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Summary 

Mediterranean forest resilience to drought and climate change 
Sacha Khoury 

Enhancing resilience to climate change is a key management goal for Mediterranean 

ecosystems. Typically, these management plans are based on ecological knowledge of 

species’ tolerances derived from local studies limited in time and space. Remote sensing 

provides opportunities to study resilience over larger scales, but the tools needed to 

quantify the resilience of forests to drought and evaluate the effectiveness of 

management plans remain limited. This thesis examines how freely available satellite 

data can be used to quantify changes in forest canopies in response to climate variability. 

Using a combination of time-series and break-point analyses of satellite imagery I resolve 

limitations in forest resilience estimation and show that, for Spanish woodlands, the 

relative water availability during and following drought events are important in driving 

the canopy greenness loss and recovery. I show that despite increasing aridity, and 

examples of localised die-back events, Spanish forests are mostly becoming denser, with 

only 12% of locations analysed declining in greenness over the 18-year study period. This 

work demonstrates the importance of large-scale remote sensing analyses for obtaining 

an objective perspective on drought impacts. The thesis then explores the potential of 

remote sensing to map tree species in a region of regenerating woodlands near Madrid, 

providing the information needed for a nuanced understanding of resilience. I found that 

tree classification using high-resolution airborne hyperspectral imagery was highly 

accurate, while species maps produced using Sentinel 2 imagery (multispectral data with 

10-m spatial resolution) were less successful at identifying species, with average 

agreement of 64% with the airborne derived map. Following on from this work, I used 

areas with high classification agreement between the airborne and spaceborne species 

information to study the effect of species composition on forest responses to droughts. I 

identify contrasting responses of the canopy greenness and wood production to drought. 

Specifically, wood production was found to be more sensitive to changes in water 

availability than canopy greenness. For the oak species, wood production was mirrored 

by changes in canopy greenness, but black pines reduced their wood production during 

droughts without substantial reduction in canopy greenness. I investigate the differences 

between the species and the mixing effects further by studying foliar compositions during 



a dry summer in Spain. There were strong differences between pines and oaks in the 

stable isotope ratios of carbon, probably driven by underlying differences in water-use 

efficiency, and differences in the stable isotope ratios of nitrogen, probably driven by 

underlying differences in species’ investments in the photosynthetic apparatus. I 

conclude by highlighting the implications of my research for studying the relationships 

between diversity and ecosystem functioning from space. 
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Chapter 1  General Introduction 

1.1 Mediterranean forests and climate change 

1.1.1 Forests and climate change 

The effects of climate change, such as the increase in frequency, duration and/or 

severity of drought and heat stress, are already shaping the forests of the world, and tree 

mortality and die-off events are co-occurring more frequently in most ecosystems. For 

instance, the 2012-2015 drought in California caused greater than 30% losses in canopy 

water over 1 million hectares, affecting about 58 million large trees (Asner et al., 2015). 

In Algeria, Atlas cedar (Cedrus atlantica) die-off reached 100% in the driest mountains 

because of droughts in 1999-2012. A global overview of drought and heat-induced tree 

mortality reveals the complexity of tree responses to climate change. Climate-induced 

physiological stresses and interaction with other climate-mediated processes, such as 

insect outbreaks and wildfire, differ greatly across species and ecosystems (Allen et al., 

2010). 

1.1.2 Mediterranean forest and climate change 

Mediterranean ecosystems are renowned biodiversity hotspots rich in endemic 

species, but this is threatened by climate change (Myers et al., 2000). Through millennia, 

these regions have been shaped by Mediterranean civilizations that exploited their 

multiple social, economic and environmental goods and services, such as provision of 

wood- and non-wood products, clean water, erosion and desertification control, carbon 

sequestration, biodiversity conservation and natural areas for recreation (Scarascia-

Mugnozza et al., 2000). With a rapidly growing population, human interactions with 

Mediterranean woodlands have not always been well planned, and species extinctions 

and loss of biodiversity have occurred (Scarascia-Mugnozza et al., 2000; Cuttelod et al., 

2008). Biodiversity loss is likely to be aggravated by climate change, which is predicted 

to make the Mediterranean basin hotter and drier in the coming century (Lavorel et al., 

1998; Sala, 2000; FAO Plan Bleu, 2013), mainly due to a decrease in summer rainfall but 

also due to an increase in evaporation (Gao et al., 2006; Giorgi & Lionello, 2008; Dai, 

2013), and by ongoing degradation arising from anthropogenic disturbances. Rapid 

climatic changes are already occurring in the Mediterranean basin, where temperature 

increase is 0.45°C higher than the global average since the end of the 19th century, and 

rainfall decrease exceeds 20% in some regions (Guiot & Cramer, 2016a). It is therefore 

essential to understand how these woodlands are reacting to these changes and predict 
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1.1 Mediterranean forests and climate change 

their reaction to future changes. An improved understanding could contribute towards 

management strategies that maximize the resilience of these woodlands to extreme 

events.  

1.1.3 Mediterranean forest densification 

Human management of woodlands varies greatly across the Mediterranean region. On 

the southern side of the Mediterranean Sea, a growing population has increased firewood 

extraction, grazing, and exploitation of land for agriculture, but in northern regions the 

abandonment of traditional management practices and urbanization has led to the 

regrowth of forests (Scarascia-Mugnozza et al., 2000; Otero et al., 2011, 2015; Fao & Plan 

Bleu, 2013). The regrowth pattern follows the forest transition concept formulated by 

Mather (1992) and Mather & Needle (1998). 

Several studies have evaluated services/disservices provided by densification, a few 

of which have considered how those services may change with global warming. In terms 

of biodiversity, Peco et al. (2012) and Otero et al. (2015) agree that the abandonment of 

Mediterranean farmland and pasture land has led to forest transitions that disadvantaged 

non-forest habitats and eliminated some grassland and shrub species in favour of taller 

woody species, and that these transitions increase fire risks. Some ecologists argue that 

these perturbation-dependent ecosystems are approaching a new equilibrium state with 

more homogeneous landscapes negatively affecting species phenotypic and genotypic 

diversity (Pelorosso et al., 2011). For instance, managed woodlands in the mountains of 

Morocco exhibited 5% higher tree species diversity than unmanaged woodlands in Spain 

that are both populated by Abies pinsapo (Linares et al., 2011). While forest densification 

may be considered damaging for its biodiversity in some studies, the secondary 

succession underway in Spanish forest is seen as restorative of the original Spanish 

landscape by others. As such, a study in Spanish forests dominated by Pinus nigra 

emphasized the need for sylvicultural practices to support the ongoing secondary 

succession by the recruitment of oaks in the understory which is also expected to provide 

higher resilience to disturbances and environmental changes  (Martín-Alcón et al., 2015). 

The oaks are favoured for their resprouting ability which can provide faster recovery 

following fires (Puerta-Piñero et al., 2012). In other studies, however, fire-succession 

models for Mediterranean forests suggest that, although wildfire frequency might be 

lower in these denser forests, the chances of a catastrophic fire are much higher than for 
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forests that are regularly thinned (Tàbara et al., 2003). The simulation model used plant-

functional types to represent spatial and temporal competition for resources (water and 

light) in a rule-based modelling framework and showed that wildfire spread parameters 

have the greatest influence on two aspects of the landscape change: land-cover change 

and the wildfire regime (Tàbara et al., 2003); however, many drivers still need to be 

added for a more predictive Landscape Fire-Succession Model (Millington et al., 2009). 

As for water availability, Beguería et al. (2003) found a significant decrease in water 

discharge (30% reduction in mean annual water discharge) in the past 50 years in 

Spanish woodland that could be attributed to land-use and plant-cover changes. Similar 

effects on water runoff were observed in other studies (Molinillo et al., 1997; Gallart & 

Llorens, 2004; Lasanta et al., 2006). Finally, a review by García-Ruiz & Lana-Renault 

(2011) stressed the negative effects of land abandonment on hydrology and pointed out 

the need for more studies to understand the hydro-morphological consequences that 

depend on several factors, such as field type, climate, rate and characteristics of plant 

colonization, and soil features before management actions are taken. Densification can 

lead to 100% vegetation cover which increases interception of water, increases 

infiltration and water consumption leading to less run-off; the latter does however result 

in less erosion (García-Ruiz & Lana-Renault, 2011). 

1.1.4 Forest succession in the Iberian Peninsula: Oaks vs. pines. 

In the Mediterranean region the process of forest succession is far more apparent than 

any effects of global warming, mainly because of the prevalent land abandonments, fire 

suppression and restricted management (Vayreda et al., 2013; Carnicer et al., 2014; 

Martín-Alcón et al., 2015). Large-scale studies in the Iberian Peninsula report 

qualitatively different growth and recruitment trends (individuals with DBH < 7.5 cm 

growing in the subplots of 5m radius were identified as recruits), in response to increased 

temperature and drought of Mediterranean oaks and pines. For instance, Quercus species 

were found to be expanding in 41% of the plots surveyed, while Pinus species were 

advancing at a much smaller rate covering only 10% of the surveyed areas (Carnicer et 

al., 2014). Similarly, Quercus had a 34% greater recruitment success than Pinus in the 

same ecosystems (Carnicer et al., 2014). Contrasting trends between these two plant 

genera are found in many studies, however, it remains unclear which genus has higher 

phenotypic plasticity that might provide resilience in the face of drought. Conifers were 

found to have a higher growth rate in absence of competition while angiosperms 
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performed better in mixed stands (Jucker et al., 2014a). The evergreen oak, Q. ilex, 

expanded massively in the last decade at the expense of several pine species due to its 

strategy of resource storage and conservative use of resources, allowing it to sustain very 

low growth rates under stress (Gómez-Aparicio et al., 2011). Then again, oak mortality 

was found to be higher with advanced drought and heat stress (Ruiz-Benito et al., 2013). 

Surprisingly, temperature increase had a more severe effect on both pines and oaks than 

precipitation, and forest structure amplified these effects considerably, as these two 

genera have different defence mechanisms to resist heat. On one hand, pines close their 

stomata to prevent hydraulic failure by embolism, which leads to reduced transpiration 

and water use, but also could lead to carbon starvation (Ruiz-Benito et al., 2013). On the 

other hand, oaks have drought tolerance mechanisms that permit them to keep a 

relatively high transpiration rate that could finally lead to hydraulic failure in the long 

run (Ruiz-Benito et al., 2013). This difference is primarily linked to the vertical rooting 

system: pines depend on a superficial rooting system, which means they are first to sense 

and suffer a water deficit, but also the first to absorb water from any summer rain. In 

contrast, it is the deep-rooting system that allows oaks to maintain high rates of 

transpiration by using water from deep soil layers as superficial layers dry out. It is 

therefore important to take into consideration forest structure, as well as climatic 

variations, in terms of frequency and severity, and water availability to explain better any 

observable trend in vegetation.  

1.2 Ecosystem resilience to drought  

1.2.1 Defining and measuring drought 

Droughts are events characterized by water scarcity on land that affect the natural 

ecosystem in which they occur, and can lead to larger socio-economic impacts (Tramblay 

et al., 2020). They account for most of the climate-caused variations in gross primary 

productivity globally and in the past two decades have converted in several instances 

carbon sinks to carbon sources (Allen et al., 2010; Klein & Hartmann, 2018). Future 

climatic predictions point towards more severe and more frequent droughts that have a 

serious potential to hinder the capacity of forests to counter climate change (Anderegg et 

al., 2020). Yet, following a review of the drought literature, Slette et al. (2019) highlighted 

that 68% of drought studies in ecology fail to define or quantify drought precisely, 

impeding our collective understanding of drought impacts. The authors recognized that 
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the issue stemmed from a lack of consensus between climatologists on a generalizable 

definition and quantification method of the phenomena. The difficulties surrounding the 

quantification of drought are related to the complexity of the water cycle; water arrival, 

for example through precipitation, is unequally absorbed by land features, and will be 

used by certain ecosystems more than others and in many cases by humans for their 

needs (Vicente-Serrano et al., 2010). This makes water availability highly variable 

between sources and relative to the studied system. Several routes are suggested to make 

ecological drought studies more comparable. One of these routes is using standardized 

drought indices, the Palmer Drought Severity Index (PDSI, Palmer, 1965) and the 

Standardized Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al., 2010) 

being the most used ones (Slette et al., 2019). Drought indices usually attempt to 

circumvent the aforementioned difficulties by making water availability relative to water 

needs at a site when computing the index. For instance, PDSI takes into account water 

supply and demand, the basic elements of a climatic water balance, by including runoff 

and evaporative demand in addition to precipitation. The more recent SPEI goes a step 

further, aggregating the water balance at different temporal scales, and standardizing 

these values with a reference time period, ultimately making drought comparable at large 

spatial scales (Vicente-Serrano et al., 2010). Simply put, the computation of a monthly 

SPEI index is done by transforming a water balance (precipitation – potential 

evapotranspiration) time-series of each month separately following a log-Logistic 

distribution (i.e. standard Gaussian variate with zero mean and standard deviation of 

one). Since the probability distribution functions of the water balance data are not 

homogenous from month to month, the data is split into twelve series (one for each 

month) and independent probability distribution functions are fit to each series. They are 

then joined together to give a time-series of the probability of a specific month X being an 

extremely wet or dry event as compared to all reference months X in a specific time 

period (recommended to be > 15 years). These monthly values are then aggregate so that 

a scale 6, for instance, would imply that data from month X-5 to X will be added and used 

for computing the SPEI6 of month X (Figure 1.1) (see Vicente-Serrano et al., 2010, and 

Beguería et al., 2014, for more information on how SPEI is computed). Despite the 

importance of such indices, the proportion of studies in 2014-2019 using them to 

characterise studied droughts is still below 25% (Slette et al., 2019). The lack of uptake 

might be due to some of their shortcomings (Zang et al., 2019). Specifically, while 
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accounting for the supply in the water balance equation is fairly straightforward (e.g. 

absolute precipitation values), computing water demand is not. For instance, demand in 

SPEI is potential evapotranspiration, the amount of water that could potentially be lost 

to evaporation over a vegetated surface given meteorological conditions at the time. But 

potential evapotranspiration can be computed in several ways; the simplest equation 

uses temperature data only (Thornthwaite, 1948), while the most widely adopted 

equation is dependent on the intensity of solar radiation, air temperature, humidity and 

wind speed (Monteith, 1965). Hence, different ways of computing evapotranspiration 

lead to different water demand values, affecting the end result and making the same 

drought index incomparable across studies. Furthermore, the relative nature of these 

indices, which makes them essential for large studies, can be wrongly interpreted (Zang 

et al., 2019); or seen as a disadvantage by researchers who find absolute climatic values 

more informative, especially for smaller studies. It is therefore recommended to use both 

an index and absolute values, as well as using high resolution datasets if possible instead 

of coarse, gridded datasets to overcome some the aforementioned issues (Zang et al., 

2019). 
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Figure 1.1 Standardised Precipitation Evapotranspiration Index. Data were taken from 
Khoury & Coomes (2020). 
SPEI index computation starts by taking a seasonal water-balance (first panel) and separating 
each month into its own time-series before fitting probability distribution models and 
normalizing them using a reference period (>15 yrs) which leads to non-seasonal SPEI index 
(panel 3). Although water-balance trend (panel 2) and SPEI1 trend (panel 4) look similar the first 
is a series of absolute values which can be used to check variation at that particular site only, 
while the latter can be used in larger studies and be compared to other SPEI values from different 
sites. The different scales allow to account for different water accumulation rates with the 
shortest scales corresponding to dry lands with high sensitivity to current precipitation while 
larger scales present lower sensitivity and often correspond to underground water basins which 
are not immediately impacted by lower precipitation. The blue line indicates 0 on the different 
scales. The red dots indicate two recognized drought years at scale 1 over Spain and how they lag 
when considering different SPEI timescales.  

Another key aspect in drought studies is the identification of what constitutes drought-

induced damage. As mentioned earlier, droughts can result from a wide array of climatic 

conditions with direct and indirect effects on the water cycle (De Boeck & Verbeeck, 

2011). Periods of low precipitation have direct effects, and periods of higher solar 

radiation, higher temperature and higher vapour pressure deficit, among others, are 
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indirect. The combined effect of these environmental conditions and water scarcity may 

inflict different kinds of damage on trees, some of which is irreversible, or reversible at 

very different rates, leading to the so-called ‘legacy effects’ (Camarero et al., 2018). 

Camarero et al. (2018) suggested that researchers should attempt to capture both short-

term (1-5 years) and long-term (10-30 years) effects of droughts when possible as they 

can lead to different conclusions. However, many published studies limit their analysis to 

a specific period pre- and post-drought as suggested by Lloret et al. (2011) when they 

first proposed ways of computing drought resilience.  

1.2.2 Defining and measuring resilience  

There is a renewed interest in the resilience of ecosystems in the context of global 

changes (Parry et al., 2007; Standish et al., 2014; Craze, 2015; Nikinmaa et al., 2020; 

Schwarz et al., 2020; Albrich et al., 2020; Van Meerbeek et al., 2021) and the topic has 

sparked several conversations in the past decade (Hodgson et al., 2015b, 2016; Oliver et 

al., 2015, 2016; Yeung & Richardson, 2016). Briefly, ‘resilience’ has been conceptualized 

by scientists in various disciplines interested in how systems respond to disturbances or 

perturbations. In ecology, the term ‘resilience’ emerged in the early 1970s as a concept 

that either complements ‘stability’ of systems in non-equilibrium states, or as a 

component of system stability near equilibrium (Van Meerbeek et al., 2021). Studied 

systems include everything from small organisms to large ecosystems. Van Meerbeek et 

al. (2021) traced back the origins of the terms ‘resilience’ and ‘stability’ in ecology to two 

schools of thought centred on equilibrium and non-equilibrium stability concepts (Figure 

1.2). Resilience is therefore related to many other concepts in the ecological literature 

such as shifts in ecosystem states and tipping points (Scheffer et al., 2001, 2009; Biggs et 

al., 2009; Guttal & Jayaprakash, 2009; Barnosky et al., 2012), ecosystem collapse 

(Lindenmayer et al., 2016), ecological transitions (Kéfi et al., 2014), vicinity to a threshold 

(Wissel, 1984), critical transitions (Scheffer et al., 2009; Hirota et al., 2011; Dakos et al., 

2012), alterations in ecosystem state and functions (Pulsford et al., 2016), and of course 

stability (Lehman & Tilman, 2000; Jucker et al., 2014b), to mention a few. In this thesis, 

we focus on quantifying the resilience of forests to droughts, but in this Introduction, we 

additionally visit the concepts of tipping points and ecosystem state shifts and how they 

are measured.  
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Figure 1.2 Evolution of the equilibrium and non- equilibrium concepts of stability in 
ecology. Reprinted by permission from Springer Nature: Journal of Ecology, Unifying the concepts 
of stability and resilience in ecology. Van Meerbeek K, Jucker T, Svenning J. Copyright (2021). 
“Central themes (with benchmark publications) are indicated in capital letters. Research foci are 
added in bullet points. SES, socio- ecological systems” (Van Meerbeek et al., 2021). In ecology, the 
terms ‘stability’ and ‘resilience’ have taken multiple definitions over the years to describe the 
health of an ecosystem exposed to perturbations. Some of these definitions focused on the 
quantifiable behaviour relative to an equilibrium state of the ecosystem, while others focused on 
the qualitative description of an ecosystem behaviour rejecting the existence of one equilibrium 
state. Resilience, as most commonly used now, is highlighted in green, taking into account the 
whole response to a perturbation or disturbance (i.e. both the loss of and recovery of the system 
health).  

1.2.2.1 Defining resilience in ecology 

In search of a ‘common currency’, as Ingrisch & Bahn (2018) put it, researchers have 

argued over which definition, which component, and which name is the most useful. In a 

recent review, Nikinmaa et al. (2020) investigated the resilience literature related to 

forest ecosystem responses and identified three main concepts, ecological, engineering, 

and socio-ecological resilience. While the first two concepts are usually quantitative, 

derived from the equilibrium concept, the socio-ecological resilience is often qualitative 

and derived from the non-equilibrium concept (Figure 1.2 and 1.3a). They proposed that 

the three notions were nested within each other (Figure 1.3a) and showed the growing 

popularity of engineering resilience in the last decade (Figure 1.3b) (Nikinmaa et al., 

2020).  
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Figure 1.3 Resilience concepts. 
a) Nestedness of the three resilience concepts. b) Increase in the number of studies related to the 
three resilience concepts in forest studies from 2000 to mid-August 2018. Reprinted by permission 
from Springer Nature: Current Forestry Reports, Reviewing the Use of Resilience Concepts in Forest 
Sciences. Nikinmaa L, Lindner M, Cantarello E, Jump AS, Seidl R, Winkel G, Muys B. Copyright (2020). 

Recently, scientists argued that the best approach to studying resilience is to use all 

the available concepts which have proved to be equally important and refrain from using 

restrictive labels (Hodgson et al., 2016; Van Meerbeek et al., 2021). They were mostly 

referring to the use of ‘ecological’ and ‘engineering’ resilience which are usually 

associated with resistance to disturbance and recovery from disturbance (Hodgson et al., 

2015b; Ingrisch & Bahn, 2018). Below, in Figure 1.4, we present the major components 

of resilience, under low severity disturbance (also known as perturbation) and high 

severity disturbance, as well as the concept of tipping points (see Van Meerbeek et al., 

2021, for a more complete set of resilience components and synonyms). From the two 

disturbance regimes we can identify (i) sensitivity: the capacity to withstand or absorb 

disturbance, which is defined as well as the inverse of resistance; (ii) recovery or 

adaptability: the capacity to return to a stable state; (iii) return time: the time taken to 

return to a stable state after a disturbance; (iv) recovery rate: the rate of return to the 

stable state (less commonly known as elasticity); (v) tipping line or tipping point: a 

threshold that once reached the system will be qualitatively different; and (vi) latitude: 

distance from un-disturbed state to the nearest tipping point. 
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Figure 1.4 Resilience and its components. 
(a) Ecosystem response to a high severity disturbance. (b) Ecosystem response to a low severity 
disturbance or perturbation (c) Ecosystem transition into another state. Shaded in green, orange, 
and blue are three stable ecosystem states which can represent different ecosystems. Green solid 
lines represent resilient ecosystems, while the green dotted line represents a sensitive ecosystem 
transitioning into another stable state. Dotted in black is the tipping line, however, given its 
dynamic nature, it is surrounded by a zone of uncertainty (in grey). The black dot represents the 
tipping point which is simply the point at which the ecosystem crosses the critical threshold. 

1.2.2.2 Quantifying resilience 

The other concepts mentioned in the introduction of Section 1.2.2, such as ecosystem 

state shifts, are not included in the reported numbers in Figure 1.3b. Most of these 

concepts focus on developing indicators to quantify latitude and identify tipping points 

(or lines). Quantifying latitude would allow managers to identify which systems are in 

danger of transitioning into another state and which level of disturbance is needed to tip 

the system (Yeung & Richardson, 2016). Despite the theoretical potential of latitude and 

its more direct applicability for management, methods to detect the distance from tipping 

points are lagging behind the theoretical framework, perhaps due to the difficulty of 

detecting tipping points which imply a binary and perhaps simplified view of ecological 

systems (Hodgson et al., 2016). The most common approach is based on detecting a 
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slowing down in recovery rate after disturbances (i.e. ‘early warning signals’ or ‘critical 

slowing down’). Some studies suggest that slowing down can be detected from elevated 

temporal autocorrelation (Verbesselt et al., 2016) or an increase in the variance of 

ecosystem state variables (Carpenter & Brock, 2006). Dakos et al. (2012) review the 

range of available methods by testing them on simulated time-series and suggest that no 

one method is enough to identify critical slowing down. Many papers, however, criticize 

methods for critical slowing down detection for their inability to detect actual transitions 

when used on continuous data (Scheffer et al., 2001; deYoung et al., 2008; Schreiber & 

Rudolf, 2008; Hastings & Wysham, 2010; Boettiger & Hastings, 2013; Boettiger et al., 

2013; Dakos et al., 2015; Lamsal, 2017). Others have even questioned the existence of a 

slowing down before state shifts (Dakos et al., 2012b). Biggs et al. (2009) noted that even 

when those methods succeed in detecting critical slowing down, they do so too late when 

the regime shift has already initiated, rendering them useless to remediate or correct the 

situation.  

Recent reviews indicate that most forest resilience studies are using indices suggested 

by Lloret et al. (2011) (Schwarz et al., 2020), and focus on resilience to fire and droughts, 

using basal area increments, vegetation cover, and tree density as their response variable 

(Nikinmaa et al., 2020; Albrich et al., 2020). Schwarz et al. (2020) demonstrate drawbacks 

in the computation of the most adopted resilience indices and discuss a new way to 

compute the indices as proposed by Thurm et al., 2016, in three case examples (Figure 

1.5). Briefly, the drawbacks in the original method are related to the adoption of a set 

period of time in which system change is measured, and the assumption of a linear 

response: that meant that values of resistance and recovery depended on how many 

years pre- and post- drought were considered in their computation, and on the regularity 

of the response being measured (Figure 1.5). Another issue is the start date of the 

disturbance or perturbation; as previously discussed in the case of drought in Section 

1.2.1, it is hard to pinpoint when a drought starts for a particular region. While this 

particular issue can be circumvented by working at a coarser temporal scale, e.g. looking 

at dry years instead of dry months, this does not always solve the problem, it reduces the 

resolution of the information, and remains dependent on the spatial scale employed. For 

instance, at regional spatial scales or continental scales, droughts will occur at different 

times or with a considerable lag. 
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Figure 1.5 Methods for measuring resilience components. Reprinted by permission from 
Springer Nature: Current Forestry Reports, Quantifying Growth Responses of Trees to Drought—a 
Critique of Commonly Used Resilience Indices and Recommendations for Future Studies. Schwarz J, 
Skiadaresis G, Kohler M, Kunz J, Schnabel F, Vitali V, Bauhus J. Copyright (2020). 
Three case studies in which the original method of computing resilience components failed to represent 

what is happening to the ecosystem. The original methods imply computed difference between the 

drought year and a specific period of time before and after to determine resistance and recovery (Lloret 

et al., 2011). The proposed method by Thurm et al. (2016) computes recovery rate instead of recovery 
amount but does not resolve problems related to unusual behaviour in the pre-drought period. 

1.3 Spaceborne and airborne remote sensing over the 

Mediterranean region  

Earth observation (EO) is useful in many aspects, it collects data on the earth’s 

atmosphere, often referred to top of the atmosphere (TOA) data, but also collects data on 

the earth’s surface, essential for detecting surface changes at large scales (Liang et al., 

2019). Besides becoming essential for the earth energy budget computation, EO became 

a key component of the carbon flux monitoring with the first vegetation indices 

developed in the 1970s (Xiao et al., 2019). The normalized difference vegetation index 
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(NDVI), based on a simple ratio using plant reflectance in the red zone and near-infrared 

zone of the electromagnetic spectrum, is to this day the most used vegetation index for 

detecting and monitoring vegetation cover (Xiao et al., 2019, Rouse et al., 1974), and is 

used in this thesis. Remote sensing has advanced rapidly; from satellite to close-range 

instruments (Lausch et al., 2016, 2017). With petabytes of free EO data now available 

(Woodcock et al., 2008; Nemani et al., 2011 to cite a few), researchers can map ecosystem 

properties at different geospatial and temporal scales and resolutions, using a range of 

active and passive sensors, efficiently complementing costly forest inventories. Advances 

in computing systems, including machine learning algorithms provide new opportunities 

for EO data analysis. One computing platform, Google Earth Engine (GEE), offers multi-

petabyte analysis-ready data and a cloud super-computing service, with which 

researchers can analyse data at a global scale within minutes. This speed is possible 

thanks to built-in parallelization and data distribution models which are optimized to 

deal with common temporal and geospatial tasks, such as mathematical operation on 

tiled images, aggregation of spatial data, time-series analysis, training of classifiers 

between others (Gorelick et al., 2017).  

1.3.1 Time-series of Spaceborne data and change detection. 

Over the past decades, space agencies developed key EO programmes that provide 

freely available and highly valuable multispectral imagery to scientists around them. We 

introduce them in this section.   

1.3.1.1 High temporal resolution multispectral satellite data: MODIS 

Launched in 2000 by the National Aeronautics and Space Administration (NASA), 

Moderate-resolution Imaging Spectroradiometer (MODIS), captures data in 36 spectral 

bands ranging in wavelength from 0.4 µm to 14.4 µm and at varying spatial resolutions 

(from 250 m to 1 km); seven of these bands were intended for land applications (Zhang 

et al., 2003). MODIS-derived vegetation indices are also often used as the continuation of 

the lower ground-resolution National Oceanic and Atmospheric Administration 

Advanced very-high-resolution radiometer-derived NDVI (NOAA-AVHRR-derived NDVI) 

(Huete et al., 2002; Brown et al., 2008; Beck et al., 2011; Fensholt & Proud, 2012). 

Mounted on two individual satellites, Aqua and Terra, MODIS images the entire earth 

every 1 to 2 days. Daily MODIS bidirectional surface reflectance values are controlled for 

quality, atmospherically corrected, and composited into 8-day and 16-day products. 
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Despite the low spatial resolution, especially in comparison with 30 m Landsat pixels,  the 

high temporal resolution of  MODIS and the fact that it is not subject to orbital drift that 

can cause misleading results (Nagol et al., 2014) makes it highly valuable for large scale 

analysis. Time-series of MODIS data are often exploited to determine vegetation 

phenology with varying success depending on the biomes, agricultural cover, and 

methodology used (Zhang et al., 2003). In one study, MODIS-derived NDVI metrics 

captured the beginning of the spring greening and the onset of the autumn leaf yellowing 

with great precision (< 1-week difference between the ground measure and space 

detected) in deciduous forests, while in tropical rainforest the phenological patterns 

detected were mostly noise (Hmimina et al., 2013). More recent studies managed to 

elucidate vegetation phenological patterns even in rainforests using MODIS time-series 

(Pennec et al., 2011; Lara et al., 2018). MODIS time-series are also frequently used, alone 

(Verbesselt et al., 2009, 2010, 2016; le Maire et al., 2011; Lambert et al., 2013; Seddon et 

al., 2016; Uyeda et al., 2017; Kannenberg et al., 2019b) or in combination with other 

sensors (Hansen et al., 2013; Zhu et al., 2016), in global and local ecosystem studies based 

on change detection over vegetated landscapes. In a global study using MODIS, Seddon et 

al. (2016) identified which of the three main climatic drivers, temperature, water 

availability, and cloudiness, limits green ecosystems (Figure 1.6). Although the 

Mediterranean area was not specifically discussed, it is clear from the vegetation 

sensitivity index map that Mediterranean woodlands are mostly sensitive to water 

availability and temperature combined and less sensitive to cloudiness (Figure 1.6). 
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Figure 1.6 Global ecosystems’ sensitivity to climate drivers. Reprinted by permission from 
Springer Nature: Nature, Sensitivity of global terrestrial ecosystems to climate variability. Seddon 
AWR, Macias-Fauria M, Long PR, Benz D, Willis KJ. Copyright (2016). 
a) Sensitivity of vegetation productivity (MODIS-derived enhanced vegetation index) to climate 
variability. The created sensitivity index varies from 0 (low sensitivity, green) to 100 (high 
sensitivity, red). b) Climate drivers of green ecosystems’ sensitivity across the globe. Barren lands 
are shown in grey in a) and black in b). 

1.3.1.2 High ground resolution multispectral satellite data: Landsat and 

Sentinel 2 

Landsat satellites consist of 7 successful satellite missions to date, a joint program 

between NASA and the United States Geological Survey (USGS), that collected and are still 

collecting multispectral data over our planet at 30 m ground resolution, allowing us to 

monitor land cover and land-use change efficiently for more than 40 years. The latest 

Landsat satellite, Landsat 9, is scheduled to be launched in 2021 continuing the Landsat 

legacy (Masek et al., 2020). Despite having the longest record of earth imagery, since 1972 

(Xiao et al., 2019; Nguyen et al., 2020), the whole Landsat collection remains largely 

unused because of quality and orbital issues in the first 5 satellites, impeding the 
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achievement of high-quality imagery (Tier 1) (Nguyen et al., 2020). Furthermore, while 

being by far the most employed for land cover mapping (Belward & Skøien, 2015), the 

Landsat series is much less used for inter- and intra-annual vegetation monitoring, owing 

to the low temporal resolution (16 days for any one Landsat satellite and 8 days when it 

is possible to combine data from two satellites). The disparity in Landsat data collection 

and processing globally, combined with the low temporal resolution makes a 

considerable portion of monthly composites useless for vegetation monitoring, severally 

affecting studies requiring more than one cloud-free pixel a year except over the USA (Ju 

& Roy, 2008). Originally, global Landsat data was downlinked to several international 

cooperative stations due to memory limitation at any one site, until the opening of the 

Landsat archive in 2008. However, the assimilation of all Landsat data by the archive is 

still ongoing with different regions being prioritized (Wulder et al., 2016). For instance, 

most of the imagery over Spain only got assimilate to the global Landsat archive in the 

past couple of years (see U.S. Geological Survey, 2016, 2020; the difference between the 

two maps indicate the number of scenes added to the archive). While ready to use 

Landsat products were made available over the USA since 2008, facilitating the use of the 

dataset for time-series analysis (Zhzu, 2019), a similar dataset was just made available 

last year for the rest of the world (Potapov et al., 2020). How useful is this new Landsat 

dataset going to be for time-series analysis remains to be seen.  

Similar to MODIS offering a higher-resolution continuation to AVHRR, with its 13 

bands and focus on landcover mapping Sentinel 2 is perceived as a higher resolution (10 

m) continuation to Landsat (30 m) (Figure 1.7). Sentinel 2A, which was launched by the 

European Space Agency in June 2015, was followed by Sentinel 2B, in March 2017, with 

a spatial resolution of 10 to 60 m. The two satellites with a revisit period of 10 days, also 

offer a higher temporal resolution compared to Landsat, doubling the image capture over 

the same area, from on average 3 images/month (considering 2 Landsat satellites) to 6 

images/month (considering 2 Sentinel satellites). The 10 m resolution is allowing for land 

cover mapping to the species level (Grabska et al., 2019, 2020), while the short time-

series of Sentinel 2 are already being used to detect changes in vegetation at local scales 

(Navarro et al., 2019). 
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Figure 1.7 Radiometric characteristics of Sentinel 2, Landsat 7 and 8 satellites taken from 
USGS EROS Archive. 
Sentinel 2 was by design created to be compatible with Landsat 8 bands (thermal bands 
excluded). It can be seen in the figure that bands 1-7 and band 9 in Landsat 7 and Landsat 8 align 
closely with some of the bands of Sentinel-2, both in wavelength and bandwidth, which allows for 
continuity in time-series analyses. While bands 5-7 were added in the vegetation red-edge which 
gives greater predictive capabilities for vegetation monitoring and the estimation of parameters 
such as the leaf area index, chlorophyll concentration, and carbon mass. 

1.3.1.3 High spectral resolution satellite data: EnMAP 

EnMAP, a future satellite by the German imaging spectroscopy mission, to be launched 

in 2022, is intended to provide 30 m hyperspectral data that could be promising for 

spectranomics (Guanter et al., 2015). Unmatched in its spectral resolution by other 

spaceborne sensors, EnMAP is already drawing interest from forest researchers trying to 

analyse the sensitivity of such sensors in detecting canopy traits (Clasen et al., 2015; 

Dotzler et al., 2015). To date, hyperspectral sensors have been mostly used for proximal 

and airborne sensing (Lausch et al., 2016, 2017).  

1.3.2 Point clouds and spectral series of airborne data 

Ground based and airborne based spectral sensors record radiance emanating from 

the measured object at numerous wavebands allowing scientists to uncover information 

on the properties of the object being measured. These properties or traits can be 

biochemical, physiological, morphological, structural, phenological, or functional and 

allow us to characterize and even identify measured objects (Lausch et al., 2016). Using 

this technology, mounted on an airborne craft, in combination with easily accessible 

machine learning algorithms and high processing computational power has allowed 
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scientists to map tree species over entire landscapes (Dalponte et al., 2012), determine 

their canopy composition (Asner & Martin, 2009b) and determine their health status with 

high precision (Chan et al., 2020). However, scaling up canopy traits from ground 

observations to landscape observations is not straightforward and while some studies 

were already successful at harnessing the power of such methods, many researchers are 

still trying to overcome all the challenges and limitations of these methods (Nunes et al., 

2017; Bongalov, 2019). These limitations range from the propagation of ground sampling 

bias to problems with spatial auto-correlation and independence assumption violations 

(Bongalov, 2019).  

1.4 This thesis  

1.4.1 Objectives and structure  

This thesis explores how remote sensing approaches can be used to uncover 

information on Mediterranean forest resilience to drought and climate change at multiple 

spatio-temporal-scales: ranging from the regional level, that of Spain, down to the local 

tree species level; and from the decadal time scale down to the specific drought event 

scale. While several studies have looked at quantifying resilience to specific drought 

events, most are limited in their spatial and temporal scale making it hard to determine 

resilience drivers. This thesis aims to bridge these gaps in our understanding of forest 

resilience by looking both at the forest canopy from above and at the forest productivity 

and foliar composition on the ground. The main objectives are: 

(i) Quantify forest canopy resilience to climate change and droughts from space and 

determine its drivers. 

(ii) Compare forest canopy resilience to forest wood productivity resilience and 

understand how they relate to each other. 

(iii) Determine how forest species mixing affect forest resilience to drought.   

 

In Chapter 2, we combine time-series analysis of remotely sensed leaf area with 

spatial regression models and breakpoint analysis to quantify Spanish forest trends and 

determine drought resilience drivers, fulfilling the first objective. We consider both the 

long-term gradual change in water availability, made worse by climate change, and the 

short-term extreme drought events. We evaluate the effect of elevation, absolute water 
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availability, relative water availability, forest canopy density, dominant tree species 

group, the protected status of the forest, and land cover change pre-2000, on the long-

term and short-term resilience of Spanish forests over 18 years of NDVI from more than 

3000 MODIS pixels covering the whole of Spain.  

In Chapter 3, we look at how machine learning algorithms can be trained on airborne 

hyperspectral and spaceborne freely available Sentinel 2 data to provide valuable species 

distribution maps to be used in bridging the gap between long-term high-resolution 

temporal data derived from satellites such as MODIS and the low spatial resolution of 

these datasets. This work is a steppingstone to achieving objectives ii and iii. It allows 

time-series analysis of long-term remotely sensed data to reach its full potential by 

uncovering species mixing effects which are a key driver of forest productivity and forest 

response to disturbance.  

Chapter 4 utilises species information from Chapter 3 to uncover species mixing 

effects in Mediterranean landscapes on wood net primary production and leaf area, 

achieving objective ii. It also evaluates the potential of using remotely sensed leaf area to 

predict wood primary productivity which is highly valuable for uncovering carbon 

sequestration potential of forests yearly in light of climatic changes.  

Chapter 5 looks at canopy traits in mixed Mediterranean forest to evaluate the 

capacity of canopy composition in relaying information on plot level competition and 

uncover physiological and phenological differences between Mediterranean pines and 

oaks achieving objective iii.  

In the last chapter, Chapter 6, we discuss how the different findings in this thesis 

inform each other and can all be combined to answer important methodological and 

ecological questions about the resilience of forests to climate change and disturbances. 

Further, we mention potential avenues to expand on this work looking at different 

ecosystems, different disturbances, and using other technological advances.   



22 

 

Chapter 1  General Introduction 

1.4.2 Methodological considerations and motivations 

In Chapter 2 we study Spanish forests because Spain has the largest forested area of 

all Mediterranean countries and several climatic regions which can be instrumental in 

understanding resilience (de la Guerra et al., 2017; FAO & Plan Bleu, 2013). We 

considered different analytical approaches to estimate resilience to drought and climate 

change in the short- and long-term. First, we looked at the difficulties researchers 

encounter when estimating drought (see section 1.2.1), we evaluated different climatic 

indices and datasets, and settled on the use of 1.1 km gridded SPEI data for Spain 

(Vicente-Serrano et al., 2017). Compared to other gridded drought datasets over Spain, 

this one had a higher spatial resolution, an appropriate temporal span for the study, and 

was computed specifically over Spain using daily climatic data from the National Spanish 

Meteorological Services (AEMET). As previously mentioned, the relative nature of 

drought indices is essential when researching questions at large spatial scales, however, 

used alone they do not allow to capture the effect of water balance gradients across a 

whole country. For these reasons, we decided to compute a climatic water balance like 

the one used for the index (precipitation – potential evapotranspiration) and included it 

in our models to account for the absolute differences in water availability across Spain as 

previously suggested (Zang et al., 2020). Second, given that forests are affected by 

drought at two temporal frames, short-term fluctuations in climate have short-term 

effects that last 1-5 years while long-term trends affect forests over 10-30 years 

(Camarero et al., 2018), we separate long- and short-term drought effects by studying the 

general trend in NDVI first (decadal-scale) and the fluctuations in NDVI second (monthly 

scale). Third, to estimate the resilience to extreme droughts, we looked at the most 

popular approaches to estimate resilience components, that of Lloret et al. (2011), and at 

the more recent approach by Thurm et al. (2016). Recognizing their shortcomings (Figure 

1.5, Schwarz et al., 2020), we decided to approach the problem differently, making use of 

a recently developed package for break-point analysis (Jamali & Tomov, 2017), to 

automatically detect changes in vegetation instead of computing them over a set period. 

Using this change detection algorithm allowed us to extract a non-linear trend and 

segment it to detect the full and precise extent of the ecosystem response. Looking at the 

same cases studies presented by Schwarz et al., 2020, we demonstrate how our 

segmentation approach would detect the different segments used for the computation of 

the resilience metrics (Figure 1.8). In Section S3 of this thesis, we plot the resilience 
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metrics determined from the two methods over our dataset from Chapter 4 with a set 

period of 1-year pre- and post- drought used for the Lloret et al. (2011) method. 

 

Figure 1.8 Segmentation method used in this thesis to compute resilience metrics.  
Illustration showing the three case studies used in Schwarz et al. (2020) with dotted segments in 
blue and black marking the magnitude of change considered using the Lloret et al. (2011) 
approach to compute resistance and recovery by averaging values over a set period (here 3 years) 
before and after the set event year (vertical red line). The purple line illustrates the non-linear 
trend that would be extracted by our segmentation approach if the ecosystem time-series in 
consideration has a seasonal and noise component or simply the segments computed over an 
annual time-series such as this one. In dashed orange and green we see the segments that would 
be used in the computation of the resilience indices in the period of time determined by us, 
allowing the disturbance event to be automatically detected (red dot).  
 

In Chapter 3, we investigate how airborne hyperspectral and spaceborne 

multispectral satellite data can be used to assist researchers in identifying the species 

composition of large satellite pictures to open the door for the remote study of species 

diversity effects at large scales. Given that two-thirds of the forests worldwide are mixed 

forests it seems rather important that scientists studying these ecosystems from freely 

available satellite data know what is contained within those pixels. The limitations of 

Chapter 2 motivated this work. The dataset used for species identity in Chapter 2 

specifies the dominant species but did not specify with certainty the proportion of those 

species in the landscape. While the Spanish inventory data used to validate the work had 

a huge difference in the spatial resolution that would similarly not allow the identification 

of precise species composition over those pixels. We, therefore, decided to harness the 

power of machine learning classification and big data to classify a regenerating forest 

landscape near Madrid using both a costly airborne data collection and freely available 

Sentinel 2 data for comparison.  

In Chapter 4 we study the effect of species mixing on forest response to drought using 

that information. We use the MODIS pixels that had a high agreement between the 
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airborne and spaceborne-derived classification and use the more precise hyperspectral 

dataset to estimate species proportions, i.e. the map validated against ground 

measurements of species composition in plots. Knowing the composition of each 250 m 

MODIS pixel we were able to infer species mixing effect on canopy variation and compare 

it to variation in wood productivities over the same landscape in central-east Spain. We 

used the same methodology from Chapter 1 to estimate the resilience of these Spanish 

forests to extreme droughts and determine the effect mixing had on wood productivity 

resilience and on leaf area resilience. Recognizing the potential for wood net primary 

productivity estimation, we relate the time series of wood production to that of remotely 

sensed leaf area and uncover species specific coupling between the two datasets. 

In Chapter 5, we study the canopy composition of the Spanish plots we worked in 

(Chapters 3 & 4), in an attempt to reconcile the lack of diversity effect observed in the 

previous chapter with published data about diversity induced competition in these 

forests which usually does not include canopy data. We had three hypotheses in mind: 

(H1) tree leaf traits are not significantly different between mixed and single species plots, 

implying that underground competition and effect on wood production are not reflected 

in tree leaf traits: (H2) tree leaf traits are not significantly different between mixed and 

single species plots, implying that effect on wood production is indeed dependent on the 

variables being used to estimate said effect; (H3) tree leaf traits are dependent on plot 

diversity but using canopy horizontal area as a measure for species proportions and 

diversity does not allow us to capture these effects properly. 



 
 

Chapter 2 Mediterranean forests resilience to 

recent droughts and climate change 
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Abstract  

A widespread increase in forest cover is underway in northern Mediterranean forests 

because of land abandonment and decreased wood demand, but the resilience of these 

successional forests to climate change remains unresolved. Here we use 18-year time 

series of canopy greenness derived from satellite imagery (NDVI) to evaluate the impacts 

of climate change on Spain's forests. Specifically, we analysed how NDVI was influenced 

by the climatic water balance (i.e. Standardized Precipitation- Evapotranspiration Index, 

SPEI), using monthly time-series extracted from 3,100 pixels of forest, categorized into 

ten forest types. The forests increased in leaf area index by 0.01 per year on average (from 

1.7 in 2000 to 1.9 in 2017) but there was enormous variation among years related to 

climatic water balance. Forest types varied in response to drought events: those 

dominated by drought-avoiding species showed strong covariance between greenness 

and SPEI, while those dominated by drought-tolerant species showed weak covariance. 

Native forests usually recovered more than 80% of greenness within the 18 months and 

the remainder within 5 years, but plantations of Eucalyptus were less resilient. 

Management to increase the resilience of forests—a key goal of forestry in the 

Mediterranean region—appears to have had a positive effect: canopy greenness within 

protected forests was more resilient to drought than within non-protected forests. In 

conclusion, many of Spain's successional forests have been resilient to drought over the 

past 18 years, from the perspective of space. Future studies will need to combine remote 

sensing with field-based analyses of physiological tolerances and mortality processes to 

understand how Mediterranean forests will respond to the rapid climate change 

predicted for this region in the coming decades. 
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2.1 Introduction 

Globally, forests are responding to land-use and climate change. An increase in the 

frequency, duration and/or severity of droughts associated with global warming is 

reshaping ecosystems in the Mediterranean (Fao & Plan Bleu, 2013). Forest die back has 

been reported in some regions (Allen et al., 2010; Carnicer et al., 2011; Peñuelas et al., 

2017; Gómez-González et al., 2018). In other regions, however, studies have reported 

increases in forest biomass linked with land-use changes and/or CO2 fertilization. For 

instance, several remote sensing studies in Spain have reported that forests are greening 

(Peñuelas et al., 2002; González‐Alonso et al., 2006; Alcaraz-Segura et al., 2008; Eastman 

et al., 2013; Khorchani et al., 2018), despite warming (Gouveia et al., 2012; Vicente-

Serrano et al., 2014b), probably because successional processes following land 

abandonment are currently more influential than climate change in driving forest canopy 

dynamics (Vayreda et al., 2013; Carnicer et al., 2014; Martín-Alcón et al., 2015). To our 

knowledge, nobody has yet attempted to disentangle the effects of forest succession and 

climate change on canopy greenness.  

Quantifying, understanding, and enhancing the resilience of forests to climate change 

is a major area of interest (Nimmo et al., 2015; Oliver et al., 2015), especially in the 

Mediterranean area which is undergoing a warming that exceeds the global trend at 

present and in most projections (Guiot & Cramer, 2016b). In Spain, enhancing forest 

resilience to drought has become a major goal of protected area management, because 

the forests provide valuable ecosystem services including water regulation, timber and 

meat provision, regulation of climate and air quality, erosion control, as well as 

recreational and spiritual enjoyment (Scarascia-Mugnozza et al., 2000; Guiot & Cramer, 

2016b; UNEP/MAP, 2016; de la Guerra et al., 2017). Strategies for climate change 

adaptation used and proposed include favouring mixed species stands, reducing tree 

density, eliminating species with high water demands and introducing resilient species 

(de la Guerra et al., 2017). Given, however, how recent these management plans are, no 

studies have evaluated their effectiveness on a national scale, with the exception of one 

(Alcaraz-Segura et al., 2008), which compared greening trends inside and outside 

protected areas. Instead, researchers have focused on other ecosystem functions and 

services. A study evaluating multifunctionality in European protected areas found that in 

Spain those areas were associated with lower timber production and climate regulation 
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functionality (van der Plas et al., 2018). Another study found that land-use change in 

Europe’s network of protected areas (i.e. Natura 2000), towards non-natural cover was 

greater than in non-protected areas, calling their effectiveness into question (Rodríguez-

Rodríguez & Martínez-Vega, 2018). National-scale evaluation of the effectiveness of 

managing protected areas for climate resilience was however absent and is therefore 

needed.  

Understanding differences in the resilience of different forest types is key to improving 

the resilience of forests to drought (Carnicer et al., 2011; Ruiz-Benito et al., 2013; Mochida 

et al., 2015; Martín-Alcón et al., 2015; Gavinet et al., 2016; Machar et al., 2017; Yin & 

Bauerle, 2017). Multispectral imagery collected by earth observation satellites provides 

information on the greenness of pixels, which is linked to total canopy cover, leaf biomass 

and photosynthetic activity of the forest stand (Tucker & Sellers, 1986; Asrar et al., 1989; 

Baret & Guyot, 1991; Cihlar et al., 1991; Carlson & Ripley, 1997; Zhang et al., 2003). Time 

series of remote sensing data have been used to detect forest mortality (Fraser & 

Latifovic, 2005; Coops et al., 2006; Garrity et al., 2013; Ogaya et al., 2015; Hart & Veblen, 

2015) and also canopy-level responses to drought events.  For instance, Gazol et al. 

(2018) estimated the responses of 11 tree species to four drought events in Spain, in 

terms of satellite-derived canopy greenness (normalized difference vegetation index 

(NDVI)) and stem growth derived from dendrochronology. They recorded the loss of 

greenness and growth during the drought events (i.e. sensitivity) and recovery following 

rain. The study found that recovery-to-sensitivity ratios varied greatly among the 11 

species and along climate gradients: conifer-dominated woodlands in semi-arid regions 

were reported to be most sensitive to drought but recovered quickly while broadleaf-

dominated woodlands in humid temperate regions were least sensitive to drought and 

recovered slowly. However, this study did not attempt to quantify long-term impacts, 

including the legacy of previous droughts (Anderegg et al., 2015; Peltier et al., 2016; Gazol 

et al., 2018).  

Here, we evaluate one component of forest resilience to climate change - the ability of 

canopies to resist loss of leaves and/or quickly recover leaves – by looking at time-series 

of greenness alongside water availability. The analysis of such time-series of remote 

sensing data is now possible over large scales thanks to advances in cloud computing 

technology and offers the opportunity to evaluate forest responses to drought in new 
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detail. We analyse randomly sampled Spanish forests dominated by 10 species groups, 

inside and outside protected areas, to investigate canopy responses to strong drought 

events and also the more subtle accumulation of drought stress through time. We address 

the following questions: (i) to what extent is the greening trend observed in Spanish 

forests being modulated by drought and climate change? (ii) what environmental factors 

influence the response of canopy greenness to drought across Spain; (iii) how does 

drought resilience vary among forest types; and (iv) do protected areas increase forests 

resilience to drought? Finally, we tested whether long-term trends in NDVI observed 

from space relate to basal area trends measured in field inventories. A previous study 

from Spain found close agreement between ground- and remotely sensed estimates of 

NDVI when field estimates were made at the same spatial resolution as the remotely 

sensed pixel (Ogaya et al. (2015), and province-level averages of field and remotely-

sensed estimates of greenness were also in close agreement (González-Alonso, Merino‐

De‐Miguel, Roldán‐Zamarrón, García‐Gigorro, & Cuevas, 2006). Here we extend this 

approach by comparing satellite imagery with the data collected by Spanish National 

Forest Inventory.  

Given the above-mentioned increases in aridity during the past decade and the 

evidence of forest die-back as well as greenning in Spain, we expected to observe forest 

growth in some areas because of recent land abandonment and decline in areas that have 

recently become drier. In parallel, we expected that species dominating areas that have 

always been dry, i.e. south-east Spain, would be more resilient to drought than 

historically wetter areas. Concerning forest species’ responses to drought, we envisaged 

that conifer canopies, specifically pine canopies, would be less resilient to drought 

compared to broadleaf canopies because of the reported succession advancement of oaks 

on pines in Mediterranean forests of Spain (Carnicer et al., 2013); and that non-native 

fast-growing eucalypt would also be less resilient given their high water needs (Queirós 

et al., 2020). Finally, given that protected areas are supposed to be managed for resilience, 

we expected them to respond differently to unprotected areas, while recognising that 

only 20 to 50 % are reported to have effective management (de la Guerra et al., 2017). 
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2.2 Methods 

 

Flowchart 1  Datasets used, and analyses performed in this study to quantify the 
resilience of Spanish forests to climate change and extreme droughts and determine its 
drivers.  
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2.2.1 Theory and definitions of resilience 

Resilience to climate change has been defined in numerous ways and measured using 

many different approaches, making it hard to critically compare studies (e.g. Dakos, 

Carpenter, van Nes, & Scheffer, 2015; Hodgson, McDonald, & Hosken, 2015; Nimmo et al., 

2015; Slette et al., 2019). Here we define resilience broadly as “the capacity of forest 

canopy to return to a state not qualitatively different from its pre-drought state by 

resisting and/or recovering” (Folke et al., 2010; Hodgson et al., 2015a). More specifically, 

we use the NDVI and LAI as greenness and leaf area indices and the standardized 

precipitation evapotranspiration index (SPEI) as water availability indicator (Vicente-

Serrano et al., 2017). The simplest resilience concept is illustrated in Figure 2.1e – here 

we see vegetation’s response to specific drought events—“resistance” is the capacity to 

withstand or tolerate drought, its inverse “sensitivity” is computed here as the absolute 

loss in greenness during a drought event; “recovery” and “adaptability” are both 

computed here as the absolute gain in greenness following a drought event. We use a 

segmentation approach to detect these drought related events (detailed in section 2.6). 

We also develop an approach to quantify short-term and long-term resilience to drought 

(Camarero et al., 2018) based on measuring the correlation between greenness and water 

availability (Figure 2.1a-d) (detailed in section 2.5). Remote sensing approaches are 

unable (currently) to measure the recruitment of new species and the loss of others, 

which may influence resilience via adaptation processes, these recruitment processes 

and shift in species distributions are therefore not addressed in this work (Folke et al., 

2010). 
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Figure 2.1 Conceptual diagram explaining studied resilience measures. 
(a) A regression line (purple) is fitted to the SPEIx time-series (dark-red) representing long-term 
climate changes; (b) a regression line (blue) is fitted to the deseasonalised time-series of NDVI 
(dashed green) representing long-term change in greenness; (c) co-variation is estimated 
between detrended NDVI (green) and detrended SPEIx (red) from a linear model between the 
two; (d) deseasonalised time-series of potential greening (dotted green) and its corresponding 
trend (orange) are determined and the difference between potential and observed greening 
(shaded in red) corresponding to the long-term climate change influence on greenness; (e) 
deseasonalised NDVI is segmented (dashed purple line) and two biggest negative changes 
representing forest canopy sensitivity (i.e. NDVI loss) are detected followed by the recovery 
measures (i.e. NDVI gain) (solid purple segments).  

2.2.2  Site selection  

Spain has the largest forest cover of any country in the Mediterranean with more than 

a quarter of its territory dedicated to nature conservation, and over 1500 protected 

natural areas (de la Guerra et al., 2017; FAO & Plan Bleu, 2013). Stratified random 

sampling was used to select 4500 1-km2 pixels representing 10 forest types and three 

protection statuses across Spain. Ten dominant species groups (forest types) were 

considered for the analysis identified from European forest species distribution maps 

(Figure 2.2b; Brus et al., 2012). We sampled 450 pixels randomly per forest type from 

areas that were over 60% forested selecting 10 of the most abundant species groups 

(Figure S1.2) as computed from species distribution maps by Brus et al. (2012). The 
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dominant forest species dataset used includes broad taxonomic categories, some of 

which span several bio-climatic regions, such as oaks and maritime pines (Figure 2.1b).  

Previous land cover could influence plant-water relations within sites because former 

farmland is likely to be on deeper soils, and that in turn could influence the resilience of 

forests. To test its influence, the landcover type of each of our MODIS pixels was obtained 

by extracting data from the 1990 and 2000 CORINE Land Cover rasters 

(CLC2000_CLC1990_V2018_20 and CLC2006_CLC2000_V2018_20), and then 

downscaling from 100 m to 500 m resolution using a nearest neighbourhood method 

(Figure S1.3: Corine 1990 and 2000 classifications for our pixels). Out of 4500 pixels, 342 

were classified as agricultural, irrigated, or non-vegetated lands in 1990 and 2000 years 

and were excluded because of inconsistencies with the map of Brus et al. (2012). Of the 

remainder, 304 (8.6%) were classified as “previously agricultural or irrigated land” in 

1990 and had transitioned to ‘forest’ by 2000. We included previous landcover (i.e. 

agricultural vs forested in 1990) as a factor in our models.  

Protected area maps were obtained from the Spanish Ministry of Agriculture, Food and 

Environment. We focussed on sampling locations categorised as Sites of Community 

Importance (SCI), Special Conservation Zones (ZEC) within the Natura 2000 network, 

contrasting these sites with those without legal protection (Figure 2.2a). These sites 

include private and public lands that are meant to be managed in an ecologically and 

economically sustainable way, including agricultural activities, hunting and tourism 

(Martínez-Fernández, Ruiz-Benito, & Zavala, 2015). ZEC are supposed to be well-

managed multifunctional woodlands that provide different ecosystem services, however 

as mentioned in the introduction, ecologically functional goals are not always achieved 

because of a lack of proper management and funds. In 2017, 20-50% of Natura 2000 sites 

were SCI whose management plans were still under consideration for approval to 

become ZEC. Note that Nationally Designated Protected areas – which are concentrated 

in Catalonia and Andalusia - were omitted from the analyses, because these are more 

strictly managed, usually prohibiting all human activity. It would be interesting to 

differentiate between Natura 2000 and Nationally Designated Protected areas in a future 

study.  



34 

 

Chapter 2 Mediterranean forests resilience to recent droughts and climate 
change 

 

Figure 2.2 Study site selection.  
(a) Protected areas considered in this study taken from the Spanish Ministry of Agriculture, Food 
and Environment.; (b) dominant species of pixels extracted taken from Brus et al. (2012). Note 
that the “other broadleaves” category represents planted woodlands dominated by species such 
as almond, carob, elm, lemon, poplar, while “other conifers” represent species such as cedars and 
junipers.  

2.2.3 Time series of greenness and drought severity 

2.2.3.1 Datasets 

Monthly estimates of forest greenness in the form of NDVI (for the period February 

2000 to December 2017) were extracted from a NASA database (MODIS/006/MOD13Q1 

& MODIS/006/MYD13Q1). NDVI was selected because it tracks seasonality more 
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accurately than the Enhanced Vegetation Index (EVI) and other indices (De Oliveira 

Silveira et al., 2008; Evrendilek & Gulbeyaz, 2008; Verbesselt et al., 2009), but most 

importantly because NDVI resilience measures were shown to correlate with tree-ring 

derived resilience measures (Gazol et al., 2018). The dataset comprises multispectral 

reflectance measurements recorded by MODIS Aqua and Terra satellites at a spatial 

resolution of 250 m (Didan, 2015a,b), from which 16-day composites were constructed. 

These data have been corrected for atmospheric and bi-directional surface reflectance 

effects, and water, clouds, heavy aerosols and cloud shadows have been masked out by 

NASA. We further masked time-series of NDVI following quality assurance information 

and aggregated it to monthly values at the resolution of 500 m. Leaf area index was also 

obtained from MODIS product MODIS/006/MCD15A3H for the year 2013 at 500 m 

resolution (Myneni et al., 2015)(Myneni et al., 2015) in order to relate losses and gains in 

greenness to actual biomass. The year 2013 was chosen because it was a relatively 

normal year in terms of wetness/dryness according to SPEI time-series. Summary data 

were exported for analysis in R. It is known that NDVI and leaf area index (LAI) are non-

linearly related, with NDVI saturating at high LAI (Figure S1.4), and this non-linearity is 

considered when interpreting results (Turner et al., 1999; le Maire et al., 2006). A non-

linear model was fitted to average NDVI for the year 2013 with average LAI, and the 

model was used to convert NDVI time-series into LAI time-series and interpret all results 

obtain from NDVI analysis in LAI terms as well (Table S1.1, M5, and Figure S1.4). 

An absolute measure of yearly climatic water balance was computed for each site to 

evaluate the effect of the latitudinal climatic gradient on forest response to drought. It 

corresponds to monthly precipitation minus potential evapotranspiration averaged 

across the 18 years. Potential evapotranspiration was calculated using the “Penman” 

function in the SPEI package (Beguería & Vicente-Serrano, 2017), by inputting minimum 

and maximum temperature, mean daily external radiation, wind speed, and pixel latitude. 

All climatic variables were extracted from Global Land Data Assimilation System 2.1 

products (Rodell et al., 2004). In addition, time-series of monthly absolute water balance 

were also used to be compared with the relative water balance index, SPEI (used in this 

chapter to evaluate the intensity of drought). 

Elevation data were obtained from the Shuttle Radar Topography Mission (SRTM) 

digital elevation dataset, version 4 (Jarvis et al., 2008).  
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Time-series of SPEI, representing relative water availability, were extracted from a 

database available at 1.1 km resolution for the entirety of Spain from 1961-2017 and used 

as a climate change index (Vicente-Serrano et al., 2017). It is important to note that SPEI 

provides an index of temporal change in water availability within a site. It should not be 

used to make direct comparisons of absolute water availability among sites but can be 

used to compare the relative intensity of a dry or wet period. For example, in this paper, 

we are mostly interested in the severity of drought events relative to the severity of 

drought events experienced over time in a site and use this relative severity (i.e. SPEI) 

when comparing forest responses. SPEI is widely used as an alternative to SPI, which is 

based solely on precipitation (Vicente-Serrano et al., 2010; Azorin-Molina et al., 2014; 

Tejedor et al., 2016; Bottero et al., 2017; Gazol et al., 2018). SPEI is computed as follows: 

first, a monthly water balance is calculated for every month from 1961 to 2017, by 

subtracting weekly potential evapotranspiration from weekly precipitation. Secondly, 

because the impacts of drought can be cumulative, a sequence of alternative SPEI time-

series is created from  SPEI values averaged over a different number (X) of months. In 

this study, SPEI is calculated for X ranging from 1 to 48 months. The cumulative water 

balance is calculated from the weighted average of a particular month and the X-1 

previous months using a rectangular weighing function. The SPEIX is then obtained from 

normalizing water balance series into a three-parameter log-logistic distribution using 

non-biased Probabilistic Weighted Moments (PWMs) to calculate the parameters. The 

parameter estimation of the log-logistic probability distribution and detailed calculation 

procedure for SPEI index can be found in Vicente-Serrano et al. (2010). The result is a 

non-seasonal time-series of SPEIX values that represent the probability of a given month 

being relatively dry or wet compared to the reference period 1961-2014 (Mckee et al., 

1993; Vicente-Serrano et al., 2010; Beguería et al., 2014). Given that the Spanish drought 

dataset consisted of four SPEI time steps per month (Vicente-Serrano et al., 2017), we 

averaged those four values to get time-series of monthly SPEI.  

These datasets mentioned in this section, with the exception of SPEI, were all available 

through Google Earth Engine. 

2.2.3.2  Greening and climate change trends 

A particularly effective method of monitoring vegetation from space is detecting and 

understanding changes in time-series of greenness (Jamali et al., 2015). These changes 
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tend to fall under three categories: seasonal changes, gradual changes and abrupt 

changes (Verbesselt et al., 2010). Recent methods of analysing these changes consist of 

decomposing the time-series into a non-linear ‘trend’ which captures the gradual changes 

caused by interannual climate and land-use variations as well as the abrupt changes 

caused by disturbances, a ‘seasonality’ which follows annual temperature and rainfall, 

and a ‘residual/remainder’ variations unexplained by the former factors (Verbesselt et 

al., 2010; Jamali et al., 2015). In this work, we focus only on gradual changes in NDVI and 

LAI trends, which are the type of changes that drought usually causes. In this first part, 

we decompose the NDVI time-series removing ‘seasonality’ and ‘residuals’, keeping only 

the non-linear trend in NDVI, in order to relate it to non-seasonal climate change index 

SPEI using the DBEST package in R (Jamali et al., 2015; Jamali & Tomov, 2017). The 

DBEST function detected abrupt changes in 20 of the 4158 pixels, which were excluded 

from subsequent analyses as they represent extreme events such as fire, clear-felling, and 

sensor-related artefacts which are beyond the scope of our study. A further 952 plots 

were eliminated because of missing NDVI or SPEI data-points leaving 3528 plots for 

further analysis. We used two linear models (equations 2.1 & 2.2, and Table S1.1, 

M1&M2) to determine the long-term trends in SPEI and greenness over the past 18 years. 

Linear models are commonly used to estimate long-term trends in vegetation and 

climatic data (Eslamian et al., 2011; Chu et al., 2019). Although they can be affected by 

start date and by temporal auto-correlation when the time-series are small (Bayazit & 

Önöz, 2007; Chu et al., 2019), the series evaluated here span a period of 215 months 

which minimizes these effects (see section S1.5 for more information on temporal auto-

correlation). 

𝑆𝑃𝐸𝐼𝑋(𝑡) =  𝛽𝐶 + 𝛼𝐶 . 𝑡 + 𝜀𝐶(𝑡),  (2.1) 

𝑁𝐷𝑉𝐼(𝑡) =  𝛽𝐺 + 𝛼𝐺 . 𝑡 + 𝜀𝐺(𝑡),  (2.2) 

where t is time (1 to 215 months) within the 18-year time series, 𝛼 and 𝛽 are 

coefficients estimated by least-squares regression and 𝜀 are normally distributed 

residuals (in 2.2 𝜀 is the variation in the trend rather than the residual as that was 

eliminated with the seasonality). Subscripts in these models indicate C for climate and G 

for observed greenness. 𝛽 is the predicted initial SPEIX or NDVI of a plot (i.e. on February 

2000), and 𝛼 represents the long-term linear trend in climate (i.e. SPEI) or greenness of 

a plot, respectively.  
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Further linear models were used to evaluate how greening trends vary across Spain, 

testing whether they vary with elevation, average water balance, average greenness, 

forest type, and protection status (Table S1.1, model M10 - 11). Models were conducted 

using spatial simultaneous autoregressive error estimation (SSAEM), which account for 

the residual spatial structure within the neighbourhood of pixels (spatialreg package in 

R - Bivand & Piras, 2019). AIC and correlograms at varying neighbourhood distances 

were used to determine the best-supported model to account for spatial autocorrelation.  

2.2.4  Determining the drought accumulation period across Spanish forests 

To determine the drought accumulation period over which drought affects forest 

greenness, we recorded which SPEIX time-series correlated most closely with the forest 

greenness time-series at a site. We used a cross-correlation function with zero time lag 

(as the X scales of SPEI are already computed to account for time lags) correlating 

detrended SPEIx against detrended, deseasonalised NDVI for drought accumulation 

periods ranging from X = 1 to 48 months, and the value of X that gave rise to the highest 

correlation was noted: we refer to this as the drought accumulation period, and this 

period was used in all subsequent analyses. This allowed us to account for lags in forest 

response to drought and delayed mortality to which some species are susceptible, and for 

different water reservoirs that cause a delay in water deficit and surplus effects (Vicente-

Serrano et al., 2013).  

2.2.5 Time-series analysis of forest response to drought 

SPEIX and NDVI time-series were used to quantify two metrics for each pixel: short-

term covariance and long-term climate change influence (see Figure 2.1). A linear model 

(Table S1.1, M4) was fitted to the deseasonalized NDVI time-series using smoothed SPEIX 

time-series, where deseasonalisation was achieved using the DBEST package, and 

smoothing using locally weighted smoothing (theta = 0.1) in R, to eliminate noise and 

make SPEIX comparable to the NDVI trend: 

𝑁𝐷𝑉𝐼(𝑡) = 𝛼𝑃. 𝑡 + 𝛾𝐺𝑆𝑃𝐸𝐼𝑋(𝑡) + 𝛽𝑃 + 𝜀𝑃(𝑡),  (2.3) 

where t is time (1 to 215 months) within the 18-year time series, 𝛼𝑃 , 𝛽𝑃 and 𝛾𝐺 are 

coefficients estimated by least squares regression and 𝜀𝑃 is the residual. Subscripts in 

these models indicate, P for potential greenness, G for observed greenness. 

Substituting equation 2.1 into equation 2.3 we get: 
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   𝑁𝐷𝑉𝐼(𝑡)  =  𝛼𝑃. 𝑡 + 𝛾𝐺(𝛼𝐶 . 𝑡 + 𝛽𝐶 + 𝜀𝐶(𝑡)) + 𝛽𝑃 + 𝜀𝑃(𝑡) ,   (2.4) 

where α𝑃 = 𝛼𝐺 − 𝛾𝐺 . 𝛼𝐶  ,  𝛽𝑃 =  𝛽𝐺 − 𝛾𝐺 . 𝛽𝐶  , and 𝜀𝑃 = 𝜀𝐺 − 𝛾𝐺 . 𝜀𝐶. Here 𝛼𝑃 is the 

potential greening trend; it is comprised of the observed greening trend 𝛼𝑃 and the 

influences of long-term changes in climate (𝛾𝐺 . 𝛼𝐶) on greenness. 𝛾𝐺 provides an estimate 

of how strong the covariance between greenness and changes in water availability (CGW) 

is. 𝛼𝐺 − 𝛼𝑃 = 𝛾𝐺 . 𝛼𝐶  corresponds to estimated long-term climate change influence (CCI) 

on greenness. 𝜀𝐺 is the residual which contains the non-linear trend, and the noise (also 

normally distributed).  

Regression modelling produces two new summary variables for each pixel: short-term 

CGW and long-term CCI. It is key to understand that CGW, represented by the coefficient 

‘’ in Figure 2.1c which quantifies how greenness varies with drought index on a monthly 

basis, relates to both losses and gains and is not an indication of resilience alone. Large 

CGW values correspond with big losses and/or big gains. Strong and weak covariance 

could indicate different mechanisms to overcome droughts better known as drought 

avoidance and drought tolerance mechanisms respectively which relate to anisohydric 

and isohydric behaviours not just in terms of stomatal behaviour but also in terms of leaf 

shedding (Sade et al., 2012; Roman et al., 2015; Hwang et al., 2017). CCI, on the other 

hand, represents the long-term climate change influence on greenness; it can be 

represented as the difference between the actual greenness and the potential greenness 

as demonstrated in Figure 2.1d if greenness in the long-term is affected to a similar 

degree to the short term by the coefficient ‘’. 

Statistical modelling was used to evaluate how short-term covariance and long-term 

CCI varied across Spain, in relation to elevation, average water balance, and average 

greenness (Table S1.1, M14 - M21). Additional models included forest type and 

protection status as explanatory variables. 

We evaluated whether field data confirmed remote sensing analyses at the national 

scale using the Spanish National Forest Inventory, albeit with plots that differed in 

resolution from the satellite data. The Spanish Forest Inventory is a systematic network 

of plots for each km of forested area in Spain (Villaescusa & Díaz, 1998; Villanueva, 2004). 

For basal area calculations, we used the permanent plots between the third (1997-2007) 

and fourth (1998-2008) survey but excluded plots measured before 2000. Each plot has 

a variable radius design, comprised of four concentric circular subplots of 5, 10, 15 and 
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25 m where adult trees of < 12.5 cm, < 22.5 cm, < 42.5 cm and ≥ 42.5 were measured, 

respectively. For each sampled tree it was recorded status (alive, death), height, d.b.h, and 

species identity. Basal area change was computed as the difference in stand basal area in 

m2/ha between the two surveys (Ruiz-Benito et al., 2013). Given the very different spatial 

resolution of the MODIS data (500 m) and the field plots (25 m) we restricted our 

analyses to pixels in which forest was relatively homogeneous. To do this, a cloud-free 

image of Spain was obtained (by mosaicking Sentinel-2 level 1C images from May-August 

2016) and NDVI computed for pixels of 25m and 500m resolution centred on the plot 

locations. The year 2016 was chosen because it was relatively a normal year in terms of 

wetness/dryness (looking at SPEI) and the summer period was chosen to avoid the 

understory effects on the NDVI signal. Sites that had a difference in NDVI over 0.01 

between the two resolutions were excluded from further analyses leaving 2150 out of 

4649 pixels/plots to analyse. Modis NDVI data was extracted using the approach 

described in section 2.3.1 and the absolute NDVI trend (determined from the DBEST 

package) was computed between the dates of the third and fourth national forest 

inventory. Spatial autoregressive modelling was used to determine the relationship 

between the greenness and basal area change. 

2.2.6 Break-point analysis approach to resilience estimation 

Break point analyses were conducted to detect the greatest changes in NDVI and LAI 

within each time series, from which loss and gain indices were estimated. The time-series 

NDVI and LAI were decomposed into trend, seasonality, and remainder (see section 

2.3.2), and the trend was segmented using the DBEST package in R (Jamali & Tomov, 

2017). As illustrated in Figure 2.1e, loss and gain were estimated from the two most 

negative segments followed by a positive segment, respectively. Loss was estimated as 

the mean of the absolute negative changes in NDVI (i.e. NDVIpeak - NDVIpre-event) and gain 

as the mean increase in NDVI following these negative changes (i.e. NDVIpost-event - 

NDVIpeak). Minimum water availability (minimum SPEI) as well as maximum water 

availability (maximum SPEI) were extracted over those two detected loss and gain 

periods respectively and their mean computed for each series, representing water deficit 

and water surplus events, respectively. Spain experienced major droughts in 2005, 2012 

and 2017 (Figure 2.4a). Only the two biggest declining segments before March 2014 were 

used – allowing time for recovery – to estimate forest resilience components. We did not 

examine specific years or months because drought intensity varies over space and time. 
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Instead, we determined the water availability at times when major losses and gains in 

NDVI or LAI were detected in the time-series, therefore allowing droughts starting dates 

to vary. Nevertheless, drops in NDVI and LAI were mostly associated with the two 

drought years of 2005 and 2012 (Figure S1.5). 

To determine the relationships between loss and gain, and to test whether it varied 

systematically among forest types and protection statuses, we used ordinary least-square 

regression. Loss and gain were log-transformed to improve residual normality (Table 

S1.1, model M5, Figures 2.10a and S1.6). Predictions were then back-transformed to an 

arithmetic scale with a correction factor (Figures 2.10a and S1.6) (Baskerville, 1972). 

To help elucidate the drivers of resilience, losses and gains in greenness and leaf area, 

and their ratio estimates, were modelled as a function of elevation, average water 

balance, average greenness, relative water deficit (-minimum SPEI), water surplus 

(maximum SPEI), forest type, and protection status again using SSAEM (Table S1.1, M22 

- M39).  

2.3 Results 

2.3.1 Water balance is the biggest determinant of forest greenness and leaf 

area 

As expected, forests were greenest in the wetter regions of Spain (Figure 2.3d), with 

greenness (i.e. average NDVI) and canopy cover (average LAI) varying with the 

environment as follows: 

Mean NDVI = 0.64 + 0.000054 [Water Balance]; standard error (SE)= 0.014 and 

0.000014 respectively. 

Mean LAI = 1.88 + 0.00022 [Water balance]; SE= 0.090 and 0.00008 respectively. 
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Figure 2.3 Greenness and water availability landscape in Spain. 
(a) Average NDVI over Spain for the wet year of 2013; (b) average leaf area index (LAI) over Spain 
for 2013; (c) average climatic water balance as computed from the difference between monthly 
precipitation and Thornthwaite potential evapotranspiration for 2013; (d) variation in average 
greenness and canopy cover with average yearly water balance (mm/yr). NDVI regression line in 
dark green and LAI regression line in bright green with uncertainty around these lines shaded in 
green. 

2.3.2 Long-term trends in water availability and greenness 

Over the past 18 years, 73% of Spanish land has become drier, with an average change 

in SPEI1 of -0.24, which is almost a quarter of a standard deviation drier than the average 

for 1961 to 2014 (Figure 2.4). This corresponds to an increase in water deficit of about 2 

mm/year as calculated from the linear relationship between SPEI1 and water balance 

(Figure 2.4c). Of the forest pixels that we randomly sampled over Spain (Figure 2.2b), 

35% showed a significant drying trend (linear modelling, p < .05), 37 % did not change 

significantly and 27% got wetter (Figure 2.5a). The climate of the wetter regions changed 

least, whilst the drier regions became increasingly arid (i.e. Figure 2.4b,c).   
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Figure 2.4 Standard Precipitation-Evapotranspiration Index (SPEI) over Spain.  
(a) SPEI1 change over Spain for the period 2000-2017; with the inset showing the average SPEI1 
over Spain +/- standard deviation and linear trend in purple; (b) relationship between SPEI 
change and average water balance, computed from the Penman-Monteith equation (see S1.2:M6); 
(c) relationship between SPEI change and yearly water balance change over the past 18 years 
(see S1.2:M7). 

Despite these strengthening water deficits, 75% of Spanish forest pixels became 

greener over time and only 12% became less green (Figure 2.5b). On average there was 

an 11% increase in LAI (from 1.7 to 1.9 m2/m2), and some variation with canopy density 

(i.e. average LAI): less green sites (lower quartile LAI = 1.36) accumulated 0.1 m2/m2 of 
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leaf area while the more green sites (upper quartile LAI=2.26) accumulated 0.3 m2/m2 

over 18 years. 

 

Figure 2.5 Changes in SPEI and greenness over the past 18 years in studied Spanish forests 
(a) Relative frequency histogram of SPEIX change over forest plots with significant changes in red 
and non-significant changes in grey (linear modelling, p < .05); (b) relative frequency histogram 
of changes in greenness over forest plots with significant changes in pink and non-significant 
changes in grey (linear modelling, p < .05). Black lines indicate average of change in SPEI and 
NDVI.  

Correlation of remote- and plot-based observations of forest change (see section 2.5 

for details) showed a significant positive logarithmic relationship between basal area and 

average deseasonalised NDVI at the time of the third inventory, with a Nagelkerke R2 of 

0.22 (Figure 2.3a). A significant positive linear relationship was found between basal area 

change and NDVI trend change between the two inventories (Figure 2.6b) with a 

Nagelkerke R2 of 0.12. These analyses build confidence that our remote sensing analyses 

of resilience correspond with changes observed on the ground. 
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Figure 2.6 Relationship between plot-based measurements of basal area and remotely-
sensed measurements of greenness.  
(a) Basal area measured during the third Spanish national forest inventory as a function of 
average deseasonalised NDVI (as extracted from DBEST) for the same date; (b) greenness change 
as a function of basal area change between the third and fourth Spanish national forest inventory. 

Examining individual time-series, we found a close covariance of greenness with 

climatic conditions: SPEIX explained 49% of the variation in canopy greenness (average 

R2 of 3182 linear models fitted to paired SPEI-NDVI time-series). Only 19 % of the pixels 

responded immediately to water deficit (i.e. correlated best with a drought accumulation 

period X of only 1 month). 

In the long-term, climate change influence (CCI) on greenness was significant in 58% 

of the plots (with 56% negative effects and 2% positive effects, p < .05) but changes were 

small in magnitude (Figure 2.7). The CCI on NDVI varied across Spain as follows (Figure 

2.7a):  

CCI[NDVI]= -0.0016+ 0.0023 [water balance] + 0.0010 [elevation], SE= 0.0005, 0.0004 

and 0.0003 respectively. 

To put this model in context, on average canopy greenness was observed to increase 

by 0.0274 over 18 years, assuming a linear relationship between NDVI and SPEI trends, 

our model predicts increase of 0.0284 if climate change had not occurred. The equation 

shows that climate change did have a stronger impact at dry sites and at low elevations 

(Figure 2.7a). Similarly, the climate change influence on LAI (Figure 2.7b) is given by: 
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CCI[LAI]= -0.0015 + 0.0121 [water balance] + 0.0075 [mean LAI], SE=0.0038, 0.0031, 

and 0.0019 respectively. 

CCI[LAI] increased from -0.020 at the driest sites to 0.017 at the wettest sites (i.e. from 

-1181.5 to -301.5 mm, these representing the 5th and 95th percentiles of observed 

distribution in annual water balance). It also increased with LAI from -0.013 at 0.88 to 

0.011 at 2.93 (again the 5th and 95th percentiles of LAI). Again, this means that the CCI on 

greenness caused the LAI trend to be significantly smaller in drier or more dense sites 

(Figure 2.7b).  

 

Figure 2.7 Climate change influence (CCI) on greenness (i.e. difference in greenness trend 
caused by long-term trends in climate), as a function of elevation (m), water balance 
(mm/year) and average LAI (m2/m2/year).  
(a) CCI as computed from modelling NDVI with SPEI as a function of environmental variables; (b) 
CCI as computed from modelling LAI with SPEI as a function of environmental variables. 
Uncertainty around regression lines is shaded in the environmental variable respective colour.  

2.3.3 Water availability is the main driver of short-term changes in forest 

greenness 

The short-term effect of relative water balance variation on canopy greenness (CGW, 

see section 2.5) varied across Spain as follows (Figure 2.8):  

CGW[NDVI]= 0.0148 – 0.0041 [mean NDVI] – 0.0034 [elevation] , SE= 0.0008, 0.0003, 

and 0.0004 respectively. 

The terms in square brackets are scaled environmental variables. The model 

demonstrates that the covariance was weaker in elevated areas. The covariance was also 

weaker in forests with high NDVI but once the result was converted to LAI, it translated 

into a stronger covariance for forests with denser canopies (i.e. large LAI): 
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CGW[LAI]= 0.0918 + 0.0262 [mean LAI] – 0.0222 [elevation], with SE=0.0052, 0.0018 

and 0.0023 respectively. 

 

Figure 2.8 Variation of short-term covariance between greenness and SPEI along forest 
density and elevation gradients.  
(a) Covariance between NDVI and SPEI; (b) covariance between LAI and SPEI. Uncertainty around 
regression lines is shaded in the environmental variable respective colour. 

Breakpoint analysis demonstrated that in the aftermath of a strong drought event, 

forests regained, on average, only 80% of their lost greenness during droughts. Given that 

forests accumulated leaf area over the 18-year study, they must have regained the 

remaining 20% of their leaves (and more) in subsequent years not captured by the 

analyses’ characterisation of losses and gains. Losses and gains in LAI were greatest in 

dry regions (Figure 2.9(1)). The relative water deficit during a drought event (-minimum 

SPEI) and relative water surplus post-drought (maximum SPEI) both had a significant 

effect on all resilience components. The canopy greenness losses and gains were greater 

with an increase in water deficit (Figure 2.9a,b (2)). Furthermore, pixels hit by stronger 

drought were more resilient as deduced from the water deficit negative relationship to 

the gain-to-loss ratio (Figure 2.9c (2)). The NDVI gain, as well as gain-to-loss ratio, were 

equally affected by how wet the period that followed the drought was (Figure 2.9b,c (3)). 

Denser forests (i.e. forests with higher LAI) lost and gained more due to droughts (Figure 

2.9(4)). Forests at higher elevations were more resistant to drought events (Figure 

2.9a(5)).  
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Figure 2.9 Effects of environmental conditions resilience components. 
(a) Loss during drought; (b) gain after drought; and (c) gain-to-loss ratio of LAI. The effect sizes 
shown are coefficients (mean ±99% confidence intervals) estimated by spatial autoregressive 
modelling. Explanatory variables are scaled, so coefficients indicate the effect on these 
components of shifting to an environment that is +1 SD from the mean environment. The dashed 
lines indicate the average loss, gain, and gain/loss ratio for the mean environment. 

2.3.4 Influences of forest type on drought response 

Forests exhibited a spectrum of responses to drought, with breakpoint analysis 

indicating that some forest types lost and re-gained little NDVI or LAI while others 

fluctuated greatly (Figure 2.10a). Gains and losses were correlated across forest types (r 

= 0.66 for NDVI and r= 0.48 for LAI; Figure 2.10a). Specifically, Castanea dominated 

forests had below-average losses and gains indicative of drought tolerance, while 

maritime pines had above-average losses and gains which can be indicative of the 

drought avoidance mechanism (Figure 2.10a). This range of responses was confirmed by 

the analyses of the entire time-series; there was a close correlation between the short-

term covariance of greenness and SPEI, and the greenness gains and losses determined 

by breakpoint analysis within the different forest types (Figures S1.13 and S1.14). Species 

groups that lost and gained little after the drought had a lower short-term CGW while 

species groups that lost and gain a lot had higher short-term CGW (indicated by circle 

sizes in Figure 2.10a; short-term covariance is correlated to loss (r = 0.87 for NDVI and 

r=0.48 for LAI) and gain (r = 0.44 and r=0.32 for LAI, p < .05 in both cases). 

We found that the non-native Eucalyptus had low gain-to-loss ratios following 

droughts (Figure 2.9b), which explains the decline in leaf area in 26% of examined 

Eucalyptus plots, a significantly higher percentage than the average of 12% (Table S1.2). 

Looking at the long-term CCI, we found that growth in most Spanish forests is similarly 

impacted by SPEI trends (Figure 2.10c). Only two groups, P. pinaster associated with xeric 

sites, as well as Q. robur and Q. petraea, were more severally pressured by climate change 

(Figure 2.10c). Combining this with previous findings, we conclude that the overall 

greening of Spain is possible in part because of species that are resilient to drought while 
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the decline in many Eucalyptus plantations (26%) is mostly caused by their low short-

term resilience.  

 

Figure 2.10 Summary coefficients for the forest types of the spatial autoregressive model 
performed to evaluate resilience components. 
(a) Relationship between the loss, gain and the short-term response to drought of forest types; 
(b) gain-to-loss ratio (log scale); (c) long-term climate change influence on greenness. Value for 
forest type indicates the mean response for forests outside of protected areas. Overall mean for 
forest outside protected areas indicated by the black dot in (a) and the dashed lines in (b) and (c), 
and the error bars represents 99% confidence intervals. Note losses and gains were log-
transformed to improve normality of residuals since both measurements are right-skewed, and 
because gains tend to be smaller when losses are large. 

2.3.5 Resistance of protected areas to climate change and effect of previous 

land-cover 

Canopy greenness and leaf area inside protected areas were more stable over the 18 

year time-series (Figure 2.11c). Looking at the covariance between SPEI and canopy 

greenness results, protected forests were significantly less sensitive to drought than 

unprotected forests (i.e. lost and gained less greenness during droughts) (Figure 2.11b). 

On the other hand, the equivalent response in leaf area change was not significant 

indicating that the leaf area did not change much in these forests (Figure 2.11c). No 

significant difference was found in the gain-to-loss ratio in the most extreme droughts 

yet, since, as mentioned previously, Spanish forest canopy greenness was found to be 

typically resilient (Figure 2.11a).  
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Figure 2.11 Leaf area losses and gain in the short-term across different protection statuses. 
(a) LAI losses and gains to sever droughts with fitted line back transformed from the log-log 
relationship between the two; (b) summary coefficients for the protected areas of the spatial 
autoregressive model performed to evaluate short-term covariance between SPEI and NDVI; and 
(c) summary coefficients for the protected areas of the spatial autoregressive model performed 
to evaluate short-term covariance between SPEI and LAI. Values in (b) and (c) are for all forest 
types. Averages for non-protected areas are indicated by the dashed lines and the error bars 
represents 99% confidence intervals.  

2.4 Discussion 

2.4.1 Long-term and short-term climate change influence on forest canopy. 

The regression and breakpoint analyses of NDVI time series over the past 18 years 

shed light on why Spanish forest canopies are so remarkably resilient to climate change, 

on average greening despite the drying trends in the region. The NDVI time-series 

covaried closely with relative water availability (R2 = 0.49) which agrees with previous 

findings (Gouveia et al., 2012). In the short-term this covariance caused significant 

variation in canopy greenness and leaf area in response to drought events, with average 

losses in LAI during strong droughts amounting to 0.32 m2/m2, however, in the long-

term, this covariance had a much smaller influence on greening trends with predicted 

changes to LAI amounting on average to 0.0002 m2/m2/yr with a standard deviation of 

0.004. Drought effects on vegetation are commonly defined as a multi-scalar 

phenomenon, progressing from stomatal closure, and/or leaf abscission to embolism and 

hydraulic failure in response to water deficit (Mckee et al., 1993; Vicente-Serrano et al., 

2010), but few studies on forest resilience have dealt with this temporal aspect of trees 

response to drought (Schwalm et al., 2017; Camarero et al., 2018). The use of SPEI at 

different accumulation periods X allowed us to account for lags in forest response to 

drought and to better capture the effect of water deficit on vegetation. Recent analyses of 

Spanish forests indicate that drought was responsible for 50% of damage to forest 

canopies (“damage” defined as >25% defoliation of the canopy), followed by insects and 
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pathogens that were responsible for 24% of damage (IDF España, 2017). However, these 

analyses focus on the sensitivity of woodlands, not recovery. On average, 80% of losses 

in greenness were recovered in the 18 months following a drought event, while the 

remaining 20% were recovered in subsequent years to give the long-term greening trend 

we observe (Figures 2.10b, 2.10a and S1.7). These results suggest that forests in Spain 

mostly undergo defoliation that is easily recoverable in the wet period following a 

drought, while 20% of the damages that can be more permanent are outgrown in the next 

couple of years before another drought happens. Water availability in the period after the 

severe drought is important for forest recovery (Jiang et al., 2019), as we indeed found 

that greater water availability (maximum SPEI) led to greater recovery while minimum 

SPEI was associated with bigger losses in greenness and leaf area. 

Surprisingly, forests exposed to the strongest droughts had the highest gain-to-loss 

ratios (Figure 2.10b). This phenomenon was observed in several other studies on the 

effect of drought on forest canopy and basal area (Delissio & Primack, 2003; Dorman, 

Perevolotsky, Sarris, & Svoray, 2015; Gazol et al., 2018 (see supplementary material); 

Schwartz, Budsock, & Uriarte, 2019; Serra-Maluquer, Mencuccini, & Martínez-Vilalta, 

2018; Slik, 2004), but remains poorly understood. Perhaps intense droughts have a 

thinning effect on forests as they are associated with greater losses in leaf area (Figure 

2.9a). These losses in leaf area which represent an increase in forest litterfall as well as 

canopy openings could reduce stand transpiration, interception of precipitation and 

competition for light and water resources (Delissio & Primack, 2003; Sohn et al., 2016; 

Navarro-Cerrillo et al., 2019; Schwartz et al., 2019). In turn, the reduction of competition 

above and below ground can boost the recruitment of more resilient trees and the 

productivity of the surviving trees during the wet period following an intense drought 

(Slik, 2004; Schwartz et al., 2019). It is possible however that observed increases in 

remotely sensed short-term resilience is not related to the detected increases in basal 

area increment (Dorman et al., 2015; Gazol et al., 2018), but instead to the increase of 

understory photosynthetic activity (Breshears et al., 2005; McDowell et al., 2008; 

Schwartz et al., 2019). 

2.4.2 Spain is greening despite increased aridity  

The impacts of climate change on forest health is a highly topical issue (Allen et al., 

2010). Temperatures in the region have increased by 1.3°C, compared to 0.85°C 
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worldwide, since the end of the 19th century, and rainfall has decreased by 20% in some 

regions but has increased in others (Barbeta et al., 2013; Guiot & Cramer, 2016a; 

UNEP/MAP, 2016; Zhu et al., 2016). We found an average decrease in the water balance 

of 1.9 mm/year over our pixels for the period 2000-2017, which follows decreases in 

precipitation by 1.9 mm/year and increases in temperature by 0.03 oC/year for the 

period 1961-2011 (Vicente-Serrano et al., 2014a). Indeed, several studies have reported 

localised dieback associated with extreme drought events in Spain (Lloret et al., 2004; 

Ogaya et al., 2015; Guada et al., 2016; Lloret & García, 2016; Molina-Venegas et al., 2018).  

However, the narrative of declining forest health associated with global warming 

contrasts with observations made by multispectral sensors, which indicate that Spain is 

greening (Peñuelas et al., 2002; González-Alonso et al., 2004, 2006; Alcaraz-Segura et al., 

2008; Hill et al., 2008; Khorchani et al., 2018). We found that 75% of Spanish forested 

pixels analysed had become greener over the past 18 years (+0.03 NDVI and +0.18 

m2/m2/yr LAI). Suggested causes of these trends include increased radiation (Khorchani 

et al., 2018), land-use change (García-Ruiz & Lana-Renault, 2011; Khorchani et al., 2018), 

partly due to abandonment of grazing lands in the last few decades (Hill et al., 2008; 

Carnicer et al., 2014) and increased basal area of woodlands that are no longer used for 

timber or charcoal (Otero et al., 2015). Spain joins many other regions of the world that 

are greening despite climate change (Eastman et al., 2013; Zhu et al., 2016): these global 

studies have suggested nitrogen fertiliser application and deposition, CO2 fertilization 

and more favourable climate conditions all contribute to the trend (Mao et al., 2013; Los, 

2013; Eastman et al., 2013; Zhu et al., 2016). 

2.4.3 Dense canopies are most sensitive to drought 

Changes in satellite-detected greenness are known to be correlated to leaf biomass 

change and photosynthetic activity (Tucker & Sellers, 1986; Asrar et al., 1989; Baret & 

Guyot, 1991; Cihlar et al., 1991; Carlson & Ripley, 1997; Zhang et al., 2003), and many 

studies have used this information to estimate forest biomass from satellite (le Maire et 

al., 2011; Galidaki et al., 2017). Examining the relation between the Spanish national 

forest inventory basal area and greenness we found a significant positive relationship 

that supports these studies. Consequently, our results indicate that in Spain higher 

canopy density increases competition and transpiration leading to increased sensitivity 

to drought (i.e. losses in LAI) which agrees with previous studies on forest density effects 
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(Raz-Yaseef et al., 2012; Bottero et al., 2017; Navarro-Cerrillo et al., 2019). We found that 

forests that have denser canopies, i.e. have a high average NDVI or LAI, are more sensitive 

to changes in SPEI. The effect of forest density becomes however insignificant when 

looking at the gain-to-loss ratio to extreme drought (short-term CGW), meaning that 

density-caused losses in greenness or leaf area are always followed by similar NDVI or 

LAI gains. We believe that the lack of forest-density effect on short-term greenness 

resilience is mostly due to the overall resilience of the forests and that stronger droughts 

will cause this effect to be significantly negative.  

2.4.4 Differential response of forest types and protected areas 

Spanish forests are currently dominated by pines, which occupy 67% of forested lands, 

including P. pinaster and P. sylvestris in big proportions (Figure S1.2) (Brus et al., 2012). 

The second most dominant species groups are oaks (22% including Q. robur and Q. 

petraea), secondary successional species, which are favoured by managers and are 

reported to be advancing on pines (Pausas et al., 2004; Brus et al., 2012; Doblas-Miranda 

et al., 2014; Martín-Alcón et al., 2015). Understanding the resilience to drought of these 

two groups is therefore paramount for Spanish ecosystems. Here, forest types differed in 

response to droughts, indicating differences in the drought resilience behaviours of 

species that dominate these forest types (Hwang et al. 2017). We found that Castanea lost 

little greenness during drought, consistent with anisohydric species that keep their 

stomata open and continue photosynthesising for longer when droughts occur (Martínez-

Sancho et al., 2017; Mota et al., 2018). This “tolerance behaviour” results in their leaf 

water potential becoming increasingly negative during drought periods, which can push 

anisohydric trees beyond their limited hydraulic safety margins, leading susceptible 

species to hydraulic failure, that can be temporary or permanent (Martínez-Sancho et al., 

2017; Kannenberg et al., 2019a). At the other end of the spectrum, P. pinaster lost many 

leaves in response to drought. Isohydric species, like P. pinaster, tend to close their 

stomata to preserve hydraulic conductivity and then drop leaves as the drought 

continues (Galiano et al., 2011). Species with an “avoidance behaviour” can die during 

prolonged droughts as a result of hydraulic failure. Some studies also suggest that carbon 

starvation can occur (Galiano et al., 2011; Sevanto et al., 2014; Savi et al., 2019), but other 

researchers remain unconvinced that this mechanism is important (Muller et al., 2011; 

Körner, 2014). In short, because stomatal closure was considered to be the first response 

to drought in isohydric species, there was a long-standing assumption that this was the 
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limiting factor to gas exchange, stopping photosynthesis and tissue formation, and 

leading to carbon starvation (Körner, 2013). This assumption was challenged time and 

time again with data proving that turgor loss which happens during drought affects 

conductivity and carbohydrate use before carbon balance deficit occurs. No consensus is 

reached on the subject as both seem to be interlinked and can happen at the same time 

(Sevanto et al., 2014).  

Plantations of Eucalyptus responded differently to other forest types, recovering 

slowly from drought (Figure 2.10a) and in a number of cases (26%), higher than other 

species (12%), failing to recover (Table S1.2). There are reports of Eucalyptus declining 

in response to drought in the Mediterranean regions of their native Australia (Matusick 

et al., 2012, 2018; Brouwers et al., 2013). In Spain, Eucalyptus is planted in wetter regions 

that have not become drier over the past 18 years, and most reports discuss Eucalypt in 

the context of timber production, pests and diseases (Cadahía et al., 2011; IDF España, 

2017) rather than their response to drought (Peñuelas et al., 2001; Barradas et al., 2018). 

The study provides no evidence of the widespread permanent hydraulic failure of 

either isohydric or anisohydric species, as most forest canopies we investigated 

recovered in greenness following drought events. With the exception of Eucalyptus 

plantations, there were no significant differences in the gain-to-loss ratio of forest types, 

which might indicate that these contrasting behaviours were similarly effective in terms 

of canopy resilience. These findings need to be treated with caution, given that few of the 

forest types were comprised of single species. For instance, P. sylvestris is recognised as 

an isohydric species (Galiano et al., 2011), but forests classified as dominated by this 

species did not respond to drought in the way expected of an isohydric species – they lost 

about average canopy greenness during drought (Figure 2.11a) – so we suspect that other 

woody species contributed to the greenness signal.  Additionally, stands with medium-

low canopy cover that leaves exposed understory and shrub or herbaceous which can 

contribute to the greenness. Focusing analyses on stands with known species 

composition will help clarify the responses of species and communities to drought (e.g. 

Hwang et al., 2017). Furthermore, studies that link canopy greenness trends with detailed 

physiological measurements are needed to understand the mechanistic explanations 

behind resilience. 
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Our regression analyses demonstrate that the management of woodlands in protected 

areas has made their canopy greenness, i.e. NDVI, more resilient to drought because their 

short-term responsiveness to water availability is relatively low (Figure 2.11b). When 

looking at LAI, however, the response to water availability was not significantly different 

in protected areas, contradicting the NDVI results (Figure 2.11c). To extract more 

information on the matter, we decided to look at the number of declining LAI pixels 

instead of the effect on all pixels; it was significantly smaller in Natura 2000 forests and 

the decline was also significantly less pronounced (Table S1.2). These results indicate 

that Natura 2000 forest might have a more positive effect on the forest canopy resilience. 

Field studies in the region have demonstrated that thinning can improve resilience 

(Navarro-Cerrillo et al., 2019) but thinning can also decrease leaf area. This is the first 

study to determine the effect of these protective measures on forest canopy resilience to 

climate change at the national scale from satellite imagery. More studies are needed to 

determine which measures in these protected areas are actually enhancing forest 

resilience. As mentioned in section 2.2, the management of Natura 2000 sites varies 

greatly depending on the responsible administration, the funds available, the 

biogeographic region and whether or not the site is a Nationally Designated Protected 

area, therefore, future studies can take these factors into account to uncover more 

information on management effectiveness. Finally, gain-to-loss ratios obtained by 

breakpoint analysis, as well as LAI response, could be failing to show that protected 

forests are more resilient to drought mainly because of the overall resilience of Spanish 

forest canopy greenness to past changes in water availability. Alternatively, given that the 

short-term NDVI responsiveness to drought was not very strong, it could be that 

protected areas have failed to make a difference in forest resilience thus far; more data 

are needed to evaluate this. As mentioned in van der Plas et al. (2018), many protected 

areas have been established recently, thus there has been insufficient time for the 

implementation of their transformative management actions. In addition, many have 

been created to protect and restore degraded and abandoned lands which require extra 

time to recover (van der Plas et al., 2018). Although we found no effect of the land cover 

change from 1990 to 2000 on the resilience of forest canopies, we did not evaluate the 

effect of past forest management, which would also be interesting to study.  
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2.4.5 Research and management implications 

Returning to the questions posed at the beginning of this study, it is now possible to 

state that canopy greenness of Spanish forests have been remarkably resilient to 

droughts in the 2000-2017 period: these secondary forests are continuing to accumulate 

biomass and becoming greener despite climate change making this region hotter and 

drier. Unlike our expectations, most forest types, regardless of their drought resistance 

behaviour and management, recovered from losses incurred by extreme drought events. 

Finally, we demonstrate that the protection and management of these forested lands have 

the potential to be effective in alleviating the effects of climate change on canopies by 

increasing the forest capacity to resist during a drought.  

Breakpoint and regression approaches provide complementary insights into 

resilience and its components. Short-term covariance between water availability and 

NDVI or LAI were highly correlated with sensitivity and to a lesser extent recovery 

measures and could be used to assess the stability of a forest in face climate variation, as 

well as provide insights into the prevailing drought resistance mechanism of a species. 

The long-term climate change influence, on the other hand, can be used to estimate 

drought pressure on these forests. Finally, break-point analysis, which allows losses and 

recovery of canopy greenness due to drought events to be determined, could be used 

alongside forest die-off information to determine the tipping point of forests.  

Our study has focused on the resilience of forest canopies to drought but shifts in 

species distribution and changing disturbance regimes will also influence resilience as 

the climate warms. Several studies have already analysed past shifts in species 

distribution as well as modelled and predicted future changes in plant communities and 

their distributions using ground data (Lines, 2012; Ruiz-Labourdette et al., 2012; García-

Valdés et al., 2013; Rabasa et al., 2013; Lloret et al., 2013; Valladares et al., 2014). Most of 

these studies mentioned a decrease in the climatic suitability in the future for most 

species and predicted altitudinal shifts. A few mentioned an increase in habitat for 

broadleaves at the expense of pines while one study predicted an increase in the range of 

low altitude pines.  

Furthermore, extreme drought events increase the risks of fires and insect outbreaks 

(Allen et al., 2010). Our methodology can be applied to such secondary events if data such 

as fire occurrence, insect distribution and physiology, and geology is available; and it 
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would be the next natural step to identify management options that would maximize the 

resilience of forests to different extreme biotic and abiotic events. For instance, fire 

occurrence data can be tracked from satellite (Justice et al., 2002; Turco et al., 2019), and 

pathogen damage can be detected from hyperspectral data, LiDAR data or both 

(Stereńczak et al., 2019; Lin et al., 2019). Furthermore, species composition and stand 

development information are becoming more and more accessible thanks to 

hyperspectral imagery and repeat LiDAR scans (Simonson et al., 2012, 2016; Coomes et 

al., 2017; Nunes et al., 2017; Jucker et al., 2018a). Future work could also explore whether 

stand height, age, soil type, and species composition influence resilience; and include field 

data at the same resolution to gain a better understanding of the linkages between 

remotely sensed greenness and forest change. 

  



58 

 

Chapter 2 Mediterranean forests resilience to recent droughts and climate 
change 

  



 
 

Chapter 3 Mapping Mediterranean tree species: 

airborne hyperspectral vs spaceborne multispectral 

approaches 

  



60 

 

Chapter 3 Mapping Mediterranean tree species: airborne hyperspectral vs 
spaceborne multispectral approaches 

Abstract  

Multispectral sensors on Earth Observation (EO) satellites are proving invaluable for 

monitoring the resilience of forests to climate change. Knowledge of the species 

composition of these forests is needed to interpret differences in resilience but this has 

been challenging to map remotely. However, increases in spatial and spectral resolution 

of EO data open new opportunities to map species. In this study, we first use airborne 

hyperspectral imagery to classify two oak and two pine species over 42.2 km2 in Spain. 

Random Forest classification of the 2 m hyperspectral imagery delivered accuracies over 

> 0.9% when classifying individual tree crowns as belonging to one of the four species, 

and an average adjusted R2 of 0.78 when predicting percent cover within the 900 m2 

inventory plots. We then use these maps as “plane truth” data to evaluate the accuracy of 

classification using a Sentinel-2 image classified in Google Earth Engine (GEE). Looking 

at a 250 m pixels size (equivalent to the smallest MODIS pixel) the agreement between 

the airborne and spaceborne classification was 64% on average (range: 0-100%). 

Spaceborne-derived random forest models were better at predicting the total area of pine 

canopies than oak canopies, average R2 of 0.64 vs. 0.43, which is probably due to 

differences in tree heights between the two taxa at an early successional stage. The 

inclusion of topographical data with Sentinel 2 multispectral data did not improve the 

classification accuracy of the random forest algorithm in GEE. 
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3.1 Introduction 

The composition of plant species is a major contributing factor to whether an 

ecosystem will transition from one state to another following disturbance or 

perturbation (Oliver et al., 2015). Estimating the resilience of tree species and forest 

ecosystems to climate-driven risks is increasingly important given climate-change effects 

on forests globally (Klein & Hartmann, 2018; Anderegg et al., 2020). That is why 

suggested ways to enhance the resilience of forests include admixing tree species in a bid 

to diversify their response to biotic and abiotic stress (Bolte et al., 2009; Messier, 

Puettmann & Coates, 2013; Fares et al., 2015).  While studies on tree species interactions 

can reveal a lot about complementarity and competition in specific ecosystems and under 

specific environmental conditions, they are costly and their results are not generalisable. 

Complementarity can turn into competition under different environmental conditions, at 

different locations, or at different stages in the lifetime of trees (Forrester et al., 2016; 

Jucker et al., 2020). Approaches to evaluating diversity effects on trees’ resilience to 

climate-driven risks at a larger spatial scale and under a variety of environmental 

conditions are therefore needed.  

High-revisit frequency satellites such as MODIS generate detailed time-series which 

can be analysed to determine ecosystem resilience to disturbances and climatic changes 

at long time-scales (Khoury & Coomes, 2020), and detect phenological changes (Zhang et 

al., 2003; Liu et al., 2015). Long time-series of vegetation indices are used to uncover long-

term inter- and intra-annual information on the ecosystems being studied (Verbesselt et 

al., 2010; Uyeda et al., 2017; Jung et al., 2019)  but studies using them often assume 

homogenous cover or accept the heterogeneity of the land being surveyed. It is quite 

difficult to link low spatial resolution satellite data to small scale inventory data (Figure 

2.6) (Khoury & Coomes, 2020) and rare to be able to survey a whole pixel (Lambert et al., 

2013). Furthermore, the homogeneity assumption over large pixels (>250 m), apart from 

being a limitation in most studies, hinders the discovery of species-specific thresholds or 

the determination of the effect of species mixing without access to very costly ground-

data. While we used time-series of MODIS data to look at dominant species differences in 

Chapter 2, these time-series analyses are yet to be used to determine the resilience of 

specific species combinations. Species mapping offers a solution to determine the species 
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composition of coarse satellite pixels, however hyperspectral and LiDAR data surveys 

used for such solutions are not necessarily affordable.  

Forest tree species mapping is consistently relying on advances in remote-sensing 

technologies and analysis algorithms to provide scientists, forest managers, and 

conservationists with valuable information about the distribution of species over 

landscapes and ecosystems. Whether being used as inputs to species-specific models of 

growth/biomass or as stand-alone products, species maps are becoming indispensable, 

numerous studies focus on optimizing the accuracy of classification for specific locations 

but the number of studies focusing on their pitfalls or application remains limited 

(Fassnacht et al., 2016). Sentinel 2 multispectral imagery is increasingly used in 

combination with machine learning algorithms to map land covers, species distributions 

and functional traits over landscapes (Ma et al., 2019; Vasilakos et al., 2020; Aguirre-

Gutiérrez et al., 2021). These developments have great potential to complement the use 

of low-resolution satellites for ecosystem monitoring, yet the number of studies exploring 

Sentinel 2 capacity in mapping species over landscape remains small.  

Previously, scientists have attempted to overcome the gap between the low ground 

resolution of MODIS and the low temporal resolution of Landsat by fusing the two 

datasets together (Wu et al., 2012; Chen et al., 2015; Gao et al., 2015; Wang et al., 2021). 

Many different algorithms are proposed for the fusion and the processing of such data is 

no easy task. Ignoring issues such as the geolocation errors, and the differences in sensor 

systems (Wu et al., 2012), the main limitation in such datasets is the assumption of no 

land cover change over the period of the fusion (Jamshidi et al., 2019; Filgueiras et al., 

2020; Wang et al., 2021). Such limitation is detrimental in time-series analysis looking to 

detect change and transitions in monitored ecosystems. Here we propose a different 

approach to bridging that gap and we ask whether high spatial resolution Sentinel 2 

imagery can be used to map species composition over high temporal resolution MODIS 

pixels. This has a huge potential in allowing researchers to drop the assumption of the 

homogeneous landscape at such large scales (250 to 1000 m) and instead know to a 10 

m precision what they are monitoring.  

In pursuing this aim we map four dominant species over a Mediterranean landscape in 

central Spain which will allow the use of the mapped species data in studies looking at 

determining diversity effects over the region from long time-series of satellite imagery 
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(Chapter 4). We classify a Sentinel-2 mosaic following two approaches, one which uses 

species maps derived from an airborne classification and one which uses our knowledge 

of the area and high-resolution imagery to train the classifier by eye. The first training 

method is used because it is validated against field-collected ground data; while the 

second training method is used to determine the effectiveness of a quick ‘eye-trained’ 

classification that could be done by anyone following the popularity of ‘citizen science’.  

We report the results of the first method below and the result of the second method in 

the supplementary information. We use the hyperspectral classified as the true map 

when validating the Sentinel 2 results: ‘plane truth’. We address three main questions: (i) 

using hyperspectral imagery which classification algorithm results in the greatest 

accuracy between linear discriminant analysis, partial least square discriminant analysis, 

and random forest classification? (ii) how does classification with Sentinel 2A (10 x 10 m 

pixel) compare to a high-resolution hyperspectral classification (2 x 2 m pixel) in a 250 x 

250 m window? (iii) of the bands used for classification, which are most influential in the 

classification and what do they say about the species? 
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3.2  Methods 

 

Flowchart 2 Datasets and processing steps to map forest tree species over Alto-Tajo. 
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3.2  Methods 

3.2.1 Data 

3.2.1.1  Site information and field plots 

The study site is in central Spain, in Alto-Tajo (approx. lat.: 40.72°; long.:2.17°, 1200m 

a.s.l.). The climate is Mediterranean with a mean annual temperature over the region is 

10.2 °C, and mean annual precipitation is 499 mm yr-1 (Jucker et al., 2014). In the summer 

of 2017, hyperspectral data and RGB imagery were collected over an area containing 

permanent forest inventory plots established in 2011 as part of a study into the effect of 

species diversity on ecosystem functioning (Baeten et al., 2013; Jucker et al., 2014a). A 

total of 36 plots were established in Alto Tajo, varying in diversity from 1-4 species. The 

species pool includes two pines Pinus nigra and P. sylvestris, one deciduous oak Quercus 

faginea, and one evergreen oak Q. ilex, including 12 possible combinations. Each 

permanent plot consisted of an area of  30 × 30 m in which all stems ≥7.5 cm in diameter 

were identified and permanently marked (3216 stems in total). During the first census, 

in 2011, basal area, heights, as well as other productivity and diversity measures were 

collected and remeasured in the 2nd census in 2017. Tree cores were also collected and 

allowed for the construction of a productivity history over the plots which will be 

explored in detail in the next chapter. Eight monoculture plots and two mixed plots were 

re-visited in 2017 (Figure 3.2a), 5 and 20 trees respectively were randomly selected and 

georeferenced with differential GPS (SXBlue II system, Geneq, Montreal, Quebec, Canada) 

and data concerning canopy composition were collected and studied in Chapter 5.  

3.2.1.2  Predicting crown cover from inventory plot data 

We generated species specific allometric equations to estimate crown area from basal 

area and height measurements taken in the first census. The functions were later used to 

predict the crown area in the second census. Crown areas, basal areas and heights were 

all log-transformed to normalise the residuals. Linear mixed models fitted the log-

transformed data better than non-linear models, suggesting that the allometries followed 

power laws. (Jucker et al., 2014b). We used the ‘step’ and the ‘lmer’ functions in R to select 

the mixed model with the smallest AIC (see Table S2.1). The best model allowed the 

height intercepts and slopes to vary with the species combination and plot identity, i.e. 

random effects specified as ‘log H | Species Combination/Plot ID’. Crown area was 

predicted from basal area and heights with an RMSE of 5.66 m2 and an adjusted R2 of 85% 

(Figure 3.1). 
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Figure 3.1 Crown area of trees as a function of basal area and height estimated from the 
field inventory plots. 
a) Species crown area as function of tree basal area; b) crown area as function of tree height; c) 
crown area predicted by the model below vs. observed crown area. 

The best-supported model was loge(CA (m2)) =  0.75 logeBA (m2) + 0.41 logeH (m) + 

4.36,  with BA: basal area ,  and H: height. Height intercept and slope varied significantly 

between plot species combinations which are expected given that different combinations 

of oaks and pines allow for different canopy vertical structures as a result of competition 

for light. This competition, in turn, influences productivity and ultimately canopy size 

(Jucker et al., 2014a).  

3.2.1.3  High-resolution hyperspectral data 

Hyperspectral and RGB imagery was collected over Alto-Tajo on the 19-21 June 2017 

by the (former) Airborne Research and Survey Facility of the Natural Environment 

Research Council (ES17/126). The hyperspectral data were collected with an Aisa Fenix 

imager (380–2500 nm) and photographs were taken by a Phase One iXU-RS 1000 (0.48, 

0.56 and 0.66 nm), flown at an average altitude of 2145 m a.s.l. (Figure 3.2c). The resulting 

spectral resolution was 5.13 nm in the range 385 – 981 nm and 11.25 nm in the range 

992 - 2479 nm; there was a total of 253 bands.  LiDAR data acquired by the Plan Nacional 

de Ortofotografía Aérea project in July and August of 2010 (point density was at least 

0.5/m2) were processed with LAStools to create a digital surface model. The 

hyperspectral data were registered onto the LiDAR-derived data digital surface model 

(Figure 3.2b) at a ground resolution of 2 m and filtered and binned using NERC ARSF 

Python tools in JASMIN (see Bongalov et al. 2019). Further calibration and filtering were 

conducted: the ATCOR4 software was used to make atmospheric corrections, using the 

rugged terrain model (see Bongalov et al. 2019); pixels with illumination angle > 60º 

were filtered out. The analysed imagery spanned a total area of 42.2 km2 excluding flight-

line edges.  
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Figure 3.2 Maps of a study region in Alto Tajo Natural Park, Spain.  
a) Location of the Park and forest inventory plots; b) the LiDAR-derived Digital Surface Model; c) 
high-resolution RGB mosaic; d) close-up of one inventory plot with tree crowns and ground 
section used in the training and validation of classification algorithms delineated in orange. The 
white grid represents 250-m pixels of MODIS multispectral data which will be used (in Chapter 
4) to track long-term vegetational changes in the park. The yellow points represent the position 
of forest inventory plots.  

3.2.1.4  High-resolution multispectral satellite data 

A cloud-free Sentinel-2 level 2A mosaic was created in GEE from 12 images collected 

in June - August 2017. Using Sentinel Hub’s cloud probability layer in GEE based on 

LightGBM (https://github.com/microsoft/LightGBM, Barbier et al., 2016; Ke et al., 2017; 

Zhang et al., 2017), pixels that had a >30% probability of being clouds or cloud shadows 

were filtered out. Satellite swath edges were also masked out by screening and masking 

the images of extreme reflectance values. The remaining pixels were reduced to a 12-

band cloudless mosaic by taking the median across the images. 
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3.2.2 Classification 

3.2.2.1  Tree-crown classification using hyperspectral imagery 

Three methods for classifying individual tree crowns were evaluated:  linear 

discriminant analysis (LDA), partial-least-squares discriminant analysis (PLS-DA), and 

random forest (RF). Polygons were created in QGIS (version 3.8 Zanzibar, 

http://qgis.org/) to delineate individual tree crowns and non-forested background by 

locating the georeferenced trees (section 2.1.1) on the RGB imagery and the LiDAR-

derived digital surface model. Atmospherically corrected hyperspectral data was then 

extracted in R from the tree crown and background polygons. Tree crown pixels with 

NDVI < 0.65 and background pixels with NDVI > 0.65 were masked. Brightness 

normalization consisting of spectral averaging, i.e. dividing each pixel spectra value by 

mean spectra of the pixel, was applied before the addition of spectral indices (Chan et al., 

2020). Spectral indices were taken from Chan et al., (2020) with extra indices added from 

the Index DataBase (Henrich et al., 2009) to make use of the full spectra of our data and 

improve the estimation (added indices are reported in Table S2.2). They were then used 

to train and validate three classifiers, using ‘MASS’ package (Ripley et al., 2013) for the 

LDA, ‘caret’ package (Kuhn, 2008) for PLSDA, and ‘randomForest’ package (Liaw & 

Wiener, 2012) for RF classification. The training involved 70 % of crown pixels and 

validation of the remaining 30%. We tested whether dark pixel filtering improves 

accuracies by eliminating pixels with maximal reflectance values falling below 25% of 

mean maximal reflectance over any given flight-line. There were also overlapping flight 

lines allowing the collection of more data for some of the crowns. We tested whether 

averaging the overlapping data would make a difference to the predictions. Accuracies of 

individual-tree-crown models were assessed by reporting the overall, user and producer 

accuracies of the confusion matrix using the ‘confusionMatrix’ function from ‘caret’. 

Accuracies of the best two algorithms were further evaluated at the forest plot level, by 

comparing the canopy cover of each species (i.e. the sum of the individual crown areas) 

with the canopy cover predicted by the model, relative to total canopy area or to total plot 

area (900 m2). 

3.2.2.2  Mapping species using Sentinel-2 multispectral imagery 

We classified Sentinel-2 imagery using hyperspectral-derived species classification 

map as plane-truth data. To create a calibration/validation dataset we first resampled the 

http://qgis.org/
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2-m hyperspectral-derived map to 10m (the size of Sentinel-2 pixels) using the ‘mode’ 

algorithm in GDAL (http://gdal.osgeo.org/). We created a calibration/validation dataset 

comprised of 600 pixels -120 samples for each of the four species classes and 120 for the 

background class. Finally, we trained a random forest classifier in GEE. A total of 99 

vegetation indices were computed from Index DataBase and used in the classification 

(Henrich et al., 2009) (see Table S2.3). Knowing that the species differ in their 

distribution along elevational gradients (Martín-Alcón, 2015), the elevation, slope and 

aspect, as computed from the Shuttle Radar Topography Mission (SRTM) digital elevation 

dataset, version 4 (Jarvis et al., 2008), were also added as variables in the classifier in one 

of the random forest algorithm runs to test whether topographical parameters improved 

the accuracy of the classifier (Table 3.3). 

3.2.2.3 Classifier variable importance 

Variables’ importance was checked for the random forest algorithms using the 

available ‘explain’ function in GEE and ‘importance’ function from the ‘randomForest’ 

package in R. The computation of the importance was based on the total decrease in node 

impurities (computed as Gini index) from splitting on the variables.  

3.2.3 Predicted composition of 250m pixels 

We compared predicted species composition from high-resolution hyperspectral and 

Sentinel-2 imagery at a 250-m scale (i.e. equivalent to the smallest MODIS pixel 

resolution). First, a MODIS image was obtained over the area at 250-m resolution and 

vectorized using the “spex” package in R to obtain the MODIS product grid with a total of 

892 pixels fully covered by the hyperspectral data. By overlaying the MODIS grid on the 

hyperspectral and Sentinel 2 species maps, we counted the number of pixels occupied by 

the four species of interest within each grid cell. We then evaluated the degree of 

agreement between the two species maps by comparing the pixel counts. Logistic 

regression with a binomial error structure was used to predict species-specific canopy 

cover derived from Sentinel-2 as a function of species-specific canopy cover derived from 

hyperspectral imagery and other variables (see Figure 3.3). Another method computing 

accuracy from contingency matrix for each grid cell, i.e. takes into account the position of 

species within the grid cell, was also tested and its results reported in the supplementary 

information Section S2.4.  

 

http://gdal.osgeo.org/
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Figure 3.3 Prediction of the species composition within 250-m pixels (i.e. MODIS pixels) 
from higher resolution imagery. 
a) Species classification derived from airborne hyperspectral imagery at 2-m resolution (plane 
truth), b) Sentinel-2 multispectral imagery at 10-m resolution; c) donut graphs representing class 
proportional cover for a sampled pixel (highlighted orange and purple in a and b) from the 
airborne and spaceborne imagery and their position on a bivariate plot (dotted line showing a 
1:1 relationship).  

3.3  Results 

3.3.1 Predicting composition using airborne hyperspectral imagery 

The highest classification accuracy of tree crowns was achieved by PLS-DA with an 

overall accuracy of 92% (Table 3.1) followed by RF with 0.83% average accuracy. 

Training the classifiers with all the data instead of averaging over the overlapping flight-

lines resulted in better accuracies (accuracies reported in Table S2.1). Eliminating darker 

pixels within each flight-line did not result in a better result.  
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Table 3.1 Classification accuracy achieved by three different algorithms. 
LDA: linear discriminant analysis; PLS-DA: partial least squares discriminant analysis; RF: 
random forest. To the right classification accuracy (%) at the pixel level and to the left 
classification accuracy (%) at the crown level (i.e. the most frequent classification for each 
crown). 

Method Pixel level Crown level 

Overall 
accuracy 

Average 
user’s 
accuracy 

Average 
producer’s 
accuracy 

Overall 
accuracy 

Average 
user’s 
accuracy 

Average 
producer’s 
accuracy 

LDA 0.77 0.76 0.77 0.81 0.82 0.82 
RF 0.83 0.83 0.85 0.90 0.89 0.93 
PLS-DA 0.92 0.90 0.90 0.95 0.96 0.96 

 
Table 3.2 Confusion matrix obtained from the RF species classification model showing 
predicted and actual species IDs.  
Bck. Background including bare ground and shrub; Pn: P. nigra; Ps: P. sylvestris; Qf: Q. faginea; Qi: 
Q. ilex; PA: Producer’s Accuracy (%). 

  Pixel level Prediction Crown level Prediction 

  Bck. Pn Ps Qf Qi PA (%) Bck. Pn Ps Qf Qi PA (%) 

R
e

fe
re

n
ce

 Bck. 17 0 0 0 0 1 6 0 0 0 0 1 
Pn 1 15 2 1 4 0.65 0 4 1 1 0 0.67 
Ps 1 1 16 0 0 0.89 0 0 2 0 0 1 
Qf 0 0 0 7 1 0.88 0 0 0 4 0 1 
Qi 1 0 2 1 14 0.82 0 0 0 0 3 1 

User’s 
accuracy 
(%) 

0.94 0.84 0.76 0.78 0.74  1 1 0.67 0.8 1  

 

The predicted percentage canopy covers of the four species were more closely 

correlated with the field estimate when looking at canopy cover relative to total canopy 

area (R2  = 0.78 and RMSE = 15.51) (Figure 3.4a) than when looking at canopy cover 

relative to plot area (R2  = 0.66 and RMSE = 20) (Figure 3.4b). Examining the species-

specific canopy areas relative to the total canopy area inside of plots, there was a small 

negative bias for P. nigra and Q. faginea and a small positive bias for P. sylvestris and Q. 

ilex (Figure 3.4a). The tendency for pines, especially P. nigra, to be underpredicted is 

likely underpinned by their bigger and denser canopies, which often led to >100% canopy 

cover relative to the ground area (Figure 3.4b). Overall, the RF-derived map described 

plot-level canopy cover composition much better than the PLS-DA derived map, by 

predicting the species-specific cover relative to total cover more closely for most species 

except P. sylvestris. For this reason, the RF-derived map was chosen to be the ‘plane truth’ 

when compared against Sentinel 2 derived species map.  
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Figure 3.4 Abundance of four species as an estimate from 30 x 30 m forest inventory data 
and from hyperspectral imagery classification map. 
a) Abundance of four species with field data expressed as a percentage of total canopy area.  
b) Abundance of four species as a percentage of ground area.  Linear regression lines are shown 
for each species and adjusted R2, RMSE and bias statistics are provided. 

3.3.2 Classification of Sentinel 2 imagery 

We mapped our four species of interest using freely available Sentinel 2 data in GEE. 

We found a very high accuracy (93%) when validating the model on eye-trained data in 

GEE (Table S2.5) and using the least cloudy pixel composited product. The maximum 

accuracy when trained and validated on the airborne-derived species map was 0.5 % as 

obtained from the summer median Sentinel-2 mosaic (Table 3.3). Adding ancillary data 

related to elevation did not improve the average accuracy of the model, however, 

interestingly, these variables were the most important when included in the model 

(Figure S2.4). 

Table 3.3 Accuracy of classifications of Sentinel-2 data using random forest modelling. 
Summer median with vs. without ancillary elevation data trained over 70% stratified sample of 
the airborne-derived map. Background class results not shown.  

Training 
Data 

Overall 
accuracy 

User’s 
Accuracy (%) 

 Producer’s 
Accuracy (%) 

  Pn Ps Qf Qi  Pn Ps Qf Qi 

Sentinel 2 0.49 0.46 0.70 0.62 0.21  0.48 0.48 0.59 0.33 
Sentinel 2 
+ 
Elevation 

0.49 0.47 0.59 0.59 0.28 
 

0.46 0.67 0.53 0.44 
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3.3.3 Accuracy of Sentinel-based maps at the 250-m scale 

A central aim of this study was to test whether Sentinel-2 imagery can help to predict 

the species composition at the 250 x 250 m scale of MODIS pixels. Modelling MODIS pixel 

tree composition derived from Sentinel 2 with the composition derived from airborne 

hyperspectral data led to good results when looking at species cover proportional to land 

area in all species except Q. ilex which was much better modelled in proportion to total 

tree cover (Table S2.4). In all cases except for Q. faginea, including map derived 

information about the number of species or diversity of species in a pixel improved the 

predictions (Table 3.4). The models estimating pines proportion were better than those 

estimating oak proportions over the Alto-Tajo landscape. Looking at the predictions 

together the correlation between the compositions of a MODIS pixel was on average 58% 

according to Kendall’s tau (Figure 3.6) with most pixels correlating (r=0.67). 

Table 3.4 Logistic regression of species cover predicted from Sentinel-2 imagery vs 250-m 
pixels as a function of species covered airborne-derived pixel composition and summary 
metrics.  
∆AIC column reports the difference in AIC between the simple model and a backwards-selected 
model with multiple explanatory variables. X = sqrt(hyperspectral-derived tree cover); Y = total 
tree cover; 
 Z = Number of Species;  W=oaks or pines (0) or both (1)  

Species Model ∆AIC R2 

P. nigra - 3.58 + 8.64 X 0 0.61 
 - 2.70 + 9.42 X - 2.21 Y- 0.50 Z + 0.71 W -26.6 0.65 
P. 
sylvestris 

- 3.54 + 12.82 X 0 0.60 

 - 4.58 + 18.31 X + 2.69 Y+ 0.46 W- 18.4233 X:Y -27.6 0.63 
Q. faginea - 3.29 + 11.32 X 0 0.48 
 - 3.46 + 10.92 X + 0.42 W  1.2 0.50 
Q. ilex - 1.77 + 5.09 X 0 0.23 
 - 0.99 + 5.80 X - 2.98 Y- 0.33 Z + 0.86 W -77.54 0.35 
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Figure 3.5 Relationship between airborne hyperspectral-derived species cover (2x2 m) 
and spaceborne multispectral-derived species cover (10 x 10 m) over MODIS pixels in the 
area for the four species of interest. 
 The curves are fitted using logistic regressions. 

 

Figure 3.6 Histogram of the correlation (Kendall’s tau) between the four species 
abundances estimated by the two approaches over MODIS pixels.  
The dashed line represents the mean correlation coefficient. 
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3.4 Discussion 

3.3.4 Spaceborne multispectral vs. airborne hyperspectral mapping of 

species. 

Exploring variable importance in classifying a pixel as one of the four species of 

interest, elevation, aspect and slope came out as three of the most important variables 

(Figure S2.3a). This was interesting as removing them from the training set did not 

significantly decrease the accuracies obtained from the Sentinel 2 classification in GEE 

(Table 3.3). P. sylvestris covered higher altitudes than the other three species (Figure 

3.7a), while growing on relatively flatter slopes (Figure 3.7b). Q. faginea had a 

significantly limited range in terms of elevation compared to the other species (Figure 

3.7a). On average there were no significant differences between preferred terrain aspects 

for each species, however, the tolerance towards more extreme aspect values was clear 

in pines as opposed to oaks (Figure 3.7c).  

 

Figure 3.7 Three important variables in determining species composition were elevation 
(m) (a), slope (radians) (b), and aspect (radians) (c). 
Box edges correspond to the first and third quartiles (the 25th and 75th percentiles), whiskers 
are 1.5 * IQR (where IQR is the inter-quartile range); capital letters indicate significant differences 
(p < .05) in groups’ mean following Welch’s ANOVA and Games Howell Post-hoc tests; lowercase 
letters indicate significant differences (p < .05) in groups’ variance following Levene’s, ANOVA 
and Tukey Post-hoc tests.  

3.4 Discussion 

3.4.1 Mapping algorithms  

We evaluated three algorithms to map four tree species over Alto Tajo. The advantages 

and disadvantages of these mapping classifiers are revised in Chan et al. (2020). We find 

first that PLS-DA is the best at identifying the different classes at the pixel and crown 

levels. Following a second validation with plot-level data we find that the random forest 

algorithm surpassed PLS-DA in predicting the composition of FunDivEurope plots, 

despite the non-perfect alignment of the coordinates. The difference between the two 
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algorithms was mostly due to oaks being better predicted by the random forest 

algorithm. Given the small number of trees in the training dataset, 5 trees per plot and a 

total of 80 crowns delineated, these results are very accurate and demonstrate the power 

of using machine learning algorithms to classify hyperspectral data.  

3.4.2 Airborne vs spaceborne species mapping 

Sentinel 2 map consistently overestimated tree cover in the Alto Tajo region, we 

believe that this is due to the difference in resolution between airborne and spaceborne 

imagery which was used for the classification. Effectively, 10 m pixels recognized as oaks 

or pines are inevitably covered by some background as most tree crowns are less than 50 

m2 (Figure 3.1) and the tree density in these Mediterranean forests is highly variable, 

from 24% cover in oak forests up to 189 % cover in mixed forests. Looking at the species 

user accuracies from Sentinel 2, we find that P. sylvestris (Table 3.3) had comparable user 

accuracy to another study mapping the species over a natural reserve in Sweden (Persson 

et al., 2018). In that study, however, researchers set a threshold of 70% canopy cover for 

pixels to be included in the classification which we did not do in our study, and we believe 

is the major contributing factor to the lower accuracies we find. The forest landscape over 

Alto-Tajo has low canopy cover, most of our plots had canopy cover below 50% (Figure 

3.4b), and therefore such filtering will leave very few areas to be classified. Another study 

mapping genus instead of species in the large mountainous area in Poland, found higher 

accuracies for pines and oaks using Sentinel 2 but also found that accuracy was 

dependent on forest cover with low cover areas being classified much less efficiently 

(Grabska et al., 2020). A study in a Mediterranean ecosystem found also better accuracy 

but looked at mixed species groups and including seasonal metrics when training the 

classifier (Puletti et al., 2018).   

The compositions of the MODIS pixels derived from the two maps correlated with an 

average of 58%, reaching up to 100% in some cases. The agreement between the two 

maps as determined by the contingency table method was on average 64% (Section S2.4). 

Given that the quality of the training data is essential for obtaining high classification 

accuracies (Congalton et al., 2014) and that we used the airborne-derived map as truth 

for training and classification this might suggest that the airborne derived map 

aggregated at 10 m has lost some of its accuracy. It would be hard to determine with 

certainty which map is the more correct one, thus we decided to select pixels with a high 
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similarity score and correlation for analysis in the next chapter to ensure that the 

composition of the chosen pixels is a little contested.  

3.4.3 Variable importance 

We tested the random forest algorithm in GEE on Sentinel 2 data and its derived 

indices vs. a training dataset that would also include topographical information. Given 

that topography is known to affect canopy composition (Jucker et al., 2018b), several 

studies include topographical information in their training dataset to assist the algorithm 

in defining the acceptable boundaries for each species and avoid outliers (Dorren et al., 

2003; Zhu & Liu, 2014; Grabska et al., 2020). Although topographical variables were 

classified as the most important in the classifier that did include them (Figure S2.4a), they 

did not significantly improve the accuracy of the algorithm unlike what Grabska et al. 

(2020) found. A close examination of the topographical variables’ distribution showed 

that there were indeed significant differences between the species groups (Figure 3.7). 

While elevation and slope were different in both the variance and the means between 

certain groups (Figure 3.7a and b) the aspect only affected the variance of the groups but 

not the averages (Figure 3.7c). These results suggest that Sentinel-2 bands and the 

derived indices can indirectly capture topographical information about the Alto-Tajo 

landscape.  

3.4.4 Implications 

The high revisit frequency of EO satellites allows us to monitor closely changes in 

forest canopy at a low cost, as well as analyse their response to climate change and 

disturbances. Understanding forests’ response, however, requires a more detailed 

picture of the ecosystem being studied. From environmental conditions to species 

composition, some of these details can be provided by satellites and weather stations, 

while others are highly dependent on ground measurements. One such detail is the 

species composition of the forests in question which usually depends on costly ground 

observations and species distribution mapping or modelling. In this work, we classified 

the landscape of Alto-Tajo in an effort to determine the species composition in MODIS 

pixels before using the information in the following chapter for time-series analysis. We 

achieved high classification accuracy with AISA hyperspectral data (> 90%) in 

determining plot composition and moderate accuracy with the Sentinel 2 multispectral 
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data in determining the composition of MODIS pixels with the agreement between 

airborne and spaceborne classification being on average 64%.  



 
 

Chapter 4 Different species, same droughts: Do tree-

rings and canopies tell the same story? 
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Abstract 

Managing forests to increase resilience to drought is important as the climate warms.  

The resilience of aboveground wood production (AWP) to drought is known to depend 

on the species composition and diversity of woodlands, but it is unclear whether the same 

is true for the resilience of the leaf area index (used as a proxy for forest cover). We 

analysed annual time-series of LAI and AWP from woodlands dominated by combinations 

of two oak and two pine species in central Spain, which had been subjected to major 

droughts in the past 20 years. We expected that (i) there would be upward trends in LAI 

and AWP because the forests are successional;  (ii) the stability of AWP and LAI would be 

negatively affected by species richness, based on previous studies in these woodlands; 

(iii) species composition and species richness would impact forest resilience to drought, 

because of functional differences between the four species dominating this landscape; 

(iv) AWP would be more sensitive than LAI to droughts because of resource allocation 

priorities within trees, but still, covary with LAI; (v) annual wood production would be 

driven by LAI and by water balance, reflecting that primary productivity is influenced by 

stomatal conductance as well as canopy area.  

We worked with two datasets: annual AWP calculated from increment cores extracted 

from trees in 36 inventory plots with known species composition and mean yearly LAI 

measurements estimated from satellite imagery (MODIS) for 398 pixels within which 

species composition was derived from airborne hyperspectral imagery collected in 2017. 

For 28 of the 36 sites, we had 336 pixels with a matching composition which we used to 

compare annual LAI and AWPdirectly. Using maximum likelihood estimation, we 

explored whether canopy area (a proxy for stand development stage), species richness 

and species composition influenced LAI and AWP and their resilience to drought. Changes 

in water balance over time characterised by the standardised precipitation and 

evaporation index (SPEI) were used in the time-series analysis and to identify drought 

periods. 

The analyses partly support our predictions: (i) LAI trends were mostly positive over 

the landscape and related to higher wood productivity; (ii) AWP became less stable with 

the increase in canopy area while LAI became more stable but they did not vary with 

species richness; (iii) the evergreen oak, Quercus ilex, increased forest canopy sensitivity 

significantly probably due to leaf shedding in response to extreme droughts but also 
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Abstract 

decreased resilience; (iv) AWP was indeed more sensitive to drought than LAI; (v) AWP 

was driven by both LAI and SPEI (models explained ~50% the AWP variation); the AWP 

of oak-dominated forests was strongly influenced by LAI while the AWP of pine-

dominated forests was strongly influenced by SPEI. 

We show the combination of species mapping with hyperspectral imagery and LAI 

tracking with MODIS imagery provides novel insights into the effects of species 

composition of LAI resilience, and the knock-on implications for wood production, a 

significant component of carbon sequestration. 
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4.1 Introduction 

There is substantial evidence that more diverse forests have greater net primary 

productivity than less diverse ones (Ammer, 2019), but whether the link can be detected 

by remote sensing is still unknown. While some studies account for species proportion 

and look at their interactions, others have found an increase in productivity being directly 

caused by an increase in stand density, sometimes even decided upon by managers 

instead of occurring naturally (Pretzsch & Biber, 2016). In Mediterranean forests, species 

diversity has been associated with higher wood production and greater canopy packing 

(Vilà et al., 2007; Jucker et al., 2014a,b, 2015). The question that remains open is whether 

an increase in productivity due to density or due to increasing canopy complexity can be 

detected by looking at canopy metrics from space using vegetation indices such as NDVI 

and EVI. Such studies are rare because usually remotely sensed time-series of vegetation 

assume a homogenous forest cover instead of a mixed one unless being used to map out 

species diversity at a smaller time- and spatial-scales. 

A second reported benefit of diversity is the higher resilience or higher stability in face 

of climate-change, due to asynchronies and distinct species responses to biotic stress and 

disturbances (Steckel et al., 2020). However, this effect is far from universal and was 

found to be highly dependent on the species mixture being studied, as well as on the level 

of biotic stress to which the forests was subjected (Grossiord, 2019; Pardos et al., 2021). 

Looking at wood production and its resilience, a recent study on European forests across 

biomes found that when species mixing did offer an increased resilience to drought it was 

often a mixing between conifers and broadleaves, which offer contrasting responses to 

drought events (Pardos et al., 2021). They also suggested that the ability to predict future 

mixing effects will rely on understanding long-term trends in time-series in response to 

biotic stress (Pardos et al., 2021). In Mediterranean mixed forests, complementary effects 

in mixed forest that lead to high wood production in relatively wet year switch to 

competition for water when conditions are dry, making wood production unstable in the 

long term (Jucker et al., 2014a). Whether this negative effect on forest stability can be 

observed from satellites remains unknown.  

Multiple studies have investigated the association between time-series of tree-ring 

width or its derivatives or proxies (e.g. maximum latewood density, wood productivity) 

and time-series of NDVI, with results ranging from ‘strongly positive’ relationship 
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between the two variables to no relationship at all (D’Arrigo et al., 2000; Beck & Goetz, 

2011; Beck et al., 2013; Bunn et al., 2013; Pasho & Alla, 2015; Vicente-Serrano et al., 

2016a, 2020; Decuyper et al., 2016; Babst et al., 2018). Putative physiological 

explanations for weak relationships include temporal decoupling between wood 

production and canopy production and maintenance (Litton et al., 2007; Vicente-Serrano 

et al., 2016b), differential wood production with a decoupling between wood density and 

tree-ring width (Beck et al., 2013), and competing growth patterns between reproductive 

and vegetative (Ryan et al., 2018). For instance, a study in Alaskan forests found no 

relationship between tree rings width and NDVI and a significant relationship between 

NDVI and maximum latewood density suggesting it was related to site-level differences 

affecting growth and a low canopy cover (Beck et al., 2013). However, a recent study in 

Spain did find a relationship between tree-ring growth and NDVI aggregated at different 

time-scales suggesting that the coupling between wood production and canopy 

greenness is not instantaneous but not spanning more than a year for Mediterranean 

forests (Vicente-Serrano et al., 2020). Furthermore, the link between tree-ring 

increments and NDVI seems to be species-dependent (Vicente-Serrano et al., 2020). In 

this study, we evaluate whether knowing the specific species composition of remotely 

sensed pixels can help us improve the relationship between remotely sensed canopy 

metrics and wood production metrics and uncover more about the physiology of the 

species in question. 

Looking at a landscape in central Spain where mixed pine-oak forests were found to 

be more productive than monocultures, with on average 48% more above-ground woody 

production (AWP) each year (Jucker et al., 2014a), we attempt to detect the mechanism 

modulating the productivity-diversity effect by looking at canopy area LAI change under 

drought. We analyse 16 years of remote sensing-derived estimates of LAI and 25 years of 

tree-ring-derived wood productivity to determine whether responses to drought are 

modulated by three main factors: canopy area, species composition and diversity. We 

investigated four questions: (i) what are the temporal patterns of leaf area and mean 

wood productivity over this Spanish landscape and are these trends impacted by species 

composition, species richness and canopy area? (ii) how stable are LAI and AWP and is 

this stability affected by these three factors? (iii) how resilient are LAI and AWP to 

extreme droughts and is this resilience different between species? (iv) to what extent is 
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AWP controlled by water availability and LAI (rather than either one of these variables) 

and is this relationship dependent on the three factors?  
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4.2 Methods 

 
Flowchart 3 Datasets used, and analyses performed to quantify wood production and 
canopy resilience to droughts and understand how they relate to each other and to water 
availability. 
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4.2.1 Study site 

The study site is located in the Alto Tajo Natural Park, in the Guadalajara province of 

central Spain (40.9°N, 1.9°W). This work builds upon the data collected by the 

FunDivEUROPE project that established 36 (30 x 30 m in size) permanent plots in that 

area (see Baeten et al., 2013) and the collected hyperspectral data for species mapping in 

2017 (Chapter 3). The mean annual temperature is 10.2 °C, and the mean annual 

precipitation is 499 mm year-1. Forested areas are populated by four focal species Pinus 

nigra, P. sylvestris, Quercus ilex and Q. faginea (Jucker et al., 2014a). The permanent plots 

were selected to have varying diversity levels from monocultures to fully mixed plots but 

with little variation in topography and environmental condition. The functional 

composition (FC) of the plots was one of conifer, deciduous, evergreen and all possible 

combinations of the three. 

Time-series of the standard precipitation evapotranspiration index (SPEI), 

representing relative water availability, were extracted from a database available at 1.1 

km resolution over the site area in central Spain for the period 1992-2017, and used both 

for the time-series analysis predicting AWP and for the determination of the drought 

years (Vicente-Serrano et al., 2017). The study region despite being not very dry in 

absolute terms relative to the rest of Spain and not having dried up extensively in the past 

18 years (Figure S3.5a), was affected by two relatively extreme droughts in 2005 and 

2012 with SPEI reaching below -2 (Figure S3.5b).  

4.2.2 Selection of MODIS pixels for leaf area analysis 

A total of 398 MODIS pixels (each 250 m x 250 m in size) were used to examine 

temporal variation in canopy greenness of the four species of interest.  All these pixels lay 

within the region in which species composition had been mapped by airborne 

hyperspectral sensing, and pixels varied from monocultures to four-way mixtures (see 

Chapter 3 for information on species mapping over Alto Tajo). They were selected was 

based on the confidence we had in the species composition predicted from remote 

sensing: the selected pixels had high correlations between species compositions 

estimates made by airborne hyperspectral and spaceborne imagery (i.e. Kendal 

correlation coefficients > 0.6) and similarity scores > 55% (see Chapter 3 for details on 

Kendal and similarity score computation).  
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4.2.3 Canopy area in AWP and LAI datasets and datasets matching for AWP 

prediction 

4.2.3.1 Canopy area and species proportions in the two datasets  

The total canopy area of each plot j (CAj) was computed by adding species canopy areas 

in each plot as estimated in Section 3.2.1.2 and converting it to % of total plot area which 

is equal to 900 m2. The total canopy area (CAk) in each MODIS pixel k was determined 

from the hyperspectral-derived map by counting the number of mapped 2 m tree pixels 

in each MODIS pixel and multiplying it by hyperspectral pixel area (4 m2) then converting it 

to % of total MODIS pixel area which was equal to 47310 m2.  

Species proportions Ppn, Pps, Pqf, and Pqi of P. nigra, P. sylvestris, Q. faginea and Q. ilex 

respectively, were computed as function of CAj and CAk by simply taking species specific 

canopy area in each plot and pixel and converting it to % of CAj and CAk. 

4.2.3.2 Matching pixel canopy composition with plot canopy composition 

A significant difficulty in relating LAI and AWP time-series is the spatial mismatch 

between NDVI pixels and ground plots from which a number of tree-ring data are created 

(Ivanova et al., 2021). The relationship improves with smaller NDVI pixel size which 

allows minimizing landscape heterogeneity contained within a pixel (Bhuyan et al., 

2017). We adopted a different approach to deal with this issue, that of comparing wood 

to canopy productivities by using matching plot/pixel composition instead of averaging 

tree-ring observation over greenness pixels or assuming that the pixel is representative 

of these tree-rings which is what is most commonly done.  

A third dataset was created, in which each MODIS pixel is associated with field plots 

with similar species composition. To create the dataset, we correlated the set of Ppn, Pps, 

Pqf, and Pqi in each MODIS pixel to the set of Ppn, Pps, Pqf, and Pqi of each inventory plot. 

We then kept the best correlation for each pixel and filtered the dataset to keep only 

correlations above 0.9 (Figure 4.1). We obtained a dataset of 336 MODIS plots with 

species composition very similar to 28 of the original 36 inventory plots. We use this 

combined dataset to estimate AWP from LAI on yearly basis.  
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Figure 4.1 Matching the composition of pixels and ground plot canopy compositions. 
Every MODIS plot gets assigned the closest field plot in terms of canopy composition as 
determined from Pearson correlation. The result was filtered to keep only correlations > 0.9. 
Black dots represent the rest of the plots. 

4.2.4 Above-ground Wood Production time-series 

4.2.4.1 Ground data 

A total of 453 wood cores collected for the FunDivEUROPE project in 2011 and 2017 

were used in this study to predict above-ground wood production in every plot. Initially 

12 cores were collected from each monoculture plot and 6 cores per species in each of 

the mixed plots. A size-stratified sampling approach was followed for selecting random 

trees in each plot for coring (Jucker et al., 2014a). This means that tree diameters of all 

trees within a plot were first measured and classified in 6 size classes before the random 

selection of at least one tree in each class to ensure the correct representation of growth 

stages present in each plot. Diameter, height, basal area of all trees with DBH > 7.5 cm in 

the 36 plots were collected in the first and second census. Trees were also characterized 

in the first census as belonging to one of 5 crown illumination index (CI) classes (see for 

index description). Given that CI was not specified for each tree in the second census we 

estimated it for newly recruited trees (i.e. trees that were < 7.5 cm in the first census) 

after evaluating four linear mixed effect models (Table S3.1) based on AIC and assumed 

that the CI did not change considerably in the span on 5 years.  

4.2.4.2 AWP computation 

Wood production time-series were constructed from tree-rings following Jucker et al. 

(2014a,b) with an additional five years of data added, resulting from new tree cores 

collected in 2017. Briefly, time-series of yearly tree-ring increments (mm year-1) were 

first constructed from tree cores that were collected in 2012 and 2017, cross-dated, and 

measured using CDendro software suite (Cybis Elektronik & Data, Saltsjöbaden, Sweden).  

Second, the equation taken from Jucker et al. (2014b) was modified to use FC instead 

of species richness used in the original equation based on AIC results comparing four 
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different equation for biomass growth estimation (see Table S3.2) to convert tree ring 

increment to yearly species-specific biomass growth models:  

log(Gi) = αj[i] + β1 . log(Di) + β2 . CI + β3 . FCj + εi, (4.1) 

where Gi, Di, and FCi are biomass growth, stem diameter and crown illumination index, 

respectively, of tree i growing in plot j with functional composition FCj.  αj (the intercept) 

is the intrinsic growth rate of a tree species growing in plot j; β1–3 (the coefficients) 

represent the species growth response to diameter size, light availability and functional 

diversity; and εi is the residual error. The parameters in equation 4.1 were first estimated 

using decadal averaged data for cored trees over a reference time period 2001-2011 from 

Jucker et al. (2014b). 

Third, equation 4.1 was applied to all trees in the second census data to predict 

biomass of all focal stem in the 36 plots for the period 1992 - 2017.  

Finally, the biomass of all focal trees in a plot was summed to construct AWPj time-

series over each plot j. Trees marked as dead, cut or with a dry top in the second census 

were excluded from AWP computation (< 5% of cored trees and < 2% of all trees), and 

non-focal trees were also excluded (< 2% of all trees). 

4.2.5 Leaf area index time-series  

Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced 

Normalized Difference Vegetation Index (EVI) and Normalized Difference Water Index 

(NDWI), were computed over and extracted from 398 MODIS pixels (250 m) in GEE from 

the ‘MOD13Q1’ and ‘MYD13Q1’ collections (version 6, Didan, 2015a,b). The relative 

merits of these indices to predict inter-annual variation in AWP (in MgC ha-1 yr-1) was 

evaluated by looking at their capacity to predict annual values of AWP, and from these 

analyses, NDVI was selected for further analysis (see Section S3.1 for comparison 

between the indices).  

Time-series of vegetation indices were decomposed to remove seasonality and noise 

using ‘DBEST’ (DBEST R package, Jamali et al., 2015; Tomov, 2016; Jamali & Tomov, 

2017). Vegetation index trends were aggregated from monthly values to yearly values 

and regressed model alongside Time (in years) against the time-series of annual AWP 

from matching plot compositions (see Section 4.2.2 for the matching method). Predicted 

R2 was then computed for each set of time-series to determine how well the different 
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vegetation indices predict changes in AWP. We found little difference between NDVI and 

EVI, while NDWI performed worse than the others (Figure S3.1). We used NDVI since it 

is the most commonly used vegetation index (Vicente-Serrano et al., 2016b) and 

transformed it to LAI using the relationship established in Chapter 2 (see Section S1.3). 

4.2.6 Statistical analyses 

Statistical analyses were performed on the three datasets available: the 36 inventory 

plots within which AWP was calculated annually over 25 years, the 398 MODIS pixels 

within which LAI was estimated annually over 18 years, and the dataset of 28 plots with 

336 matched pixels within with LAI and AWP were tracked over time. 

4.2.6.1 Computing effective species richness. 

Effective species richness was used as a diversity measure in the study. To estimate it 

for the two datasets we first determined the total canopy cover in each plot and pixel. We 

first computed the Shannon index for the canopy proportion in the inventory plots and 

MODIS pixels, using the “vegan” package (Oksanen, 2020). We then transformed the 

Shannon index to a measure of effective species richness (SRe) ranging from 1 to 4 using 

the following formula SRe=exp(Shannon index) (Jost, 2006). 

4.2.6.2 Computing trends and stability 

To determine the long-term trends in the LAI and AWP datasets, we simply regressed 

the yearly time-series of AWP and LAI against time (in years since 1992 and 2000 

respectively) and extracted the linear trend coefficients.  

To evaluate the temporal stability, i.e. the stability of the whole time-series, of the two 

datasets we computed stability following Jucker et al., (2014) for AWP:  

SAWP= AWP /AWP,  (4.2) 

where AWP is the temporal mean and AWP is the temporal standard deviation of 

AWPj. 

LAI time-series had strong positive linear trends in most pixels and the variance had 

to be computed around that trend to be comparable to the variance in SAWP. LAI stability 

was computed as suggested by Tilman et al. (2006) following the formula: 

SLAI =  LAI /LAI d,  (4.3) 
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where LAI  is the temporal mean and LAI d is the detrended variation of LAIk over pixel 

k.  

4.2.6.3 Computing resilience metrics 

We computed resilience metrics (following Khoury & Coomes, 2020) to test whether 

resilience patterns to extreme droughts are similar for canopy and wood 

growthTemporal stability computed in the previous section is related to resistance 

(which is the inverse of sensitivity) (Lehman & Tilman, 2000; Lloret et al., 2011), 

however, given that it is computed from the whole time-series and normalized by using 

the time-series mean in its computation, it does not allow the determination of resilience 

to extreme events. We, therefore, computed sensitivity, recovery, and resilience to better 

understand the response of the forests to extreme drought events.  

To measure resilience, we segmented using the ‘DBEST’ package in R the yearly time-

series of LAI and AWP spanning the same period (2000-2016) and extracted resilience 

metrics as described in Khoury and Coomes (2020). Simply, following the segmentation 

of the annual time-series, the two biggest losses, and the gains following them, were 

averaged for each plotj and pixelk representing a measure of sensitivity and recovery from 

drought. Resilience was computed as the ratio of recovery/sensitivity.  

The more traditional method of computing sensitivity and recovery for a set time-

period pre- and post- drought was computed for comparison using a period of 1 year 

around the droughts of 2005 and 2012 (See section S3.8 for these results).  

4.2.6.4 Understanding how wood productivity relate to leaf area and 

predicting AWP from LAI and SPEI 

Given the expected asynchronies between the two datasets in questions (Wagner et 

al., 2013), studies often attempt to maximize the correlation between the two by 

identifying NDVI-derived phenological metrics (e.g. NDVI aggregated at different time-

scales, maximum greenness) instead of using raw NDVI values and/or applying statistical 

algorithms (e.g. principle component analysis) (Vicente-Serrano et al., 2016a, 2020; 

Ivanova et al., 2021). In their work, Vicente-Serrano et al. (2016a, 2020) found that in 

Spain tree-rings relate to NDVI phenological metrics at a small time-scale, never beyond 

one year, while in other regions of the globe much longer timescales needed to be taken 

into account to explain yearly tree-ring growth. 
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Building on the knowledge from previous studies (Vicente-Serrano et al., 2016a, 

2020), we expect annual NDVI values and by extension annual LAI values to be associated 

with annual AWP in Spain. We decided to follow a simpler approach, monthly NDVI values 

were first converted to LAI values as described in section 4.2.5. Monthly LAI time-series 

were then decomposed using ‘DBEST’ package to eliminate the seasonal and noise 

components of the time-series leaving us with a non-linear LAI trend. Non-linear LAI 

trend values were then averaged over each year to obtain time-series of annual LAI.  

Monthly SPEI8 time-series were aggregated from bi-monthly time-series to annual 

time-series also by taking the average for each year. All SPEI scales (1-48) were first 

aggregated to yearly values and correlated (Pearson’s correlation) to the different AWP 

time-series. The scale correlating the most with AWP time-series was used later for AWP 

prediction. That scale was determined to be 8 months.  

We fitted 4 different regressions to understand how AWP, LAI, and SPEI relate to each 

other (Table 4.1).  
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Table 4.1 Linear regression models linking time-series of AWP, LAI, and SPEI. 
 

# Model Years Frequency SPEI scale 

M1 LAI   ∼SPEI+TIME 16 Monthly 1 – 48 

M2 AWP∼SPEI+TIME 25 Yearly 8 

M3 AWP∼LAI +TIME 16 Yearly 8 

M4 AWP∼SPEI+LAI+TIME 16 Yearly 8 

4.2.6.5 Maximum likelihood estimation of canopy area, species composition 

and richness effects 

To address the overarching question of how canopy area, species composition and 

diversity affect wood production and leaf area and their response to drought, we 

modelled all AWP and LAI metrics: average, trend, stability, sensitivity, resilience, as well 

as the coupling between them (i.e. R2 from model M3) and the difference in the R2 

between M4 and M3, using maximum likelihood estimation for the following equation: 

y = CAa . ( b1 Ppn + b2 Pps + b3 Pqf+ b4 Pqi) . (1 + c SRe) + ε1 + ε2 CA, (4.4) 

where y is the response variable and CA is canopy area (% plot area for field plots or 

% of pixel area for MODIS pixels), Ppn, Pps, Pqf, and Pqi are the proportions of CA that are 

P. nigra, P. sylvestris, Q. faginea and Q. ilex respectively, and SRe is the effective species 

richness, while a, b1, b2, b3, b4 , c, ε1 + ε2 are parameters estimated using maximum 

likelihood methods. ε1 + ε2 are normally distributed parameters, centred on zero, which 

account for the residual variation; the second of these parameters was included because 

the variance of residuals was observed to increase with canopy area in some cases 

(depending on the response variable). For an easier interpretation of the parameter 

estimated we scaled SRe by subtracting 1 so that a value of 0 corresponded to 

monocultures and a value of 3 corresponds to fully mixed. Maximum likelihood models 

were fitted using the package “bbmle” in R (Bolker, 2013). To determine the significance 

of the fixed variables, we compared the models in Table S3.2 computing the second-order 

Akaike information criterion (AICc) using the “ICtab” function in “bbmle”. Confidence 

intervals and prediction intervals were computed following the delta-method (Beyene & 

Moineddin, 2005). 
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4.3 Results 

Several summary and resilience metrics were derived from the AWP and LAI time-

series and modelled with canopy area, species proportion in the canopy, and species 

diversity to determine the impact of these three variables on wood production and leaf 

area. We could not detect any effect beyond the relationship to canopy area for any of the 

AWP metrics (Table 4.1). We found strong canopy proportion effects on the LAI metrics 

and summary metrics of the relationship between AWP and LAI.  All these results are 

revisited in more detail below, where we plot the best fitting model for each metric. 

Diversity effects on LAI were also not statistically significant in this study, we did 

however note that diversity effects were significant before the incorporation of species 

proportions in our model, which means that collinearities between species proportions 

and SRe did influence this result. In every instance, the model containing species 

proportions was always more informative than the model containing diversity effects 

instead, which means that observed diversity effects are simply a function of species 

proportions and that there were no interaction effects between the species.  
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Table 4.2 Maximum likelihood analysis of the effect of species richness, species 
proportions and canopy area on wood production (AWP) and leaf area (LAI) responses to 
extreme droughts.  
Numbers and signs in bold indicate significance. Numbers in red are marked for significant 
differences between the different species. CA ranges between 0-2 with 2 being equivalent to 200 
% of plot or pixel area, species proportions vary between 0-100 % of CA, and SRe varies between 
0-3 with zero representing plots with 1 species and 3 plots will all 4. 
 

Variable Data CAa b1 Ppn b2 Pps b3 Pqf b4 Pqi c SRe Var 
Predicted 

R2 
AWP mean Field 0.4096 0.0058 0.0079 0.0066 0.0037 0.0967 + 0.62 

AWP trend Field 0.8589 2.1403 2.3410 -1.9466 0.8589 2.1403 - 0.40 

AWP stability Field -0.1693 0.0517 0.0534 0.0612 0.0504 -0.0421 - 0.12 

AWP sensitivity Field 0.4843 0.0025 0.0035 0.0028 0.0013 0.0930 + 0.53 

AWP resilience Field 0.0690 0.0091 0.0079 0.0082 0.0148 -0.0742 - 0.36 

LAI mean RS 0.1904 0.0206 0.0235 0.0131 0.0157 0.0048 - 0.46 

LAI trend RS 0.5785 0.0026 0.0030 0.0016 -0.0025 0.5228 + 0.40 

LAI stability RS 0.0681 0.4032 0.4772 0.3265 0.2514 -0.0024 - 0.23 

LAI sensitivity RS 0.0964 0.0009 0.0007 0.0008 0.0018 -0.0289 + 0.20 

LAI resilience RS 0.1014 0.0129 0.0141 0.0119 0.0064 -0.0307 - 0.09 

M3 R2 RS 0.1579 0.0033 0.0036 0.0076 0.008 -0.1311 + 0.19 

M4 R2 RS 0.0401 0.0070 0.0037 0.0081 0.0055 -0.0745 + 0.29 

M4 R2 - M3 R2 RS -0.1275 0.0028 0.0005 0.0010 -0.0005 0.1482 + 0.67 

 

4.3.1 What are the trends in terms of leaf area and wood productivity over 

this Spanish landscape?  

On average wood production in plots was 0.6 MgC ha-1 yr-1, while LAI over the 

landscape was on average 1.53. AWP and LAI both increased with a higher canopy area 

(Figure 4.2a and b). Species richness did not affect this relationship in both cases, but 

species proportions in the canopy did affect the relationship between LAI and canopy 

area (Figure 4.2b and Table 4.2b). Many forest stands were observed to increase in LAI 

over the past two decades of observations as trees colonised open sites following 

agricultural land abandonment (Figure 4.2b) but species richness had no effect on LAI 

trend (Table 4.2). Pines which had higher leaf area (Figure 4.2b) also contributed the 

most to the increase in leaf area over time (Figure 4.2d), while stands containing a large 

proportion of Q. ilex had lower positive LAI trends. About 20% of pixels declined in LAI 

(Figure 4.2d), which were on average mostly dominated by P. nigra and Q. ilex. AWP was 

observed to increase with higher proportions of Q. ilex in the canopy (Figure 4.2c) 

however the ΔAICc of this specific model was not much smaller than the null model and 

therefore we cannot really draw conclusions on it.  
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Figure 4.2 Maximum likelihood predictions for some of the equations in table 4.1 looking 
at AWP and LAI averages and trends over sites in central east Spain. 
a) Relationship between average AWP and canopy area. b) Relationship between average LAI, 
canopy area, and species proportion. c) Relationship between AWP trend over the past 35 years, 
canopy area and species proportions. d) LAI trend over the past 16 years as a function of canopy 
area and species composition. Black line represents pixels with equal species cover proportions. 
Solid lines represent predicted relationships from maximum likelihood parameter estimates 
when pixels are covered by one species only (does not happen in the MODIS dataset but does 
happen in the field dataset). Dark faded bands represent 95% confidence intervals and light faded 
bands represent prediction intervals (1 standard deviation). In b) confidence intervals overlap 
with prediction intervals.  

4.3.2 How stable are LAI and AWP and is this stability affected by canopy 

area, species composition and species diversity?  

Data from field plots suggests that AWP temporal stability decreases with an increase 

in canopy area (Figure 4.3a), while remotely sensed LAI suggests that LAI stability 

increases with canopy area and differs between pixels covered by different species 

proportions (Figure 4.3b). Forests dominated by pines were more stable than forests 
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dominated by oaks in terms of leaf area (Figure 4.3b). Species richness did not have an 

effect on the temporal stability of AWP or LAI (Table 4.1).  

 

Figure 4.3 Relationships between stability and canopy area, estimate using maximum 
likelihood methods.  
Stability of aboveground wood production a) and leaf area index b) over the past 16 years as a 
function of canopy area and species composition. Solid lines represent predicted relationship 
from maximum likelihood parameter estimates (see Table 4.2), dark faded bands represent 
confidence interval (95%) and light faded bands represent prediction intervals (1 standard 
deviation). Black solid line in b) represent the estimated relationship for a pixel with equal species 
cover proportions.   

4.3.3 How do canopy area, species proportions and species richness AWP 

and LAI affect forest resilience to extreme droughts?  

AWP and LAI were both reduced in drought years but to different extents. On average 

AWP was reduced by 42% (Figure 4.4a), while LAI only dropped by 6% (Figure 4.4b) 

following extreme droughts. AWP sensitivity to drought was greater in stands with higher 

canopy area (Figure 4.4a) while LAI sensitivity was not significantly affected by canopy 

area (Table 4.1) (Figure 4.4b). Species richness had no effect on the respective 

sensitivities of AWP and LAI, species proportion, on the other hand, demonstrated that 

forests dominated by Q. ilex were particularly sensitive to drought in terms of LAI (Table 

4.2). Q. ilex dominated forests lost twice the leaf area compared to forests dominated by 

pines and/or the deciduous Q. faginea (Figure 4.4b). Sensitivity and recovery were 

positively related with plots recovering 77% (i.e. average AWP resilience ratio of 0.77) of 

their wood production rate in the two years following extreme droughts (Figure 4.3c) 

and pixels recovering 90% (i.e. average LAI resilience ratio of 0.9) of their LAI values in 

that time (Figure 4.3d). There was a weak negative relationship between AWP resilience 

and canopy area (Figure 4.3c), and a weak positive relationship between LAI resilience 



98 

 

Chapter 4 Different species, same droughts: Do tree-rings and canopies tell the 
same story? 

and canopy area (Figure 4.3d) (Table 4.1). Surprisingly, Q. ilex dominated forests were 

also half as resilient as other forests (Figure 4.3d).  

 

Figure 4.4 Relationships between sensitivity (and resilience ratio) and canopy area and 
species proportions.  
a), b) Relationship between AWP and LAI sensitivity to extreme droughts. c), and d) Relationship 
between AWP and LAI resilience to extreme droughts. Solid lines represent predicted 
relationships from maximum likelihood parameter estimates (see Table 4.2), dark faded bands 
represent confidence interval (95%) and light faded bands represent prediction intervals (1 
standard deviation). Black solid lines in b), and d) represent the estimated relationship for a pixel 
with equal species cover proportions. 

4.3.4 To what extent is AWP controlled by water availability and changes in 

LAI? 

 SPEI predicted LAI variation much better than AWP variation suggesting that forest 

leaf area mirrors more closely the trends in waters availability at a site albeit to a much 

smaller magnitude than AWP response to water scarcity (Figure 4.5a and 4.5b). 

Regression models that attempted to explain AWP with LAI or SPEI alone had only 

moderate success with an average R2 of 0.31 (Figure 4.5b and c). The coupling between 

LAI and AWP varied with species proportions in the canopy. Forests that were dominated 

by oaks had on average a much higher coupling between LAI and AWP (Table 4.1 and 

Figure 4.6a). Regression models that combined SPEI8, LAI, and time predicted 50% of the 

variation in yearly AWP on average reaching up to 85% (Figure 4.5d). Adding SPEI to the 
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model in Figure 4.5c greatly improved the prediction for forests dominated by P. nigra 

suggesting that P. nigra wood production is much more strongly affected by water 

availability than its canopy (Figure 4.6b). Adding SPEI also improved the AWP prediction 

for forests dominated by P. sylvestris and Q. faginea but to a much lesser extent than P. 

nigra, while it seems to have slightly worsened the prediction for forests dominated by Q. 

ilex (Figure 4.6b). 

 

 

Figure 4.5 Histograms of R2 values of regressions models relating time-series of AWP, LAI 
and SPEI. 
Regression is over 25 years for AWP alone, and for 17 years when the regression includes LAI.  
SPEIX: all SPEI scales (1 - 48) were used to determine the best fitting drought model. SPEI8: SPEI 
aggregate every 8 months was used in modelling AWP. Timem: Time in months from 2000 to 2017. 
Timey: Time in years from 1992 for b) and from 2000 in c) and d). 
a) Relating annual AWP to yearly LAI values, solid line is average 0.31; b) relating yearly AWP to 
yearly SPEI, solid line is average 0.31; c) relating AWP to both yearly LAI trend and SPEI, solid 
line is average 0.50; d) relating monthly LAI to monthly SPEIX, solid line is average of 0.53.  

 

 
Figure 4.6 AWP-LAI coupling as a function of species composition and canopy area. 
a) Goodness of fit of the coupling between AWP and LAI calculated without including SPEI in the 
model; (R2). b) Difference between a model which includes SPEI and a model with only LAI and 
time. Note time is included in the regressions to remove long-term trends.  Solid lines represent 
predicted relationships from maximum likelihood parameter estimates, dark faded bands 
represent confidence interval (95%). Black solid lines represent the estimated relationship for a 
pixel with equal species cover proportions. 
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4.4 Discussion 

4.4.1 Wood production and leaf area trends. 

LAI trends over the past 16 years in the study area were mostly positive which is in 

agreement with previous research on forest greening and densification in Spain 

(Peñuelas et al., 2002; Khorchani et al., 2018; Khoury & Coomes, 2020). LAI trends varied 

with canopy area and species proportions with denser canopies growing the most which 

agree without finding from Chapter 2 (Figure 4.2d). Furthermore, LAI trends were 

positively related to average AWP (Figure S3.4). Wood productivity and leaf area both 

increased significantly with canopy area in Mediterranean montane forests dominated 

by oaks and pines (Figure 4.1a and b). The relationship between AWP and canopy area is 

unsurprising as canopy area increase is related to basal area increase (Figure S3.3b) and 

therefore biomass. NDVI and LAI are known to be related to each other and to green 

biomass over landscapes (Heiskanen, 2006; Potithep et al., 2010; Du et al., 2014), often 

non-linearly (le Maire et al., 2006), it is however always advised to validate these 

vegetation indices against ground data if possible (Chakroun et al., 2014). While the 

canopy area used in this study to model LAI is derived from airborne hyperspectral 

mapping, the latter was validated against ground canopy cover (see Figure 3.4 in Chapter 

3). Our results, therefore, indicate that MODIS-derived LAI can capture differences in 

canopy density over this Spanish landscape without reaching saturation.   

4.4.2 Changes in wood production and leaf area stability with stand 

development. 

AWP became less stable with denser canopies, while LAI became more stable. Jucker 

et al. (2014b) suggested that Spanish forests are different from other European forests 

when it comes to the effect of diversity on the stability of wood production because their 

drought-prone summers turned complementary interactions into competitive ones when 

water resources were in short supply. While we did not find that species richness 

destabilised AWP, canopy area did which could be indirectly accounting for a change in 

species richness as mentioned at the beginning of the results. The increase in canopy area 

is also related to an increase in basal area (Figure 3.2b) and agrees with other studies on 

the density effect on wood production in semi-arid environments (Bottero et al., 2017). 

A recent systematic review suggests that the positive effects of diversity on productivity 

and other ecosystem services are far from being the rule (Grossiord, 2019). The fact that 
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mean annual LAI became more stable with higher canopy areas disagrees with our results 

from Chapter 2 indicating that greener or denser forests, considering the whole of Spain, 

are more sensitive to drought. We believe that this difference is due to the different 

special scales of the study. Forests studied in this Chapter had a maximum LAI of 2.2 

(Figure 4.2b) while the earlier study covering the whole of Spain had LAI values reaching 

up to 5 (see Figure 2.3b) which is bound to have a much stronger effect on LAI stability. 

Instead, the increased stability found here is perhaps linked to an increase in the climate 

buffering effect induced by a larger shaded area (De Frenne et al., 2019).  

4.4.3 No species richness effects on AWP and LAI.    

Previous studies working within the same forest inventory plots as ours have found a 

positive effect of diversity on productivity (Jucker et al. 2014a,b, 2016;  also replicated by 

us in Figure S3.2a). These findings agree with other studies exploring the effects of 

species richness and packing density on productivity (Ruiz-Benito et al., 2014; Pretzsch 

et al., 2015; Jucker et al., 2020). However, we examined the effect of diversity on both 

wood and remotely sensed leaf area through a different lens to other previous studies, 

working with the canopy areas of different species instead of basal areas used in many 

previous studies (Jucker et al., 2014a,b) or even species composition classes (Pardos et 

al., 2021). When using canopy area in our analyses, the relationship between species 

richness on wood productivity was non-significant (Table 4.2). We expected that 

previously observed positive effects on wood productivity by diversity are actually 

indirectly caused by an increase in canopy packing  (Jucker et al., 2015) and expected to 

observe a relationship between SRe and canopy area that would explain these results (i.e. 

we expect collinearity effects between canopy area and SRe are causing diversity to be 

non-significant). We however did not find results supporting our predictions, with the 

effect of diversity being non-significant on canopy area (Figure S3.2b) in the ground 

dataset.  

We did find, however, that collinearities between diversity and species proportions in 

the remotely sensed dataset caused SRe to have a non-significant effect on LAI metrics. 

Species proportions were for instance were consistently better at predicting LAI metrics 

than SRe. It is however important to keep in mind that canopy area in this study is a 

measure of horizontal canopy and therefore does not capture vertical or density changes 

in canopies which is also suggested to increase with diversity (Jucker et al., 2015). This 
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could be a reason why our measure of canopy area itself did not vary with SRe, and why 

our diversity measure which is based on this canopy area might not be capturing the full 

diversity effect on canopy structure which in turn can impact productivity (Hardiman et 

al., 2011). In their study, Hardiman et al. (2011) found that wood productivity is primarily 

impacted by canopy structural complexity and not canopy diversity. In this light, it is 

important to keep in mind that the results discussed in this study about diversity effects 

are those which extend beyond the diversity effects on canopy horizontal packing. 

4.4.4 AWP is more sensitive to extreme drought than leaf area  

We found that AWP is much more sensitive to extreme droughts than LAI, which may 

reflect resource allocation strategies in trees. As reviewed by  Litton et al. (2007), trees 

partition carbon to foliage in a very conservative manner, while the portion allocated to 

wood production is highly dependent on nutrient availability and environmental 

conditions. Consistent with these findings, in very dry years, AWP response to drought 

was 12-fold greater than the LAI response in the driest years, with average losses in AWP 

amounting to 41 % (Figure 4.4a) while average losses in LAI were only 3.5% (Figure 

4.4b), broadly in agreement with previous studies (Gazol et al., 2018).  

Forests dominated by pines did not lose more LAI during droughts because they had 

the most resistant canopy, while Q. ilex dominated forests lost more leaf area. These 

results are due to the different responses of P. nigra and Q. ilex to drought (Figure 4.6). Q. 

ilex was previously found to respond to drought with reduced flushing of new leaves and 

by shedding old leaves,  which explains the strong LAI losses (Camarero et al., 2015). P. 

nigra, on the other hand, an isohydric species, possessing strong stomatal regulation, only 

sheds its needle in large quantities once stomatal regulation is insufficient to maintain 

internal water balance during prolonged or extreme droughts (González de Andrés & 

Camarero, 2020). 

Despite this region being affected by extreme droughts in 2005 and 2012 (Figure S3.5) 

and despite the considerable reduction in wood productivity, the losses in leaf area were 

very small compared to losses in LAI in other parts of Spain (see Chapter 2), even for 

forests dominated by same studied species (e.g. P. sylvestris). It is important to keep in 

mind that other factors such as topography, soil conditions, tree age and size, and forest 

density can have a moderating or exacerbating influence on the species resilience to 

drought (Merlin et al., 2015; Khoury & Coomes, 2020). We already observed such an 
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effect here with canopy area increasing LAI stability in these forests and can hence 

suggest that other factors may have come into play to confer a higher LAI resilience in 

pines and avoid drought-induced needle shedding in the study area. In another study, for 

instance, in south-east Spain, the pine species incurred significant losses in leaf area, even 

mortality, due to drought events (Guada et al., 2016).  

4.4.5 Relating wood production to remotely sensed canopy variations 

Combining SPEI with LAI improved AWP predictions by 22% which indicate a level of 

decoupling between leaf area and wood production which reflects different drought 

response mechanism and perhaps different resource partitioning in the forest tree 

species. The level to which adding SPEI improved yearly AWP prediction did indeed vary 

significantly between forests dominated by different species. The improvement was most 

apparent for P. nigra (Figure 4.6a), which points to a strong response of AWP in black 

pine-dominated forests to relative water availability, consistent with the previously 

mentioned isohydricity of P. nigra. Assuming that the difference between M4 and M3 does 

tell us something about resource partition to canopy and wood production, the results 

that this does not vary with canopy area is also in agreement with finding by Litton et al. 

(2007), indicating that tree density does not affect carbon partitioning in trees.  

LAI alone explained 31% of the variation in AWP over this Spanish landscape. Despite 

the simpler approach, our result is comparable to the correlations found in Vicente-

Serrano et al. (2016) for NDVI and tree-ring increments in which they found an average 

correlation between best NDVI aggregation level and tree-ring increment to be equal to 

0.5. Our results are also consistent with their observed pattern for the four species, 

although the relationship in pines was significantly weaker in our study (Figure 4.6a). 

Wood production and leaf area in oak-dominated forests were significantly more related 

than in pine-dominated forests reaching up to 50% on average for Q. ilex dominated 

forests (R2 in Figure 4.6a).  

4.4.6 Implications 

Relating AWP to LAI we found that wood production in oaks, even the evergreen oaks, 

is much more related to their leaf area, than in pines which regulate their production by 

stomatal closure instead of the shedding of leaves. The divergent pattern in pines is 

indicative of different resource allocation priorities under drought, as well as a 

demonstration of their isohydric behaviour. While increases in wood productivity and 
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LAI were linked to higher canopy area, we found no evidence of diversity effects beyond 

that of the impact of the individual species proportion. These results suggest that looking 

at leaf area or greenness resilience patterns from space and relating them to AWP 

resilience can reveal interesting phenological and resource partitioning properties for 

different tree species.  
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Abstract 

Within the context of rapid climate change in the Mediterranean region, identifying 

how tree species interact with each other and their environment is key to creating 

resilient ecosystems. While several studies emphasise the positive role that biodiversity 

has on ecosystem functioning, others focused on Mediterranean systems find counter 

examples in which increasing diversity is destabilizing and diminishes resilience. We 

analysed the leaf traits of monocultures and mixed forests in Alto Tajo, central Spain, 

dominated by two pines (Pinus nigra and P. sylvestris) and two oaks (Quercus ilex and Q. 

faginea). Out of 14 leaf traits measured, we found strong differences in stable isotope 

ratios (carbon and nitrogen) of pines and strong differences in photosynthetic traits in 

oaks between trees growing in monocultures and mixed forests. We found that P. nigra 

and P. sylvestris had greater water use efficiency when grown in more diverse forests and 

that Q. faginea benefited from diversity by having higher leaf relative water content and 

maximum fluorescence in mixed plots. 
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5.1 Introduction 

The effects of land-use change on forests in the Iberian Peninsula, precipitated by 

socioeconomic trends in the 20th century, are more apparent than any effects of global 

warming (Lasanta et al., 2009; Vayreda et al., 2012; Gazol et al., 2018). The decreasing 

anthropogenic pressure on forests and the widespread land abandonment, caused by the 

conversion to fossil fuel and urbanization, have resulted in forest densification and 

succession from conifer to late-successional angiosperms (Puerta-Piñero et al., 2012; 

Vayreda et al., 2013; Martín-Alcón et al., 2015). Relatively shade-tolerant oaks, naturally 

dispersed by animals (birds, rodents and wild boars) into pine forests, are favoured by 

forest managers because they fulfil diversification goals initially aimed at restoring 

Mediterranean forests landscapes to what they were before the widespread 

deforestation mid-19th century (Gil & Aránzazu Prada, 1993; Pausas et al., 2004; 

González-Moreno et al., 2011; Sheffer, 2012; García et al., 2017). Around 90% of the 

reforestation in Spain was done with pines because of their pioneering ability, i.e. the 

ability to grow on degraded and barren soils, while diverse forest populated by native 

oaks was the final goal (Pausas et al., 2004). Oaks are also recommended for re-sprouting 

abilities, which confer higher resilience to fire disturbances in the Mediterranean (Pausas 

et al., 2004; Puerta-Piñero et al., 2012). When it comes to woodland responses to climate 

change, however, there are conflicting results, suggesting that the resiliencies of these 

diverse, successional forests are highly dependent on their local ecosystem 

characteristics, such as climate, fire frequency, understory and others (Pausas et al., 

2004; Carnicer et al., 2013; Grossiord et al., 2014). Hence, management decisions that aim 

to encourage diversification of monocultures across Mediterranean landscapes must take 

into consideration how diversity affects the resilience of local species to disturbance as 

well as climate change. 

 Leaf traits reveal important information about plant functioning and allow us to 

monitor changes in canopy chemical composition which are associated with nutrient 

cycling and resource use within plants communities (Reich, 2012, 2014). Mixed 

woodlands in Spain have been shown to have different foliar isotope compositions in 

pines and oaks, and isotope compositions are affected by the identity of neighbouring 

species (Grossiord et al., 2015; Forner et al., 2018). These differences were linked to 

different rooting systems and water management mechanisms. Pines had a stronger 
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reaction to water depletion with greater change in water use efficiency and sap flow as 

compared to neighbouring oaks (Forner et al., 2018). Quercus faginea, on the other hand, 

has a considerably lower water use efficiency when surrounded by pines as opposed to 

other oaks (Grossiord et al., 2015). However, in wet years, when water is not a limiting 

factor, pines have been shown to have a bigger increase in wood productivity than oaks, 

due to a decrease in light competition, while in dry years all those benefits are lost and 

the effect of diversity reversed (Jucker et al., 2014a). These findings suggest that species 

mixing might be more beneficial to oaks than pines, especially in dry years. However, few 

studies have considered the responses of canopy traits to diversity in these species.  

Canopy properties can be used to understand the responses of individual trees in a 

stand to a range of stressors, that can act over a variety of timescales. In the short term, 

variation in the abundance of foliar stable isotopes can reveal important information 

about the physiological activity, such as the rates of photosynthesis and water transport 

within trees. Carbon isotope discrimination (δ13C) is commonly used as a proxy for water 

use efficiency, which is the amount of water spent during transpiration to obtain a unit of 

CO2 (Bazzaz, 1979). Nitrogen isotope discrimination (δ15N) is related to nitrogen access 

and assimilation, as well as nitrogen fractionation in the plants which can reveal 

important information about nitrogen cycling mechanisms. Foliar nitrogen content is 

known to be positively correlated to photosynthetic activity, as a large portion of the 

nitrogen is invested in the photosynthetic apparatus (around 80%) and variation in foliar 

nitrogen reflects the abundance of photosynthetic proteins (Evans & Seemann, 1989; 

Hikosaka, 2004). A reduced foliar nitrogen content suggests that a tree is experiencing 

nitrogen limitation over a more prolonged timescale. Cellulose, hemicellulose and lignin 

foliar contents are structural traits accumulated over the life cycle of a leaf or needle,  tied 

to toughness, longevity and defence (Hikosaka, 2004;  Nunes et al., 2017).  Leaf water 

content can be used to assess the water status of plants, with fresh water content (FWC) 

reflecting water status at the time of measurement and relative water content (RWC) 

indicating the water quantity relative to the maximum capacity of a leaf to store water. 

FWC, also known as live fuel moisture content, varies with seasonal changes of dry mass 

and can be measured remotely from spectral data (Zhang & Zhou, 2019), while RWC is 

strongly linked to leaf balance of water supply and transpiration rate, and can only be 

measure manually (Anithakumari et al., 2012). Photosynthetic traits such as chlorophyll 

content, photosynthetic capacity and maximum fluorescence reflect carbon capture 



109 

 

 
 

5.2 Methods 

capacity (Sperlich et al., 2015). Finally, specific leaf area (SLA) and leaf dry matter content 

(LDMC), are important indicators of species position on the plant economic spectrum  

(Grime, 1977; Lambers & Poorter, 1992; Reich, 2014). Variation in biotic and abiotic 

stress can cause plants to vary the traits described, as a form of adaptation, or a result of 

limitation. Measuring these traits across species and communities can therefore provide 

insight into the responses of forests to changing stresses and environments.  

In this study, we ask how the foliar traits of four common Mediterranean tree species 

are affected by stand diversity. We also examine if measured traits reflect differences in 

species phonologies given that they are measured during a dry Spanish summer.  To do 

this, we analyse 14 foliar traits related to photosynthesis, nutrient cycling and structure 

in four Mediterranean species growing in mixed plots and monocultures in Alto Tajo 

Natural Park, Spain.   

5.2 Methods 

5.2.1 Field site and study design 

The study was conducted in the Mediterranean mixed forests of the Alto Tajo Natural 

Park, located in the Guadalajara province of central Spain (40.9°N, 1.9°W). Leaves and 

needles were sampled in 10 permanent plots established by the FunDivEUROPE project 

(see Baeten et al., 2013), which were designed to test the effects of diversity on ecosystem 

functioning by selecting woodlands that varied in diversity but had minimal variation in 

soil type, topography and climate. All plots had calcic cambisol soils (FAO classification) 

and were situated at altitudes between 960  and 1390 m.a.s.l. The mean annual 

temperature is 10.2 °C, and the mean annual precipitation is  499 mm year-1. Forested 

areas are primarily composed of Pinus nigra, P. sylvestris, Q. ilex and Q. faginea (Jucker et 

al., 2014a). Ten forest plots (30 x 30 m in size) were selected for the study, 8 of which 

were monocultures and 2 of which were mixtures of all four species. Five individuals of 

each target species were sampled in each plot for subsequent functional trait analysis, 

with each species-diversity combination replicated twice.  

5.2.2 Function trait collection and analysis 

Fourteen functional traits were measured on sunlit leaves from 80 individual trees, all 

of which were> 10 cm diameter at breast height. Measurements were taken in June 2017, 

during a period of high temperatures. Leaf biochemistry determination and traits 

extraction were carried out in accordance with previous trait campaigns, as developed 
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and described by Carnegie Airborne Observatory (see http://spectranomics.ciw.edu). 

Briefly, for water content and leaf mass/area traits, leaves and needles amounting to 

approximately 1 gram were collected, weighed and wetted overnight in a plastic bag 

between two pieces of wet paper towels. They were then weighed at turgor, oven-dried 

at 60ºC for 72 hours, and then reweighed for the dry weight. These leaves were also 

scanned in RGB at 300 dpi, and their area estimates with the ‘leafareavision’ python 

package (Paine et al., 2019). Fresh water content (%) was computed as shown in equation 

5.1, relative water content (%) was computed as shown in equation 5.2 (Saura-Mas & 

Lloret, 2007), SLA (cm2.g-1) was computed as shown in equation 5.3 and leaf dry matter 

(%) content was computed using equation 5.4 (Saura-Mas & Lloret, 2007). 

𝑓𝑟𝑒𝑠ℎ 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 100 × 
𝑙𝑒𝑎𝑓 𝑓𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)−𝑙𝑒𝑎𝑓𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)

𝑙𝑒𝑎𝑓 𝑓𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)
  (5.1) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 100 ×
𝑙𝑒𝑎𝑓 𝑓𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)−𝑙𝑒𝑎𝑓 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)

𝑙𝑒𝑎𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑡𝑢𝑟𝑔𝑜𝑟 (𝑔)−𝑙𝑒𝑎𝑓 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)
 (5.2) 

SLA = 
𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 (𝑐𝑚2)

𝑙𝑒𝑎𝑓 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)
 (5.3) 

leaf dry matter = 100 ×
𝑙𝑒𝑎𝑓 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)

𝑙𝑒𝑎𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑡𝑢𝑟𝑔𝑜𝑟 (𝑔)
 (5.4) 

For carbon and nitrogen concentrations and their stable isotope ratios, a Finnigan 

MAT 253 (Thermo Fisher Scientific) mass spectrometer was used on samples that were 

powdered with a ball mill. For the structural traits, a carbon fraction analysis was 

performed using an Ankom fibre analyser (Ankom Technology) which sequentially 

digested ground samples, with increasing acidity, allowing the concentration of 

hemicellulose, cellulose, lignin and recalcitrants (e.g. soluble carbon such as 

carbohydrates, lipids, pectin and soluble proteins) to be determined, in that order (Van 

Soest, 1994). To assess potential photosynthetic activity, the amount of chlorophyll was 

measured using a CCM-200 chlorophyll content meter (Opti-Sciences, ADC BioScientific 

Ltd.), and is reported as the chlorophyll index, which is computed as the ratio of percent 

transmission at 931 nm to 653 nm (Richardson et al., 2002). Photosynthetic yield and 

fluorescence yield were measured with a portable chlorophyll fluorometer, the MINI-

PAM (Waltz) equipped with leaf clip after the samples were dark-adapted for 30 min. 

Statistical analyses were performed within the R statistics framework (R Core Team 

2019). We used the ‘nlme’ R package to compute linear mixed-effects model of changes 
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in each trait (y) related to the fixed effects of species and diversity level and their 

interaction. Plot identity was specified as a random effect. The ‘effects’ package in R was 

used to compute confidence intervals for estimated coefficients from the mixed effect 

models. R2 was determined using the ‘rsquared’ function from the ‘piecewiseSEM’ 

package.  

5.3. Results 

5.3.1 Canopy carbon and nitrogen  

Differences in carbon and nitrogen content were significant between species but not 

between mixed forests and monocultures. Carbon content was significantly lower in both 

oak species compared to the two pines (Figure 5.1a), while nitrogen content was 

significantly higher in the deciduous Q. faginea compared to the three evergreen species 

(Figure 5.1b) which is often related to the higher photosynthetic capacity of deciduous 

(Escarré et al., 1999). C13 was significantly higher P. sylvestris growing in mixed plots 

than in monocultures, while no effect of species or diversity was observed in the three 

other species (Figure 5.1c). N15 was higher in conifers situated in mixed plots while no 

effect of diversity was observed on stable nitrogen ratio in oaks.  N15 was also 

considerably higher in Q. faginea compared to three other species (Figure 5.1d).  
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Figure 5.1 Linear mixed effect model results for the variation of canopy carbon and 
nitrogen traits between species and two diversity levels.  
Error bars represent 95% confidence intervals around the average and R2 are from conditional 
mixed-effect models. a) Canopy carbon content (%); b) canopy nitrogen content (%); c) canopy 
C13 ratio (‰); d) canopy N15 ratio (‰).  

5.3.2 Photosynthesis 

The chlorophyll content of Q. ilex was significantly higher when in a mixed forest than 

in a monospecific stand (Figure 5.2a), however, this difference does not translate into a 

difference in photosynthetic activity (Figure 5.2b and 5.2c). Maximum fluorescence was 

significantly greater in oaks than in pines, when both species grew in a mixture, but was 

similar across all species living in monoculture There was a positive relationship between 

chlorophyll content and maximum fluorescence in oaks (Figure 5.2d). We found a 

positive association between foliar nitrogen content and photosynthetic yield in the two 

pines (Figure 5.2e), indicating that the increase in nitrogen is associated with an 

investment in the photosynthetic apparatus. However, the relationship was stronger 

between foliar nitrogen content and maximum fluorescence yield in all species which is 

in turn tied to fluorescent proteins (Figure 5.2f).  
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Figure 5.2 Photosynthetic traits.  
a) Chlorophyll content index; b) Photosynthetic yield a.k.a. maximum potential efficiency of PSII 
(PSII); c) maximal fluorescence (Fm); d) relationship between maximal fluorescence yield and 
chlorophyll content index for Q. faginea and Q. ilex; e) relationship between photosynthetic yield 
and nitrogen content; f) relationship between maximum fluorescence yield and nitrogen content 
in all four species.  * Chlorophyll content measurements performed on pine needles are not 
reliable due to the needles not covering the full area of the CCM-200 sensor. Error bars represent 
95% confidence intervals around the average and R2 are from conditional mixed-effect models. 

5.3.3 Water content 

Canopy fresh water content varied significantly between species, as did relative water 

content (Figure 5.3). In both cases, pine species have a higher water content than both 

oak species, with the exception of Q. faginea growing in mixed species plots,  indicating 

naturally higher water content in pine needles than oaks leaves. The deciduous oak had 

a relative canopy water content comparable to pines in mixed forests but not when in 

monocultures, suggesting that they might be having a more similar water-storing 

strategy to pines than to the evergreen oak.  
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Figure 5.3 Linear mixed effect model results for the variation of canopy water content 
between species and two diversity levels.  
Error bars represent 95% confidence intervals around the average and R2 are from conditional 
mixed-effect models. a) Canopy fresh water content (%); b) canopy relative water content (%). 

5.3.4 Structural traits 

Differences in hemicellulose and cellulose were found between species but not 

between monospecific and mixed stands, whist lignin content showed no significant 

variation across all treatments (Figure 5.4). Both SLA and LDMC varied significantly 

between species (Figure 5.5) with pines having a lower LDMC than oaks. LDMC mirrored 

patterns in SLA for P sylverstris, P. nigra, and Q. faginea, but they were only weakly 

correlated at the leaf level (r=0.23). Q. ilex was found to have a very high LDMC whilst 

having a low SLA, meaning that its leaves were very dense. No significant effect of stand 

diversity was found on any structural traits (p > 0.1).  

 

Figure 5.4 Carbon content of leaves and needles.  
a) Hemicellulose and bound proteins content (%), b) cellulose content (%), c) lignin and 
recalcitrants content (%). Error bars represent 95% confidence intervals around the average and 
R2 are from conditional mixed-effect models. 
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Figure 5.5 Leaf structural traits. 
a) Specific leaf area (mm2/g), b) Lead dry matter content (%). Error bars represent 95% 
confidence intervals around the average and R2 are from conditional mixed-effect models. 

5.4 Discussion  

The leaf traits of pines and oaks differed between mixed forests and monocultures. 

Pines differed primarily in nutrient processing, while oaks differed in leaf structural 

properties and chlorophyll content.   

5.4.1 Water use efficiency 

High δ13C, is often used as an indicator of water use efficiency and water availability to 

trees (Jucker et al., 2017). The differences we found in 13C between pines and oaks agree 

with previous findings from Alto Tajo Natural Park (Forner et al., 2018). They found that 

P. nigra had the highest water use efficiency as well as the biggest change in this efficiency 

when analysing drought effects through time. However, pines growing in monocultures 

did not demonstrate a greater water use efficiency when compared to oaks growing in 

either the mixed or monoculture plots. On the contrary, P. sylvestris had the lowest δ13C 

value, suggesting lower instantaneous water use efficiency, while others other species 

had non-significantly different δ13C values (Figure 5.1c).  This could be due to P. sylvestris, 

which is a shallow rooter, having a faster and stronger response to drought in the area. 

Given that our plots were chosen to have similar topographical and environmental 

conditions, the observable difference in the water use efficiency in pines is probably due 

to the increased diversity levels in mixed plots which ultimately impacts resource 

sharing. Pines are drought-avoiding species that react rapidly to high temperatures and 

low water availability by closing their stomata to avoid water loss and hydraulic failure 

(Poyatos et al., 2008; Forner et al., 2014). This regulation inevitably affects 

photosynthesis and the water use efficiency of needles, causing an increase in both 13C 
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and 15N (Serret et al., 2018). We took measurements following a relatively dry period in 

the summer (see the standard precipitation evapotranspiration index for June and July 

2017 in Figure S1), we reason that the pines growing in mixed plot have a reduced access 

to water resources because of their competition with oaks and had already initiated their 

water-saving mechanism at the time of our sampling, while pines growing in 

monocultures had not yet experienced a severe decrease in water availability. Oaks, on 

the other hand, are more drought-tolerant species, meaning that they are able to maintain 

productivity and photosynthesis as drought develops (Forner et al., 2014). Additionally, 

they have deeper roots which allow them to access other water resources as compared 

to shallower roots pines such as P. sylvestris; which is probably why the latter has the 

biggest difference in δ13C between diversity levels. 

A study looking at species interaction in a mixed plot based on species neighbourhood 

only found a significant difference in P. nigra surrounded by P. sylvestris and in Q. faginea 

surrounded by conspecifics (Grossiord et al., 2015). Unlike them, we found that P. 

sylvestris has the biggest difference in carbon isotope discrimination between 

monocultures and mixed plots, while there was no significant change in water use 

efficiency for Q. faginea. This difference could be due to the experiment design being 

different given that we are looking at trees in a plot that had been monocultured or mixed 

for years, while they were looking at tree neighbourhoods in mixed plots. Also, their 

isotope measurements were related to pine needles collected from two different years 

which is a contributing factor as isotope composition may change in that period of time. 

Our results agree however with their findings about sap flow density reduction in P. 

sylvestris, which was more pronounced when in mixed neighbourhoods. The fact that the 

P. sylvestris showed more δ13C difference is probably due to its shallower roots compared 

to P. nigra (Peñuelas et al., 2002; Corcuera & Camarero, Jesús Julio Eustaquio, 2004; 

Montserrat-Martí et al., 2009). Despite the fact that P. sylvestris individuals are 

considerably older in mixed forest (see Figure S4.2c), that shouldn’t have an impact on 

their water use efficiency; the increased light availability, on the other hand, due to 

shorter neighbouring oak species could have an impact. Indeed, Brienen et al. (2017) 

found a positive but weak relationship between crown illumination index and the 

intrinsic water use efficiency of these pines, and no relationship to age or height.  
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5.4.2 Photosynthesis 

Oaks had differences in their photosynthetic traits and their water management 

strategy in the case of Q. faginea. These changes cannot be disentangled however from 

the canopy closure effect caused by the fact that oaks are usually sitting below pine 

canopies in mixed forests. Oaks are shade-tolerant species that are usually shorter than 

pines in early successional forests (see Figure S4.2b). The higher fluorescence capacity in 

oaks (Figure 5.2c), which is accompanied by a significantly higher chlorophyll content in 

Q. ilex when in mixed forest (Figure 5.2a), can be a mechanism by which oaks adapt to a 

lower light interception area and period, a classic case of acclimation to shading (Lambers 

et al., 1998; Sabaté et al., 1999). These adaptations allow oaks to have a similar 

photosynthetic yield to trees at the top of the canopy (Figure 5.2b). It could also be that 

the partially shaded leaves of oaks growing in mixed forest are protected against 

photoinhibition which is why they have higher fluorescence capacity. Additionally, Q. 

faginea leaves had higher relative water content when in mixed plots, which is an 

indication of higher water availability at the time of sampling (Figure 5.3b). This 

deciduous oak is actually recognized for being relatively a water-spending species 

compared with other oaks and for having deeper roots (Castro-Díez & Navarro, 2007). 

These properties, accompanied by the fact that they are rather shaded from the sun in 

mixed plots, causes a decrease in water loss by transpiration and better access to water 

sources when not competing with conspecifics which allows for higher water content in 

its seasonal leaves. Jucker, Bouriaud, Avacaritei, & Coomes (2014) discussed possible 

benefit for Q. faginea growth rates when growing in mixed plots. These growth benefits 

are however less significant during drought, but others such as delayed and weaker 

response to decreases in water availability are activated (Grossiord et al., 2015). Actually, 

Grossiord et al. (2015) started observing a decline in oak sap-flow due to summer 

drought after their second sample collection in late July, while our sampling was in early 

July, which could be why isotope discrimination difference in oaks was not yet significant. 

Even though we didn’t observe any difference in isotope composition for Q. faginea, our 

results support previous studies suggesting an increased benefit to oaks when mixed 

with other species (Jucker et al., 2014a; Grossiord et al., 2015). 
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5.5 Conclusion 

We found that P. nigra and P. sylvestris were very similar in their traits and temporal 

measurements would be needed to be able to differentiate their responses to 

environmental factors. Oaks, on the other hand, were different in most traits, likely due 

to the fact that one of them is evergreen and the other deciduous. Both oaks showed fewer 

signs of water stress than pines when growing in mixed forest. Whilst the water use 

efficiency of pines increased significantly in mixtures, Q. faginea growing in mixed plots 

had higher leaf water contents than those growing in monoculture. These results suggest 

that monitoring these forests under extreme drought would be useful in identifying 

which species mixtures will be more resilient to climate change in the future. 
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6.1 Wider context  

Forests represent the most promising natural-based solution to climate change, 

uptaking close to 30% of human carbon emissions each year (Anderegg et al., 2020). The 

potential of this natural-based solution is however modulated by climate change itself, 

particularly by droughts. Droughts are typically multi-timescale events that trigger a 

multitude of different responses in trees (Beguería & Vicente-Serrano, 2017; Zang et al., 

2019); and cause considerable fluctuations in global gross primary productivity, 

explaining at least 47% of its variation in the past 30 years (Zscheischler et al., 2014; 

Anderegg et al., 2020). Besides topographical factors and severity of the climatic events 

which are often less controllable by humans, an important factor in determining the 

extent to which forests respond to droughts, i.e. the extent of forest resilience or stability 

to droughts and climate change, is forest species composition and forest management 

actions (Seidl, 2014; Gren & Zeleke, 2016; Gazol et al., 2018; Khoury & Coomes, 2020). 

Two third of the forests worldwide are populated by at least two species naturally or by 

choice (FAO, 2016; Grossiord, 2019; Pardos et al., 2021), making tree species composition 

and diversity effects on drought resilience one of the most important research topics. 

Being able to study these mixed forests on much larger scales using a combination of 

remote sensing and machine learning algorithms will soon allow us to answer ever more 

complex ecological questions about species interactions and response to climate change. 

One year after Reyes and Kneeshaw (2014) asked whether ecological resilience is 

ready for operationalisation in forest management and concluded that it was not, the 

journal Trends in Ecology and Evolution published an issue about resilience (Hodgson et 

al., 2015a) and 5 years later an editorial about its operationalisation (Chambers et al., 

2020). What hindered and still hinders the use of resilience concepts by managers is the 

elusiveness of tipping points and disagreements between scientists on the nature of 

resilience. It is hard to achieve consensus on a concept that is evolving; even if scientists 

end up agreeing on a specific wholistic definition for 'resilience to event', agreeing on a 

specific method will probably be impossible or be very limiting. Researchers are still 

trying to uncover the mechanisms behind the response of ecosystems, forests, and trees 

to disturbances and perturbations, and new analysis techniques, bigger data collections, 

and higher data resolution can open new doors when it comes to quantification of 

resilience and identification of any tipping points. In this thesis, we combined machine 
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learning classification with time-series and breakpoint analysis to quantify the resilience 

to drought of tree species in Spain. The use of these analysis tools allowed us to respond 

with ever more precision to several ecological questions surrounding the resilience of 

forests, but also to uncover wider implications related to the use of resilience concepts in 

ecology which will be discussed in section 6.3.2. 

6.2 Contributions 

In Chapter 2 of this thesis, detecting non-abrupt changes in greenness, and then 

associating them to drought allowed us to resolve two limitations in drought resilience 

estimation: (1) capturing sensitivity, recovery, and recovery time fully without the 

assumption of a regular response and (2) allowing drought start-date, length, and 

accumulation rate to vary freely, which reflects drought occurrence more realistically. 

Furthermore, in estimating the long-term changes and monthly variance of NDVI first 

(Figure 2.1 a - d), we indirectly evaluated the concept of increased variance for ecosystem 

shift detection (Carpenter & Brock, 2006) against the short-term estimation of resilience 

components (Figure 2.1 e) (Lloret et al., 2011). We found that variance of NDVI expressed 

as a function of SPEI variance (or 𝛾𝐺 . 𝜀𝐶 , see Figure 2.1 c), does vary linearly with NDVI 

sensitivity (Figure 2.10 a), which suggests that the concept of increasing variance before 

a transition can be as informative as these resilience components about the closeness of 

a system to a transition. How operational these two resilience concepts are to estimating 

‘tipping points’ remains to be seen (see also Section 6.3.2). It is important to note that we 

treated each time-series as representative of the ecosystem in that pixel averaging the 

response of the two largest droughts and looking at the variance of the whole time-series 

(18 years) instead of evaluating the variance with a moving window. This approach is 

justified by our interest in understanding what factors drive differences in resilience at 

larger spatial scales, but also by the fact that separating the data obtained from the two 

different perturbations detected did not offer any additional information.  

Published studies have attempted to detect the increase in ecosystem variance or 

decrease in ecosystem resistance and recovery over time (Carpenter & Brock, 2006; 

Seekell et al., 2012; de Oliveira Roque et al., 2018). We, however, did not find any evidence 

to support that there were such changes over the past 18 years in Spain except for a few 

declining sites (12% of over 3000 sites). Using data on such a large scale allowed us to 

detect the drivers of drought resilience, but also to determine which forest proportion 
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and what species in Spain are declining because of climate change. This paints a clearer 

image of the trends at that scale than systematic reviews of local studies, which are often 

incomparable.  

In Chapter 3, we examined how well freely available Sentinel 2 data mapped four tree 

species over a regenerating forest landscape in central-east Spain. Evaluating three 

classification algorithms, we obtained the greatest accuracy from ‘random forest’. 

Interestingly, ‘random forest’ outperformed PLS-DA when it comes to canopy detection 

on the plot level, although it did not have the highest accuracy at the crown level. 

Furthermore, we found that the temporal aggregate summer median image of Sentinel 2 

imagery is more accurate in classifying the forest than a least cloudy yearly composite. 

We also found that a rapid by-eye classification training on the median Sentinel 2 image 

led to classification accuracy which was only 4% less accurate than the dataset trained 

by the plane-truth map, but both results had smaller accuracy compared to the validation 

done on the by-eye dataset. This suggests that imprecisely trained machine learning 

algorithms might report very high accuracy in relation to non-accurate image-based 

training datasets which do not reflect the reality of the landscape. Scientists should 

therefore be very careful if opting to train machine learning algorithms by labelling high-

quality imagery by eye instead of careful identification of canopies in the field.  

In Chapters 4 and 5, we studied the effect of species composition and increasing 

species diversity on species responses to drought in forests in central-east Spain, and we 

found contrasting responses of wood production, leaf-level traits and remotely sensed 

leaf area. The differences between wood production and canopy properties are relevant 

to monitoring carbon sequestration from space and to answering stress and disturbance 

response in tree species. Relating remotely sensed vegetation changes to carbon storage 

in wood form, beyond estimates of total biomass in a landscape, is still in its infancy 

(Vicente-Serrano et al., 2016a, 2020). Most of the difficulties in linking wood production 

to canopy greenness observations stem not from our lack of understanding of tree 

phenology but because of our lack of understanding of tree response to stress and 

disturbance. We know that trees prioritise the maintenance of their canopies, including 

reproductive tissues, and roots, before allocating resources to wood growth (Litton et al., 

2007). We know that wood growth season length can vary greatly between species 

(Cannell, 1989; Cherubini et al., 2003). We even know the kinetics involved in wood 
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production which can help cold climate trees maximize their wood production daily 

(Rossi et al., 2006). Furthermore, beyond fixed environmental drivers, wood growth 

varies greatly between species, with tree age, and tree size (Jucker et al., 2014a; Wang & 

Hamzah, 2019). However, perturbations and disturbances greatly affect these growth 

patterns, and it is these effects that make it difficult to predict wood productivity from 

environmental and canopy observations.  

In Chapter 4, we explored how relating remotely sensed leaf area and drought index 

time-series to wood production time-series can help us identify divergent response 

mechanisms in forest tree species. Methodologically, it is interesting to note that while 

wood production derived from tree-ring increments is already a yearly series, MODIS-

derived NDVI or LAI is a monthly series that needed to be aggregated to a yearly series. 

While aggregating LAI to yearly time-series would provide one possible approach, we 

found that decomposing the LAI time-series, eliminating the temporally auto-correlated 

residuals and the seasonality, and then averaging the non-linear trend led to a better AWP 

prediction when it comes to relating the two datasets. We also found that converting 

NDVI values to LAI values improved the prediction. Just as in the break-point analysis in 

Chapter 2, keeping the seasonality and the noise dilutes the climate-sensitive signal of 

the vegetation.  

6.3 Future directions 

6.3.1 Other disturbances and perturbations. 

In Chapter 2, we demonstrated how time-series and change point detection analysis 

can be used to quantify the resilience of forest ecosystems to extreme drought 

perturbations. Climate change is predicted to make water scarcity more frequent and 

more severe, but drought is only one of the abiotic perturbations that forest ecosystems 

are subjected to. These predictions also apply to many other abiotic disturbances such as 

fires, floods, cyclones, among others (Seidl et al., 2017; Anderegg et al., 2020). Biotic 

disturbances (e.g. insect and pest outbreaks) and anthropogenic intervention 

(deforestation for other land uses, depletion of water resources, fires) also play a big part 

in degrading forest ecosystems (Funk et al., 2019), even surpassing the negative effects 

of climate change (Danneyrolles et al., 2019). All of these disturbances and perturbations 

would have effects on forests that can be examined remotely to determine their effects 

on forest functioning. Unlike the case for drought, most other abiotic disturbances would 
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be classified as severe events which usually have a clear start- and end-dates. This can 

facilitate the detection of the immediate forest response, although the long-term legacy 

effects of such events would need to be disentangled from other strong drivers of 

vegetation cover such as changing water availability.  

6.3.2 Tipping lines or response mechanism? 

Examining the patterns of response to drought, we find that most Spanish forests are 

resilient to extreme droughts, as previously reported. Although our findings do not 

forecast the resilience of an ecosystem or species to future droughts, they provide a 

valuable picture of the trends observed in the region.  

First, we found that Eucalyptus forests are significantly less resilient than the native 

species in Spain, a result that can be used to sound the alarm on planting more Eucalyptus 

in the region. The number of declining Eucalyptus forests was 14% higher than the 

average; the next species which needs close attention is P. nigra, whose declining 

greenness was 8% higher than the average of 12% for all species. Although the number 

of P. nigra pixels that were losing greenness was not significantly higher than the average, 

the negative climate change influence on the long-term trends of the species and the very 

high sensitivities and recoveries suggests it might be close to a tipping point.  

Second, we determined the drought response time of the forest canopy. Many 

resilience studies focus on estimating the recovery rate. While estimating the recovery 

rate and decline rate for our dataset in Chapter 2 did not offer extra information, the 

return period itself was valuable, as it allows to determine the period in which the 

occurrence of another drought would hinder the recovery and cause serious long-term 

damages to the forests. This period, which was on average equal to a year and a half, did 

not vary significantly between species groups. If it did vary, then it would indicate which 

species group is going to be more sensitive to an increase in drought frequency. 

Furthermore, evaluating differences in the two largest droughts in the past 18 years, we 

did not find any proof that the duration separating those events had any effect on forest 

response, which is explained by the rapid recovery of greenness (1.5 years on average) 

compared to the average duration between the two events (5.5 years).  

Concerning tipping points, while such a concept could prove useful for forest 

management, we did not find any proof that it exists for forest ecosystems. Pixels that 

failed to recover after drought events were present anywhere in the decline zone shaded 
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in red below the curve in Figure 6 (see Figure S1.7 for data). We found that relationships 

fitted separately for each species group after accounting for the environmental factors 

are usually logarithmic functions where the deviation from the 1:1 line, coined “line of 

full resilience” by  Schwarz et al. (2020), indicate a loss of resilience (Figure 6). We found 

that certain species groups characterised by small sensitivity and recovery values had a 

smaller slope coefficient for the logarithmic function, while groups with high sensitivity 

and recovery had a higher slope coefficient. We suggested that these differences can be 

indicative of different drought response mechanisms (Chapter 2). However, upon 

analysing the resilience of wood production in a local study in Spain (Chapter 4), we 

found that changes in greenness had contrasting patterns to changes in wood production 

which has implications for this theory. Unlike our previous prediction, isohydric pines 

did not lose and gain more leaf area than oaks, instead, pixels dominated by the evergreen 

oak lost more leaf area and less wood productivity. The idea of discerning different forest 

response mechanisms made more sense when looking at the resilience of wood 

production instead of greenness. Isohydric pines responded strongly to droughts by 

slowing their wood production drastically (Figure 4.6b), while tolerant oaks reduced 

their wood production to a much smaller extent. What does this say about resilience 

patterns in LAI? Are they actually indicative of the opposite drought response 

mechanisms?  

We suggest that the difference is due to the spatial scales of the study. In Chapter 2 we 

were looking at the whole of Spain which allowed us to capture the whole spectrum of 

species response to drought; pixels responses were normally distributed along the ‘line 

of full resilience’ for each species and diverging at high sensitivity values (i.e. NDVI losses 

varied between 0.03 and 0.07, 1st and 3rd quantile respectively). While in chapter 4 the 

measured greenness response was relatively extremely small (before being converted to 

LAI, NDVI losses varied between 0.01 and 0.02, 1st and 3rd quantile respectively, being 

smaller than the 1st quantile sensitivity value in Chapter 2). This difference is due to the 

fact that Alto-Tajo despite having had droughts in the past 30 years is not considered a 

very dry region and had not observed an extreme increase in relative dryness over the 

past 18 years as observed from the map in Figure S3.5a. As previously discussed in 

Chapter 4, this means that the combination of factors presents in those sites contributed 

to high resilience in black pine which did not shed their needles. The question of whether 

high sensitivity and recovery values in canopy or wood production are indicative of 
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specific drought response mechanisms and compartmentalization in trees remains open 

and needs further investigation. We suggest that future studies should attempt to 

combine AWP and LAI datasets at larger scales to see how the coupling between the two 

varies along topographical and environmental gradients.  

 

Figure 6 Diagrams demonstrating the concepts of ‘tipping lines’ and ‘lines of full resilience’.  
Tipping lines imply the existence of a threshold that once crossed the system transitions into 
another stable state. The threshold is dynamic in nature because it depends on several factors but 
is also hard to detect which is why the dashed tipping line is surrounded by a zone of uncertainty 
shaded in grey. The dotted line and the double dotted line represent two forest systems the first 
dominated by drought-tolerant species and the second by drought avoidant species. The red lines 
in (a) represent two perturbations, the dotted purple line represent the ‘line of full resilience’, the 
solid black line in (b) represents the deviation from the ‘line of full resilience’ and in (c) the slope 
line of all potential lines of full resilience.  

6.3.3 Monitoring changes in canopy composition 

Findings in Chapter 5 suggest that tree diversity caused differences at the level of 

canopy leaf traits. Although we did not reach a conclusive explanation as to why we did 

not detect these differences when looking at remotely sensed greenness in Chapter 4, 

studies that map canopy traits from remotely sensed data have shown promising results 

that could be explored to detect and analyse diversity effect (Bongalov et al.; Asner & 

Martin, 2009a; Dotzler et al., 2015; Swinfield et al., 2019; Aguirre-Gutiérrez et al., 2021). 

For instance, a study over logged old-growth tropical forests mapped canopy phosphorus 

and nitrogen concertation at a large scale (400m2) detecting patterns associated to 

topography that would have gone unnoticed in a traditional field study (Swinfield et al., 

2019). There is a potential for exploring whether more detailed spectral information 

would reveal more about the canopy status than time-series of simple vegetation indices, 

and would help us identify other coupling effects between AWP and canopy traits.  
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S1.1 Workflow 

 

Figure S1 Determining forest resilience to drought workflow. 

S1.2 Species groups and land cover sampled over Spain. 

In this work, we sampled 10 of the most frequent species groups in Spain from the species 

distribution map by (Brus et al., 2012). 
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Figure S1.2 Species groups’ distribution over Spain (taken from Brus et al., 2012) 

mapped in (a) and their relative frequency plotted in (b). 

 

Land cover map was extracted over our plots to determine land cover change between 

1990 and 2000 and to eliminate pixels falling in non-natural classes. As demonstrated in 

Table S1.1, land cover change did not have a significant effect on our models and was not 

included in the manuscript.  
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Figure S1.3 Corine land cover of sampled forest pixels over Spain in 1990 (a) and 2000 

(b). 

 

S1.3 Relationship between NDVI and LAI. 

To interpret changes in remotely sensed canopy greenness (i.e. NDVI) correctly, it is 

essential to consider its relationship to actual forest characteristics such as leaf area index 

(LAI). NDVI has an exponential relationship with LAI meaning that at higher NDVI 

observed changes translate to much bigger changes in LAI on the ground.  
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Figure S1.4 Relationship between average NDVI and average LAI from MODIS for year 

2013. 

S1.4 Detection of the biggest drought events. 

Drought events detected with DBEST package in R, corresponding to the peak dates 

observed in the SPEI time-series (Figure 2.5) and dates reported in the literature. The 

first one was in 2005 and the second one in 2012 (Figure S1.2). 

 

Figure S1.5. Frequency distribution of the dates of the biggest NDVI losses detected in 

18-year time-series. 
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S1.5 Statistical modelling 

To test how canopy greenness varies with water availability using remotely sensed NDVI, 

we developed regression models aiming at explaining forest response to drought in the 

short- and the long-term among different forest types inside and outside protected areas 

(Table S1.1).  

Temporal auto-correlation: 

The NDVI series analysed do not have an auto-correlated residual (only the non-linear 

trend was used). SPEI1 time-series have independent values with little temporal auto-

correlation because each value is computed relative to the same month in the reference 

period instead of being related to other months in the same year, at higher scales, 

however (X > 1) temporal auto-correlation increases as per the computation of the index 

which aggregates X months together. Differencing the time-series or attempting to 

eliminate the auto-correlation in these time-series would make the trend estimation from 

SPEI incomparable to that of NDVI, and eliminate the effect that we are looking to quantify 

(i.e. level of water deficit accumulation needed for the forest to respond to drought). 

Given that whitening of time-series prior to trend analysis is still being debated (see 

(Bayazit & Önöz, 2007; Razavi & Vogel, 2018), we decide to not pre-whiten and proceed 

with a simple linear trend analysis which would be comparable to the NDVI trend. 

Spatial auto-correlation: 

Moran's I on distance classes was computed for all the linear models' residuals done 

on time-series derived metrics using the “pgirmess” package in R (Giraudoux et al., 2018). 

Plotting Moran’s I allowed us to visualise the patterns of spatial auto-correlation in the 

residual of our models. Buffer distances in which to construct the weighting matrix to be 

used in the spatial regression model were tested between 15 km and 50 km with 5 km 

increments; models minimizing AIC the most were reported in the results. Pixels/plots 

within the buffer area were assigned an equal weight equivalent when computing their 

errors in the regression model, while error of pixels/plots lying outside the buffer 

distance would have a weight of zero. Functions “dnearneigh”, “nbdists”, “nb2listw”, 

“errorsarlm” from the packages “spdep” and “spatialreg” were used in sequence to run 

spatial regression models (Bivand et al., 2015; Bivand & Piras, 2019).  

Table S1.1 Regression models used to evaluate changes in greenness with drought.  
Model structure follows lm, nls and errorsarlm formula syntax in R. Model fit corresponds to 
adjusted R2 for linear models and Nagelkerke pseudo-R2 in spatial autoregressive models. Model 
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fit and for linear models M1-M5 correspond to the average taken from 3182 models. Models in 
italics included “previous landcover” as a factor; they were not reported for lack of significant 
difference in the AIC with the previous model.  

Model Structure Model 
fit 

Model 
AIC 

SSAEM 
AIC 

Linear regression models applied on the individual time-series 

M1 SPEI ~ Time 0.08 - - 
M2 NDVI ~ Time 0.3 - - 
M3 LAI ~ Time 0.3 -  
M4 NDVI ~ Time + SPEI 0.49 - - 
M5 log(gain)~ log(loss) 0.32 - - 
Non-linear multiple regression model 

M6 NDVI ~ a(1- exp(-b(LAI - c))) - - - 
Spatial simultaneous autoregressive error estimation models (SSAEMs) 

M7 SPEI x 215 ~ Water balance  0.86 -2033 -7977 

M7 SPEI x 215 ~ Water balance x 215 0.86 -1476 -8006 

M8 NDVIm ~ scale(Water balance) + scale(Elevation) + 
scale(NDVIm) + Forest type + Protection status 

0.60 -6702.2 -7979 

M9 NDVIm ~ scale(Water balance) + scale(Elevation) + 
scale(NDVIm) + Forest type + Protection status+ 
Protection status 

0.60 -6700.4 7977.2 

M10 NDVI x 215 ~ scale(Water balance) + scale(Elevation) 
+ scale(NDVIm) + Forest type + Protection status 

0.10 -11407 -11676 

M11 NDVI x 215 ~ scale(Water balance) + scale(Elevation) 
+ scale(NDVIm) + Forest type + Protection status+ 
Protection status 

0.10 -11405 -11674 

M12 NDVIm ~ water balance  0.57 -6262.1 -7800.1 
M13 LAIm ~ water balance 0.54 5158 3873.2 
M14 CCI[NDVI]~ scale(Water balance) + scale(elevation)  0.35 -22522 -23776 
M15 CCI[LAI]~ scale(Water balance) + scale(LAIm) 0.24 -8218 -9818 
M16 CGW[NDVI]~ scale(NDVIm) + scale(elevation)  0.33 -18879 -19846 
M17 CGW[LAI]~ scale(LAIm) + scale(elevation)  0.36 -7124.6 -8052.2 
M18 CCI[NDVI]~ scale(Water balance) + scale(elevation) + 

Forest type + Protection status 
0.35 -20701 -21539 

M19 CCI[LAI]~ scale(Water balance) + scale(LAIm) + Forest 
type + Protection status 

0.23 -7579.3 -7976 

M20 CGW[NDVI]~ scale(NDVIm) + scale(elevation) + Forest 
type + Protection status 

0.33 -19164 -19862 

M21 CGW[LAI]~ scale(LAIm) + scale(elevation) + Forest 
type + Protection status 

0.37 -7398.6 -8070.6 

M22 log(NDVI Loss) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(NDVIm) 

0.32 4106.6 3745.5 

M23 log(LAI Loss) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(LAIm) 

0.34 4233 3957.2 

M24 log(NDVI Loss) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 

0.33 3964.4 3698.5 
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scale(NDVIm) + Forest type + Protection status+ 
Previous landcover 

M25 log(NDVI Loss) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(NDVIm) + Forest type + Protection status + 
Previous landcover 

0.34 3968.7 3701.3 

M26 log(LAI Loss) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(LAIm) + Forest type + Protection status 

0.36 4127.8 3921.9 

M27 log(LAI Loss) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(LAIm) + Forest type + Protection status+ 
Previous landcover 

0.36 4124.1 3920 

M28 log(NDVI Gain) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(NDVIm) 

0.27 6664.3 6550.5 

M29 log(LAI Gain) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(LAIm) 

0.26 6803.9 6725.3 

M30 log(NDVI Gain) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(NDVIm) + Forest type + Protection status 

0.28 6622.9 6545.6 

M31 log(NDVI Gain) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(NDVIm) + Forest type + Protection status+ 
Previous landcover 

0.28 6624.8 6547.6 

M32 log(LAI Gain) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(LAIm) + Forest type + Protection status 

0.27 6773.9 6721.6 

M33 log(LAI Gain) ~ scale(Water balance) + scale(-SPEI 
min) + scale(SPEI max) + scale(elevation) + 
scale(LAIm) + Forest type + Protection status+ 
Previous landcover 

0.27 6775.6 6723.4 

M34 log(NDVI Gain/Loss) ~ scale(Water balance) + scale(-
SPEI min) + scale(SPEI max) + scale(elevation) + 
scale(NDVIm) 

0.16 5846.9 5815.5 

M35 log(LAI Gain/Loss) ~ scale(Water balance) + scale(-
SPEI min) + scale(SPEI max) + scale(elevation) + 
scale(LAIm) 

0.16 6734.9 6697.8 

M36 log(NDVI Gain/Loss) ~ scale(Water balance) + scale(-
SPEI min) + scale(SPEI max) + scale(elevation) + 
scale(NDVIm) + Forest type + Protection status 

0.17 5824.5 5809.6 

M37 log(NDVI Gain/Loss) ~ scale(Water balance) + scale(-
SPEI min) + scale(SPEI max) + scale(elevation) + 
scale(NDVIm) + Forest type + Protection status+ 
Previous landcover 

0.17 5821.2 5807.9 

M38 log(LAI Gain/Loss) ~ scale(Water balance) + scale(-
SPEI min) + scale(SPEI max) + scale(elevation) + 
scale(LAIm) + Forest type + Protection status 

0.17 6703.2 6685.8 

M39 log(LAI Gain/Loss) ~ scale(Water balance) + scale(-
SPEI min) + scale(SPEI max) + scale(elevation) + 
scale(LAIm) + Forest type + Protection status+ 
Previous landcover 

0.17 6700.5 6684.5 



171 

 

 
 

SPEI=monthly SPEI values 
SPEI=monthly SPEI change determined from M1 
NDVI=monthly NDVI values 
NDVI=monthly NDVI change determined from M2 
NDVIm=average NDVI (2000-2017) 
LAIm= average LAI (2000-2017) 
CGW=𝛾𝐺=Short-term covariance between NDVI and SPEI determined from M3  
CCI=(𝛼𝐺 − 𝛼𝑃)*215=Long-term effect of SPEI on NDVI determined from M3 as monthly change 
between observed NDVI and potential NDVI 
-SPEImin=Minimum SPEI during the period of NDVI loss representing water deficit 
SPEImax=Maximum SPEI during the period of NDVI gain representing water surplus 

S1.6 Summary of negative NDVI trends 

 

Figure S1.6 Spanish forest greenness trends. 
(a) Summary of the autocorrelative regression model studying greenness trends; (b) density 
distribution of greenness trend in terms of % greening in the past 18 years for different forest 
types; (b) density distribution of greenness trend in terms of % greening in the past 18 years for 
protection statuses. 

Table S1.2 Forests canopy greenness across forest types and protection statuses. 

Forest type % plots with 
significant negative 
trends in LAI 

Average change in 
forest LAI for 
declining plots 

Q. robur & Q. petraea 9 -0.18 

Fagus spp. 5 -0.20 

P. sylvestris  13 -0.23 

Other Quercus spp. 9 -0.22 

Castanea spp. 11 -0.20 

Eucalyptus spp. 26 -0.43 

Other broadleaves 11 -0.11 
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P. pinaster 20 -0.24 

Other Pinus spp. 11 -0.28 

Other conifers 10 -0.23 

Protection status     

Unprotected areas 13 -0.30 

Sites of community 
Importance ZEC 

12 -0.22 

Red Natura 2000 10 -0.15 

 

 

Figure S1.7 Fitted relationship between losses and gains. 
(a) For different forest types; (b) and different protection status. Fitted regression lines were 
back-transformed from log–log scale to match original axes. Differences in regression coefficient 
in the log-log relationship. (c) For different forest types, and (d) different protection statuses. 
Error bars represent the standard error of the coefficient estimates. 
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Figure S1.8 Summary coefficients for the forest types of the spatial autoregressive model 
performed to evaluate resilience components determined from NDVI time-series. 
(a) Relationship between the loss, gain and the short-term response to drought of forest types; 
(b) gain-to-loss ratio (log scale); (c) long-term climate change influence on greenness. Value for 
forest type indicates mean response for forests outside of protected areas. Overall mean for forest 
outside protected areas indicated by the black dot in (a) and the dashed lines in (b) and (c), and 
the error bars represent 99% confidence intervals. Note losses and gains were log-transformed 
to improve normality of residuals since both measurements are right-skewed, and because gains 
tend to be smaller when losses are large. 
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S1.7 Maps of Spanish forest resilience to drought at different time-

scales 

 

Figure S1.9 Drought accumulation time best coupled with NDVI.  

 

Figure S1.10 Forest greening trend in Spain from 2000 to 2017. 
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(a) 

  

(b) 

      

 

Figure S1.11 Covariance between greenness (NDV) and changes in water availability.  

(a) CGW using SPEI; (b) CGW using SPEI plotted against CGW using Water Balance. 
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(a) 

(b)  

       

Figure S1.12 Long-term Climate Change Influence (CCI) on greenness (NDVI). 

(a) CCI on NDVI over Spain; (b) CCI on NDVI when using SPEI plotted against CCI on NDVI when 
using Water Balance. 
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(a) 

(b)  

     

Figure S1.13 NDVI Loss during drought events. 

(a) Distribution of NDVI loss measures over Spain; (b) NDVI loss plotted against short-term 
covariance between SPEI and NDVI. 
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(a)

(b) 

 

Figure S1.14 NDVI Gain after drought events. 

(a) Distribution of NDVI gains following drought over Spain; (b) NDVI gains plotted against short-
term covariance between SPEI and NDVI. 

 



179 

 

 
 

 

Figure S1.15 Gain/loss ratios over Spain relating to short-term Gain-to-Loss ratio. 
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S2.1 Allometric relationship to determine canopy cover in 

FunDivEurope plots.  

Table S2.1: Comparison of allometric models of the relationship between basal areas, 

height and crown area. 

Model formulae evaluated against lm(log(CrownArea)~log(BasalArea) ∆AIC 
lm(log(CrownArea)~log(BasalArea)+log(Height) -114 
lm(log(CrownArea)~log(BasalArea)+log(Height)+Species) -208 
lmer(log(CrownArea)~log(BasalArea)+log(Height)+(1|PlotID)) -688 
lmer(log(CrownArea)~log(BasalArea)+log(Height)+Species+(1|PlotID)) -685 
lmer(log(CrownArea)~log(BasalArea)+log(Height)+(1|Sp.compo/PlotID)) -998 
lmer(log(CrownArea)~log(BasalArea)+log(Height)+(log(BasalArea)|Sp.compo/PlotID)) -774 
lmer(log(CrownArea)~log(BasalArea)+log(Height)+(log(Height)|Sp.compo/PlotID)) -827 

S2.2 Classification  

Table S2.2: Extra vegetation indices used in classification taken from the Index DataBase 

(Henrich et al., 2009).  

Numbers between parentheses refer to band wavelengths, while those preceded by ‘range’ 

correspond to a range of wavelengths in which bands were averaged. 

Indices to cover >1000nm 

Name  Formula 

Aerosol.free.veg.index.1600 ((800)-0.66*( (1600)/( (800)+0.66* (1600)))) 
Aerosol.free.veg.index.2100 ((800)-0.5*( (2100)/( (800)+0.56*(2100)))) 
Cellulose.absorption.index (0.5*( (2030)+(2210))-(2100)) 
Lai.difference.1725.970 (1725)-(970) 
Normalized.difference.1094.1205.leaf.water ((1094)-(1205))/( (1094)+ (1205)) 
Normalized.difference.1094.983.leaf.water ((1094)-(983))/( (1094)+ (983)) 
Normalized.difference.leaf.canopy.biomass ((2160)-(1540))/( (2160)+ (1540)) 
Normalized.difference.leaf.mass.per.area ((2260)-(1490))/( (2260)+ (1490)) 
Simple.ratio.water.content (1193)/(1126) 
Simple.ratio.lai.determining.index (1250)/(1050) 

Tasselled.cap.vegetation 

(-0.2848* range(450,520)-0.2435* 
range(520,600)-0.5436* 
range(630,690)+0.7243* 
range(760,900)+0.0840* range(1150,1750)-
0.1800* range(2080,2350)) 

 

Table S2.3: Vegetation indices used in the classification of Sentinel 2 products taken from 

the Index DataBase (Henrich et al., 2009). 

‘bX’ refers to the sentinel 2 band number (X) starting the count at 0.  

Indices which can be computed from Sentinel 2 bands as extracted from Index database. 

Name Formula 

ATSAVI 1.22*((b9-1.22*b4-0.03)/(1.22*b9+b4+1.22*0.03+0.08*(1+1.222))) 
AFRI1600 (b9-0.66*(b11/(b9+0.66*(11)))) 
AFRI2100 (b9-0.5*(b12/(b9+0.56*(12)))) 
ARI (1/b2)-(1/b4) 
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ARVI (b9-(b4-1*(b4-b0)))/(b9+(b4-1*(b4-b0))) 
ARVI2 -0.18+1.17*((b9-b4)/(b9+b4)) 
BWDRVI (0.1*b9-b0)/(0.1*b9+1) 
BRI ((1/b2)-(1/b4))/b9 
CCCI ((b9-b4)/(b9+b4))/((b9-(3))/(b9+b3)) 
CARI (b4/b3)*((sqrt((((b4-b3)/150)*670+b3+(b2-(((b4-

b2)/150)*550)))2))/((((b4-b2)/1502)+1)**0.5)) 
CARI2 (abs(((b4-b2)/150)*b3+b3+b2-(((b4-b2)/150)*b2))/((((b4-

b2)/150)2+1)**0.5))*(b4/b3) 
Chlgreen (b9/b2)**(-1) 
CIgreen (b9/b2)-1 
CIrededge (b9/b4)-1 
Chled-edge (b6/b4)**(-1) 
CVI b9*(b4/(b22)) 
CI (b4-b0)/b4 
CTVI ((((b4-b2)/(b4+b2))+0.5)/abs(((b4-b2)/(b4+b2))+0.5))*sqrt(abs(((b4-

b2)/(b4+b2))+0.5)) 
Datt1 (b7-b4)/(b7-b3) 
Datt4 b3/(b2*b4) 
Datt6 b(8)/(b2*b5) 
D800/550 b7-b2 
D800/680 b7-b3 
GDVI b9-b2 
EVI 2.5*((b9-b4)/((b9+b4*6-7.5*b0)+1)) 
GEMI (((2*(b92-b42)+1.5*b9+0.5*b4)/(b9+b4+0.5))*(1-0.25*((2*(b92-

b42)+1.5*b9+0.5*b4)/(b9+b4+0.5)))-((b4-0.125)/(1-b4))) 
GLI (b2*2-b4-b0)/(b2*2+b4+b0) 
GNDVI (b9-b2)/(b9+b2) 
GOSAVI (b9-b2)/(b9+b2+0.16) 
GSAVI ((b9-b2)/(b9+b2+0.5))*(1+0.5) 
GRNDVI (b9-(b2+b4))/(b9+(b2+b4)) 
H atan(((b4*2-b2-b0)/(30.5))*(b2-b0)) 
IPVI (((b9)/(b9+b4))/2)*(((b4-b2)/(b4+b2))+1) 
Intensity (1/30.5)*(b4+b2+b0) 
LCI (b7-b4)/(b7+b3) 
Maccioni (b6-b4)/(b6-b3) 
MVI b9/b(11) 
MCARI ((b4-b3)-0.2*(b4-b3))*(b4/b3) 
MCARI1 1.2*(2.5*(b7-b3)-1.3*(b7-b2)) 
MCARI2 (1.5*((2.5*(b7-b3)-1.3*(b7-b2))/(sqrt((2*b7+1)2-(6*b7-5*sqrt(b3))-

0.5)))) 
mNDVI (b7-b3)/(b7+b3-2*b0) 
mSR (b7-b0)/(b3-b0) 
MSAVI (2*b9+1-sqrt((2*b9+1)2-8*(b9-b4)))/2 
MSAVIhyper 0.5*((2*b7+1)-sqrt((2*b7+1)2-8*(b7-b3))) 
MTVI1 1.2*(1.2*(b7-b2)-2.5*(b3-b2)) 
MTVI2 1.5*((1.2*(b7-b2)-2.5*(b3-b2))/sqrt((2*b7+1)2-(6*b7-5*sqrt(b3))-0.5)) 
Norm G b2/(b9+b4+b2) 
Norm NIR b9/(b9+b4+b2) 
Norm R b4/(b9+b4+b2) 
GNDVIhyper (b6-b2)/(b6+b2) 
ND790/670 (b6-b3)/(b6+b3) 
PSNDc1 (b7-b(1))/(b7+b(1)) 
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GNDVIhyper2 (b7-b2)/(b7+b2) 
ND800/680 (b7-b3)/(b7+b3) 
NDMI (b7-b(11))/(b7+b(11)) 
NGRDI (b2-b4)/(b2+b4) 
NDVmirnir (b12-b7)/(b12+b7) 
BNDVI (b9-b0)/(b9+b0) 
GNDVI (b9-b2)/(b9+b2) 
MNDVI (b9-b12)/(b9+b(12)) 
GNDVI (b9-b2)/(b9+b2) 
NDVI (b7-b3)/(b7+b3) 
NBR (b9-b(12))/(b9+b(12)) 
RI (b4-b2)/(b5+b2) 
NDVI690-710 (b9-b4)/(b9+b4) 
OSAVI (1+0.16)*((b7-b3)/(b7+b3+0.16)) 
PNDVI (b9-(b2+b4+b0))/(b9+(b2+b4+b0)) 
RDVI (b7-b3)/(b7+b3)**0.5 
RDVI2 (b7+b3)/sqrt(b7+b3) 
RBNDVI (b9-(b4+b0))/(b9+(b4+b0)) 
REIP1 700+40*(((b3+b6/2)-b4)/(b5-b4)) 
REIP2 702+40*(((b3+b6/2)-b4)/(b5-b4)) 
REIP3 705+35*(((b3+b6/2)-b4)/(b5-b4)) 
RDVI (b7-b3)/sqrt(b7+b3) 
IF (2*b4-b2-b0)/(b2-b0) 
MSI b(11)/b7 
BGI b0/b2 
SR550/800 b2/b7 
GI b2/b3 
SR672/550 b3/b2 
SR675/700 b3/b4 
SR700 b0/b4 
SR700/670 b4/b3 
SR735/710 b5/b4 
PSSRc1 b7/b(1) 
SR800/550 b7/b2 
RVI b7/b3 
SR833/1649 b7/b(11) 
RDI b(12)/b9 
SRNir/700-715 b9/b4 
GRVI b9/b2 
DVI b9/b4 
SLAVI b9/(b4+b(12)) 
SIPI1 (b7-b0)/(b7-b3) 
SIPI3 (b7-b(1))/(b7-b3) 
GVI (-0.2848*b(1)-0.2435*b2-0.5436*b3+0.7243*b7+0.0840*b(11)-

0.1800*b(12)) 
TVI sqrt(((b4-b2)/(b4+b2))+0.5) 
TCI 1.2*(b4-b2)-1.5*(b3-b2)*sqrt(b4/b3) 
VARIrededge (b4-b3)/(b4+b3) 

 

Table S2.4: Classification accuracies obtained from running three different algorithms on 

sampled hyperspectral data.  
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Delineate
d crowns 
& ground 
70:30 
partition  

Method Pixel level Crown level 

Overall 
accurac
y 

Average 
user’s 
accuracy 

Average 
produce
r’s 
accuracy 

Overall 
accurac
y 

Averag
e user’s 
accurac
y 

Average 
producer’
s accuracy 

With dark-
pixel 
filtering  

LDA 0.71 0.71 0.72 0.86 0.86 0.86 
PLS-DA 0.87 0.86 0.87 0.90 0.89 0.92 
RF 0.82 0.82 0.82 0.86 0.84 0.87 

Without 
dark-pixel 
filtering 

LDA 0.77 0.76 0.77 0.81 0.82 0.82 
PLS-DA 0.92 0.90 0.90 0.95 0.96 0.96 
RF 0.83 0.83 0.85 0.90 0.89 0.93 

Averaged 
repeated 
flight data 
over pixel 

LDA 0.70 0.68 0.66 0.70 0.70 0.70 
PLS-DA 0.89 0.86 0.91 0.80 0.78 0.88 
RF 0.70 0.69 0.68 0.65 0.60 0.65 

 

S2.3 Eye-trained Sentinel 2 imagery using known pixel compositions.  

In an effort to evaluate the effectiveness of quick by-eye classification that can be 

implemented by volunteers in the context of ‘’Citizen Science”, we used high-resolution 

Google Maps and our knowledge of the area during the field trip to label sentinel pixels 

as belonging to one of the five classes. We then trained our candidate Sentinel 2 product 

as described in the chapter to determine the accuracy of such a method at mapping the 

species over the landscape.  We also trained the classifier on the second product which 

was mosaiced using a least cloudy pixel score from the Sentinel 2 image collection over 

06/2017 - 06/2018 (a total of 94 scenes). The month of the year of the selected pixel was 

added as a band. The idea behind this second product was to test if information taken 

from different seasons would improve the classification accuracy. While that was true for 

the by-eye trained dataset, it wasn’t true for the hyperspectral-derived training set (Table 

S2.3). By-eye training of random forest classifiers led to high accuracy in GEE (average 

accuracy of 0.89), however, when compared to classification done on georeferenced tree 

crowns the agreement between the maps were low (average accuracy 0.44). Considering 

both Sentinel 2 candidate products, training the random forest classifier on a stratified 

sample from the hyperspectral-derived classification map led to only to a 4% increase in 

overall accuracy at the pixel level (Table S2.3).  

Table S2.5: Accuracy of classifications of Sentinel-2 data using random forest modelling. 

Summer median vs yearly composite with random sampling and stratified sampling of the four 

species of interest. Numbers in bold are the maximum accuracy reached in each category. 

Background category not shown. 
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Sentinel 2 
image 

Training and 
validation 

Overall 
accurac

y 

User’s 
accuracy 

 

Producer’s 
accuracy 

 

Pn Ps Qf Qi Pn Ps Qf Qi 

Yearly 
composite 

(June 
2017-June 

2018) 

Eye-trained 
& validated 
on by-eye 

dataset 

0.93 

0.92 0.93 

0.9
2 

0.93 0.89 1 0.96 0.93 0.84 0.92 

Trained & 
validated on 

airborne-
classified 

map 

0.47 

0.46 0.46 

0.5
4 

0.56 0.54 0.42 0.44 0.61 0.56 0.44 

Eye-trained 
& validated 

on airborne-
classified 

map 

0.45 

0.45 0.48 

0.5
0 

0.65 0.32 0.43 0.45 0.68 0.54 0.28 

Summer 
median 
(June-
August 
2017) 

Eye-trained 
& validated 
on by-eye 

dataset 

0.86 

0.86 0.83 

0.9
4 

0.92 0.73 0.67 1 0.71 0.85 0.94 

Trained & 
validated on 

airborne-
classified 

map 

0.49 

0.51 0.50 

0.4
7 

0.59 0.59 0.28 0.46 0.67 0.53 0.44 

Eye-trained 
& validated 

on airborne-
classified 

map 

0.43 

0.43 0.46 

0.5
3 

0.58 0.50 0.32 0.39 0.63 0.57 0.23 

Trained & 
validated on 

airborne-
classified 

map – SRTM 
variables 
excluded 

0.49 

0.49 0.47 

0.4
6 

0.70 0.62 0.21 0.48 0.48 0.59 0.33 

 

S2.4 Composition agreement by looking at contingency matrix of 

MODIS size pixel composition 

Pixel composition from 100 m2 spaceborne-derived map and 100 m2 downscaled 

airborne-derived map were compared by constructing contingency tables per MODIS 

sized pixel, and the level of agreement resulting from matrix diagonals reported in 

percent (methodology and results demonstrated in Figure S2.1a). The similarity between 



186 

 

Supplementary information 2 

the maps ranged from 0 to 100% with an average of 64% and a mode of 100 % (Figure 

S2.1b).  

 

 

Figure S2.1 Accuracy of Sentinel 2 prediction over MODIS 250 m pixels in 

relation to plane-truth data. 
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Figure S2.2: Alto-Tajo species map derived from classified hyperspectral data to 

the left and multispectral setinel2 data to the right.  
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S2.5 Modelling MODIS pixel composition by looking at canopy cover 

Table S2.6: Logistic regression of species cover predicted from Sentinel-2 imagery vs 250-

m pixels  as a function of species covered airborne-derived pixel composition and 

summary metrics. 

∆AIC column reports the difference in AIC between the simple model and one with multiple 

explanatory variables backward-selected model. X = sqrt(airborne-derived tree cover); Y = total tree 

cover; Z = Number of Species;  W=oaks or pines (0) or both (1)  

Species Formula ∆AIC R2 

P. nigra - 3.96 + 5.65 X 0 0.53 
 - 1.75 + 3.51 X - 1.94 Y- 0.63 Z + 0.71 W+ 6.67 X:Y -53.8 0.60 
P. sylvestris - 3.51 + 7.23 X 0 0.52 
 - 3.80 + 4.95 X - 0.83 Y- 0.620 W+ 11.09 X:Y -34.65 0.56 
Q. faginea - 3.20 + 6.76 X 0 0.47 
 - 2.34 + 3.28 X - 3.40 Y+ 12.66 X:Y -4.72 0.50 
Q. ilex - 2.62 + 5.31 X 0 0.45 
 - 1.15 + 4.72 X - 3.35 Y- 0.37 Z + 0.80  W -51.8 0.53 

 

S2.6 Variable importance in random forest classification 

 

Figure S2.3: The ten most important variables in airborne data trained random 

forest classifier. PRI531/570: photochemical reflectance index 531 570, REP: red edge 

position linear interpolation, REIP3: normalized difference 1094 1205 leaf water, LWVI-

2: modified soil adjusted vegetation index hyper, REIP2: red edge inflexion point 2, 

MSAVIhyper: modified soil adjusted vegetation index hyper, reNDVI: red edge NDVI, 

PSNDb1: pigment specific simple ratio b1, SAVI: soil adjusted vegetation index, OSAVI: 

optimized soil adjusted vegetation index.  
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Figure S2.4: The ten most important variables in spaceborne data trained random 

forest classifiers in google earth engine. a) Variable importance in classifier which 

includes SRTM data vs b) classifier which trained on Sentinel 2 summer median product 

only.  
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S3.1 MODIS vegetation indices  

 

Figure S3.1: Spatial linear model result comparing predicted R2 of the time-series regressions 

between AWP and three MODIS-derived vegetation indices on a yearly basis. 

S3.2 Computing above-ground wood production 

Table S3.1: Predicting missing crown illumination index (CI) for recruited trees in the 
second FunDivEuope census.  
Reported are ∆AIC: difference in Akaike Information Criterion between the basic model and the 
model in question, ∆BIC: difference in Bayesian Information Criterion between the basic model 
and the model in question; and R2: the conditional pseudo-R2 computed for generalized mixed-
effect models using the “r.squaredGLMM” function from the “MuMIn” package in R. Model in bold 
was used to predict CI. 

Formulae evaluated against the linear model:  
 CI∼DBH+Height+SR+Composition+Species 

∆AIC ∆BIC R2 

CI∼DBH⨯Height⨯Composition+Species⨯Composition -288 -12 0.54 

CI∼DBH+Height+SR+Composition+Species+(1|PlotID) -210 -205 0.75 

CI∼DBH+Height+Species+(1|PlotID) -185 -243 0.77 

Table S3.2: Choosing equation for species biomass estimation.  
Reported are ∆AIC: difference in Akaike Information Criterion averaged across the four focal 
species between the basic model and the model in question, R2: the conditional pseudo-R2 
computed for generalized mixed-effect models using the “r.squaredGLMM” function from the 
“MuMIn” package in R. Model in bold was used to compute tree biomass. 

Formulae evaluated against the linear model:  
log(Biomass) ∼ log(DBH)+(1|Plot) 

∆AIC R2 

log(Biomass) ∼ log(DBH)+CI + Species richness+(1|Plot) -11.0 0.78 

log(Biomass) ∼ log(DBH)+CI + Functional composition +(1|Plot) -
12.30 

0.77 

log(Biomass) ∼ log(DBH)+CI + Functional richness+(1|Plot) -9.9 0.78 

S3.3 Determining significance of variables in maximum likelihood 

models.   

Table S3.2: Maximum likelihood models tested to determine the significance of canopy 
area, species proportions and diversity on AWP and LAI metrics.  
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Best model was selected based on AICc difference > -2. Best model was tested with variance fixed 
variance sigma and temporal variance σ1+ σ2⨯CA. 

Formulae  Variance 

y – b σ   or  σ1+ σ2⨯CA  
y – b⨯CA   σ   or  σ1+ σ2⨯CA  
y – b⨯CAa   σ   or  σ1+ σ2⨯CA 
y – b⨯CAa ⨯ (1+d⨯SRe)   σ   or  σ1+ σ2⨯CA 
y – b⨯CAa ⨯ (1+c⨯Pp) σ   or  σ1+ σ2⨯CA 
y – b⨯CAa ⨯ (1+c⨯Pp) ⨯ (1+  d⨯SRe)   σ   or  σ1+ σ2⨯CA 
y – b⨯CAa ⨯ (1+c⨯Ppn +c1⨯Pps + c2⨯Pqf)  σ   or  σ1+ σ2⨯CA 
y – b⨯CAa ⨯ (1+c⨯Ppn +c1⨯Pps + c2⨯Pqf) ⨯ (1+d⨯SRe)    σ   or  σ1+ σ2⨯CA 

 

S3.4 Diversity effects on productivity and crown area.  

 

 
 
Figure S3.2 Plot basal area and Shannon index relationship to wood productivity and 
canopy area. 
a) Back-transformed fit between AWP, basal area, and Shannon index. Light blue and dark blue 
curves represent respectively the predicted fit at the minimum and maximum Shannon index for 
this dataset, and shaded areas are 95% confidence intervals. b) Back-transformed fit between 
canopy area and basal area.  

S3.5 Relating sensitivity to stability  

 

Figure S3.3: Relating stability to sensitivity in AWP (a) and LAI on average (b).  
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Maximum likelihood prediction for the relationship between stability and sensitivity. Dark 
shaded areas indicate 95% confidence intervals and light-shaded areas indicate prediction 
intervals (1 sd). 

S3.6 Relating AWP and LAI on average 

The net increase in leaf area was positively related to mean AWP in the matched sites (Figure 
S3.4a) (28 sites in total), however, we did not find differences related to species richness or 
proportions, which is probably due to the low number of samples. AWP sensitivity was also 
negatively related to LAI sensitivity, suggesting that forests whose wood productivity slowed the 
most during droughts had relatively tolerant canopies that maintain their leaf area (Figure S3.4b). 
The negative pattern is mostly driven by the extreme differences between Q. ilex and P. nigra as 
the difference between the predictions of M4 and M3 indicate (Figure 4.6b). These results suggest 
that drought-tolerant species such as Q. ilex, that do not lose much wood productivity, do not 
necessarily have a tolerant leaf area, and the opposite is true for species that keep their foliage 
but lose their productivity. 

 

Figure S3.4: Relating AWP and LAI on average. 
Maximum likelihood prediction for the relationship between AWP and LAI metrics. Dark shaded 
areas indicate 95% confidence intervals and light-shaded areas indicate prediction intervals (1 
sd). 
 

S3.7 Relative drought strength in the region. 

 



194 

 

Supplementary information 3 

Figure S3.5: Average relative water availability (SPEI 12 month time-scale) over the MODIS 

pixels in central Spain used in Chapter 4. Mapped change in SPEI1 from 2000 to 2018 from the 

linear trend over the SPEI1 time-series and extent of the area being studied as a small black 

rectangle. 

S3.8 Manual computation vs. automatic detection of resilience indices. 

 

 

Figure S3.6: Underestimation of resilience metrics when computed manually with a fixed one-

year pre- and post- drought measurement vs. automatic detection of sensitivity and recovery in 

ecosystem state variables. Solid lines are predicted fit from linear models and shaded bands are 

95% confidence intervals.  

S3.9 Spatial auto-correlation  

Moran's I on distance classes was computed for both the ground and satellite-derived 

variables as well as for model residuals using the “pgirmess” package in R (Giraudoux et al., 2018). 

Plotting Moran’s I allowed us to visualise the patterns of spatial auto-correlation in our datasets 

(e.g. Figure S3.7a and S3.7b) and in model residuals (e.g. Figure S3.7c and S3.7d). Spatial auto-

correlation for our two main variables, greenness and productivity became negative around 5 km. 

Buffer distances in which to construct the weighting matrix to be used in the spatial regression 

model (Figure S3.7) were tested between 300m and 7000m with 100 m increments; models with 
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the lowest AIC are reported below for two logarithmic models. Pixels/plots within the buffer area 

were assigned a weight equivalent to the inverse of their distance when computing their errors 

in the regression model, i.e. errors associated with pixels/plot which are further away would have 

a smaller weight in determining the relationship in question, while the error of pixels/plots lying 

outside the buffer distance would have a weight of zero. Functions “dnearneigh”, “nbdists”, 

“nb2listw”, “errorsarlm” from the packages “spdep” and “spatialreg” were used in sequence to run 

spatial regression models (Bivand et al., 2015; Bivand & Piras, 2019). Given the low number of 

plots at very small distances classes in the field inventory dataset, the spatial regression model 

did not significantly improve on the linear models in that dataset and was instead only used on 

the NDVI dataset.  

 
Figure S3.7:  Correlograms showing Moran's I vs. distance classes in meters for the average AWP 
(MgC ha-1  yr-1) in the FunDivEurope plots (a) and average NDVI in the MODIS pixels datasets (b). 
Red dots indicated significant positive auto-correlation (p<0.01). Correlograms showing Moran's 
I vs. distance classes in meters for model residuals in c) and d). 
 
Table S3.3: Spatial autoregressive model result. 

Model tested Pseudo-R2 
18 yr NDVI trend ~ Canopy Area% 0.53 
log(NDVI stability) ~ log(Canopy Area%)  0.53 
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Figure S3.8: Spatial autoregressive model prediction for the NDVI dataset  
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S4.1 Climate conditions 

We sampled trees in late June and early July of 2017, during the summer period. 

Depending on the cumulative timescale we look at, the standard precipitation 

evapotranspiration index indicates that this period was following a few months of 

moderately dry conditions (Figure S4.1a) or during a period of moderately dry conditions 

(Figure S4.1b) (Vicente-Serrano et al., 2010, 2017). 

 

Figure S4.1: SPEI over Alto-Tajo during fieldwork. 

S4.2 Tree level traits 

As stated in the paper, plots for this study were selected from a wider plot collection 

pertaining to the FunDivEurope project. To support our results, we evaluated tree-level 

traits collected by the project in 2011 (Figure S4.2).  
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Figure S4.2: Tree level traits: a) Diameter at breast height (DBH); b) height; and c) 

age of tree growing in mixed plot and monocultures, as taken from the FunDivEurope 

permeant plots data.  
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