estado da arte, como RegularRoute, TritonRoute, SmartDR e Dr.CU 2.0.

Também propomos um fluxo de roteamento detalhado inicial, e apresentamos uma

implementação do fluxo de roteametno proposto, com uma técnica de assinalamento de

trilhas que modela o problema como uma instância do problema do conjunto independente

de peso máximo e usa programação linear inteira como um resolvedor. A implementação

do fluxo de rotemaento detalhado inicial proposto também inclui uma implementação de

um A* com múltiplas fontes e múltiplos destinos para conexão de terminais e redes, com

regras e pesos ajustáveis.

Por fim, nós apresentamos um estudo dos resultados obtidos pela implementação

do fluxo de roteamento detalhado inicial proposto e comparamos com os vencedores do

ISPD 2019 contest considerando a suíte de teste e ferramentas de avaliação do ISPD 2019.

Palavras-chave: Microeletrônica, EDA, Síntese Física, Rotemento Detalhado

Inicial



LIST OF ABBREVIATIONS AND ACRONYMS

EDA Electronic Design Automation

MWIS Maximum/Minimum Weighted Independent Set

VLSI Very Large Scale Integration

G-CELL Global Cell or Global Routing Grid Cells

MST Minimum Steiner Tree

RMST Rectilinear Minimum Steiner Tree

STVT Single Trunk Vertical Tree

LUT Lookup Table

ILP Integer Linear Programming

MCF Multicommodity Flow



CONTENTS

LIST OF FIGURES .........................................................................................................9
LIST OF TABLES .........................................................................................................12
1 INTRODUCTION.......................................................................................................13
1.1 Preliminaries ...........................................................................................................14
1.2 Problem Formulation .............................................................................................15
1.3 Global Routing ........................................................................................................18
1.3.1 FastRoute 4.0 (XU; ZHANG; CHU, 2009) ...........................................................21
1.3.2 BoxRouter 2.0 (CHO et al., 2007) .........................................................................23
1.3.3 Summary ................................................................................................................25
1.4 Congestion Map ......................................................................................................25
1.5 Research on Routing at UFRGS............................................................................26
2 FUNDAMENTAL ALGORITHMS ..........................................................................31
2.1 Pathfinding Algorithms ..........................................................................................31
2.1.1 Maze Router (LEE, 1961)......................................................................................31
2.1.2 A* (HART; NILSSON; RAPHAEL, 1968) ...........................................................32
2.1.3 Pattern Router (ASANO, 1982) .............................................................................35
2.2 Steiner Tree-based Algorithms ..............................................................................36
2.2.1 Track Graph Based.................................................................................................38
2.2.2 Escape Graph Based ..............................................................................................38
2.2.3 Spanning Graph Based...........................................................................................39
2.2.4 Look-up Table Based .............................................................................................40
2.2.5 Summary ................................................................................................................41
2.3 Rip-up and Reroute ................................................................................................41
2.4 Summary..................................................................................................................44
3 DETAILED ROUTING ALGORITHMS.................................................................45
3.1 RegularRoute (ZHANG; CHU, 2011) ...................................................................45
3.1.1 Single Trunk V-Tree...............................................................................................46
3.1.2 Global Segment Assignment..................................................................................47
3.1.3 Partial Assignment .................................................................................................50
3.1.4 Terminal Promotion ...............................................................................................51
3.2 TritonRoute (KAHNG; WANG; XU, 2018)..........................................................52
3.2.1 Preprocessing .........................................................................................................52
3.2.1.1 Splitting...............................................................................................................52
3.2.1.2 Merging...............................................................................................................52
3.2.1.3 Bridging ..............................................................................................................53
3.3 A Multithreaded Initial Detailed Routing Algorithm Considering Global

Routing Guides (SUN et al., 2018)...................................................................55
3.3.1 Pin Access Generation ...........................................................................................56
3.3.2 Track Assignment ..................................................................................................57
3.3.3 Multithreaded Negotiation Based Detailed Routing..............................................57
3.4 MCFRoute (Jia et al., 2018) ...................................................................................59
3.4.1 Model Construction ...............................................................................................59
3.4.2 Design Rule Modeling ...........................................................................................62
3.4.2.1 Spacing Rule Constraints....................................................................................62
3.4.2.2 Minimum Area....................................................................................................65
3.4.3 Multithread Strategy ..............................................................................................66
3.5 SmartDR (GONÇALVES; JR; MARQUES, 2020) .............................................67
3.5.1 Pin Access..............................................................................................................67



3.5.2 Design Rule Aware Path Search (DRAPS)............................................................69
3.5.3 Via Library .............................................................................................................70
3.5.4 Minimum Area.......................................................................................................70
3.5.5 Cut Spacing............................................................................................................70
3.6 Dr. CU 2.0 (LI et al., 2019) .....................................................................................70
3.6.1 Access Point Assignment.......................................................................................71
3.6.2 Multi-threaded Maze Routing and Via Selection...................................................72
3.6.3 Post-routing Refinement ........................................................................................73
3.7 Summary..................................................................................................................73
4 MIXED ROUTING FRAMEWORKS......................................................................76
4.1 Qrouter (QROUTER, 2017)...................................................................................76
4.2 GDRouter (Zhang; Chu, 2012) ..............................................................................76
5 PROPOSED INITIAL DETAILED ROUTING FLOW..........................................79
5.1 Introduction.............................................................................................................79
5.2 Initial Detailed Routing Flow Phases ....................................................................79
5.2.1 Initialization Phase.................................................................................................81
5.2.1.1 Read Data............................................................................................................81
5.2.1.2 Initialize Data Structures.....................................................................................81
5.2.2 Parallel Workload Creation Phase..........................................................................82
5.2.3 Parallel Routing Phase ...........................................................................................84
5.2.4 Sequential Routing Phase ......................................................................................93
6 IMPLEMENTATION OF THE PROPOSED ROUTING FLOW .........................96
6.1 Results ......................................................................................................................97
6.1.1 Analysis of the Result ............................................................................................98
7 CONCLUSIONS AND FUTURE WORK..............................................................102
7.1 Future Works.........................................................................................................102
REFERENCES.............................................................................................................104
APPENDIX — APPENDIX A ....................................................................................110



LIST OF FIGURES

Figure 1.1 VLSI flow highlighting physical design steps (KAHNG et al., 2011). .........14
Figure 1.2 Routing relevant concepts and structures. In (a) the figure shows a stack

of metal layers, with a via connecting the two bottom metal layers. In (b), the
figure shows a routing grid with tracks, G-Cells and a few pins. In (c), the
figure shows a snippet of a design with some placed cells with their pins shown..16

Figure 1.3 Example instance of a detailed routing input, with the routing area, a
net consisting of four pins and the routing guides. .................................................18

Figure 1.4 Example solution for an instance of a detailed routing problem. Note
that every wire respects the routing guides. ............................................................19

Figure 1.5 Simplified global routing example. In (a) simplified cells are placed and
connected in a routing region. (b) shows the routing region’s division into G-
Cells. In (c) we show only the pins and connections. In (d) the local nets are
hidden. In (e) the global routing outputs the guides. Finally, in (f) there is a
simple congestion map labeling the areas with colors according to congestion.....20

Figure 1.6 FastRoute 4.0 Framework flowchart. (XU; ZHANG; CHU, 2009) ..............21
Figure 1.7 FastRoute 4.0 3-bend routing technique (XU; ZHANG; CHU, 2009)..........22
Figure 1.8 BoxRouter 2.0 overall flow (CHO et al., 2007).............................................23
Figure 1.9 BoxRouter 2.0 negotiation based rerouting with scaling factor for ibm01

(left) and imb04 (right) circuits (CHO et al., 2007)................................................24
Figure 1.10 (a) Global routing generated congestion map, where blue and green

represent less congested regions and red and pink represet more congested
retions, and (b) where the red dots represent detailed routing opens and shorts
map (ALPERT et al., 2010) ....................................................................................27

Figure 1.11 Timeline of some of the routing related research at UFRGS - not to scale. 28

Figure 2.1 Maze router’s breadth-first search algorithm.................................................33
Figure 2.2 A* and maze router searching for the same path (PATEL, 2018). ................34
Figure 2.3 LCS bidirectional search with two search fronts, one expanding from

the source and one from the target (JOHANN, 2001). ...........................................35
Figure 2.4 Four basic topologies of Pattern Router: line in red, L in yellow, U in

purple, and Z in green. ............................................................................................36
Figure 2.5 Two Steiner trees, in (a) a minimum Steiner tree (MST) and in (b) a

rectilinear minimum Steiner tree (RMST)..............................................................37
Figure 2.6 Construction of a Hanan grid.........................................................................38
Figure 2.7 An escape graph (a) and track graph (b).(HU et al., 2005). ..........................39
Figure 2.8 Example Steiner Tree construction using a Spanning Graph (LIN et al.,

2008). In (a), the problem input consists of four pins and five obstacles. In
(b), the vertices of the obstacles and the pins form connections in the spanning
graph, based on their distance. In (c), the graph is trimmed into the shortest
spanning tree. In (d), Steiner nodes are introduced to make the spanning tree
rectilinear. In (e), the redundant nodes are hidden and the final result is obtained.40

Figure 2.9 Example configuration of four pins generating an order vector (CHU;
WONG, 2008).........................................................................................................41

Figure 2.10 Ordering problem example where longer than optimal wire length is
avoided. ...................................................................................................................42

Figure 2.11 Ordering problem example where an unroutable net is avoided. ................43

Figure 3.1 RegularRoute flow chart. ...............................................................................46



Figure 3.2 Single trunk V-Tree routing a net. .................................................................47
Figure 3.3 Two global segments within a panel with two choices each. ........................48
Figure 3.4 Conflict graph created from the circuit in figure 3.3 .....................................48
Figure 3.5 Example of a global connection routed by two partial assignments. ............51
Figure 3.6 Preprocessing of routing guides. Blue rectangles are in metal 2, red

rectangles are in metal 3. ........................................................................................53
Figure 3.7 TritonRoute flow chart (KAHNG; WANG; XU, 2018).................................54
Figure 3.8 Overall flow of the algorithm (SUN et al., 2018). .........................................55
Figure 3.9 Pin access point extraction problem instance. Note that the hit point in

red would cause two spacing violations with the blockage, but the valid hit
point in yellow would not. ......................................................................................56

Figure 3.10 Rudimentary routing produced by track assignment. Figure (a) shows
only the track assignment, and figure (b) shows the track assignment and the
vias, with redundant wires that are removed in red. ...............................................57

Figure 3.11 (a) Routing generated by an iteration of parallel A* routing and the
cost of the track T calculated for its segments. (b) Cost update at the end of
another iteration taking into account the historic cost of the segment that is
still containing an overlap. (SUN et al., 2018) .......................................................58

Figure 3.12 MCFRoute overall flow (Jia et al., 2018) ....................................................60
Figure 3.13 Multi-component net false short (Jia et al., 2018) .......................................62
Figure 3.14 The four cases of spacing handled by MCFRoute (Jia et al., 2018).

In (a), all configurations of wire and via are allowed because of the distance
between the considered points. In (b), only the top two configurations are
valid, because two via enclosures would cause a spacing violation. In (c),
only two wires would not cause a violation, because a wire and a via enclosure
would be too close. In (d), all configurations would cause spacing violation. .......64

Figure 3.15 Tower of vias minimum area violation handling by MCFRoute (Jia et
al., 2018). In (a), a tower of vias where the metal 2 via enclosure in the middle
of the tower is could cause a minimum area violation. In (b), a configuration
where an attempt to patch the wire to occupy more area would cause a vio-
lation. In (c), the enclosures were not modified. In (d), both enclosures were
patched with metal, but without causing violation. ................................................65

Figure 3.16 Four stage multithreaded strategy employed by MCFRoute (Jia et al.,
2018). The entire task is divided into four parallel workloads, and the results
of the four are then merged to produce a final solution. .........................................66

Figure 3.17 Pin Access Path (PAP) processing as proposed by (GONÇALVES; JR;
MARQUES, 2020): "in access situations. (a) A SVS, denoted by the PAP
locations and their respective pins. (b) A path (red arrow) in metal 2 tries to
connect to pin A but cannot reach the implemented PAPs (we are assuming
metal 3 is unreachable here). (c) A pin access solution with resource sharing"....68

Figure 3.18 Patch metal insertion and TMS (Thick Metal Shape) calculation as
proposed by (GONÇALVES; JR; MARQUES, 2020). Figure (a) shows one
possible via location, and two violations it would cause. Figure (b) shows
that two metal patches would solve these violations. Figure (c) shows that the
patch created a TMS, and now the special spacing rules for wide objects cause
a violation with the adjacent shape. Figure (d) shows that the other possible
via location would also cause a spacing violation. .................................................68

Figure 3.19 Routing flow proposed by (LI et al., 2019) .................................................71
Figure 3.20 Off-track Pin Access (LI et al., 2019)..........................................................72



Figure 3.21 Via to via LUT (LI et al., 2019). The candidate via point in the middle
would cause different violations patterns depending on the via type selected. ......73

Figure 4.1 Example circuit routed by Qrouter (QROUTER, 2017)................................77
Figure 4.2 GDRouter overall flow (Zhang; Chu, 2012). .................................................78

Figure 5.1 Overview of the proposed initial detailed routing flow. ................................80
Figure 5.2 Example of a placed circuit. ..........................................................................82
Figure 5.3 Example placed circuit with an overlay GCell grid and some of the pins

color coded..............................................................................................................83
Figure 5.4 Guides of the nets previously color coded in figure 5.3 ................................83
Figure 5.5 Explicit panels obtained from the configuration in figure 5.4e. ....................84
Figure 5.6 Example of a horizontal panel with color coded guides, based on the

example in figure 5.4e. The panel has eight tracks explicitly shown by the
dashed lines and indexed on the left from zero to seven. Note that this illus-
tration shows the guides with a height of only a quarter of the panel height,
but they span the entire height of the panel. ...........................................................85

Figure 5.7 Creation of a part of the conflict graph that represents the orange nodes
and the concept of conflict by redundancy..............................................................87

Figure 5.8 Configuration obtained by constructing the four eight-way cliques, each
representing the tracks for the guide of same color. ...............................................88

Figure 5.9 Step-by-step creation of a complete conflict graph for a given panel. ..........89
Figure 5.10 Example guide showing three possible choices to route a simple net. ........91
Figure 5.11 Example panel with two guides and a blockage. .........................................91
Figure 5.12 Implementation of the routing of a net given its track assignment..............95

Figure 6.1 Test7 width histogram of vertical layers........................................................97
Figure 6.2 Scatter plot of the runtime versus number of nets for test cases 1 through

6, with an approximation obtained by a second degree polynomial curve fit-
ting achieving an R-squared of 0.997. ..................................................................100

Figure 6.3 Distribution of score per parameter for tests 2, 4 and 6...............................101



LIST OF TABLES

Table 1.1 Results of FastRoute 4.0 compared to FastRoute 3.0 in terms of number
of vias, segment wire length and CPU time (XU; ZHANG; CHU, 2009)................23

Table 1.2 Results of BoxRouter 2.0 in the ISPD07 benchmark suite. ............................25
Table 1.3 Results of BoxRouter 2.0 in the ISPD 2008 contest benchmark suite

(NAM; SZE; YILDIZ, 2008). ...................................................................................25
Table 1.4 Results of (XU; ZHANG; CHU, 2009), (Chang; Lee; Wang, 2008) and

(CHO et al., 2007) in the ISPD07 global routing contest benchmark suite
(NAM et al., 2007). ...................................................................................................26

Table 2.1 Table comparing different Steiner tree related works. #Points refers to
the maximum number of points in the instance that the algorithm can generate
a minimal tree. ..........................................................................................................42

Table 2.2 Comparison of the fundamental algorithms. ...................................................44

Table 3.1 Notations used by (KAHNG; WANG; XU, 2018). .........................................54
Table 3.2 Notation used in the MCF model by MCFRoute (Jia et al., 2018). ................60
Table 3.3 Definitions used by (GONÇALVES; JR; MARQUES, 2020) to compute

the Tunnel Lower-bound (TL). .................................................................................69
Table 3.4 Results of (ZHANG; CHU, 2011), MCFRoute and WROUTE in the

ISPD 2005 benchmark suite (NAM et al., 2005). .....................................................74
Table 3.5 Results of and (KAHNG et al., 2011), (SUN et al., 2018), (GONÇALVES;

JR; MARQUES, 2020) and (LI et al., 2019) in the ISPD 2018 benchmark suite,
as reported by (GONÇALVES; JR; MARQUES, 2020) ..........................................74

Table 3.6 Comparison between the studied frameworks.................................................75

Table 5.1 Notation of the terms used for choice weight calculation. ..............................92
Table 5.2 Notation used to model the MWIS into an ILP formulation (KAHNG;

WANG; XU, 2018) ...................................................................................................92

Table 6.1 Results in terms of score of the implementation of the proposed flow in
the ISPD 2019 contest test suite, alongside the four highest scoring tools in the
contest. ......................................................................................................................98

Table 6.2 Notation used in equation 6.1..........................................................................98
Table 6.3 Parameters used to calculate score, alongside their index, multiplier and

weight........................................................................................................................99
Table 6.4 Values obtained for each parameter by the implementation of the pro-

posed flow for test2, test4 and test6. .......................................................................100



13

1 INTRODUCTION

Initial detailed routing has an important set of objectives to meet. To better un-

derstand these goals and the available information for this class of algorithms we have

resorted to a snippet of the VLSI flow, shown in figure 1.1. The initial detailed routing is

within the physical design scope, during which the tools allocate the circuit components

to a position and connects the devices using electronic structures such as wires and vias.

More specifically, it is a sub-step of the Signal Routing step shown in the figure, and the

initial detailed routing follows the global routing. Each step in the flow has its domain of

problems and objectives. Generally, one step in the flow assumes that the previous steps

have produced a roughly optimized result, which means that each step has the challenge

of addressing its problems while minimizing disturbance of the previous results. The

signal routing step generally divides itself in its own set of steps. Traditionally, the first

step is called global routing, where the algorithms create a coarse routing for the nets.

This coarser routing contains only the general topology of the net. Following the global

routing, the initial detailed routing attempts to create the actual routing with electrical

structures according to the set of rules. After an initial routing is available, the flow can

apply other algorithms to optimize a certain metric. One example is timing driven detailed

routing, where an algorithm pays closer attention to critical nets, or manufacturability

driven detailed routing where the algorithm attempts to increase yield. It is important to

understand where initial detailed routing is in the flow because the global routing has,

hopefully, optimized its result to a certain set of metrics and constraints. Given the global

routing result and information propagated through the flow, initial detailed routing has to

fulfill its role without disregarding what the flow has already accomplished.

The initial detailed routing is slightly different than the general detailed routing

term. The difference is that the initial detailed routing tries to obtain a routing solution

considering only a subset of the design rules, or a modified version with relaxed con-

straints. The detailed routing can start with an initial detailed routing stage and then

consider the full design rules later in the flow.

The initial detailed routing is usually the first routing step that attempts to satisfy

physical, technological and design constraints. It has access to all the results generated

by the flow, the most important being cells and pins positions and the solution of global

routing. Traditionally, the information generated by the global router is the set of routing

guides, but potentially layer assignment, congestion maps, and track assignment.



14

Figure 1.1: VLSI flow highlighting physical design steps (KAHNG et al., 2011).

Source: (KAHNG et al., 2011)

The introduction is divided into Preliminaries (Section 1.1), problem formulation

(Section 1.2), global routing (Section 1.3), congestion map (Section 1.4), and research on

routing at UFRGS (Section 1.5). The remainder of this work is divided into fundamental

algorithms (Chapter 2), detailed routing algorithms (Chapter 3), mixed routing frame-

works (Chapter 4), proposed initial detailed routing flow (Chapter 5), implementation of

the proposed initial detailed routing flow (Chapter 6), and conclusions and future work

(Chapter 7).

1.1 Preliminaries

Because the initial detailed routing situates in a flow, it inherits information from

the previous steps. There are many fundamental concepts required to understand the

context, which we explain below.

• Routing Region: A stack of rectangular metal layers that contains all elements rel-

evant to routing. Figure 1.2 (a) shows a routing region containing a stack of five

metal layers.

• Metal Layer: A rectangular area with edges aligned to the x- and y-axis. It is

hierarchically a grid-like structure. Figure 1.2 (b) shows a metal layer with some of



15

the structures usually present. Each layer has a preferred direction that wires ideally

would span through. Adjacent layers have orthogonal preferred directions.

• Cell: A logic device with a set position in the routing region. Figure 1.2 (c) shows

a group of cells placed in the routing region. The cells have a unique label shown

in the upper left corner of its boundary.

• Pin: A metal polygon that interfaces the cell. Figure 1.2 (b) shows multiple pins,

one of which appears labeled as such. Also, in figure 1.2 (c) multiple cells have

their pins’ polygons contour in blue.

• Via: A routing structure that connects two adjacent metal layers. Figure 1.2 (a)

features a via connecting the two bottom metal layers.

• Wire: A routing structure that electrically connects any other structures that make

contact with its boundaries.

• Tracks: The horizontal and vertical lines that divide the metal layers in a grid.

Figure 1.2 (b) shows a metal layer divided into a grid. All lines of the grid are

tracks.

• G-Cell: A coarser division of the metal layer into bins. Figure 1.2 (b) has a slightly

coarser grid made of thicker divisions that represent the G-Cells, one of which we

have highlighted in blue and labeled.

• Routing Guides: Rectangles consisting of G-Cells generated by the global routing

as an approximated routing solution.

1.2 Problem Formulation

Given a netlist, a routing region, routing guides, and the design rules the initial

detailed routing has to define the layout of each net using wires and vias. Note that

contacts that connect diffusion and poly silicon are not considered for detailed routing.

The main objective is to complete the routing of every net in the design, even if it requires

breaking design rules. As secondary objectives, the algorithm should respect the design

rules and routing guides as much as possible. The design rules depend on the technology

used. There are different priorities for each of these violations. The major secondary

metrics are:

• Connectivity Rules:



16

Figure 1.2: Routing relevant concepts and structures. In (a) the figure shows a stack of
metal layers, with a via connecting the two bottom metal layers. In (b), the figure shows
a routing grid with tracks, G-Cells and a few pins. In (c), the figure shows a snippet of a
design with some placed cells with their pins shown.

(a) (b)

(c)

Source: From the author, 2021.



17

• Open Net: When a net has at least one pin not attached to the routing structure,

the net is considered open.

• Short: A short is caused when a wire or via overlaps with another wire, pin or

via that does not belong to its net or a blockage.

• Layout Rules:

• Spacing: The layout shapes must respect a minimum distance from each other.

In some cases, the minimum distance depends on the specific topology of the

shapes.

• Parallel Run Length: This is a special case of spacing rules. Two wires

that are parallel to each other must have a variable minimum distance

between them. The minimum distance increases the more length of the

two wires run in parallel.

• Corner-to-Corner Spacing: The layout shapes must maintain a distance

between a convex corner and any edges.

• End of Line: All wires’ extremities that are close to another orthogonal

polygon must respect a minimum distance called End of Line.

• Via Cut Spacing: The distance between two vias is in general not the

same that is for wires.

• Adjacent Via Cut Spacing: If a specific via has more than one cut, that

is, redundant vias, the distance between the multi-cut via and other vias

is different. In general, it is greater than normal via spacing.

• Minimum Area: All polygons in the layout must have a minimum specified

area.

• Routing Preference:

• Routing Guide Honoring: It is desirable that all wires and vias are within the

routing guides.

• Wrong-way Routing: The algorithm should avoid spanning wires in the non-

preferred direction.

• Off-track Routing: Wires and vias should be aligned to the tracks.

To summarize, figure 1.3 shows a complete set of inputs: a routing region made

out of three layers, the routing tracks, pin shapes, and guides. In this example, all pins



18

Figure 1.3: Example instance of a detailed routing input, with the routing area, a net
consisting of four pins and the routing guides.

Source: From the author, 2021.

belong to the same net. Figure 1.4 shows one of the possible initial detailed routing

solutions for this problem instance. Notice how every wire and via is within its guide, in

the preferred direction and aligned to a track. Furthermore, there are no spacing, minimum

area or end of line problems, since there isn’t any wire that could cause these problems.

1.3 Global Routing

Initial detailed routing has a strong connection to global routing. The result of

global routing contains both the desired topology of the net and, in cases of layer as-

signed global routers, the minimum number of vias. Although the focus of this work is

on initial detailed routing, it is important to understand the general strategies employed

by the global routers and how they work.

The problem of global routing is to define a coarse assignment of routes to routing

regions. More specifically, assigning a set of G-Cells to each net. When performing the

assignment, the global router can try to optimize different metrics. Given the placement

solution, the router usually divides the region in G-Cells and assign pins to the G-Cells

that contain them. After this initialization step, the router defines paths in the G-Cell grid

for every net. Commonly used algorithms for the paths are Steiner trees and pathfinding



19

Figure 1.4: Example solution for an instance of a detailed routing problem. Note that
every wire respects the routing guides.

Source: From the author, 2021.

algorithms. It is not uncommon to find global routing algorithms that explicitly work with

initial detailed routing in mind. These algorithms apply techniques to make routing more

manageable, such as congestion avoidance and layer assignment.

In figure 1.5 there is an example of a simplified global routing instance. In (a)

there are cells placed in a bounded region and connected according to the netlist. Note that

the cells appear drawn using their symbols for simplicity. Some cells take inputs from the

pads. In (b), the image is displaying the same scenario but with the routing region split into

a 4x4 grid of G-Cells. In (c) we have hidden the cell symbol so that only the pins and their

connections appear. The structures left are the nets. Notice that the triangles represent the

pads, and the circles represent the cell pins, but there is no distinction between driver and

sink pins for simplicity. In (d), the local nets - nets contained entirely within a G-Cell -

do not appear. Also, the pins follow a color scheme and pins of the same net are in the

same color. The global router is interested majorly in the connections that span between

G-Cells. When estimating congestion or usage, considering local nets could be helpful,

but, in practice, they are ignored in several cases (ALPERT et al., 2010). In (e) there is one

possible solution for the global routing. Notice that there is a G-Cell that overlaps with the

green, blue and red guides, while some G-Cells contain one, two or no guides. In general,

attempting detailed routing within a congested G-Cell or more is more complicated. To



20

Figure 1.5: Simplified global routing example. In (a) simplified cells are placed and
connected in a routing region. (b) shows the routing region’s division into G-Cells. In (c)
we show only the pins and connections. In (d) the local nets are hidden. In (e) the global
routing outputs the guides. Finally, in (f) there is a simple congestion map labeling the
areas with colors according to congestion.

(a) (b)

(c) (d)

(e) (f)

Source: From the author, 2021.

estimate the difficulty of routing one can build a congestion map. The picture in (f) labels

the G-Cells with colors according to the congestion. G-Cells with three guide overlaps

are red, with two guide overlaps yellow, with one guide overlap green and with no guide

overlaps blue.

In the following subsections, we will study a set of global routing frameworks.

The emphasis of the study will be on techniques employed to improve the solution for the

initial detailed routing.



21

Figure 1.6: FastRoute 4.0 Framework flowchart. (XU; ZHANG; CHU, 2009)

Source: (XU; ZHANG; CHU, 2009)

1.3.1 FastRoute 4.0 (XU; ZHANG; CHU, 2009)

In their work, the authors expand on the previous iterations of their global rout-

ing framework FastRoute (XU; ZHANG; CHU, 2009). The routing flow employed by

FastRoute is in figure 1.6, with the steps introduced in version 4.0 highlighted in blue.

The main objective of this specific iteration is to address the via count. In step 1 of the

flow, the algorithm creates an estimation of the congestion using an initial global routing

solution. This solution is created using FLUTE (CHU; WONG, 2008). Then, in step 2,

the topology of the tree is changed to account for the number of vias.

Steps 3, 4 and 5 try to solve the congestion problem by dividing the net into two

terminal connections and applying pattern routing and 3-bend routing. The authors state

that 3-bend router is faster than the maze router and monotonic router because the search

space is limited to three bends per connection. The limit to the number of bends also

limits the number of vias to three - not accounting for pin access vias. Furthermore, the

authors also state that 3-bend router is better than pattern router in congestion avoidance.

Figure 1.7 shows an instance of a net with a source terminal S and a target terminal T .

There is a congested region in blue between S and T .

There are two 3-bend paths in this figure - namely S −→ B −→ T and S −→ B′ −→ T .

The path that goes through B avoids the congested area. The authors state that avoiding



22

Figure 1.7: FastRoute 4.0 3-bend routing technique (XU; ZHANG; CHU, 2009).

Source: (XU; ZHANG; CHU, 2009)

this congested area is impossible with Z-, L- and U-shaped pattern router.

The flow proceeds to a loop that iterates through until the overflow - that is, more

connections between two G-Cells than there are resources - stops decreasing. Step 6 tries

to rip-up and reroute individual nets with maze router and 3-bend router to reduce the

congestion. When the overflow stops decreasing, the final step is called layer assignment

with careful ordering takes place. The authors cleverly show that the layer assignment is

strongly related to the number of vias. Each time a path changes layers, it implies in the

insertion of vias. The technique employed orders the nets based on total wire length and

number of pins and assigns the smaller nets to the lower metal layers while assigning the

longer segments to higher layers. To choose the layer sequence for a path, they describe a

construction technique for a graph where each vertex is a segment, and an edge represents

a connection between the two segments. The vertices adjacent to pins are given low metal

layers and, using dynamic programming, the algorithm attempts to assign layers to each

segment while minimizing the total number of vias.

Table 1.1 shows the results obtained by the new flow including via reduction tech-

niques. The results show that the improved flow allows for a reduction of 11% of the

number of vias when compared to FastRoute 3.0, a wire length reduction of 1% and a

reduction of the runtime of 50%.



23

Table 1.1: Results of FastRoute 4.0 compared to FastRoute 3.0 in terms of number of
vias, segment wire length and CPU time (XU; ZHANG; CHU, 2009).

FastRoute 4.0 FastRoute 3.0 4.0:3.0
Benchmark # vias seg wl cpu (s) #vias seg wl cpu (s) # vias seg wl cpu (s)
bigblue1 1990K 3795K 423 2645K 3866K 773 0.75 0.98 0.55
bigblue2 4455K 5104K 913 4628K 5138K 1797 0.96 0.99 0.51
bigblue3 5179K 7891K 278 5521K 7940K 342 0.94 0.99 0.81
bigblue4 11340K 12825K 674 12767K 12841K 3711 0.89 0.99 0.18
newblue4 4892K 8502K 1135 5334K 8521K 2459 0.92 0.99 0.46
newblue5 8659K 15013K 607 10223K 15184K 1419 0.85 0.98 0.43
newblue6 7701K 10561K 574 9266K 10611K 1357 0.83 0.99 0.42
newblue7 16949K 18742K 11060 19238K 18789K 18084 0.97 0.99 0.61
Average 7869K 10304K 1958 8702K 10361K 3742 0.89 0.99 0.50

Figure 1.8: BoxRouter 2.0 overall flow (CHO et al., 2007).

Source: (CHO et al., 2007)

1.3.2 BoxRouter 2.0 (CHO et al., 2007)

BoxRouter 2.0 (CHO et al., 2007) is the second iteration of a global router called

BoxRouter. The main contributions are a dynamically scaled negotiation based A* search,

topology-aware wire rip-up and an ILP based formulation for layer assignment. The

routing flow employed is in figure 1.8. The steps labeled as 2D Global Routing in the

figure refer to the fact that all horizontal and vertical layers are collapsed into two layers,

one with all horizontal layers and another with all vertical layers. After the 2D routing is

available in these two layers, the layer assignment allegedly distributes the guides to the

original set of existing layers.

The first two steps of the flow are called minimum Steiner tree (GILBERT; POL-

LAK, 1968), and net decomposition and Prerouting and Initial Box. These steps refer

back to BoxRouter, which produces an initial global routing solution by connecting all

nets with a minimal rectilinear Steiner tree built in the G-Cell grid. After this step, the

nets are divided into point-to-point connections with two nodes only.



24

Figure 1.9: BoxRouter 2.0 negotiation based rerouting with scaling factor for ibm01 (left)
and imb04 (right) circuits (CHO et al., 2007).

Source: (CHO et al., 2007)

The expansion introduced in BoxRouter 2.0 starts with the Robust Negotiation-

based Rerouting. During this step, a modified A* search takes place. The equation for

cost used by this A* implementation is in equation 1.1.

costi(e) = hi(e) + αp(e) + βd(e) (1.1)

The term hi(e) represents the historical cost of the edge e, p(e) represents the

present congestion and d(e) represents the distance of the edge to the target. The authors

describe a situation where, in a very congested instance, the historical cost increases so

much that it becomes the dominant term, which causes the algorithm to route several paths

through the same presently congested region while completely ignoring regions with no

present routing, but high historical cost. What the authors propose is to add one scaling

parameter α. This parameter increases the value of p(e) according to equation 1.2.

α =
maxe[h

i(e)]

p(e)|1.0
(1.2)

The result of the scaling parameter is in figure 1.9. In both cases, the implemen-

tation without the scaling factor causes the number of overfull G-Cells increases with the

number of iterations, while it converges to a tiny amount with the scaling factor.

The layer assignment is performed using an ILP model. The details of this model

and the techniques used to create it are out of the scope of this analysis. The authors state

that their implementation focuses on reducing the via count. However, the results do not

include the number of vias. The achieved results achieved appear in tables 1.2 and 1.3 in

terms of number of overfull G-Cells, wire length and, in the latter, the runtime.



25

Table 1.2: Results of BoxRouter 2.0 in the ISPD07 benchmark suite.
Benchmark # Overfull G-Cells Wirelength
adaptec1 0 9204K
adaptec2 0 9428K
adaptec3 0 20741K
adaptec4 0 18642K
adaptec5 0 27041K
newblue1 400 9294K
newblue2 0 13464K
newblue3 38958 17244K

Table 1.3: Results of BoxRouter 2.0 in the ISPD 2008 contest benchmark suite (NAM;
SZE; YILDIZ, 2008).

Benchmark # Overfull G-Cells Wirelength CPU (s)
bigblue1 0 5698K 1147
bigblue2 0 9042K 2346
bigblue3 0 13133K 380
bigblue4 472 23156K 52644
newblue4 200 12974K 78225
newblue5 0 23294K 1700
newblue6 0 17975K 1785
newblue7 208 35859K 84743

1.3.3 Summary

To summarize this brief review of some state of the art global routing algorithms,

table 1.4 shows the results of FastRoute 4.0 (XU; ZHANG; CHU, 2009), NTHU-R (Chang;

Lee; Wang, 2008) and BoxRouter 2.0 (CHO et al., 2007) in terms of the number of over-

flowing G-Cells, wire length and CPU time in seconds. In terms of the number of over-

flowing G-Cells, (XU; ZHANG; CHU, 2009) can produce the best results of the three.

In terms of runtime, (XU; ZHANG; CHU, 2009) is also the best, being 47% faster than

(Chang; Lee; Wang, 2008) and much faster than (CHO et al., 2007). As for the wire

length, (Chang; Lee; Wang, 2008) reaches the best results, being 2% on average shorter

than (XU; ZHANG; CHU, 2009) and 1% shorter than (CHO et al., 2007).

1.4 Congestion Map

The congestion map is an important tool to estimate routability in any step of

the physical design flow (WESTRA; GROENEVELD, 2005). We call congestion map

any data structure associated with the routing region that contains information relevant to



26

Table 1.4: Results of (XU; ZHANG; CHU, 2009), (Chang; Lee; Wang, 2008) and (CHO
et al., 2007) in the ISPD07 global routing contest benchmark suite (NAM et al., 2007).

(XU; ZHANG; CHU, 2009) (Chang; Lee; Wang, 2008) (CHO et al., 2007)
Benchmark # ovfl Wirelength CPU (s) # ovfl Wirelength CPU (s) # ovfl Wirelength CPU (s)
bigblue1 0 5789K 423 0 5631K 586 0 5698K 1147
bigblue2 0 9559K 913 0 9059K 594 0 9042K 2346
bigblue3 0 13070K 278 0 13075K 259 0 13133K 380
bigblue4 152 24165K 674 182 23076K 7533 472 23156K 52644
newblue4 144 13394K 1135 152 12990K 4023 200 12974K 78225
newblue5 0 23672K 607 0 23166K 854 0 23294K 1700
newblue6 0 18262K 574 0 17696K 818 0 17975K 1785
newblue7 62 35691K 11060 68 35357K 8433 208 35859K 84743

routability. In some cases, global routing is used as congestion estimation. However, the

correlation between global routing congestion estimation and actual violations is weak-

ening in recent technologies (CHAN et al., 2017). Figure 1.10 shows in (a) the resulting

congestion map based on global router, with green and blue representing less congested

regions and red and pink representing more congested regions, and in (b) the red dots

represent opens and shorts of detailed routing. It is clear that there are false positives in

the global router prediction and some violation hotspots in the detailed router that weren’t

marked in the congestion map, which strengthens the conjecture that global routing gen-

erated congestion map only weakly correlates to actual poor routability hotspots.

Therefore, more sophisticated algorithms have been proposed in the literature. In

(Tabrizi et al., 2018) and (Tabrizi et al., 2017) the authors propose a machine learning

framework that predicts shorts in a given placed netlist. In (CHAN et al., 2017) and (Qi;

Cai; Zhou, 2014) the proposed machine learning framework attempts to predict DRC

violations for a given global routing solution. In (SHOJAEI; DAVOODI; LINDEROTH,

2011) a similar technique is employed but uses ILP instead of machine learning.

Depending on the flow, the congestion map could have many uses. In extremely

congested regions, a detailed placer could attempt to move cells out of the congested re-

gion. The global router can also run more iterations of its algorithms using the congestion

map to try to create a global routing solution that has less congested G-Cells. Finally, the

initial detailed router can use the congestion map to estimate the priority of a particular

net when allocating routing resources to segments of a net.

1.5 Research on Routing at UFRGS

For more than three decades, the researchers and students at UFRGS have pro-

duced many works in the area of physical design automation: automatic cell layout gen-



27

Figure 1.10: (a) Global routing generated congestion map, where blue and green represent
less congested regions and red and pink represet more congested retions, and (b) where
the red dots represent detailed routing opens and shorts map (ALPERT et al., 2010)

(a) (b)

Source: (ALPERT et al., 2010)

eration, placement, gate sizing, legalization, routing, and more. For the purpose of this

work, we will study the timeline of the routing related works researched in UFRGS. Fig-

ure 1.11 shows a timeline of some of the routing related works published by UFRGS

students and researchers.

In (REIS; GOMES; LUBASZEWSKI, 1988) the authors propose a standard cell

design methodology that connects pins through routing over-the-cell instead of through

the channel. At that time, there were reserved bands of space between the rows of standard

cells reserved for channel routing. Modern designs no longer have these channels, and

routing is done over the cell. One of the challenges of routing over the gates at the time

was the limited number of metal layers.

In (JOHANN; REIS, 1994) and (JOHANN; REIS, 2001), the authors propose a

routing technique called LEGAL, where a combination of channel and greedy routing is

used to route all nets simultaneously. The authors also describe that this work is intended

to route over the cell, using the extra available metal layers instead of the more traditional

channel-based routing at the time. In 2002, (JOHANN; SANTOS; REIS, 2002) propose

an implementation of LEGAL that is global routing-aware. The authors state that a better

separation of global and detailed routing is necessary to handle cases with very large nets.



28

Figure 1.11: Timeline of some of the routing related research at UFRGS - not to scale.

Danigno, M.; Butzen, P.; Ferreira, J.; Oliveira, A.; Monteiro, E.; 
Fogaça, M.; Reis, R.

26th International Conference on Electronics, Circuits and 
Systems

Fogaça, M.; Monteiro, E.; Danigno, M.; Oliveira, I.; Butzen, P.; 
Reis, R.
International Conference on Computer Aided Design

1987 - An Efficient Design Methodology 
for Standard Cell Circuits

1994 - Techniques and Results of the 
MARTE Routing System
Johann, M.; Reis, R.
 14º Symposium on Integrated Circuits and Systems Design 8º 
Simpósio Brasileiro de Concepção de Circuitos Integrados

Reis, R; Gomes, R; Lubaszewski, M.
IEEE International Symposium on Circuits and Systems

 1995 - Layout Synthesis Using 
Transparent Cells and FOTC Routing

Johann, M.; Reis, R.
38th IEEE Midwest Symposium on Circuits and Systems

1995 - A Full Over-the-Cell Routing Model

Johann, M.; Reis, R.
IFIP VLSI-SoC2001 - LEGAL: An Algorithm for 

Simultaneous Net Routing
Johann, M.; Santos, G.; Reis, R.

14º Symposium on Integrated Circuits and Systems Design 2002 - A Legal Algorithm Following Global 
Routing
Johann, M.; Santos, G.; Reis, R.
14º Symposium on Integrated Circuits and Systems Design2006 - Channel Based Routing in 

Channel-less Circuits
Santos, G.; Johann, M.; Reis, R.

International Symposium on Circuits and Systems 2007 -Maze Routing Steiner Trees with 
Effective Critical Sink Optimization
Hentschke, R.; Narasimham, J.; Johann, M.; Reis, R.
International Symposium on Physical Design2009 - Maze Routing Steiner Trees with 

Delay vs. Wire Length Trade-off
Hentschke, R.; Narasimham, J.; Johann, M.; Reis, R.

Transactions on Very Large Scale Integration
2010 - The Fidelity Property of the Elmore 
Delay Model in Actual Comparison of 
Routing Algorithms
Reimann, T.; Santos, G.; Reis, R.
17th IEEE International Conference on Electronics, Circuits 
and Systems

2010 - Routing Algorithms Performance in 
Different Routing Scopes

Reimann, T.; Santos, G.; Reis, R.
17th IEEE International Conference on Electronics, Circuits 

and Systems
2013 - Global Routing Congestion 
Reduction with Cost Allocation 
Look-ahead
Nunes, L.; Reis, R.
26th Symposium on Integrated Circuits and System Design2013 - GR-PA: A Cost Pre-Allocation Model 

For Global Routing
Nunes, L.; Reimann, T.; Reis, R.

International Conference on Very Large Scale Integration 2015 - Overhead for Independent Net 
Approach for Global Routing
Tumelero, D.; Bontorin, G.; Reis, R.
6th Latin American Symposium on Circuits and Systems2019 - Proposal and Evaluation of Pin 

Access Algorithms for Detailed Routing

2020 - Contributions to OpenROAD from 
Abroad: Experiences and Learnings

Source: From the author.



29

In (JOHANN; KINDEL; REIS, 1995) and In (JOHANN; REIS, 1995), the authors

describe a model of full over-the-cell (FOTC) routing to connect the pins by using the

called "transparent cells". The transparency of the cells comes from the fact that in simple

over-the-cell (OTC) routing the first metal layer is reserved for intra-cell routing, whereas

the FOTC model allows using of all layers for routing. Another advantage is that FOTC

eliminates the necessity for feed-through structures that OTC requires.

In (SANTOS; JOHANN; REIS, 2006), the authors propose an algorithm that can

route horizontally aligned terminals in a cell-based design with no channel using channel

routing techniques. The main advantage of this strategy is the possibility of routing the

horizontally aligned terminals in almost linear time, enabling acceleration of the design

flow.

In (HENTSCHKE et al., 2007) and (HENTSCHKE et al., 2009) the authors pro-

pose a rectilinear Steiner tree building algorithm based on path search. The work’s main

contribution is the introduction of factors that allow the trade-off between wire length and

delay of the routed nets.

In (REIMANN; SANTOS; REIS, 2010) and (SANTOS et al., 2010) the authors

study the methodology of comparison between different routing algorithms. In (REIMANN;

SANTOS; REIS, 2010), the authors study the differences between different intercon-

nection delay models, and the major contribution of the work is the discovery that the

academy standard model has a high standard deviation. In (SANTOS et al., 2010), the au-

thors study the significance of the methodology of comparison when considering different

scopes - for example, the size of the nets used in the comparison. The main contribution

is the discovery that different methodologies are adequate to different scopes.

In (NUNES; REIS, 2013) and (NUNES; REIMANN; REIS, 2013) the authors

propose two techniques that identify congestion-prone regions during global routing. The

first technique looks for regions with a high density of pins, and the second looks for con-

gestion of wires during each routing iteration. According to the authors, these techniques

allow for a significant speedup of the global routing flow with a minimal penalty to wire

length.

In (TUMELERO; BONTORIN; REIS, 2015) the authors analyze the available

academic benchmarks of ISPD 2008 and identify that most of the nets are small. Then,

the authors propose a clustering technique that processes the small nets in parallel.

In (DANIGNO et al., 2019) the authors propose five algorithms for pre-processing

the design and find valid options for accessing pins. The major contribution is an algo-



30

rithm that can generate valid pin access for 99% of the pins in the ISPD 2018 contest in

under five minutes without using off-track vias.

In (FOGAÇA et al., 2020) the authors talk about the OpenROAD project, an am-

bitious open-source project that aims to develop a fully automated RTL-to-GDSII flow.

The project included an implementation and improvements to FastRoute (XU; ZHANG;

CHU, 2009) developed at UFRGS.



31

2 FUNDAMENTAL ALGORITHMS

The problem of efficiently finding routes to connect points is neither recent nor

restricted to design automation. Many of the algorithms were developed and studied by

other fields, such as artificial intelligence and logistics. In the EDA field, these algorithms

are usually the building blocks of more sophisticated algorithms. This section will cover

some of these algorithms that have reached a certain level of generality. The classes

studied are pathfinding algorithms, Steiner tree generation algorithms, and rip-up and

reroute.

2.1 Pathfinding Algorithms

A pathfinding algorithm’s objective is to output a path in a particular environment

that connects a set of points. In the routing scope, we are interested in algorithms that can

produce a set of wires that connect pins. There are many algorithms designed to find such

paths. In the following subsections, we will explain how some of the main algorithms

achieve their objectives.

2.1.1 Maze Router (LEE, 1961)

One of the first algorithms for solving path connection problems (LEE, 1961) de-

scribes a breadth-first search algorithm in a grid. The applications cited by the author

are logic drawing, wiring diagramming, and optimal route finding. The algorithm pro-

posed, known as the maze router, works in a two-dimensional region with three types of

entities: sources, targets, and blockages. Each source is bound to a target. The goal is

to find a path from each source to its target without crossing any blockages. If multiple

sources/targets exist, the already existing paths act as a blockage. The algorithm moves

from the source point toward the neighbor points, labeling them as 1. The algorithm con-

tinues forward from each neighbor, labeling the next neighbors as 2, and so on. When

the wave of increasing numbers reaches the target, it backtracks by finding decreasing

numbers until the source. Figure 2.1 shows this process occurring. In (a) there is a 2D

region with the three markers, S being a source, B a blockage, and a T target. In (b),

the search has already expanded the first neighbors. In (c), the first neighbors labeled 1,



32

expanded to their neighbors, labeled 2. The expansion continues until, as in (d), one of

the nodes expands the target. When this happens, the backtracking process begins, travel-

ing back following the decreasing numbers until the source is found, as in (e). Aker later

discovered and published in (AKERS, 1967) that only three different labels are sufficient,

or even two, reducing the algorithm’s memory usage. Using three labels k − 1, k, and

k + 1, for example, 1, 2 and 3, allows for backtracking as well. Instead of decreasing the

label indefinitely until reaching the source, the pattern wraps around at 1 and goes back

to 3. The scheme with two values for labels uses, for example, 1 and 2 as the labels. The

labeling technique has to insert labels in a sequence such as 1, 1, 2, 2, 1, 1, 2, 2 until it

reaches a target. This way, the backtracking algorithm can look for a path that follows the

known pattern.

(SOUKUP, 1978) proposed an improvement on the maze router. Instead of relying solely

on breadth-first search (MOORE, 1959), when a node n expands and finds a node n′

that is closer to the target than n, it runs a depth-first search in n′ direction and adds all

discovered nodes to the front.

2.1.2 A* (HART; NILSSON; RAPHAEL, 1968)

Best-first search is another class of generic pathfinding algorithms. Instead of

breadth-first, that is, expanding first the nodes at the front at every iteration, A* proposes

to incorporate heuristic estimations of the distance into the search (HART; NILSSON;

RAPHAEL, 1968), which allows the algorithm to focus on expanding the more promising

nodes. To find such higher potential nodes, the A* algorithm always has two functions

associated with each node: g(n) and h(n).

The algorithm updates both functions whenever it expands a node, even if it has

already expanded it before. g(n) is the cost of the path from the source to the node n,

and h(n) is the estimated cost of the route from node n to the target. By keeping all

of the nodes sorted by weight and expanding first the best nodes, that is, the smallest

f(n) = g(n) + h(n) the algorithm prioritizes the most promising paths. The optimized

search allows for better efficiency compared to the maze router since it will expand fewer

nodes. Furthermore, the authors have proven that if h(n) is optimistic, that is, always

estimates the cost from n to the target to be smaller or equal than it is, A* will always find

the shortest path. Figure 2.2 shows the same route searched by maze router in (a) and A*

in (b), and it is clear that A* has expanded through fewer nodes.



33

Figure 2.1: Maze router’s breadth-first search algorithm.
(a) Initial state, with blockages in red,
start point in yellow and target point in
blue.

(b) First expansion of the search front,
labeled 1 in the figure.

(c) Second expansion of the search,
labeled 2 and in light purple, where
the already expanded nodes are in
gray.

(d) All expansions of the search, with
all expanded nodes in gray, all nodes
in the search front in light purple and
one expanded node adjacent to the tar-
get.

(e) Path obtained by backtracking
from the target through the expanded
nodes in descending order, forming a
green path.

Source: From the author.



34

Figure 2.2: A* and maze router searching for the same path (PATEL, 2018).
(a) (b)

Source: (PATEL, 2018).

The first published work that applies A* to VLSI routing is (CLOW, 1984). The

author adds important concepts from physical design to the A* technique - first, he raises

the problem of handling multiple pin nets and multiple terminal pins. The work proposes

grouping all terminals of the same pin and running multiple sources multiple targets A*.

Instead of one source and one target initially, the algorithm starts with multiple, and the

goal is to connect one source terminal to one target terminal with the shortest path. Fur-

thermore, the author describes a problem called inverted corner, where two paths of the

same cost tie and the A* algorithm chooses any of the possibilities. Instead, one would

wish that the route had as few changes in direction as possible and have most of the wire

in the preferred direction. The solution is to add a small penalty called ε for spanning in

the non-preferred direction that serves as a tiebreaker in these situations.

Since the original paper, researchers have published some works on bidirectional

A* path search. The idea is to start a search from the source and target nodes simulta-

neously. (POHL, 1971) proposed a bidirectional search that expands until the two fronts

find each other. From the meeting node, a new A* search takes place. Based on this work,

(KWA, 1989) proposed in his work four techniques. Let us assume that there is a search

front called S from the source, and from the target, there is a front called T.

• Nipping: If front T (S) tries to expand a node that S (T) has already discarded by

the node is not expanded because the other front has already discovered that it does

not belong to any shortest path.

• Pruning: The nipped node may have open nodes in the discoverer front. The al-

gorithm discards these open nodes because if the node is not in the shortest path,

neither are the nodes opened from it. Removing these nodes from the open set is



35

Figure 2.3: LCS bidirectional search with two search fronts, one expanding from the
source and one from the target (JOHANN, 2001).

Source: (JOHANN, 2001)

called pruning

• Trimming: When a meeting node expands, it removes any node in the open set with

a higher cost than it since a shorter path exists.

• Screening: The screening process is to try to trim a node before adding it to the

open set by checking the smallest cost of the meeting nodes discovered.

Even with this progress, the bidirectional A* search was still slower than A* in

some cases. The bidirectional search schemes added overhead that did not overcome the

benefits. The first algorithm that was able to outperform A* consistently was (JOHANN,

2001). The work’s main contribution is the use of the other search front’s information to

improve the cost function. One front’s g(n) is the other front’s h(n) and vice-versa. The

authors introduce two variables, Py, and ω. Figure 2.3 illustrates these concepts.

The A* function incorporates these values. Equation 2.1 shows the new equa-

tion for a node n in the source search front. Notice how it uses the other search front

information in Pyt(n) and ht(n)

fs(n) = gs(n) + Pyt(n)− ht(n) (2.1)

2.1.3 Pattern Router (ASANO, 1982)

The pattern router technique consists of connecting two points through predefined

topologies (ASANO, 1982). In his work, the author showed an exhaustive search method

for routing. Figure 2.4 shows some of the possible basic topologies. These are four of



36

Figure 2.4: Four basic topologies of Pattern Router: line in red, L in yellow, U in purple,
and Z in green.

Source: From the author.

the possible structures, the line-, L-, U- and Z-shapes. The process of deciding which

shape is the most adequate to connect two given points is called zoning. It consists of

exhaustively searching for a solution. The author limits the search space to a region

called a zone. When a connection is impossible, the algorithm reroutes previously made

connections as an attempt to complete the routing - which turns out to be understandably

very slow. However, the basic idea can apply for straightforward routing in more complex

routing flows because of its simplicity. One of the works that accomplished this is (DAS;

KHATRI, 2001), where the authors combined the pattern router with the maze router to

achieve a routing solution with fewer corners, therefore, more regular.

2.2 Steiner Tree-based Algorithms

Steiner trees are structures used in many fields. In VLSI design flow, there is spe-

cial interest in rectilinear Steiner trees, where every branch is aligned to the x- and y-axis.

These trees are used to generate a path between multiple points in a grid; the main idea is

adding points to the problem, Steiner points. There are multiple types of Steiner trees, the

most important in the context being Rectilinear Minimum Steiner Tree, a rectilinear tree

that is also the smallest possible. Figure 2.5 contains two Steiner trees connecting five

nodes. The tree in (a) is a Minimum Steiner Tree (MST), and the tree in (b) is a Recti-

linear Minimum Steiner Tree (RSMT). Notice that in both cases, there are two light gray

nodes. These nodes are not part of the original problem. Instead, the tree construction

algorithm added these so-called Steiner nodes to assist in the tree construction.



37

Figure 2.5: Two Steiner trees, in (a) a minimum Steiner tree (MST) and in (b) a rectilinear
minimum Steiner tree (RMST).

(a) (b)

Source: From the author.

In 1966, Hanan showed that if one wishes to obtain an RSMT, it is sufficient to

consider only the columns/rows that contain points (HANAN, 1966). Constructing a grid

with only these columns and rows produces a Hanan grid. Figure 2.6 shows the process

of building the Hanan grid. In (a), there is a grid consisting of nine vertical and nine

horizontal tracks. There are four points in this grid, and the objective is to connect all

four with an RSMT. Since we know that the RSMT is in the Hanan grid, we can simplify

the problem by building it. In (b) the relevant tracks appear highlighted, and finally in

(c) the Hanan grid. The number of possible Steiner nodes in (a) was sixty, and in (c) it

is twelve. The algorithms covered consider the Hanan grid as the routing region. Notice

that obstacle vertices are points in the grid.

Many algorithms that create such trees appeared, some at the placement stage

of the flow for routability and timing estimation, some at the global routing stage, and

detailed routing. The existence of obstacles in the routing region is also a research topic,

and some algorithms are developed take them into account.

There are four major classes of algorithms that use Steiner trees: track graph,

escape graph, spanning graph and look-up table based. We will present the main works

for each category in the following subsections.



38

Figure 2.6: Construction of a Hanan grid.

(a) Base grid with the four rele-
vant points.

(b) The base grid but with the
relevant horizontal and vertical
tracks highlighted.

(c) A trimmed grid created
from the maximum and mini-
mum points of the intersections
between the relevant tracks.

Source: From the author.

2.2.1 Track Graph Based

One of the most important track graph algorithms is (WU et al., 1987). It creates a

graph using the tracks found at the routing points and obstacle vertices and runs a shortest

path search algorithm on this graph to find the shortest path from any point to all other

points. An example of a track graph in an instance of a Steiner tree problem is presented

in figure 2.7. The algorithm’s complexity isO(n4), and the authors state that it guarantees

the generated tree is minimal for up to six points.

2.2.2 Escape Graph Based

From the escape graph class, the idea is to create a graph by extending the hor-

izontal and vertical segments of every vertex of every polygon until the net bounding

box’s boundaries. In (GANLEY; COHOON, 1994), the authors proved that if a problem

instance is solvable, then the solution is in the escape graph. However, the escape graph

is larger than a track graph. Figure 2.7 shows an escape graph in (a) and a track graph in

(b).

Given the size difference, one can conclude that the shortest path search algo-

rithms will be slower in the escape graph. The authors propose that two algorithms for 3-

and 4-nodes instances - with complexities ofO(n) andO(n2) respectively - can be used to

produce an approximated solution for larger instances, dividing the problem into smaller

subsets of K points. The technique, called K-Steinerization, has a worst-case complexity



39

of O(k3n2) where k is the number of terminals and n is the number of candidate Steiner

points.

More recently, in (CHANG et al., 2008) the authors proposed a technique to con-

struct a Steiner tree by applying the shortest path search and minimum spanning tree

algorithms in the escape graph. The generated tree is minimal for n=2. The worst-

case complexity is O(n3), but the authors state that the complexity for practical cases

is O(n2 log n).

Figure 2.7: An escape graph (a) and track graph (b).(HU et al., 2005).

(a) The escape graph, where every
vertex of every polygon produces
an edge.

(b) The track graph, where the vertices
of the polygons produce edges that only
span until they collide with a polygon, re-
sulting in much less vertices and edges in
the graph.

Source: (HU et al., 2005)

2.2.3 Spanning Graph Based

The third class of Steiner tree construction algorithms utilizes a spanning graph.

This graph is built by creating a node for each obstacle vertex and pin, then connecting

the neighboring vertices by an edge. One of the published works that make a tree using

the spanning graph is (LIN et al., 2008). Figure 2.8 shows their flow, where the graph

building and tree construction happens. In (a), the author displays the input: a set of pins

and obstacles in a 2D region. In (b), the spanning graph is constructed, with the pins’ and

obstacles’ vertices acting as graph vertices and edges appearing between close vertices in

the region. In (c), the authors show the shortest spanning tree obtained from the spanning

graph. The remaining steps (d) and (e) correct the spanning tree to be rectilinear using



40

Figure 2.8: Example Steiner Tree construction using a Spanning Graph (LIN et al., 2008).
In (a), the problem input consists of four pins and five obstacles. In (b), the vertices of the
obstacles and the pins form connections in the spanning graph, based on their distance.
In (c), the graph is trimmed into the shortest spanning tree. In (d), Steiner nodes are
introduced to make the spanning tree rectilinear. In (e), the redundant nodes are hidden
and the final result is obtained.

Source: (LIN et al., 2008)

Steiner nodes and then hide all redundant nodes to generate the final result.

2.2.4 Look-up Table Based

Finally, the currently most important type of Steiner tree routing algorithm is the

LUT-based. Instead of constructing the tree on the fly, this technique constructs a database

of premade trees. The algorithm that wishes to use a Steiner tree can access the database

and retrieve a solution. In (CHU; WONG, 2008), the authors state that their database

contains optimal trees for up to nine nodes, and accessing the database has a complexity

ofO(n log n), where n is the number of pins in the problem. The tool has to calculate the

pin order vector and the wire length vector to access the database. Figure 2.9 shows the pin

ordering vector generation. From bottom to top, the pin’s horizontal position concerning

the other pins is its order. In this example, the bottom pin is the third horizontally, which

makes its order 3. The final ordering of the example is 3, 1, 4, 2. The wire length vector

contains information about the distance between the lines and columns of the grid. Based

on the ordering string and the distance between lines and columns, the algorithm can

search the database and get the solution faster than solving the instance by itself. The



41

solution contains the y and x segments that should contain a wire.

Figure 2.9: Example configuration of four pins generating an order vector (CHU; WONG,
2008).

Source: (CHU; WONG, 2008)

2.2.5 Summary

Table 2.1 compares the works explained in the previous subsections in terms of

data structure and used algorithms, the worst-case complexity, and the maximum num-

ber of points for which the algorithm generates minimal trees. Note that the worst-case

complexity refers to theoretical scenarios that usually do not occur in practice. For

the complexity, n denotes the number of nodes, and k denotes the number of possible

Steiner points. The data structure and algorithm fields for (CHU; WONG, 2008) are high-

lighted because although the Steiner tree generation uses them accessing the tree from the

database is a simple access, and no actual algorithm is executed. Also, denoted by †,

the complexity stated is for accessing the database, not building the tree. Although the

authors propose a tree generation algorithm, studying the uses of such trees suffices for

this document’s scope. In the algorithm column, SPS stands for shortest path search and

MST for minimal spanning tree. In data structures, POWV stands for potentially optimal

wire length vector.

2.3 Rip-up and Reroute

Initially proposed in (SHIRAKAWA; FUTAGAMI, 1983), the rip-up and reroute

technique removes part of the existing routing and replaces it with another. The primary

goals are to route previously impossible connections and reduce wire length routing un-



42

Table 2.1: Table comparing different Steiner tree related works. #Points refers to the
maximum number of points in the instance that the algorithm can generate a minimal
tree.

Algorithm Data Structure Algorithm Complexity #Points
(WU et al., 1987) Track Graph SPS O(n4) 6
(GANLEY; COHOON, 1994) Escape Graph MST O(k3n2) 4
(CHANG et al., 2008) Escape Graph SPS and MST O(n3) 2
(LIN et al., 2008) Spanning Graph MST O(n2) 2
(CHU; WONG, 2008) POWV∗ MST∗ O(n log n)† 9

necessary detours. The underlying phenomenon that rip-up and reroute tries to handle is

the order of routing. Figure 2.10 exemplifies the first problem of unnecessary detours.

Notice how in (b) choosing to route A to A’ first can cause the path from B to B’ to be

longer than necessary. By changing the order and routing B to B’ first, the router finds the

desired solution (c).

Figure 2.10: Ordering problem example where longer than optimal wire length is avoided.

(a) Input problem, with two
nets A and B, both with two
pins, namely A and A’ and B
and B’ respectively.

(b) Possible routing solution
for nets A and B, routing net
A first. Note that net B has
sub-optimal wire length.

(c) Another possible routing
solution for nets A and B,
routing net B first. Note that
both nets have optimal wire
length.

Source: From the author.

Figure 2.11 shows an instance where routing A to A’ or B to B’ causes the other

to be unroutable in a particular configuration. This instance is harder to solve since the

ordering is not the only factor in place. Notice from (b) and (c) that merely changing the

order does not solve the problem. A partial rip-up and reroute is needed, or a negotiation

based on rip-up and reroute. The negotiation flow increases the cost of using a region

based on how many nets want to route through it. By raising the conflict region’s weight

and rerouting both nets, the router achieves the desired solution (d).

The rip-up and reroute scheme can use multiple routing algorithms, for example,

A*. However, if one wants to use the negotiation scheme, the routing algorithm needs to

consider a more sophisticated cost of routing, not only wire length. For example, inserting

a wire of length L in a congested region could cost 2 ∗ L, thus encouraging the use of



43

Figure 2.11: Ordering problem example where an unroutable net is avoided.
(a) Input problem, with two nets A and B,
both with two pins, namely A and A’ and
B and B’ respectively.

(b) Routing net A first with the shortest
path renders net B unroutable.

(c) Routing net B first with the shortest
path renders net A unroutable.

(d) A negotiation based rip-up and reroute
needs to be used to route both nets.

Source: From the author.



44

Table 2.2: Comparison of the fundamental algorithms.
Algorithm #Sources/ Time Guarantees Guarantees

#Targets Complexity Path Min Length
Maze Router 1/1 O(h ∗ w) Yes Yes∗

A* n/n O(log h ∗ w) Yes Yes∗

Bidirectional A* n/n O(log h ∗ w) Yes Yes∗

Track Graph Steiner Tree n/n O(n4) Yes Yes (2)†

Escape Graph Steiner Tree n/n O(n3) Yes Yes (4)†

Spanning Graph Steiner Tree n/n O(n2) Yes Yes (2)†

LUT Based Steiner Tree n/n O(n log n) Yes(9)† Yes(9)†

Pattern Router 1/1 O(h ∗ w) No No

alternative routes. Many modern works utilize rip-up and reroute in their flow. (GESTER

et al., 2013) uses a negotiation-based rip-up and reroute in their detailed routing flow.

(SUN et al., 2018) routes every net in parallel and then resolves conflicts using rip-up and

reroute combined with a conflict graph. (JIA et al., 2014) utilizes rip-up and reroute to fix

min-area violations, but not to fix net ordering.

2.4 Summary

Table 2.2 compares the algorithms studied in terms of the number of sources and

targets supported, time complexity, the guarantee of finding a path, and the guarantee of

the path being of minimum length. Note that these values assume the classic implemen-

tation unless otherwise stated.

The fields assigned with ∗ state that the algorithm finds the path with minimum

length, which is true if we consider only the path itself and no obstacles. Even then,

considering the path routed at the time that it executes, the shortest path available is

guaranteed to find. The fields assigned with † have the maximum number of nodes that the

algorithm guarantees to find a minimal path (PEARL, 1984). In the complexity notation,

h stands for the height of the routing region, w for the routing region’s width, and n for

the number of points.



45

3 DETAILED ROUTING ALGORITHMS

The more recent technologies brought more challenges to initial detailed routing.

The major problems that have arisen are pin accessibility and more strict design rules. The

first occurs when a pin is no longer accessible because of other structures in the vicinity.

For example, suppose a pin is in metal 1, and there are wires in metal 2 covering the pin

entirely so that there is no room for a via to access the pin. In that case, this configures a

pin accessibility violation. As for design rules, the more recent technologies added many

new constraints, most of which are a huge challenge to incorporate them in an initial

detailed routing algorithm. Even simpler constraints such as minimum area are difficult

to treat unless the routing polygons are created correctly by construction and require no

later analysis and repairs.

Some of the challenges that emerged with the newer technologies are the focus

in (LEUNG, 2003), where the author also discusses how modern routers can improve.

One of the constraints that are more complex in new technologies is the set of spacing

rules. For example, instead of requiring a fixed distance between two wires, the minimum

spacing is a function of both the width and length. In even newer technologies, this

can be a function of the parallel run length, that is, the distance that two wires span in

parallel. Another exciting topic is redundant via insertion. The author states that foundries

encourage the use of redundant vias to tolerate failure, indicating that 70-80% of single

vias can have a redundant via added without causing violations. The ISPD Initial Detailed

Routing Contest of 2019 incorporates these additional constraints (POSSER et al., 2018).

3.1 RegularRoute (ZHANG; CHU, 2011)

RegularRoute is a framework for initial detailed routing (ZHANG; CHU, 2011).

The authors proposed a flow divided into three main steps, local net routing, global seg-

ment routing, and maze routing. Figure 3.1 shows a flowchart where the algorithm’s

sequence is detailed. The flow starts extracting the global segments by finding guides

that span through more than one G-Cell. Afterward, local nets - nets contained entirely

in a G-Cell - are routed using Single Trunk V-Tree (STVT). Next, the algorithm works

in a layer-by-layer fashion. For each layer, each panel is independent. On each panel,

a maximum weighted independent set (MWIS) formulation models the global segment

assignment. By solving the MWIS, the algorithm can route a subset of the segments in



46

Figure 3.1: RegularRoute flow chart.

Global Segment Extraction

Local Net Routing by STVT

Consider Bottom Layer

Solve MWIS for Each Panel

Partial Assignment for Each Panel

Top Layer?

Panel Merging and Maze Routing

Terminal Promotion

Next Layer

Global Segment Assignment

Source: (ZHANG; CHU, 2011)

the panel. After considering all the metal layers, the algorithm employs a panel merging

and maze routing for routing closure.

It is important to note that RegularRoute has two limitations. The first limitation is that

it takes a 2D global routing solution as input, which means the segments are not assigned

to a layer and are free to be routed in any layer. In their work, the authors briefly describe

a technique to consider layer assignment. However, they insist that the global router does

not have enough information to assign layers to segments, and the authors believe the ini-

tial detailed router should perform the layer assignment. The second limitation is that the

work considers that all pins are in metal 1, which is not always the case. This limitation is

not addressed in detail, as the authors found satisfactory to state "In theory, our algorithm

is applicable to test cases with pins on different layers." (ZHANG; CHU, 2011)

3.1.1 Single Trunk V-Tree

The technique proposed by the authors of RegularRoute to route local nets utilizes

a single trunk tree approach. In this specific work, a vertical trunk is created in the local

net’s central horizontal point, spanning from the lowest to the top vertical pin position.

This trunk is in the metal2 layer. From this trunk, horizontal branches of metal1 connect

all pins of the net to the trunk. Figure 3.2 shows an example of a net with five pins routed

by an STVT. The authors state that the algorithm can construct the tree with linear time



47

Figure 3.2: Single trunk V-Tree routing a net.

Pins

Metal 2

Metal 1

Source: From the author.

concerning the number of pins. Furthermore, they claim that the STVT is a good choice

because it reduces the usage of metal 2 when compared with other candidate topologies,

rectilinear Steiner minimum tree (RSMT), for example. In the event of the same gcell

containing two local nets, there is a chance of the trees conflicting. The algorithm pro-

poses two alternatives. First, it considers neighbor tracks for the trunk and branches. If

this approach fails to resolve a conflict, it can use higher metal layers.

3.1.2 Global Segment Assignment

To route the global segments, the algorithm works with independent panels. In

each panel, there are a set of global segments. The objective at this stage is to assign

tracks to the segments. To achieve that, the authors introduce the concept of choices. A

choice is a candidate solution to route a segment. The authors define a choice by a seg-

ment from a track of the panel plus the terminal connections. The terminal connections

are any set of vias or wires that allow the connection of pins or other segments to the cur-

rent segment. Following the definition, a segment has multiple alternatives for routing,

each alternative represented by a choice. Figure 3.3 shows two global segments, one con-

necting pin A to pin B and the other connecting pin C to pin D. In this example, there are

four tracks. The track assignment for connection AB is in orange, and for connection CD,

it is in purple. The terminal connections are in red. Notice that the different tracks cause

different terminal connections. Only two choices are shown for this example, although

more choices could exist - and, in reality, probably would.

The essential concept of this formulation is conflict. Notice in figure 3.3 how choices AB1

and CD1 both wish to use a part of track 3. Physically, it is impossible to share the same



48

Figure 3.3: Two global segments within a panel with two choices each.

T1

T2

T3

T4

Pin A

Pin B

Pin C

Pin D

Choice AB 1

Choice AB 2

Choice CD 1

Choice CD 2

file:///home/andre/Pictures/conflict.svg

1 of 1 9/4/18, 3:20 PM

Source: From the author.

Figure 3.4: Conflict graph created from the circuit in figure 3.3

Choice AB 1

Choice AB 2

Choice CD 1

Choice CD 2

Source: From the author.

segment of a track in the same metal layer, and thus it is said that choice AB1 conflicts

with choice CD1. One particular property of the choices model is that when one choice

routes a particular segment, all other choices for the same segment are no longer relevant

since the segment is complete. Successfully routing a segment using a specific choice

means that all choices of the same segment conflict with each other. The authors describe

a method of modeling this phenomenon in a conflict graph. In such a graph, each node

corresponds to a choice, and edges connecting two nodes represent a conflict between the

said nodes. To build this graph, a node is created for each choice of a segment. All nodes

originated from the same segment are connected in a clique, since they all conflict with

each other, as stated before. After translating all segments within the panel to this graph,

it connects all conflicting choices in the circuit through an edge. Figure 3.4 shows the

conflict graph for the circuit in figure 3.3. Once a choice is routed, all conflicting choices

are now impossible to route and have their correspondence in the graph removed. For

example, routing the choice AB1 renders routing choice AB2 and choice CD1 impossible

because it is unnecessary since the segment doesn’t require routing anymore. However,

since this interferes with the choices of another segment selecting a node must be a careful



49

decision.

Modeling the problem as an instance of the MWIS is the proposed method by the authors.

Each node has a weight, containing information about how important the segment is to

route and how much interference the specific choice, represented by the node, will cause

to other segments. The calculation of the weight follows equation 3.1.

W (v) = L+ α1 ∗ ||R||+ α2 ∗ (

∑
b∈B(Db)

2

||B||
) + α3 ∗ (F1 + F2) (3.1)

α1 = 0.1 ∗ (
AvgDb

Tp
)2 (3.2a)

α2 = 0.9 ∗ 1

Wp

(3.2b)

α3 = 0.3 ∗ AvgSp
Wp

(3.2c)

The equation terms represent as follows:

• L is the number of gcells that the segment spans, and its purpose is to add weight

to large segments that are usually harder to route.

• ||R|| is a component that contains information about the terminal connections.

Longer terminal connections are less desired, but this term also considers non-

preferential direction usage and via count.

•
∑

b∈B(Db)
2

||B|| is the number of segments that cross the boundary of a G-Cell squared

and divided by the number of boundaries. This term is used to add weight to seg-

ments that cross more utilized boundaries since these segments are harder to route.

• (F1−F2) is used to model flexibility. The algorithm prioritizes routing a segment

using a choice that is incident to unassigned neighbor segments, which means that

a routed segment will improve the routability of another segment.

• α1, α2 and α3 are three experimentally derived coefficients. Their purpose is to

increase or decrease the effect of the equation components. Their equations are

listed in equations 3.2. AvgDb is the average segment density in the borders of all

gcells within the panel, Tp is the number of tracks in each panel, Wp is the width of

the panel, and AvgSp is the average space between tracks in the panel.



50

Thus, the conflict graph is now weighted. The algorithm’s objective is to find the

independent set that sums the highest weight, that is, solve the MWIS problem. Unfor-

tunately, the MWIS problem is NP-Complete, so the authors propose a heuristic to solve

it. The heuristic’s intuitive idea is that routing a segment using a specific choice has a

benefit to the routing proportional to the choice’s weight in the graph. However, it renders

it impossible to route any other choice that conflicts with it. Selecting a choice with a

considerable weight that conflicts with multiple smaller weight choices may be undesir-

able, since routing all the conflicting choices could prove better globally. Therefore, the

authors define the benefit of routing a segment using a choice B(v) expressed in equation

3.3a.

B(v) = W (v)− β ∗Wi(v)− γ ∗Wo(v) (3.3a)

β = 0.4 ∗ W (v)

max(Wi(v),Wo(v)
(3.3b)

γ = 0.2 ∗ W (v)

max(Wi(v),Wo(v)
(3.3c)

In these equations, the terms are as follows:

• W (v) is the weight of the vertex v that represents the choice of the segment.

• Wo(v) is the sum of the weights of all vertices originated from different segments

that conflict with vertex v.

• β and γ are coefficients used to increase or decrease the significance of each term.

The algorithm calculates the benefit of every choice in the panel and sorts it using a heap

structure. At every iteration, the algorithm selects the vertex with the highest benefit and

routes its choice. Then, it is removed from the graph, alongside all nodes connected to it.

The benefit value of the affected nodes is updated, and this process repeats. This heuristic

causes the segments with high weight to get priority when deciding which choice will get

the routing resources.

3.1.3 Partial Assignment

After routing using the MWIS solution, there may be multiple segments that were

left unassigned to a track. The authors of RegularRoute propose a technique to assign only

part of a segment to a track and connect parts of the same segment through a wire spanning



51

Figure 3.5: Example of a global connection routed by two partial assignments.

Source: From the author.

between the segments using the non-preferred direction. An example of a global segment

routed by two partial assignments is in figure 3.5. In the figure, pins A and B cannot be

connected by a single segment because of the three other segments routed in the same

panel, namely the blue, orange, and cyan segments. However, it is possible to partially

assign the segment from pin A through the red terminal connection to the partial purple

wire. On the other hand, a partial assignment can be achieved through the yellow wire

from pin B. These two partial segments, purple and yellow, can be connected through

the green wire, thus successfully routing the global connection. The MWIS. problem

can incorporate this partial assignment technique. According to the authors, though, the

added extra vertices and edges could potentially cause a longer run-time, which is why

the framework considers partial assignment only as a post-processing step.

3.1.4 Terminal Promotion

The RegularRoute framework assumes all pins are on metal 1. After considering

layer 1, the algorithm may still not have assigned segments to a track. In this situation,

the algorithm proceeds to the next layer, in this case, metal 2. The authors describe a

peculiar situation where the algorithm leaves pins on layer 1. When the algorithm finally

assigns the segment on metal 5, there is such a congested area above the pin that it cannot

be attached to the segment. Whether this situation occurs or not in practice, the authors

propose a terminal promotion technique, where pins left unattached in a particular layer

are moved up using a via when considering the next metal layer.

In a way, keeping all unattached terminals from the previous layer in the current layer

could address the problem of pins in higher metal layers. In this situation, the pins on

metal 2, for instance, will only start being considered when the algorithm finally reaches



52

layer 2. After a segment is assigned, it checks if there are terminals on upper layers that

need to be connected. If there are such terminals, the algorithm promotes the lower layer

terminals to the upper layer. It is not described in detail which terminals would move up

a layer in this situation, or even how many.

3.2 TritonRoute (KAHNG; WANG; XU, 2018)

TritonRoute is an initial detailed router (KAHNG; WANG; XU, 2018) similar

to RegularRoute (ZHANG; CHU, 2011). The major contributions are an Integer Lin-

ear Programming-based algorithm to route panels and the more sophisticated interlayer

routing. They divide the flow into intra-layer parallel routing and inter-layer sequential

routing. However, before the actual routing occurs, a pre-processing stage aims to make

the routing simpler by modifying the guides slightly.

3.2.1 Preprocessing

Before routing, TritonRoute processes the guides to generate uniformly wide guides

with the largest possible lengths in the preferred direction. Three techniques are em-

ployed: splitting, merging, and bridging.

3.2.1.1 Splitting

A guide’s width is its length in the orthogonal direction to the layer preferred

direction. The tool divides any guide with a width larger than the unit width into a set of

unit-wide guides. Figure 3.6 (b) shows the result of applying splitting in the configuration

of (a).

3.2.1.2 Merging

If two guides have edges that overlap in the direction orthogonal to the layer pre-

ferred direction, they are merged. Figure 3.6 (c) shows the result of applying merging in

the configuration of (b).



53

3.2.1.3 Bridging

When two guides have touching edges in the direction parallel to the layer pre-

ferred direction bridges over with the help of an additional guide in a higher layer. Figure

3.6 (d) shows the result of applying bridging in the configuration of (c). After these three

steps are applied, the tool discards any redundant guides. Figure 3.6 (e) shows the fi-

nal result of the pre-processing applied in the initial configuration (a). With the guides

pre-processed, the routing flow starts.

Figure 3.6: Preprocessing of routing guides. Blue rectangles are in metal 2, red rectangles
are in metal 3.

(a) (b) (c) (d) (e)

Source: (KAHNG; WANG; XU, 2018)

The overall flow is in Figure 3.7. For each layer, the same panel extraction of

(ZHANG; CHU, 2011) occurs. From the grid of gcells, the algorithm extracts the lines

(columns) if the layer’s preferred direction is horizontal (vertical). These lines (columns)

of gcells are the panels. The panels have indexes, starting from 0 for the bottom panel

and increasing. First, the algorithm routes the even index panels, all in parallel, and then

the odd index panels in parallel. This strategy allows for the algorithm to detect design

rule violations in the boundary between two boundaries, which would not be possible if

the tool was to route all panels in parallel. After routing every layer, the flow combines

every layer’s solution sequentially, creating the complete routing solution. An unspecified

shortest path router greedily routes any net that remains unrouted.

All even index panels are then routed in parallel using ILP. To solve the Maximum

Weighted Independent Set, first, the algorithm creates a conflict graph. In this graph,

nodes represent different possible choices of wires to route a segment. All choices for

the same segment conflict with each other, and choices from different segments conflict if

they overlap. Furthermore, every choice has a weight, although the authors do not specify

how to calculate it. The weight’s purpose is to prioritize higher quality choices for a given



54

Figure 3.7: TritonRoute flow chart (KAHNG; WANG; XU, 2018).

Guide Preprocessing

Panel Extraction

Solve Even Panels

Solve Odd Panels

Greedy Shortest Path 
Router

Inter Layer Routing

Source: (KAHNG; WANG; XU, 2018)

Table 3.1: Notations used by (KAHNG; WANG; XU, 2018).
Notation Rationale
G(V,E) Conflict graph containing set of vertices V and set of edges E.
vi,j A vertex in the conflict graph representing the jth choice of the ith segment.
ei

′,j′

i,j An edge in the conflict graph indicating conflict between vi,j and vi′,j′ .
bi,j Binary indicator of wether vi,j was used or not in the routing.
wi,j Weight of vi,j .

segment and a difficult segment over a more straightforward segment. Table 3.1 shows

the key terms used to create the graph.

The ILP formulation is in Equation 3.4, and it utilizes the definitions from Table

3.1. The objective is to maximize the weight wi,j of the used choices, which is why bi,j

is 0 or 1 depending on whether it is in the solution or not. As for the constraints, every

pair of vertices vi,j and vi′,j′ that have an edge ei
′,j′

i,j connecting them in the conflict graph

cannot have bi,j and bi′,j′ 1 at the same time. That is, no vertices that conflict in the graph

can be in the same solution.

Maximize:
∑

wi,j ∗ bi,j

Subject to: bi,j + bi′, j′ <= 1,∀ei
′,j′

i,j ∈ E
(3.4)

The output from the ILP formulation of the MWIS problem is the tracks that the

global segments will use when routed. Sometimes a segment of a congested region may



55

have no track assigned. The authors do not specify how to handle these cases, but we as-

sume the greedy shortest path router performs nets routing with unassigned segments. As

for the wholly assigned nets, the algorithm finishes by inserting vias in the access points

where two segments of the same net in adjacent layers intersect. The interlayer routing

process is performed sequentially because there is no guarantee of data independence.

3.3 A Multithreaded Initial Detailed Routing Algorithm Considering Global Routing

Guides (SUN et al., 2018)

In their work, the authors propose a framework for initial detailed routing (SUN

et al., 2018). Their main contributions are a pin access generation algorithm, a track

assignment technique, and a two-stage multithreaded initial detailed routing algorithm

based on negotiation. Figure 3.8 illustrates the overall proposed flow. The inputs are the

circuit netlist, the global routing guides, and the design rules - which they omitted in the

flowchart. The following subsections explain all steps.

Figure 3.8: Overall flow of the algorithm (SUN et al., 2018).

Source: (SUN et al., 2018)



56

3.3.1 Pin Access Generation

The first step that the algorithm takes is generating the pin access. The technique

adopts the concepts of hit point and valid hit point from (XU et al., 2015) and rework

the definitions slightly. They define a hit point as the intersection of tracks with preferred

direction on the current layer with the tracks with preferred direction on adjacent layers.

A valid hit point is a hit point where the tool can insert a via without any design rule

violations (SUN et al., 2018). Figure 3.9 shows a pin shape with two hit points. The top

hit point is not valid because inserting a via there would cause spacing violations with the

surrounding structures. The bottom hit point, however, is a valid hit point, and a via can

fit. The algorithm first processes each cell type and tries to find valid hit points within the

pin shape. If any valid hit points exist, they are the candidate access points. If not, the pin

shape is expanded one track space at a time until there is a valid hit point.

Figure 3.9: Pin access point extraction problem instance. Note that the hit point in red
would cause two spacing violations with the blockage, but the valid hit point in yellow
would not.

Source: (SUN et al., 2018)

After selecting a group of candidate pin access points, the algorithm attempts to

remove points that are too close to one another while keeping as many access points as

possible. It achieves that by modeling the problem as a conflict graph and solving the

maximum weighted independent set. However, the authors do not clearly specify how to

create the conflict graph or solve the MWIS problem.



57

Figure 3.10: Rudimentary routing produced by track assignment. Figure (a) shows only
the track assignment, and figure (b) shows the track assignment and the vias, with redun-
dant wires that are removed in red.

Source: (SUN et al., 2018)

3.3.2 Track Assignment

The next step in the flow is called negotiation-based Via-Location-Aware Track

Assignment. The authors cleverly state that a partial routing solution can be obtained by

simply selecting one track per routing guide. After inserting wires on the tracks selected,

simply inserting a via where two wires intersect in adjacent layers produces a rudimentary

routing. Figure 3.10 shows such routing in an example configuration. The authors call

iroute a wire spanning through the entire guide. Notice how on (b) the algorithm can find

the points where it can trim the iroutes based on the via positions. This track assignment

technique is an important building block for the overall flow.

The algorithm removes all iroutes that overlap with blocked regions, and a conflict

resolution technique handles the iroutes that overlap with other iroutes. The primary goal

is to prioritize the longest iroute in a conflict instance. A maximum weighted independent

set (MWIS) in an interval graph model based on a proven O(n log n) complexity algo-

rithm (HSIAO; TANG; CHANG, 1992). The weights of the vertices in the graph are the

iroute lengths. After applying this technique, some nets are left disjoint.

3.3.3 Multithreaded Negotiation Based Detailed Routing

At this stage of the flow, some nets are complete, but some other nets are disjoint.

To handle the disjoint nets, the authors applied an interval-based A* pathfinding algorithm



58

Figure 3.11: (a) Routing generated by an iteration of parallel A* routing and the cost of
the track T calculated for its segments. (b) Cost update at the end of another iteration
taking into account the historic cost of the segment that is still containing an overlap.
(SUN et al., 2018)

Source: (SUN et al., 2018)

with multiple targets. If a net has n disjoint structures, one of the structures becomes

the source for the pathfinding algorithm, and the other n − 1 structures are the sources,

causing the A* to be used n − 1 times per net. All nets have their structures joined in

parallel. After each iteration, track segments that contain two overlapping wires have their

cost increased proportionally to the number of overlapping wires. The next iteration will

consider the costs of using the track segment, which encourages the pathfinding algorithm

to use alternative routes. Figure 3.11 shows in (a) a routing generated for three nets, all

three using different segments of track T. At the bottom of (a), the cost calculation result

shows that the cost increases by a unitary cost called Ch. The track segments with n wires

have a cost increase of (n−1)∗Ch. The algorithm then creates another interval graph for

any track segment that has overlapping wires and attempts to keep the most critical wire

and rip up the rest. The weights calculation follows equation 3.5. The α are weighting

constants with unspecified values, Lwl is the length of the wire itself, Kpin is the number

of pins of the net in question, and Kfail is the consecutive number of failures in the rip-up

phase. The weight function has the objective of trying to prioritize nets that are more

difficult to route. With the conflicts resolved, the flow proceeds to create a new routing

for all paths that still need routing. In (b), a second routing appears with only one segment

where three wires overlapped fixed. However, the overlap on the left remains a problem.

The negotiation scheme solves this conflict by updating the cost taking into account the

historical cost of the previous routing attempts. In this specific case, the cost increases by

one Ch because two wires overlap at the particular track segment in question.

Wmwis = αwl ∗ Lwl + αpin ∗Kpin + αfail ∗Kfail (3.5)



59

The negotiation flow stops after eleven iterations, and the second stage of negoti-

ation then starts and runs for two iterations - both numbers defined by the authors exper-

imentally. The second stage’s main difference is that wires are, instead of discouraged,

completely prohibited from attempting to route through a track segment that another wire

has claimed in a previous iteration. The goal is to explore paths that the first stage would

hardly consider - if at all. According to the authors, the percentage of nets entirely routed

by the first stage may reach over 95%. The authors do not explicitly state that the routing

is complete after the second stage. However, their results by the ISPD 2018 metrics show

that there were no open nets for all benchmarks.

3.4 MCFRoute (Jia et al., 2018)

MCFRoute is a detailed routing framework based on multicommodity flow (Jia et

al., 2018). The main contributions of their work are:

• A concurrent detailed router using the MCF model.

• Support to spacing rules for 28nm and above technologies.

• Heuristics to increase MCF model construction speed.

• An efficient algorithm to solve the MCF model.

The flow used is in figure 3.12. It is important to notice that their router requires

both a global router and track assignment results. The step called Problem Division ap-

plies a G-Cell-based partitioning. The model construction step first formulates the de-

tailed routing into an ILP problem using first a basic model formulation, then a design

rule formulation that incorporates the rules into the model, and finally a model simplifi-

cation is done. The next step is a solver. In some cases, the solver succeeds in solving the

model. In this situation, the algorithm searches for violations, attempts to fix them and

outputs the final layout. If it fails because it could not find a valid solution or ran out of

time, the failsafe method is a maze router in the regions where it could not route.

3.4.1 Model Construction

The model construction step treats each net as a commodity with a corresponding

command unit of flow. For each net, one component is treated as a source and the other



60

Figure 3.12: MCFRoute overall flow (Jia et al., 2018)

Source: (Jia et al., 2018)

as a target. During the execution, the flow will be shipped from the source to the target.

Table 3.2 shows the notation used by the authors to explain the MCF modeling.

The edge capacity is the capacity that the routing graph edge allows to route

through it. Since a detailed routing solution requires that each edge of the routing graph

is occupied by at most one object, the capacity is either 1 when it is free or 0 when it is

a blockage. The edge cost is a positive real number that depends on the edge type (via

or wire) and preferred direction. The value of the flow command d(k, vj) depends on the

vertex. If the vertex is a component of net nk and this component is a source, the value

Table 3.2: Notation used in the MCF model by MCFRoute (Jia et al., 2018).
Notation Rationale

E/V/N
Set of edges, vertices and nets
indexed by i, j and k respectively.

Evj Set of edges of vertex vj .
Evj,out Set of edges that start at vertex vj .
Evj,in Set of edges that end at vertex vj .
Eηvj Set of via edges of vertex vj .
u(ei) Capacity of edge ei.
c(ei) Cost of edge ei.

d(k, vj)
Flow command of vertex ei
with value -1, 0 or 1 demanded
by net nk.

f(k, ei) Flow of net nk by edge ei.



61

of d(k, vj) = 1. If instead the vertex is a component of net nk but if the component is a

target, the value of d(k, vj) = −1. Otherwise, d(k, vj) = 0. f(k, ei) assumes two possible

values. If the edge ei is being occupied by a component of net nk, f(k, ei) = 1, and if it

is not occupied then f(k, ei) = 0.

According to the MCF theory, the authors proceed to create a set of constraints.

Equation 3.6 is the connectivity constraint and 3.7 is the capacity constraint. The first

equation’s interpretation is that the sum of all edges that go in the flow and the edges that

go out of the flow for the same net must be equal to the value of d(k, vj), whatever that is.

The second equation states that for every edge ei, the sum of all nets usage must be equal

to or less than the capacity, where ei and ēi are brother edges (the same edge in the graph

but different directions). These equations are enough to produce a routing without opens,

but it is not enough to avoid shorts. Equation 3.8 models the shorts, stating that every

edge can only be used by either a connection (hence the 2) or is left unused. The authors

also propose an equation that calculates the total cost of the routing. The cost equation is

in equation 3.9, It is fairly straightforward. The total cost is the cost of every edge used.

∑
e∈Evj,out

f(k, e)−
∑

e∈Evj,in

f(k, e) = d(k, vj) (3.6)

K∑
k=1

(f(k, ei) + f(k, ēi)) ≤ min{u(ei), u(ēi)} (3.7)

K∑
k=1

∑
e∈Evj

f(k, ei) ≤ 2 (3.8)

Cost =
K∑
k=1

∑
e∈E

(f(k, e) ∗ c(e)) (3.9)

With this final equation, the problem can finally be formulated as an ILP model.

The model has to minimize equation 3.9 while subject to equations 3.6, 3.7 and 3.8. How-

ever, this formulation only works for nets with two components and where each compo-

nent only covers one vertex. The authors prove that a set of components can be clustered

into a super vertex and considered only one component without losing generality. As for

the limit of two components per net, notice that it is equation 3.8 that starts to fail. Fig-

ure 3.13 shows an instance of this failure, where vertex V4 has three edges. The authors

state that only 1% of the nets in the studied circuits have three or more components and

propose to decompose these nets into multiple two-component nets using Steiner points.



62

This decomposition enables the flow to route all nets given enough time.

Figure 3.13: Multi-component net false short (Jia et al., 2018)

Source: (Jia et al., 2018)

3.4.2 Design Rule Modeling

One of the major contributions of MCFRoute is the incorporation of the design

rules in the MCF modeling. The authors state that their model does not support some

common rules in 45nm technologies and below, but it does cover some complex rules.

3.4.2.1 Spacing Rule Constraints

Some equations can assist in the task of modeling the most common spacing rules.

For all nets nk ∈ N and vertices vj ∈ V the model includes equations 3.10 and 3.11.

Eη
vj

is a set of vias in vertex vj . The function φ(k, vj) simply indicates whether net nk

occupies vertex vj . Analogously, the function η(k, vj) indicates whether or not net nk

occupies a via edge of vertex vj . Also, equation 3.12 defined for any two vertices vj1 and

vj2 with coordinates in the grid (x1, y1, z1) and (x2, y2, z2) respectively, represents the

distance between them. If the two vertices are in different layers, represented by different

z values, the distance doesn’t matter for spacing rules. Otherwise, the distance is defined

by the shortest distance between the x- and y-axis.

φ(k, vj) =

1, if ∃ei ∈ Evj so that f(k, ei) = 1

0, otherwise
(3.10)



63

η(k, vj) =

1, if ∃ei ∈ Eη
vj

so that f(k, ei) = 1

0, otherwise
(3.11)

Γ(vj1, vj2) =

min(|x1 − x2|, |y1 − y2|) if z1 = z2

∞, otherwise
(3.12)

Using these three equations, some design rules can be modeled and verified. As-

suming a fixed layer, let αm be the wire width, β be the via enclosure length and γm be the

metal spacing for the technology. For any vertex pair (vj1, vj2) ∈ (V ×V ) where j1 6= j2,

the authors introduce four situations:

• No violation: When αm + 2 ∗ β + γm ≤ Γ(vj1, vj2), vj1 and vj2 can be occupied

by any type of geometry and still respect the constraints. This situation appears in

figure 3.14.

• Enclosure to enclosure violation: If αm + β + γm ≤ Γ(vj1, vj2) < αm + 2 ∗

β + γm there may be enclosure to enclosure violation if both vj1 and vj2 are vias.

This situation appears in figure 3.14. The possibility of this violation requires the

introduction of equation 3.13, which states that the two vertices in question cannot

be both vias of different nets.

• Wire to enclosure violation: In a situation where the distance between vj1 and vj2

satisfies αm + γm ≤ Γ(vj1, vj2) < αm + β + γm both geometries involved must be

wires. This situation appears inf figure 3.14. Equations 3.14 and 3.15 model this

restriction. Remember that φ(k, vj) and η(k, vj) represent the existence of a wire

or via respectively in vertex vj .

• Wire to wire violation: When the distance between vj1 and vj2 satisfies Γ(vj1, vj2) <

αm + γm and both vertices are occupied by any geometry there is a violation. This

situation appears in figure 3.14 (d). This case requires the introduction of equation

3.16, denoting that the two vertices cannot be both occupied by wires of different

nets.

η(k1, vj1) + η(k2, vj2) ≤ 1 ∀nk1, nk2 ∈ N, k1 6= k2 (3.13)

η(k1, vj1) + φ(k2, vj2) ≤ 1 ∀nk1, nk2 ∈ N, k1 6= k2 (3.14)



64

φ(k1, vj1) + η(k2, vj2) ≤ 1 ∀nk1, nk2 ∈ N, k1 6= k2 (3.15)

φ(k1, vj1) + φ(k2, vj2) ≤ 1 ∀nk1, nk2 ∈ N, k1 6= k2 (3.16)

Figure 3.14: The four cases of spacing handled by MCFRoute (Jia et al., 2018). In (a), all
configurations of wire and via are allowed because of the distance between the considered
points. In (b), only the top two configurations are valid, because two via enclosures would
cause a spacing violation. In (c), only two wires would not cause a violation, because a
wire and a via enclosure would be too close. In (d), all configurations would cause spacing
violation.

Source: (Jia et al., 2018)

The authors note that these equations can model the end-of-line spacing rule. To

model this equation, it suffices to use the γeol instead of γm for the technology. Other

spacing rules are left for the maze router and search and repair stages.



65

3.4.2.2 Minimum Area

Because the wire width does not change for a fixed layer, the authors model the

minimum area using a minimum length constraint. Instead of adding equations to the

model that would, allegedly, cause the runtime to be unacceptable, the authors leave this

verification after the ILP solver has defined all the wires. Even if the algorithm were to

check all wire lengths, there is still one specific case where a minimum area violation

could occur. The authors describe a situation where the layout of a tower of vias would

incur a violation of minimum area, and the algorithm decides to increase the size of this

via enclosure. Sequentially, another tower of vias of another net has its layout created,

and it is impossible to extend its area to avoid a minimum area violation. This situation

appears in figure 3.15. In (a), a tower of two vias span through layers 1, 2, and 3. The via

enclosure in the middle would violate the minimum area constraint. However, instead of

simply increasing its size on the fly, which could cause the situation illustrated in (b), the

algorithm can leave the via unattended as in (c). After all the vias are inserted properly, a

more precise algorithm can increase the area of the enclosures while paying attention to

the structures nearby, reaching the result in (d). The authors state that this technique can

resolve 93.2% of the minimum area violations in their experiments.

Figure 3.15: Tower of vias minimum area violation handling by MCFRoute (Jia et al.,
2018). In (a), a tower of vias where the metal 2 via enclosure in the middle of the tower is
could cause a minimum area violation. In (b), a configuration where an attempt to patch
the wire to occupy more area would cause a violation. In (c), the enclosures were not
modified. In (d), both enclosures were patched with metal, but without causing violation.

Source: (Jia et al., 2018)



66

3.4.3 Multithread Strategy

One of the significant contributions of MCFRoute is the multithreaded strategy.

The authors cleverly state that there is a dependency problem in the boundaries of two

adjacent regions. This conflict with the boundaries would cause a high overhead to a

standard parallelization based on routing regions. What the authors propose is a four-

stage strategy where, in each stage, the algorithm can route a set of independent routing

regions. Figure 3.16 shows this strategy, where the flow partitions the initial grid of

routing regions into four tasks, sets of regions that are not adjacent to each other. By

sequentially routing each task set, it is possible to parallelize the routing greatly without

conflict overhead. The runtime scaling is very good, achieving 7.82× speedup with eight

threads.

Figure 3.16: Four stage multithreaded strategy employed by MCFRoute (Jia et al., 2018).
The entire task is divided into four parallel workloads, and the results of the four are then
merged to produce a final solution.

Source: (Jia et al., 2018)



67

3.5 SmartDR (GONÇALVES; JR; MARQUES, 2020)

In (GONÇALVES; JR; MARQUES, 2020), the authors present a set of techniques

and algorithms for initial detailed routing, in practice, a complete initial detailed routing

tool. The main contributions are a pin access methodology and a special A* implementa-

tion that is design rule aware.

3.5.1 Pin Access

The authors cleverly point out that there are only a few layouts out of all instances

of cells in the design. Out of these base cells, there are a small number of alignments

the instances can have with the grid. The pin access methodology they propose processes

all cells with all possible alignments with the grid and produces Pin Access Path (PAP)

sets for each configuration. Consider figure 3.17, extracted from (GONÇALVES; JR;

MARQUES, 2020). In (a), the figure shows the Simultaneously Valid Solution (SVS)

for this configuration, denoting all possible PAPs that would not cause any design rule

violation and could all coexist simultaneously. In (b), the figure illustrates a situation in

which a path in metal 2 cannot reach the implemented PAPs. In (c), the figure shows an

extension of the concept of SVS, where some grid nodes can access multiple pins, but only

one at a time. The authors call this phenomenon Resource Sharing. The authors propose

that these RS SVS live as Ghost PAPs, defined as PAPs created by the pre-processing

but not yet implemented physically. The strategy proposed utilizes these ghost PAPs as

different possibilities for pin access. According to the authors, the ability to choose a PAP

on-the-fly increases the flexibility of the solution.

The authors elaborate further on the subject of pin access. Figure 3.18, extracted

from (GONÇALVES; JR; MARQUES, 2020), shows an attempt of creating a valid PAP

to the middle pin of the cell in the given grid alignment. The authors state that using

a PAP on the left and a wire connecting the pin to the via would cause two spacing

violations, shown in (a). In (b), the authors show that a patch’s insertion would solve

these two spacing violations. However, this patch’s insertion would create a particular

metal configuration that the authors called Thick Metal Shape (TMS). This TMS would

alter the spacing rules, causing another violation shown in (c). In this specific example,

the PAP utilizing a via to the right would also cause a violation because of the TMS,

shown in (d). These two PAPs are therefore not legal.



68

Figure 3.17: Pin Access Path (PAP) processing as proposed by (GONÇALVES; JR;
MARQUES, 2020): "in access situations. (a) A SVS, denoted by the PAP locations and
their respective pins. (b) A path (red arrow) in metal 2 tries to connect to pin A but cannot
reach the implemented PAPs (we are assuming metal 3 is unreachable here). (c) A pin
access solution with resource sharing"

Source: (GONÇALVES; JR; MARQUES, 2020)

Figure 3.18: Patch metal insertion and TMS (Thick Metal Shape) calculation as proposed
by (GONÇALVES; JR; MARQUES, 2020). Figure (a) shows one possible via location,
and two violations it would cause. Figure (b) shows that two metal patches would solve
these violations. Figure (c) shows that the patch created a TMS, and now the special
spacing rules for wide objects cause a violation with the adjacent shape. Figure (d) shows
that the other possible via location would also cause a spacing violation.

Source: (GONÇALVES; JR; MARQUES, 2020)



69

3.5.2 Design Rule Aware Path Search (DRAPS)

This work’s other major contribution is the proposal of an adapted path search

that incorporates design rules and the PAPs in the algorithm. The algorithm’s general

working is analogous to the A*, but the authors state that the h(n) (the estimation of

distance from a node to the target) can be optimized. When the h(n) is optimistic, A*

is guaranteed to find the optimal path. However, the less optimistic it is, the faster the

search ends (GONÇALVES; JR; MARQUES, 2020). The authors point that when using

the Manhattan distance as h(n), it becomes too optimistic, mainly because the guides are

ignored completely. The authors propose using a processing of the guides to generate a

function called Tunnel Lower bound (TL), which is the minimum distance between the

two points when constrained by a tunnel, in this case, the guides.

Consider the definitions in table 3.3 (GONÇALVES; JR; MARQUES, 2020), with

the definitions used by the authors. The algorithm proposed precomputes the TL for each

TR before the path search. Then, during the path search, it calculates the h(n) using

equation 3.17. The authors state that the operation of iterating over the rectangle’s RPs

is of complexity ω(n), but that n in practice is very small. Finally, the authors state that

the TL’s precomputation for each TR is performed by a TL-aware implementation of the

Dijkstra algorithm.

h(n) = min {lb(n, r), TL(r)}, where r is a RP of rect(n) (3.17)

Given the optimized h(n), the authors describe the design rule awareness. The proposed

algorithm is aware of the via library, the minimum area rule, and the cut to cut spacing

violations in the same path, not between two different paths.

Table 3.3: Definitions used by (GONÇALVES; JR; MARQUES, 2020) to compute the
Tunnel Lower-bound (TL).

Notation Definition
rect(n) The tunnel rectangle (TR) that contains the point n.

lb(a, b)
The Manhattan Distance between a and b modified by the via cost
when the points are in different layers.

RP
A reference point n, stored in a TR, used for the TL calculation during
the path search. It has an associated target point and a TL(n)

TL(n) TL from the RP n to its corresponding target point.



70

3.5.3 Via Library

The input files define a set of vias that can be used. If the algorithm waits to select

a via after the full path has been defined, it may be impossible to find a via that would not

generate design rule violations (GONÇALVES; JR; MARQUES, 2020). The authors state

that their methodology selects the via that has the smallest footprint in the non-preferred

direction, giving preference to the bottom layer.

3.5.4 Minimum Area

Similarly to the via library, waiting to post-process minimum area shapes may

find a situation where it is impossible to extend wires without causing further violations

(GONÇALVES; JR; MARQUES, 2020). The proposed methodology is to check if the

wire in the previous layer has the minimum area whenever a layer change occurs. If it

does not, the wire is extended in the same direction until it meets the minimum area.

3.5.5 Cut Spacing

The authors propose a simple change in the path search algorithm that can reduce

cut-to-cut spacing in the same net vias. Whenever a layer change occurs, the strategy is

to backtrack through the path, searching for the first via it finds. When it does, it checks

if the distance between the first found via and the current via would respect the spacing

requirement.

3.6 Dr. CU 2.0 (LI et al., 2019)

In their work, the authors present a detailed routing framework. The authors state

that their major contributions are:

• A pre-processing to compute valid access points for pins with off-track via support.

• A design rule-aware maze routing that supports end-of-line spacing

• A post-processing that fixes corner-to-corner spacing

Figure 3.19 shows the overall flow of their work. There are four steps, Access Point As-



71

signment, Milth-threaded Maze Routing, Multi-threaded Via Selection, and Post-Routing

Refinement. We will study each step further in the following subsections.

Figure 3.19: Routing flow proposed by (LI et al., 2019)

Source: (LI et al., 2019)

3.6.1 Access Point Assignment

This step of the routing flow proposed by (LI et al., 2019) is about finding points

in the routing grid around pins that can connect the net structure to the pins. The authors

point that the number of routing tracks in a given area decreases with technology nodes’

advancement. In fact, for some pins in specific configurations, there is no violation-free

same-layer on-grid point that can access the pin (LI et al., 2019). Figure 3.20 shows an

example configuration that is affected by this phenomenon. (a) shows that no on-grid

via can access the pin labeled SI with no violations, and a highlight shows the spacing

violation between the example via and the pin labeled SE. In (b), the authors show that an

off-track via can access the pin labeled SI with no violations. The authors’ methodology

proposes that the upper layer’s grid points can be used instead of the bottom to find these

off-grid points to access the pins.

Pins that can only be accessed with off-track vias have the pin accessing via cre-

ated before the maze routing and are not moved during the rip-up and reroute. Pins that

can be accessed normally by on-grid vias have their access points stored as possible paths

to connect the rest of the net’s routing to the pin.



72

Figure 3.20: Off-track Pin Access (LI et al., 2019)

Source: (LI et al., 2019)

3.6.2 Multi-threaded Maze Routing and Via Selection

During these steps, a local grid graph is generated for each net based on the guide’s

location. The authors state that for each iteration, this local grid graph expands in both

directions to provide more room for the search. When the number of violations in a part

of the local grid graph exceeds a certain threshold, it extends to adjacent layers as well (LI

et al., 2019). The maze router runs constrained on this local grid graph, and nets whose

local grid graph do not overlap are considered independent work units for multithreaded

routing. The via selection technique utilizes a construction of look-up tables (LUTs).

The authors state that creating a LUT of vias can speed up the process of inserting vias

by categorizing the via-related spacing violations for each via in the library. Figure 3.21

shows an example of LUT for a candidate via of type 1, with the conflict regions with

respect to other types of vias color-coded. When considering a via to be placed in this

candidate’s vicinity, the LUT is consulted to choose the type of the second via. LUTs are

also created with configurations of via-to-wire and via-to-obstacle. The authors do not

specify how the configurations are obtained and how many there are.

During the maze routing, the authors consider the end-of-line (EOL) violation.

There are two different constraints: EOL with parallel edges (EWP) and without parallel

edges (EWOP). The EWP constraint is larger than the EWOP. However, the authors pro-



73

Figure 3.21: Via to via LUT (LI et al., 2019). The candidate via point in the middle would
cause different violations patterns depending on the via type selected.

Source: (LI et al., 2019)

pose that only the largest one is considered by the maze router, as the added complexity

of handling EWP conditions is not beneficial enough (LI et al., 2019).

3.6.3 Post-routing Refinement

The authors state that the via type selection is order-sensitive. Therefore, a round

of via type selection attempts to change the vias’ types after the maze routing is complete

to select the via types with the lowest violation count for each location. Corner-to-corner

(C2C) spacing violations are also considered for post-routing refinement. For C2C, the

authors only addressed the cases of via and wires causing violations, ignoring cases of

pins. They state that most pins are in metal 1 and that there are rarely any C2C rules for

the bottom layer as their reasoning not to handle this case (LI et al., 2019). As for the

other cases, the authors propose using the same methodology of LUT.

3.7 Summary

Table 3.4 shows the results of (ZHANG; CHU, 2011) compared with MCFRoute

and WROUTE. Based on this comparison, we compared the three algorithms in terms of

runtime, the number of violations produced, the number of vias inserted, and the total



74

Table 3.4: Results of (ZHANG; CHU, 2011), MCFRoute and WROUTE in the ISPD
2005 benchmark suite (NAM et al., 2005).

(ZHANG; CHU, 2011) MCFRoute WROUTE
Benchmark #vio wl×107 #via×106 cpu #vio wl×107 #via×106 cpu #vio wl×107 #via×106 cpu
adaptec1 0 8.4 1.5 622 0 12.5 2.3 22000 0 8.5 1.5 1201
adaptec2 0 10.2 1.9 558 0 15.1 2.6 27000 221 10.4 2.0 1344
adaptec3 0 21.8 3.5 1176 - - - - 0 22.1 3.6 3939
adaptec4 4 19.8 3.0 1330 - - - - 324 20.4 3.2 4424
adaptec5 14 46.6 6.9 2844 - - - - 294 47.2 7.2 7729
newblue1 0 8.8 2.3 297 - - - - 0 9.1 2.4 914
newblue5 6 46.3 7.2 2654 - - - - 287 48.8 7.8 7097
newblue6 0 39.9 8.5 2445 - - - - 0 41.2 9.0 6645
bigblue1 0 9.8 2.2 811 0 16.3 2.9 32000 0 9.7 2.2 1802
bigblue2 0 21.2 3.7 1177 0 24.1 5.0 43000 54 22.0 3.9 2856

Table 3.5: Results of and (KAHNG et al., 2011), (SUN et al., 2018), (GONÇALVES; JR;
MARQUES, 2020) and (LI et al., 2019) in the ISPD 2018 benchmark suite, as reported
by (GONÇALVES; JR; MARQUES, 2020)

(KAHNG; WANG; XU, 2018) (SUN et al., 2018) (GONÇALVES; JR; MARQUES, 2020) (LI et al., 2019)
Benchmark Score×106 runtime Score×106 runtime* Score×106 runtime Score×106 runtime
test1 0.38 154 0.36 33.8 0.32 16 0.29 31
test2 5.62 1399 5.53 346 5.00 71 4.70 197
test3 6.98 2335 6.71 460 5.71 157 5.37 532
test4 25.8 9972 37.0 1210 16.5 314 15.6 2761
test5 21.6 3705 51.0 1451 17.6 208 16.3 1643
test6 29.0 6124 73.3 3168 23.5 286 21.6 1444
test7 50.6 10994 124 8586 43.3 429 38.4 3172
test8 49.6 9793 125 8295 45.9 435 38.5 2991
test9 41.8 9119 117 5657 39.1 405 33.1 1924
test10 56.3 16421 234 6553 72.4 717 41.9 5212
Average 28.7 7442 77.4 3576 26.9 303.8 21.5 1990

wire length created. (ZHANG; CHU, 2011) is the fastest, generates the fewest violations,

and uses the least amount of vias and wire resources.

Table 3.5 shows the results of (KAHNG; WANG; XU, 2018), (SUN et al., 2018),

(GONÇALVES; JR; MARQUES, 2020), and (LI et al., 2019). The times were reported

by (GONÇALVES; JR; MARQUES, 2020) where the authors claim to have obtained the

binaries and executed all tools in the same machine, therefore obtaining a supposedly

scaled result, except (SUN et al., 2018) that was not available. The score obtained for

the contest benchmarks is a weighted equation of different metrics. The table presents

the score and runtime, and while these are not enough to visualize differences in specific

metrics, the score gives a rough estimate of the quality of the result. According to the re-

sults, the best scoring tool in average is (LI et al., 2019), followed by (GONÇALVES; JR;

MARQUES, 2020), (KAHNG et al., 2011) and finally (SUN et al., 2018). As for runtime,

(GONÇALVES; JR; MARQUES, 2020) is much faster than the other tools, followed by

(LI et al., 2019), and (KAHNG et al., 2011). The runtime of (SUN et al., 2018) was not

obtained in the same machine; therefore, it would not be a fair point of comparison.

Table 3.6 compares the studied frameworks concerning several functionalities and

data structures. (ZHANG; CHU, 2011) states in their work that the flow can perform



75

Table 3.6: Comparison between the studied frameworks.
(Jia et al., 2018) (ZHANG; CHU, 2011) (KAHNG; WANG; XU, 2018) (SUN et al., 2018) (GONÇALVES; JR; MARQUES, 2020) (LI et al., 2019)

Layer Assignment Yes No Yes Yes Yes No
Track Assignment Yes No No No No No
Out of Grid Structures No No Yes Yes Yes Yes
Multithreaded Data Set Routing Region Panel Panel Net Batch Net
Conflict Modeling MCF Conflict Graph Conflict Graph Interval Graph Resource Sharing LUT
Conflict Resolution MCF MWIS MWIS Negotiation and MWIS Exclusion -
Model Solver ILP Benefit Heuristic ILP Hsiao:1992:EAF:144207.144222 - -

layer assignment, and (LI et al., 2019), while using the ISPD formulation that includes

layer assignment, formally does not constrain the routing to the layers. Track assignment

is a requirement only for (Jia et al., 2018). Both (Jia et al., 2018) and (ZHANG; CHU,

2011) need structures to be aligned to the grid, although the authors briefly talk about the

necessity of off-grid vias to access pins. In modern frameworks, multithreaded capable

algorithms can reach better runtimes. The data set that the multithreaded algorithms use

varies. (Jia et al., 2018) creates four sets of routing regions so that each set contains

no neighbor routing regions within the same set. (ZHANG; CHU, 2011) and (KAHNG;

WANG; XU, 2018) use the same panel strategy for global segments. (GONÇALVES; JR;

MARQUES, 2020), and (LI et al., 2019) use their respective modeling of the net topology

as a basis to determine which nets can be routed in parallel. (SUN et al., 2018) uses a net

as a data set and handles the data dependency afterward. The conflict modeling of (Jia

et al., 2018) bases itself on MCF theory. Both (ZHANG; CHU, 2011) and (KAHNG;

WANG; XU, 2018) use conflict graph, while (SUN et al., 2018) uses an interval graph to

model the conflicts. To solve the conflict, MCF uses the MCF theory. (ZHANG; CHU,

2011) and (KAHNG; WANG; XU, 2018) extract the MWIS from the conflict graph, and

(SUN et al., 2018) uses a combination of both MWIS and negotiation. As for solving

the model, (Jia et al., 2018) and (KAHNG; WANG; XU, 2018) use an ILP formulation

to solve the MCF and MWIS, respectively. (ZHANG; CHU, 2011) solves the MWIS

problem using the benefit heuristic, and (SUN et al., 2018) solves the instances of MWIS

using (HSIAO; TANG; CHANG, 1992). (GONÇALVES; JR; MARQUES, 2020) uses

resource sharing (RS) as a conflict model on pin access and solves the conflicts by simply

selecting one and excluding the others, with no engine. (LI et al., 2019) uses a look-up

table-based scheme to consult on possible conflicts, specially vias, and does not use an

engine.



76

4 MIXED ROUTING FRAMEWORKS

Some of the literature works propose either performing global and detailed routing

together in a flow while exchanging information, and some others propose performing full

circuit routing without dividing the routing hierarchically. We will address these specific

cases in the following sections, although the latter is inefficient and struggles to meet

timing constraints while minimizing violations.

4.1 Qrouter (QROUTER, 2017)

Qrouter is a routing tool part of the Qflow toolchain (QROUTER, 2017). It bases

itself on Lee’s algorithm (LEE, 1961), also known as maze router. The algorithm does

not explicitly perform global routing and detailed routing; instead, it performs full circuit

routing from the start. The employed algorithm expands on Lee’s algorithm because it

can handle multiple sources and multiple terminals for a connection. One pin of each

net becomes a source, and the others become targets. When the algorithm finds a path

between the source and one target, the path is committed and becomes part of the source

for new searches to the other targets.

Because the maze router is too slow for full circuit routing, the authors developed a

hybrid technique. It first computes an optimal trunk-and-branches solution. This solution

is used as an initial routing for each net, and the terminals of each net are attached to the

trunk or branches in an ad-hoc fashion. After the initial solution, the flow applies rip-up

and reroute of nets that have a short. After a certain predefined number of iterations, the

nets that are still unrouted are routed using the maze router.

Figure 4.1 shows the snippet of a routing solution produced by Qrouter. It is

worth noting that the routing produced is very dense but seems to be using only three

metal layers based on the color-coding. The authors themselves state that the solution

relies on the placement quality, and it does not alter placement to improve routability.

4.2 GDRouter (Zhang; Chu, 2012)

GDRouter is a framework for complete routing by interleaving global routing, and

detailed routing in a flow (Zhang; Chu, 2012). The flow employed is in figure 4.2. In the



77

Figure 4.1: Example circuit routed by Qrouter (QROUTER, 2017)

Source: (QROUTER, 2017)

first phase, called "Initial Capacity and Routing Weight Estimation," the pin distribution

analysis is done using the gridded Voronoi diagram. The calculation uses the pin density

of the G-Cell weight. The resulting weight is useful in global routing. Then, the flow

attempts to estimate local G-Cell utilization. Two cases require attention: first, when a

net is entirely in one G-Cell, it is necessary to estimate the resource usage. Second, a

global net that spans multiple gcells will utilize resources within the gcells where its pins

reside. The flow uses the spine router to estimate these two resource usages. It strongly

resembles the vertical trunk router. When a trunk is close to the G-Cell boundary, the

G-Cell has its capacity decremented. When the spine router uses more than 50% of the

track resources, the capacity is updated. Finally, virtual routing takes place. This virtual

routing merely is a fast implementation of both FastRoute, and RegularRoute (ZHANG;

CHU, 2011) in sequence. The simplified implementation of FastRoute only uses Z- and

L-shape patterns. The simplified implementation of RegularRoute only performs track

assignment and has a reduced number of global segment choices. The intention is to very

quickly produce an initial solution from which one can infer routablity statistics.

Phase two starts with a complete FastRoute execution utilizing the routability in-

formation from phase 1. Then, global segment extraction generates a global routing solu-

tion. A complete RegularRoute implementation uses this global routing solution, which

produces a full routing solution. This solution is better than the previously provided by



78

Figure 4.2: GDRouter overall flow (Zhang; Chu, 2012).

Source: (Zhang; Chu, 2012)

just chaining FastRoute with RegularRoute because of the information generated in the

first phase.

Phase three is called "iterative test routing." It consists of updating the usage esti-

mations, incrementally using FastRoute to reduce the congestion by rerouting problematic

nets, and then running a history-based RegularRoute. After an iteration, if the result has

stopped improving or a certain number of iterations have already run, the algorithm fin-

ishes. Otherwise, this chain of an update, global routing, and detailed routing continues,

improving the solution further.



79

5 PROPOSED INITIAL DETAILED ROUTING FLOW

5.1 Introduction

Figure 5.1 shows an overview of the proposed initial detailed routing flow. There

are four main phases: Initialization Phase, Parallel Workload Creation Phase, Parallel

Routing Phase, and Sequential Routing Phase. Section 5.2 goes into detail about each of

the phases. The goal of the initial detailed routing flow differs slightly from the definition

of the initial detailed routing. The reason is that we designed the flow to comply with

the ISPD Initial Detailed Routing Contest suite (POSSER et al., 2018). There are a few

specific details about the contest formulation that caused changes to the flow. The main

difference is the greedy router process. Because any open in any net causes the entire so-

lution to be invalid, this stage applies a greedy sequential shortest-path routing algorithm

on any nets that the main flow could not route to prevent the solution’s invalidation. Even

though this is what the contest proposed, we believe that it is better to create an entire

routing solution without resorting to algorithms that are mostly unaware of the bigger

picture. While proposing such a flow is out of this work’s scope, it is essential to remind

ourselves that all stages of a flow share the goal and responsibility of achieving a final

physical design.

5.2 Initial Detailed Routing Flow Phases

The proposed initial detailed routing flow has four main phases. The following

items contain a brief description of each phase.

• Initialization Phase: Reads the input data and initializes the routing problem in-

stance.

• Parallel Workload Creation Phase: Aims to create independent workloads that can

be addressed in parallel.

• Parallel Routing Phase: Attempts to solve the routing problem formulated by the

previous phase.

• Sequential Routing Phase: Sequentially routes all nets left incomplete by the previ-

ous phase.

Each of the phases has algorithms that provide a solution to its problem. Note



80

Figure 5.1: Overview of the proposed initial detailed routing flow.

Source: From the author.

that this does not guarantee a valid, complete, or optimal solution to their problem. For

example, a very congested routing problem could have an incomplete parallel routing

solution.

The ideal initial detailed routing flow would be slightly different. Whenever the

parallel routing phase failed to route large nets - large in terms of spanning through many

GCells, and not in terms of the number of pins - or a large number of nets, it indicates

a congestion problem that could have originated in global routing or even placement.

A design with a large number of incomplete nets generally requires a sequential greedy

routing of the incomplete nets. The routing of the incomplete nets would also have to

navigate through a potentially large number of already routed nets in the vicinity, which,

combined with special routing rules, increases routing difficulty even further.

The main routing phase, implemented in both the Parallel Workload Creation and

Parallel Routing Phase, attempts to create a routing solution mostly correct by construc-

tion. When a solution of these phases is incomplete for a large number of nets, a cleverly

implemented initial detailed routing flow could make use of the data provided by the

incomplete routing to backtrack to global routing or even placement to fine-tune their so-

lution considering the new, previously unavailable routing information. In this sense, the

initial detailed routing could also act as a very accurate routability verification tool. A



81

complete physical design flow would very likely already contain a congestion estimation

step - or perhaps even more than one. Remember, however, that what these congestion

estimation algorithms essentially try to predict the result of the routing, and the informa-

tion given by failure in a step of the initial detailed routing is the de facto information that

the estimators merely attempt to predict.

5.2.1 Initialization Phase

5.2.1.1 Read Data

This step is included for completeness but depends entirely on the specific im-

plementation of the files. Regarding the implementation of our proposed flow, chapter 6

contains information about the data formats used in this specific implementation.

5.2.1.2 Initialize Data Structures

The second initialization step, labeled "Initialize" in the flow chart shown in figure

5.1, must implement some of the most important data structures in the entire flow: the

routing grid and the geometry tree. The routing grid is a data structure representing the

routing region in terms of a grid of a fixed granularity defined by the technology. The

geometry tree is a data structure that stores the wires, vias, and blockages. In an exemplary

implementation, both data structures would consume almost no space in memory while

being instantaneous to access. However, the reality requires the trade-off between speed,

memory footprint, utility, and complexity of implementation.

The geometry tree provides the flow with an interface to obtain information about

structures in the vicinity of a given point. We propose adopting the R-Tree as the data

structure for the geometry tree (GUTMAN, 1984). Using an open-source implementation

of the tree data structure makes creating the geometry tree trivial.

In the routing grid, we propose a simple matrix for each layer. For each point, the

grid can provide information such as if the node is occupied, if it contains a via to another

layer, what is the net that the node belongs to (if any), and if the node is an access point

to any pin of any cell. We recommend implementing each layer with its grid, mainly

because it can have a different pitch and routing rules.



82

Figure 5.2: Example of a placed circuit.

Source: From the author.

5.2.2 Parallel Workload Creation Phase

In the parallel workload creation phase, the algorithm employs techniques to di-

vide the routing problem into independent smaller problems. We propose an approach

similar to what was first proposed in (ZHANG; CHU, 2011), to divide the routing region

into panels for each layer and work with panels as independent. The strategy consists of

dividing the entire routing problem into panels. To better explain the creation, consider

the example in figure 5.2. In this example, cells with their outlines are visible, and the

pins are in full black. Please note that this example is not necessarily realistic or to scale.

The input files provide the information of which pins are logically connected, and

the router should physically connect using wires and vias. Figure 5.3 contains the same

problem, but some of the pins were color-coded to help visualize the logical connections.

Furthermore, this version of the figure contains a GCell grid laid on top of the original

problem.

According to the problem definition, the input should also specify routing guides

for each of the nets. Figure 5.4 shows a hypothetical set of guides for each of the color-

coded nets. Note that in 5.4e the figure contains the combination of the guides of all nets in

the example, and where the guides overlap, the figure uses thinner rectangles to represent

the guides - but they still contain the entire GCells and are unchanged in dimensions. This

is to reduce visual pollution if all guides were to overlap.

Finally, figure 5.5 shows the same configuration achieved in 5.4, but now the pan-

els are separated clearly. Notice that most panels have trivial solutions, having either zero



83

Figure 5.3: Example placed circuit with an overlay GCell grid and some of the pins color
coded.

Source: From the author.

Figure 5.4: Guides of the nets previously color coded in figure 5.3

(a) Guides of the green coded net. (b) Guides of the orange coded net.

(c) Guides of the red coded net. (d) Guides of the blue coded net.

(e) Guides of all nets combined.

Source: From the author.



84

Figure 5.5: Explicit panels obtained from the configuration in figure 5.4e.

(a) Horizontal panels. (b) Vertical panels.

Source: From the author.

or one guide spanning through it. The most interesting panel is the first horizontal panel,

where all four exemplified nets overlap.

In this instance, the independent units of work are the panels, but not merely all

panels in any order. Note that while the panels are mostly independent, adjacent panels

share a boundary, where routing and spacing rules apply. Thus, this phase outputs four

independent sets: odd-indexed vertical panels (OV), even-indexed vertical panels (EV),

odd-indexed horizontal panels (OH), and even-indexed horizontal panels (EH).

Algorithm 1 shows a simplified initialization of the horizontal panels. Note that

in the algorithm there is a function called findGuidesInPosition(). Considering that the

guides were previously stored in an R-Tree, as discussed before, the average complexity

of searching a guide given a position is O(log(n)) (GUTMAN, 1984). The creation of

the vertical workload is analogous.

5.2.3 Parallel Routing Phase

This phase’s input includes the panels obtained previously. The objective is to

assign one of the available tracks to each guide for every panel. Consider the configuration

in figure 5.6, where the topmost horizontal panel of figure 5.4e is in detail. Once again,

the guides that are part of the panel have a reduced height, but this is not the case in the

real instance. The guides are shorter in the figure because otherwise, they would overlap,

and the figure would be too polluted - they span the entire height of the panel.

The solution of this stage of the flow is to assign a track index to each guide in the

panel. For example, the solution S = {{Orange, 0}, {Green, 1}, {Red, 2}, {Blue, 3}}

is a valid output, where the track assignment simply assigned the bottom-most free track



85

Data: Width and height of GCell Grid w and h respectively.
Result: Odd- and even- indexed horizontal panels OH and EH respectively.
EH← {};
OH← {};
for i← 0 to w do

panel← {};
for j ← 0 to h do

guides = findGuidesInPosition(i, j);
foreach guide g in guides do

panel.insert(guide);
end

end
if isOdd(i) then

OH.insert(panel);
else

EH.insert(panel);
end

end
return OH and EH

Algorithm 1: Initialization of horizontal panels.

Figure 5.6: Example of a horizontal panel with color coded guides, based on the example
in figure 5.4e. The panel has eight tracks explicitly shown by the dashed lines and indexed
on the left from zero to seven. Note that this illustration shows the guides with a height
of only a quarter of the panel height, but they span the entire height of the panel.

Source: From the author.



86

to any of the guides. This trivial algorithm generates a solution that does not consider any

information of the nets or any other objects in the routing problem and therefore is not

ideal. What we propose is an approach that follows these guidelines:

• Model the panel as a conflict graph

• Prepare an ILP formulation that solves the maximum-weighted independent set in

the conflict graph (MWIS)

• Solve the MWIS problem in the conflict graph

• Return the track assignment

In this context, a conflict graph is a node-weighted in-directed graph where each

node represents one possible track assignment for one guide, and edges between nodes

represent a conflict between the connected nodes. Figure 5.7a shows the entire horizontal

panel, but with only the orange guide, with its true height. Figure 5.7b shows a graph

with eight nodes, each node is associated with a track of the panel, and the index of the

track is indicated inside the node. Each node in the graph is called a choice because it

represents one possible choice of track to assign to the guide. This completes the nodes’

construction relevant to the orange guide, but there are no edges yet. This is where we use

the concept of conflict by redundancy.

Note that when the algorithm assigns any of the eight tracks to a guide, there is no

point in assigning another track because the first track already routes the guide as desired.

Therefore, every node of the orange guide conflicts with every other node of the same

guide by redundancy. In the graph, the conflict is represented by an edge between two

nodes. Because in this case, the eight nodes conflict between each other, this eight-way

conflict is represented by a clique, illustrated in figure 5.7c.

The same construction of a clique happens for every other guide in the panel. After

creating the cliques, the algorithm achieves the configuration in figure 5.8.

The next step is to analyze the panel’s guides to identify conflicts between guides,

called conflict by overlap. This conflict happens when two guides overlap, and therefore

the nodes of the graph corresponding to tracks of the same index conflict. Because the

example with eight tracks would be too impractical to show in a figure, we resort to a

simpler - but analogous - example with only three guides. Consider the simpler problem

illustrated by figure 5.9. Figure 5.9a shows the relevant horizontal panel. Note that, unlike

the previous example, this panel contains two blockages. When building the cliques rep-

resenting each guide’s track options, some tracks are blocked and unavailable to some of



87

Figure 5.7: Creation of a part of the conflict graph that represents the orange nodes and
the concept of conflict by redundancy.

(a) Example problem originally in figure 5.4e, but with only the orange guide and showing the real
height of the orange guide.

(b) Nodes in a graph representing the possible tracks for the orange guide. Note that the number
inside the nodes are the track index, and not the weight of the nodes.

(c) A clique between all nodes of the graph of 5.7b, representing an eight-way conflict between all
nodes.

Source: From the author.



88

Figure 5.8: Configuration obtained by constructing the four eight-way cliques, each rep-
resenting the tracks for the guide of same color.

Source: From the author.

the guides. For example, note that the red guide cannot route through the tracks of index

0 or 1 because both are partially blocked in the rightmost G-Cell. Figure 5.9b shows the

construction of the cliques representing each guide. The nodes are properly color-coded,

and the number inside each node is the index of the track they represent. Note that the

blue guide cannot use the track of index 1, and the red guide cannot use the tracks of

index 0 or 1. The cliques do not contain the nodes associated with that choice. Finally,

considering the guides’ overlaps, figure 5.9c shows the complete conflict graph for this

instance. The three nodes 2-indexed are conflicting by overlap, and the two 0-indexed

nodes are why the bolder edges connect them.

With the conflict graph built for the panel, the next step is to model the maxi-

mum weighted independent set problem (MWIS). Before modeling, we first describe the

MWIS problem and why solving it in the conflict graph produces a track assignment.

The following definitions are formal descriptions of essential concepts building up to the

MWIS.

Definition 5.2.1 (Independent Set). "An independent set of a graph G is a subset S of

nodes in G such that no two vertices of S represent an edge in G."(PEMMARAJU;

SKIENA, 2003)

Definition 5.2.2 (Maximum Independent Set). The maximum independent set (MIS) of a

graph G is the largest independent set S of G.(PEMMARAJU; SKIENA, 2003).



89

Figure 5.9: Step-by-step creation of a complete conflict graph for a given panel.

(a) Example horizontal panel with three horizontal tracks, three guides, and two blockages inter-
fering with the tracks availability. The three horizontal tracks are indexed from 0 to 2.

(b) Graph containing the nodes generated from the panel in 5.9a and with the edges representing
conflicts by redundancy. The index of the nodes correspond to the index of the track the choice
represents - for example, the red and blue nodes indexed with 2 represent the choice that would
route through track of index 2.

(c) Complete conflict graph representing the panel 5.9a. There is a connection between the green
and blue nodes indexed 0 because both represent the intent of routing through track of index 0.

Source: From the author.



90

Definition 5.2.3 (Exact Weighted Independent Set). The exact weighted independent set

(EWIS) of a node-weighted graph G is an independent set S of G whose sum of compo-

nent nodes weights is exactly a given value(MILANIC; MONNOT, 2007).

Definition 5.2.4 (Maximum Weighted Independent Set). The maximum weighted inde-

pendent set (MWIS) of a node-weighted graph G is the independent set S of G whose

sum of component nodes weights is the largest possible.

It is instrumental in understanding why an independent set in the conflict graph

generates a panel’s track assignment. Consider the conflict graph in 5.9c. Now consider a

set of nodes that is not independent, S = {Blue2, Red2, Green1}. The track assignment

represented by this solution would require a wire in track 1 for the green guide, a wire

in track 2 for the blue wire, and a wire in track 2 for the red wire. This is impossible

because track 2 cannot support two wires. This is why the nodes were connected in

the first place because they conflict by overlap. Now consider an independent set S =

{Blue0, Red2, Green1}. The track assignment for this set is indeed possible because it

requires a wire in track 0 for the blue guide, a wire in track 2 for the red guide, and a wire

in track 1 for the green guide, which satisfies the physical requirement of one wire per

track and no overlaps.

We are not, however, merely interested in a feasible track assignment. The quality

of the wires generated is critical to prioritize specific parameters. To better model that, we

propose a weight assignment to each node in the conflict graph. By assigning weights to

each node and having the weight correlate to the metrics we wish to optimize, solving the

MWIS problem in the conflict graph optimizes our metrics. Before discussing algorithms

to solve the MWIS, we propose a strategy to calculate weights for the choices.

As described previously, each guide has a set of choices, one for each available

track. In practice, some choices can be better than others during routing, even for the same

guide. Consider the trivial case in figure 5.10. In this example, there is a straightforward

two-pin net connecting the two blue pins. There are three available tracks to choose from

for this guide, but it is evident that the track of index 2 is the closest to both pins. Choosing

the tracks of index 1 or 0 would require adding longer terminal connections and, therefore,

worse. To capture this phenomenon, we consider the estimated terminal connection cost

and subtract it from the choice’s weight. This way, the tracks with the smallest terminal

connections are prioritized. Note that in the example provided, the terminals were the

actual pins of the cell. When routing in higher layers, the terminals are the possible points

where the bottom layer could contain a via.



91

Figure 5.10: Example guide showing three possible choices to route a simple net.

Source: From the author.

Another important parameter to consider when calculating the weights of choices

is the number of choices for each guide. Consider the example in figure 5.11. Note that

there are two guides in this panel, one blue and one red. Both overlap in the middle

G-Cell, and therefore their choices will conflict by overlap in the conflict graph. Now,

notice that there is a blockage spanning the bottom five tracks in the leftmost G-Cell.

This blockage causes the blue guide to only have two choices instead of seven for the red

guide. This means the blue guide is less flexible when it comes to choices, and therefore

harder to route. This incurs a flexibility weight to the blue greater than the red guide.

Figure 5.11: Example panel with two guides and a blockage.

Source: From the author.

Guides of hard to route nets should have routing priority. To model that, we con-

sider three parameters:

• The number of pins of the net: This is trivial; nets with a higher number of pins are

generally harder to route.

• The number of G-Cells the net spans through. Some global nets span through the

entire routing area. Increasing the weights of their guides increase the priority of

routing these large nets instead of smaller nets, some of which may be trivially

routable.

• The panels’ boundary density: In the same panel, some G-Cells have a higher num-

ber of guides passing through them. The number of guides passing through a G-Cell

is called the boundary density. Choices that want to route through high boundary

density regions are harder to route because they compete for the tracks with multiple

other nets.



92

Table 5.1: Notation of the terms used for choice weight calculation.
Symbol Term
WC Total weight of choice C
|N | Number of pins of net N
FG Flexibility of guide G
DGC Boundary density of G-Cell GC
SN Number of G-Cells of net N
TC Estimated cost of terminal connections of choice C

Table 5.2: Notation used to model the MWIS into an ILP formulation (KAHNG; WANG;
XU, 2018)

Notation Rationale
G(V,E) Conflict graph containing set of vertices V and set of edges E.
vi,j A vertex in the conflict graph representing the jth choice of the ith segment.
ei

′,j′

i,j An edge in the conflict graph indicating conflict between vi,j and vi′,j′ .
bi,j Binary indicator of whether vi,j was used or not in the routing.
wi,j Weight of vi,j .

Adopting the naming scheme in table 5.1, equation 5.1 shows the basic weight

calculation equation. Note that all terms are multiplied by a constant. This allows for the

normalization and weighting of the terms.

WC = α1 ∗ |N |+ α2 ∗ FG + α3 ∗DGC + α4 ∗ SN − α5 ∗ TC (5.1)

The values for the alphas were found empirically. We have observed that our

implementation of A* is particularly slow for nets spanning a large area. This is the main

objective of the weights, increasing the chance that a net that A* would take long to route

is instead routed fully by the track assignment flow.

With every node having its weight calculated, the weighted conflict graph is com-

plete. The MWIS problem can be solved on the graph to produce the track assignment.

The proposed technique to solve the MWIS problem on the conflict graph is an ILP

based algorithm. This technique involves modeling the problem as an ILP formulation,

sending it to the ILP engine, and processing the result. The modeling is analogous to the

one proposed by (KAHNG; WANG; XU, 2018), and we use the same notation, specified

in table 5.2.

Also analogous to (KAHNG; WANG; XU, 2018), the ILP formulation is in equa-

tion 5.2. The formulation reads, "maximize the total weight of the selected vertices while



93

never selecting two adjacent vertices." This is the definition of the MWIS problem.

Maximize:
∑

wi,j ∗ bi,j

Subject to: bi,j + bi′, j′ <= 1,∀ei
′,j′

i,j ∈ E
(5.2)

The ILP solver’s output is the track assignment that can be mapped back to the

tracks for each panel. Of course, routing each guide through its given track is not sufficient

to produce a complete routing. Subsection 5.2.4 will describe our proposed method to

finish routing.

5.2.4 Sequential Routing Phase

The input of this phase is the result of the track assignment. Therefore, most of the

guides have a track assigned to them. First, we propose finishing routing of the nets that

have a track assigned to every guide. Figure 5.12 shows the routing of a net given the track

assignment solution. First, in figure 5.12b, the assignment is applied, and each guide is

routed through its entire length. The obtained structure is a rough routing for the net, but

the wires are not connected because they are in different layers. To connect the wires, the

next stage inserts vias from the bottom layers to the top. Figure 5.12c shows the position

of the vias connecting the pins (in metal 1) to the blue wires (in metal 2). Notice that the

figure also has a red dashed box highlighting a via. In this track assignment, the pin is not

directly under the wire, and a short wire is needed to connect the via to the track. This

wire is called a terminal connection. In our proposed approach, the terminal connections

are routed using A*. It is desirable to have as few of these as possible because they often

(as in this case) span in the non-preferred direction and use more total wires than if not

necessary. The vias connecting the metal 2 and metal 3 layers are added in 5.12d, and

accomplish a fully routed structure, with all pins electrically connected. Notice, however,

that some of the initially routed track assignment wires are longer than needed. The

trimming of these wires produces the final result, shown in figure 5.12e.

Sequentially applying this to all nets that have complete track assignment produces

a complete routing for many of the circuit’s nets. However, some nets may not have a

complete track assignment, where one or more of the net guides failed to secure itself a

track. This can happen where there is considerable congestion of many nets competing

for a portion of the track, and a less prioritized net may not have any track assigned.

Sometimes, the tracks cannot be connected using vias, or even the pins cannot be accessed



94

because of congestion. In all of these cases, our proposed approach discards any wire or

via associated with these nets and attempt to route it using A* entirely.

We propose that the A* used to finish the routing have three different flavors.

First, an A* confined to route within the routing guides, with increased cost for routing

in non-preferred direction, and that has increased cost for using vias. Second, a similar

implementation but with a high cost for routing outside the guides instead of impossibility,

relaxing the routing overall. Finally, a third option that has a high cost for causing shorts,

but not the impossibility. This allows for many nets to be routed entirely, albeit causing

shorts. This third A* would not, in most cases, produce a valid routing, as having shorts

invalidate the functionality of the circuit. However, producing the routing with the most

possible routed nets can help identify congestions and possible improvements in the used

algorithms. For example, regions of the circuit where nets were left unrouted or with

shorts could have a cost to use when doing the global routing.



95

Figure 5.12: Implementation of the routing of a net given its track assignment.

(a) Example with the green pins in de-
tail.

(b) Example track assignment for the
green net.

(c) Vias between metal-1 and -2, with a
terminal connection highlighted by the
red dashed box.

(d) Vias between metal-2 and -3.

(e) Trimming process of the tracks.

Source: From the author.



96

6 IMPLEMENTATION OF THE PROPOSED ROUTING FLOW

This chapter presents an implementation of the flow proposed in Chapter 5. The

implementation follows the specifications of the ISPD 2019 Contest (POSSER et al.,

2018). Each test case consists of the following files:

• LEF file: Formatted according to (INC., 2009). It contains "the routing rules and

the design information that need to be considered in the contest" (POSSER et al.,

2018). In practice, it contains essential information such as the grid width, size of

the design, and exact values for the design rules in every layer. In the flow chart

shown in 5.1, "Technology" represents the LEF file.

• DEF file: Also formatted according to (INC., 2009). It contains "the placement

information, pins, and blockages of the design" (POSSER et al., 2018). Loading

the DEF and LEF files is enough to generate the placement solution. In the flow

chart shown in 5.1, "Design" represents the DEF file.

• Guides file: This file contains the global routing solution, with a layer assignment.

Each net in the design must have a set of at least one rectangle in this file. Fur-

thermore, the rectangles’ coordinates must be aligned to the GCell grid, and each

rectangle has a layer assigned to it. The format of the file is custom. In the flow

chart shown in 5.1, "Guides" represents this file.

The guides file, containing the global routing solution, essentially contains a coarse

routing solution for each net. As specified before, this file contains rectangles that should

respect these rules:

• Alignment to the GCell grid: The coarseness of the global routing is the GCell grid.

Therefore, the guides must be aligned to the G-Cell grid.

• Prefered-direction aware: Guides in vertical/horizontal layers must all span in the

same direction and have the same width/height.

• The guide structure for a given net must not be disjoint. This means that a valid

global routing solution does not generate two or more wholly disconnected groups

of guides.

In the ISPD contest test suite, sometimes some of these rules are not respected,

which increases the complexity of detailed routing. As an example, figure 6.1 shows the

distribution of widths of the guides in test7 of the test suite. Notice that there are many

different widths, indicating that the preferred direction is not respected. Perhaps more



97

Figure 6.1: Test7 width histogram of vertical layers.

Source: From the author.

importantly, the width is not always a multiple of the G-Cell width, in this case, 3000.

There are some guides with widths of 2400, which violates alignment to the G-Cell grid.

The implementation of the proposed initial detailed routing flow was conducted

based on Rsyn (FLACH et al., 2017), which provided the parsers for the files and the data

structures for physical design, along with a framework on top of which the initial detailed

routing flow was developed.

The implementation fails to route all nets in the benchmarks because of pin ac-

cessibility problems. To produce the results, a commercial tool was used to route the

remaining unrouted nets. The worst case is test4, where 3% of the nets had pin access

problems, while for most of the others it was close to 1%.

6.1 Results

This section analyses the results obtained by running the implemented proposed

flow in the ISPD 2019 benchmarks. Table 6.1 shows the results in terms of score in the

ISPD 2019 contest test suite, as defined in (POSSER et al., 2018). The table contains the

results of the top four tools in the contest. Rsyn is a physical design framework developed

in UFRGS, and it has been used for multiple different research projects in the last years.



98

Table 6.1: Results in terms of score of the implementation of the proposed flow in the
ISPD 2019 contest test suite, alongside the four highest scoring tools in the contest.

Dr. CU NTUidRoute TripleZ Kim & Lee SmartDR Ours
test1 6 63 14 408 48 245
test2 219 1656 464 10264 796 6327
test3 10 150 31 815 61 414
test4 228 3043 585 11689 1182 7182
test5 33 506 - - - 838
test6 479 4244 873 28698 1604 13574
test7 992 8531 - - - -
test8 1372 - - - - -
test9 2168 24415 - - - -
test10 2163 23663 - - - -

Table 6.2: Notation used in equation 6.1
Symbol Meaning
Vi The value reported by the evaluator for the parameter i
Mi The multiplier used for metric i
Wi The weight of metric i

6.1.1 Analysis of the Result

The score defined by the contest can be calculated as specified in equation 6.1,

where the terms are as specified in table 6.2. The parameters are indexed by i in the

notation. Table 6.3 list the parameters with the multiplier and weight utilized.

Score =
i=15∑
i=0

Vi ∗Mi ∗Wi (6.1)

An interesting point of study of the proposed flow is its performance in the test

suite when it comes to each parameter. Table 6.4 shows the scores obtained for the bench-

marks test2, test4, and test6, and figure 6.3 graphs the impact of each parameter in the

score obtained. The three graphs are very similar, with PRL, EOL, number of shorts,

shorts area, and number of minimum area dominating the score. The number of cut spac-

ing appear in both test2 and test6, but are much less common in test4, indicating that test4

has easier pin access and via insertion overall, perhaps as a result of the benchmark using

65nm technology - as opposed to 32nm for the other two - as well as a larger die size.

A regression analysis of the data obtained from the runtimes for test cases 1 to 6

show that the runtime in terms of number of nets is of a polynomial nature. Figure 6.2

shows that fitting a polynomial of second degree to the data achieves an R-squared of

0.997, indicating that the polynomial achieves a very close approximation. We believe



99

Table 6.3: Parameters used to calculate score, alongside their index, multiplier and weight.
Index Parameter Multiplier Weight
0 Total wire length 0.005 0.5
1 Single-cut via count 1 4
2 Multi-cut via count 1 2
3 Out-of-guide wires 0.005 1
4 Out-of-guide vias 1 1
5 Off-track wires 0.005 0.5
6 Off-track vias 1 1
7 Wrong-way wires 0.005 1
8 Number of shorts 1 500
9 Area of shorts 0.000025 500
10 Number of minimum area violations 1 500
11 Number of parallel-run-length violations 1 500
12 Number of end-of-line violations 1 500
13 Number of cut spacing violations 1 500
14 Number of adjacent cut violations 1 500
15 Number of corner spacing violations 1 500

this is due to the fact that the larger test cases relied more on A* to route, which is slower

than the track assignment flow.



100

Figure 6.2: Scatter plot of the runtime versus number of nets for test cases 1 through 6,
with an approximation obtained by a second degree polynomial curve fitting achieving an
R-squared of 0.997.

Source: From the author.

Table 6.4: Values obtained for each parameter by the implementation of the proposed flow
for test2, test4 and test6.

Parameter test2 test4 test6
Total wire length 4, 96 ∗ 109 4, 42 ∗ 109 1, 19 ∗ 1010

Single-cut via count 852330 1264002 2077281
Multi-cut via count 0 0 0
Out-of-guide wire 7, 44 ∗ 108 1, 26 ∗ 109 1, 29 ∗ 109

Out-of-guide vias 118092 232925 229739
Off-track wires 1, 03 ∗ 107 1, 74 ∗ 105 2, 66 ∗ 107

Off-track vias 0 0 0
Wrong-way wires 2, 08 ∗ 108 3, 34 ∗ 108 4, 99 ∗ 108

Number of shorts 251936 304895 617545
Area of shorts 1, 23 ∗ 1010 5, 05 ∗ 109 1, 41 ∗ 1010

Number of minimum area violations 211657 302784 510180
Number of parallel-run-length violations 279920 571131 752478
Number of end-of-line violations 131654 204807 297227
Number of cut spacing violations 63589 330 151135
Number of adjacent cut violations 8064 10130 17897
Number of corner spacing violations 1020 0 1493



101

Figure 6.3: Distribution of score per parameter for tests 2, 4 and 6.

Source: From the author.



102

7 CONCLUSIONS AND FUTURE WORK

In this work, we have studied the initial detailed routing problem in the context of

the VLSI physical design flow. Multiple fundamental algorithms for general routing were

presented. These algorithms incorporate key concepts that are useful for routing in gen-

eral and shape the underlying structures of modern frameworks. In special, A*, being a

very efficient generic path-finding algorithm, has proven to be an essential building block

of many state of the art frameworks. In some cases, the fundamental algorithms handle

some constraints entirely. For example, we have observed that in (ZHANG; CHU, 2011)

and (KAHNG; WANG; XU, 2018) shortest path search algorithms generate the terminal

connections. Another frequent application of shortest path search is as a back-up for when

the main algorithm fails to route some nets.

The study of the state of the art initial detailed routing frameworks reveals an

important trend; the algorithms depend heavily on two concepts, conflict resolution and

parallelization schemes. Modeling the conflicts as a conflict graph is the dominant tech-

nique, being employed by three of the state of the art frameworks with good results.

The technique that proved the best for solving the conflicts is obtaining the maximum

weighted independent set of the conflict graph. Also, the frameworks implicitly handle

the net ordering problem by modeling the routing in such a way that allows simultane-

ous routing of multiple nets. For example, both (ZHANG; CHU, 2011) and (KAHNG;

WANG; XU, 2018) achieve the simultaneous routing through the track assignment of all

segments in a panel at the same time, which allows the algorithm to prioritize the more

important segments.

7.1 Future Works

The implementation of the proposed initial detailed routing flow has shown to

be a good base on which to develop more algorithms. The design rules such as PRL

and, minimum area and EOL incur a huge penalty in the score, and a way to introduce

algorithms that support them is a very promising subject. The inclusion of a pin access

generation and a via selection algorithms in the complete flow is another topic of future

work.



103

The main line of future work, however, is evaluating the viability of a track assign-

ment step in detailed routing. The state-of-the-art shows that initial detailed routing flows

that do not include a track assignment step are very competitive, sometimes even better

than those with track assignment. We believe the track assignment step can accelerate

the detailed routing if appropriately implemented into the flow. One of our proposition’s

mistakes is the attempt to maximize the track assignment success and focus on working

with its result. Perhaps a fast, simplified, and lightweight track assignment step could be

implemented as a way to accelerate the routing of the largest nets only.



104

REFERENCES

AKERS, S. B. A modification of lee’s path connection algorithm. IEEE Transactions
on Electronic Computers, IEEE, n. 1, p. 97–98, 1967.

ALPERT, C. J. et al. What makes a design difficult to route. In: ACM. Proceedings of
the 19th international symposium on Physical design. [S.l.], 2010. p. 7–12.

ASANO, T. Parametric pattern router. In: IEEE. Design Automation, 1982. 19th
Conference on. [S.l.], 1982. p. 411–417.

CHAN, W.-T. J. et al. Routability optimization for industrial designs at sub-14nm
process nodes using machine learning. In: Proceedings of the 2017 ACM on
International Symposium on Physical Design. New York, NY, USA: ACM,
2017. (ISPD ’17), p. 15–21. ISBN 978-1-4503-4696-2. Available from Internet:
<http://doi.acm.org/10.1145/3036669.3036681>.

Chang, Y.; Lee, Y.; Wang, T. Nthu-route 2.0: A fast and stable global router. In: 2008
IEEE/ACM International Conference on Computer-Aided Design. [S.l.: s.n.], 2008.
p. 338–343. ISSN 1092-3152.

CHANG, Y.-T. et al. Obstacle-avoiding rectilinear steiner minimal tree construction.
In: IEEE. VLSI Design, Automation and Test, 2008. VLSI-DAT 2008. IEEE
International Symposium on. [S.l.], 2008. p. 35–38.

CHO, M. et al. Boxrouter 2.0: Architecture and implementation of a hybrid and
robust global router. In: IEEE. 2007 IEEE/ACM International Conference on
Computer-Aided Design. [S.l.], 2007. p. 503–508.

CHU, C.; WONG, Y.-C. Flute: Fast lookup table based rectilinear steiner minimal
tree algorithm for vlsi design. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, IEEE, v. 27, n. 1, p. 70–83, 2008.

CLOW, G. W. A global routing algorithm for general cells. In: IEEE. Design
Automation, 1984. 21st Conference on. [S.l.], 1984. p. 45–51.

DANIGNO, M. et al. Proposal and evaluation of pin access algorithms for detailed
routing. In: IEEE. 2019 26th IEEE International Conference on Electronics, Circuits
and Systems (ICECS). [S.l.], 2019. p. 602–605.

DAS, S.; KHATRI, S. P. A regularity-driven fast gridless detailed router for high
frequency datapath designs. In: ACM. Proceedings of the 2001 international
symposium on Physical design. [S.l.], 2001. p. 130–135.

FLACH, G. et al. Rsyn: An extensible physical synthesis framework. In: Proceedings
of the 2017 ACM on International Symposium on Physical Design. New York,
NY, USA: Association for Computing Machinery, 2017. (ISPD ’17), p. 33–40. ISBN
9781450346962. Available from Internet: <https://doi.org/10.1145/3036669.3038249>.

FOGAÇA, M. et al. Contributions to openroad from abroad: experiences and learnings.
In: IEEE. 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). [S.l.], 2020. p. 1–8.

http://doi.acm.org/10.1145/3036669.3036681
https://doi.org/10.1145/3036669.3038249


105

GANLEY, J. L.; COHOON, J. P. Routing a multi-terminal critical net: Steiner tree
construction in the presence of obstacles. In: IEEE. Circuits and Systems, 1994.
ISCAS’94., 1994 IEEE International Symposium on. [S.l.], 1994. v. 1, p. 113–116.

GESTER, M. et al. Bonnroute: Algorithms and data structures for fast and good vlsi
routing. ACM Transactions on Design Automation of Electronic Systems (TODAES),
ACM, v. 18, n. 2, p. 32, 2013.

GILBERT, E. N.; POLLAK, H. O. Steiner minimal trees. SIAM Journal on Applied
Mathematics, SIAM, v. 16, n. 1, p. 1–29, 1968.

GONÇALVES, S. M.; JR, L. S. d. R.; MARQUES, F. S. Smartdr: algorithms and
techniques for fast detailed routing with good design rule handling. ACM Transactions
on Design Automation of Electronic Systems (TODAES), ACM New York, NY, USA,
v. 26, n. 2, p. 1–38, 2020.

GUTMAN, A. R-trees: A dynamic index structure for spatial searching in proc. In:
ACM SIGMOD. [S.l.: s.n.], 1984. p. 45–57.

HANAN, M. On steiner’s problem with rectilinear distance. SIAM Journal on Applied
Mathematics, SIAM, v. 14, n. 2, p. 255–265, 1966.

HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, IEEE, v. 4, n. 2, p. 100–107, 1968.

HENTSCHKE, R. et al. Maze routing steiner trees with delay versus wire length tradeoff.
IEEE transactions on very large scale integration (VLSI) systems, IEEE, v. 17, n. 8,
p. 1073–1086, 2009.

HENTSCHKE, R. F. et al. Maze routing steiner trees with effective critical sink
optimization. In: Proceedings of the 2007 international symposium on Physical
design. [S.l.: s.n.], 2007. p. 135–142.

HSIAO, J. Y.; TANG, C. Y.; CHANG, R. S. An efficient algorithm for finding
a maximum weight 2-independent set on interval graphs. Inf. Process. Lett.,
Elsevier North-Holland, Inc., Amsterdam, The Netherlands, The Netherlands,
v. 43, n. 5, p. 229–235, oct. 1992. ISSN 0020-0190. Available from Internet:
<http://dx.doi.org/10.1016/0020-0190(92)90216-I>.

HU, Y. et al. An-oarsman: Obstacle-avoiding routing tree construction with good length
performance. In: ACM. Proceedings of the 2005 Asia and South Pacific Design
Automation Conference. [S.l.], 2005. p. 7–12.

INC., C. D. S. LEF/DEF Language Reference. 2009. <https://web.archive.org/web/
20181031162337/http://www.ispd.cc/contests/18/lefdefref.pdf>. [Online; accessed
26-July-2020; Archived from the original on 31-October-2018].

JIA, X. et al. Mcfroute: a detailed router based on multi-commodity flow method.
In: IEEE. Computer-Aided Design (ICCAD), 2014 IEEE/ACM International
Conference on. [S.l.], 2014. p. 397–404.

http://dx.doi.org/10.1016/0020-0190(92)90216-I
https://web.archive.org/web/20181031162337/http://www.ispd.cc/contests/18/lefdefref.pdf
https://web.archive.org/web/20181031162337/http://www.ispd.cc/contests/18/lefdefref.pdf


106

Jia, X. et al. A multicommodity flow-based detailed router with efficient acceleration
techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 37, n. 1, p. 217–230, Jan 2018. ISSN 0278-0070.

JOHANN, M.; REIS, R. Techniques and results of the marte routing system. In:
Proceedings of 8th SBCCI. [S.l.: s.n.], 1994. v. 29.

JOHANN, M. d.; KINDEL, M.; REIS, R. daL. Layout synthesis using transparent cells
and fotc routing. In: IEEE. 38th Midwest Symposium on Circuits and Systems.
Proceedings. [S.l.], 1995. v. 2, p. 787–790.

JOHANN, M. d. O. Novos algoritmos para roteamento de circuitos vlsi. 2001.

JOHANN, M. D. O.; REIS, R. D. L. Legal: an algorithm for simultaneous net routing.
In: IEEE. Symposium on Integrated Circuits and Systems Design. [S.l.], 2001. p.
180–185.

JOHANN, M. d. O.; REIS, R. da L. A full over-the-cell routing model. In: IEEE.
Proceedings of ASP-DAC’95/CHDL’95/VLSI’95 with EDA Technofair. [S.l.], 1995.
p. 845–850.

JOHANN, M. de O.; SANTOS, G. B. V. dos; REIS, R. A. da L. A legal algorithm
following global routing. In: IEEE. Proceedings. 15th Symposium on Integrated
Circuits and Systems Design. [S.l.], 2002. p. 271–276.

KAHNG, A. B. et al. VLSI physical design: from graph partitioning to timing
closure. [S.l.]: Springer Science & Business Media, 2011.

KAHNG, A. B.; WANG, L.; XU, B. Tritonroute: an initial detailed router for advanced
vlsi technologies. In: ACM. Proceedings of the International Conference on
Computer-Aided Design. [S.l.], 2018. p. 81.

KWA, J. B. Bs*: An admissible bidirectional staged heuristic search algorithm. Artificial
Intelligence, Elsevier, v. 38, n. 1, p. 95–109, 1989.

LEE, C. Y. An algorithm for path connections and its applications. IRE transactions on
electronic computers, IEEE, n. 3, p. 346–365, 1961.

LEUNG, H. K.-S. Advanced routing in changing technology landscape. In: ACM.
Proceedings of the 2003 international symposium on Physical design. [S.l.], 2003. p.
118–121.

LI, H. et al. Dr. cu 2.0: A scalable detailed routing framework with correct-by-
construction design rule satisfaction. In: IEEE. 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). [S.l.], 2019. p. 1–7.

LIN, C.-W. et al. Obstacle-avoiding rectilinear steiner tree construction based on
spanning graphs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, IEEE, v. 27, n. 4, p. 643–653, 2008.

MILANIC, M.; MONNOT, J. On the complexity of the exact weighted independent set
problem. 2007.



107

MOORE, E. F. The shortest path through a maze. In: Proc. Int. Symp. Switching
Theory, 1959. [S.l.: s.n.], 1959. p. 285–292.

NAM, G.-J. et al. The ispd2005 placement contest and benchmark suite. In: ACM.
Proceedings of the 2005 international symposium on Physical design. [S.l.], 2005. p.
216–220.

NAM, G.-J.; SZE, C.; YILDIZ, M. The ispd global routing benchmark suite. In: ACM.
Proceedings of the 2008 international symposium on Physical design. [S.l.], 2008. p.
156–159.

NAM, G.-J. et al. Ispd placement contest updates and ispd 2007 global routing contest.
In: ACM. Proceedings of the 2007 international symposium on Physical design.
[S.l.], 2007. p. 167–167.

NUNES, L.; REIMANN, T.; REIS, R. Gr-pa: A cost pre-allocation model for global
routing. In: IEEE. 2013 IFIP/IEEE 21st International Conference on Very Large
Scale Integration (VLSI-SoC). [S.l.], 2013. p. 134–137.

NUNES, L.; REIS, R. Global routing congestion reduction with cost allocation
look-ahead. In: IEEE. 2013 26th Symposium on Integrated Circuits and Systems
Design (SBCCI). [S.l.], 2013. p. 1–5.

PATEL, A. Amit’s A* Pages. 2018. <https://theory.stanford.edu/~amitp/
GameProgramming/index.html>. Accessed: 2018-12-20.

PEARL, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1984. ISBN
0-201-05594-5.

PEMMARAJU, S.; SKIENA, S. Computational Discrete Mathematics: Combina-
torics and Graph Theory with Mathematica®. [S.l.]: Cambridge university press,
2003. 318 p.

POHL, I. Bi-directional search. Machine intelligence, v. 6, p. 127–140, 1971.

POSSER, G. et al. Introduction of ISPD19 Contest Problem. 2018. <http:
//www.ispd.cc/contests/19/Introduction_of_ISPD19_Contest_Problem.pdf>. Accessed:
2019-01-03.

Qi, Z.; Cai, Y.; Zhou, Q. Accurate prediction of detailed routing congestion using
supervised data learning. In: 2014 IEEE 32nd International Conference on Computer
Design (ICCD). [S.l.: s.n.], 2014. p. 97–103. ISSN 1063-6404.

QROUTER. 2017. Available from Internet: <http://opencircuitdesign.com/qrouter/>.

REIMANN, T. J.; SANTOS, G. B.; REIS, R. A. Routing algorithms performance in
different routing scopes. In: IEEE. 2010 17th IEEE International Conference on
Electronics, Circuits and Systems. [S.l.], 2010. p. 643–646.

REIS, R.; GOMES, R.; LUBASZEWSKI, M. An efficient design methodology for
standard cell circuits. In: IEEE. 1988., IEEE International Symposium on Circuits
and Systems. [S.l.], 1988. p. 1213–1216.

https://theory.stanford.edu/~amitp/GameProgramming/index.html
https://theory.stanford.edu/~amitp/GameProgramming/index.html
http://www.ispd.cc/contests/19/Introduction_of_ISPD19_Contest_Problem.pdf
http://www.ispd.cc/contests/19/Introduction_of_ISPD19_Contest_Problem.pdf
http://opencircuitdesign.com/qrouter/


108

SANTOS, G. et al. The fidelity property of the elmore delay model in actual comparison
of routing algorithms. In: IEEE. 2010 IEEE International Conference on Computer
Design. [S.l.], 2010. p. 195–202.

SANTOS, G. B. V. dos; JOHANN, M. de O.; REIS, R. A. da L. Channel based routing
in channel-less circuits. In: IEEE. 2006 IEEE International Symposium on Circuits
and Systems. [S.l.], 2006. p. 4–pp.

SHIRAKAWA, I.; FUTAGAMI, S. A rerouting scheme for single-layer printed wiring
boards. IEEE transactions on computer-aided design of integrated circuits and
systems, IEEE, v. 2, n. 4, p. 267–271, 1983.

SHOJAEI, H.; DAVOODI, A.; LINDEROTH, J. T. Congestion analysis for
global routing via integer programming. In: Proceedings of the International
Conference on Computer-Aided Design. Piscataway, NJ, USA: IEEE Press, 2011.
(ICCAD ’11), p. 256–262. ISBN 978-1-4577-1398-9. Available from Internet:
<http://dl.acm.org/citation.cfm?id=2132325.2132386>.

SOUKUP, J. Fast maze router. In: IEEE PRESS. Proceedings of the 15th Design
Automation Conference. [S.l.], 1978. p. 100–102.

SUN, F.-K. et al. A multithreaded initial detailed routing algorithm considering
global routing guides. In: ACM. Proceedings of the International Conference on
Computer-Aided Design. [S.l.], 2018. p. 82.

Tabrizi, A. F. et al. Detailed routing violation prediction during placement using machine
learning. In: 2017 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT). [S.l.: s.n.], 2017. p. 1–4. ISSN 2472-9124.

Tabrizi, A. F. et al. A machine learning framework to identify detailed routing short
violations from a placed netlist. In: 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). [S.l.: s.n.], 2018. p. 1–6.

TUMELERO, D.; BONTORIN, G.; REIS, R. Overhead for independent net approach for
global routing. In: IEEE. 2015 IEEE 6th Latin American Symposium on Circuits &
Systems (LASCAS). [S.l.], 2015. p. 1–4.

WESTRA, J.; GROENEVELD, P. Is probabilistic congestion estimation worthwhile? In:
ACM. Proceedings of the 2005 international workshop on System level interconnect
prediction. [S.l.], 2005. p. 99–106.

WU, Y.-F. et al. Rectilinear shortest paths and minimum spanning trees in the presence of
rectilinear obstacles. IEEE Transactions on Computers, IEEE, v. 100, n. 3, p. 321–331,
1987.

XU, X. et al. Self-aligned double patterning aware pin access and standard cell layout
co-optimization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, IEEE, v. 34, n. 5, p. 699–712, 2015.

XU, Y.; ZHANG, Y.; CHU, C. Fastroute 4.0: Global router with efficient via
minimization. In: Proceedings of the 2009 Asia and South Pacific Design

http://dl.acm.org/citation.cfm?id=2132325.2132386


109

Automation Conference. Piscataway, NJ, USA: IEEE Press, 2009. (ASP-
DAC ’09), p. 576–581. ISBN 978-1-4244-2748-2. Available from Internet:
<http://dl.acm.org/citation.cfm?id=1509633.1509768>.

ZHANG, Y.; CHU, C. Regularroute: An efficient detailed router with regular routing
patterns. In: ACM. Proceedings of the 2011 international symposium on Physical
design. [S.l.], 2011. p. 45–52.

Zhang, Y.; Chu, C. Gdrouter: Interleaved global routing and detailed routing for ultimate
routability. In: DAC Design Automation Conference 2012. [S.l.: s.n.], 2012. p.
597–602. ISSN 0738-100X.

http://dl.acm.org/citation.cfm?id=1509633.1509768


110

APPENDIX — APPENDIX A

List of published research:

Title: Clip Clustering for Early Litographic Hotspot Classification

Authors: Oliveira, Andre; Puget, Julia; Metzler, Carolina; Reis, Ricardo.

Event: 2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)

DOI: 10.1109/LASCAS.2019.8667548

Title: Algorithms for Access Point Selection at Pre-Routing Stage

Authors: Danigno, Marcelo; Fogaca, Mateus; Monteiro, Eder; Ferreira, Jorge; Oliveira,

Andre; Reis, Ricardo; Butzen, Paulo.

Journal: Journal of Integrated Circuits and Systems (JICS)

Accepted for publication

Title: Proposal and Evaluation of Pin Access Algorithms for Detailed Routing

Authors: Danigno, Marcelo; Butzen, Paulo; Ferreira, Jorge; Oliveira, Andre; Monteiro,

Eder; Fogaca, Mateus; Reis, Ricardo.

Event: 2019 26th IEEE International Conference on Electronics, Circuits and Systems

(ICECS)

DOI: 10.1109/ICECS46596.2019.8965194

Title: UFRGSPlace: Routability Driven FPGA Placement Algorithm for Heterogeneous

FPGAs

Authors: Puget, Julia; Oliveira, Andre; Seclen, Jorge; Reis, Ricardo.

Event: 2017 24th IEEE International Conference on Electronics, Circuits and Systems

(ICECS)

DOI: 10.1109/ICECS.2017.8292069


	Agradecimentos
	Abstract
	List of Abbreviations and Acronyms
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Preliminaries
	1.2 Problem Formulation
	1.3 Global Routing
	1.3.1 FastRoute 4.0 Xu:2009:FGR:1509633.1509768
	1.3.2 BoxRouter 2.0 4397314
	1.3.3 Summary

	1.4 Congestion Map
	1.5 Research on Routing at UFRGS

	2 Fundamental Algorithms
	2.1 Pathfinding Algorithms
	2.1.1 Maze Router lee1961algorithm
	2.1.2 A* hart1968formal
	2.1.3 Pattern Router asano1982parametric

	2.2 Steiner Tree-based Algorithms
	2.2.1 Track Graph Based
	2.2.2 Escape Graph Based
	2.2.3 Spanning Graph Based
	2.2.4 Look-up Table Based
	2.2.5 Summary

	2.3 Rip-up and Reroute
	2.4 Summary

	3 Detailed Routing Algorithms
	3.1 RegularRoute zhang2011regularroute
	3.1.1 Single Trunk V-Tree
	3.1.2 Global Segment Assignment
	3.1.3 Partial Assignment
	3.1.4 Terminal Promotion

	3.2 TritonRoute kahng2018tritonroute
	3.2.1 Preprocessing
	3.2.1.1 Splitting
	3.2.1.2 Merging
	3.2.1.3 Bridging


	3.3 A Multithreaded Initial Detailed Routing Algorithm Considering Global Routing Guides sun2018multithreaded
	3.3.1 Pin Access Generation
	3.3.2 Track Assignment
	3.3.3 Multithreaded Negotiation Based Detailed Routing

	3.4 MCFRoute 7896548
	3.4.1 Model Construction
	3.4.2 Design Rule Modeling
	3.4.2.1 Spacing Rule Constraints
	3.4.2.2 Minimum Area

	3.4.3 Multithread Strategy

	3.5 SmartDR gonccalves2020smartdr
	3.5.1 Pin Access
	3.5.2 Design Rule Aware Path Search (DRAPS)
	3.5.3 Via Library
	3.5.4 Minimum Area
	3.5.5 Cut Spacing

	3.6 Dr. CU 2.0 li2019dr
	3.6.1 Access Point Assignment
	3.6.2 Multi-threaded Maze Routing and Via Selection
	3.6.3 Post-routing Refinement

	3.7 Summary

	4 Mixed Routing Frameworks
	4.1 Qrouter qrouter2017
	4.2 GDRouter 6241568

	5 Proposed Initial Detailed Routing Flow
	5.1 Introduction
	5.2 Initial Detailed Routing Flow Phases
	5.2.1 Initialization Phase
	5.2.1.1 Read Data
	5.2.1.2 Initialize Data Structures

	5.2.2 Parallel Workload Creation Phase
	5.2.3 Parallel Routing Phase
	5.2.4 Sequential Routing Phase


	6 Implementation of the Proposed Routing Flow
	6.1 Results
	6.1.1 Analysis of the Result


	7 Conclusions and Future Work
	7.1 Future Works

	References
	Appendix — Appendix A

