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RN7SK small nuclear RNA controls bidirectional
transcription of highly expressed gene pairs in skin
Roberto Bandiera1, Rebecca E. Wagner2, Thiago Britto-Borges 3, Christoph Dieterich3, Sabine Dietmann4,

Susanne Bornelöv 5✉ & Michaela Frye 2✉

Pausing of RNA polymerase II (Pol II) close to promoters is a common regulatory step in RNA

synthesis, and is coordinated by a ribonucleoprotein complex scaffolded by the noncoding

RNA RN7SK. The function of RN7SK-regulated gene transcription in adult tissue homoeostasis

is currently unknown. Here, we deplete RN7SK during mouse and human epidermal stem cell

differentiation. Unexpectedly, loss of this small nuclear RNA specifically reduces transcription

of numerous cell cycle regulators leading to cell cycle exit and differentiation. Mechan-

istically, we show that RN7SK is required for efficient transcription of highly expressed gene

pairs with bidirectional promoters, which in the epidermis co-regulated cell cycle and chro-

mosome organization. The reduction in transcription involves impaired splicing and RNA

decay, but occurs in the absence of chromatin remodelling at promoters and putative

enhancers. Thus, RN7SK is directly required for efficient Pol II transcription of highly tran-

scribed bidirectional gene pairs, and thereby exerts tissue-specific functions, such as main-

taining a cycling cell population in the epidermis.
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Regulation of transcription is one of the most important
steps in gene expression to ensure coordinated cellular
behaviours and fate decisions. Transcription of all protein-

coding genes and many noncoding RNAs is carried out by the
RNA polymerase II (Pol II) complex1. To initiate transcription
and maintain elongation, the Pol II complex interacts with a
multitude of proteins and protein complexes1. Pol II often pauses
shortly downstream of transcription initiation sites before
beginning productive elongation to ensure proper 5′ capping of
nascent RNAs2,3, to prevent transcriptional re-initiation by
another Pol II enzyme4,5, and to maintain a nucleosome-free
promoter6,7. The paused elongation complex is stabilized by the
negative elongation factor (NELF) and DRB sensitivity inducing
factor (DSIF)8–10. Release of paused Pol II into productive
elongation requires the P-TEFb kinase complex and phosphor-
ylation of serine 2 of the Pol II C-terminal domain (CTD)11–15.

The activity of P-TEFb itself is regulated by a ribonucleopro-
tein complex containing RN7SK, a highly structured, abundant
non-coding RNA of 331 nucleotide length16. RN7SK is stabilized
by methyl phosphate capping enzyme (MePCE) at the 5′ end and
La-related protein 7 (LARP7) at the 3′ end17,18. In the nucleus,
RN7SK regulates transcription by sequestering P-TEFb19,20,
which is expected to prolong Pol II pausing. Pol II pausing is a
common feature of gene regulation during development and
embryonic stem cell differentiation21–24, and orchestrates rapid
and dynamic changes in transcription, in particular of regulators
involved in signal transduction24–27. Despite the essential roles of
Pol II pausing during development and diseases28, the underlying
molecular roles of RN7SK in regulating the transcriptional pro-
cesses in adult tissue homoeostasis remains largely unexplored.
Depletion experiments in mouse embryonic stem cells revealed
impaired neuronal differentiation29, and identified RN7SK as
regulator of bidirectionally transcribed enhancers and transcrip-
tion termination30,31. However, the direct transcriptional func-
tions of RN7SK during cell differentiation have yet to be
identified.

Here, we characterized the functional role of RN7SK in adult
tissues using the mammalian epidermis, one of the best-
characterized epithelial tissues32. Depletion of RN7SK triggered
terminal differentiation through transcriptional repression of cell
cycle regulators causing cell cycle arrest. The downregulation of
genes was independent of chromatin changes in promoters and
enhancers. Instead, gene repression occurred at specific highly
expressed genes bidirectionally transcribed from exceedingly
open, accessible promoters. Thus, our work identifies a functional
role of the 7SK snRNP complex in regulating RNA synthesis
during cellular differentiation in adult skin.

Results
Rn7sk regulates epidermal cellularity. To investigate the func-
tion of 7SK in gene transcription, we generated two transgenic
mouse lines carrying floxed Rn7sk alleles (Fig. 1a). We either
targeted the Rn7sk gene including the TATA-box (Fig. 1a, Line 1)
or including the TATA-box and the proximal sequence element
(PSE) in the RNA Pol III promoter (Fig. 1a, Line 2). To remove
Rn7sk in the interfollicular epidermis (IFE) (Rn7sk cKO), the
mice were crossed to a transgenic line carrying an inducible
oestrogen receptor domain under the control of the keratin 14
promoter (Krt14:Cre-ERT2), targeting all undifferentiated basal
cells in the IFE. To visualize recombined cells, we included a
reporter transgene (Rosa26:TdTomato) (Fig. 1b).

Administration of 4-hydroxytamoxifen (4-OHT) for 2 weeks
efficiently removed Rn7sk in the epidermis (Fig. 1c, d; Fig. S1a−c,
upper panels). After two weeks, we measured a significant loss of
cellularity in the Rn7sk cKO epidermis (Fig. 1d, middle and lower

panels and Fig. 1e; Fig. S1d). To replace lost epidermal cells, skin
often induces wound healing processes. Indeed, we measured
increased proliferation and upregulation of the injury marker
keratin 6 (K6) after four weeks of 4-OHT treatment (Fig. 1f;
Fig. S1d−g). We observed the same phenotype when we deleted
Rn7sk during skin morphogenesis starting from postnatal day 4
(P4) (Fig. 1g−i). Unexpectedly, one month after the last 4-OHT
application, the skin returned to normal despite the complete
absence of Rn7sk in the epidermis (Fig. S1h, i).

To test whether Rn7sk was essential for skin development, we
generated Rn7sk knockout mice by crossing animals to a Sox2:Cre
transgenic line33, in which Cre recombinase is expressed in the
inner cell mass, leading to total Rn7sk-deletion. Complete absence
of Rn7sk was sublethal (Fig. S1j), but the surviving offspring was
phenotypically normal, including the skin morphology (Fig. S1k).

We concluded, that acute deletion of Rn7sk in mice reduced
epidermal cellularity in the short term, yet this effect was
compensated in vivo via a mechanism that resembled a wound
healing process (Fig. 1j).

Ablation of RN7SK enhances epidermal cell differentiation. To
confirm that the reduction in epidermal cellularity was a direct
consequence of RN7SK-deletion, we repressed RN7SK in primary
human keratinocytes, a well-characterized in vitro model for IFE
cells34. To reduce RN7SK expression, we used three different
siRNAs targeting RN7SK and one against LARP7 (Fig. S2a−c).
LARP7 is essential for stabilizing RN7SK17. Of all siRNAs tested,
siRNA5 reduced RN7SK most efficiently and was used through-
out this study (Fig. S2b).

To evaluate the cellular effects of reduced RN7SK levels in
human epidermal cells. We performed colony-forming assays and
skin reconstitution tests on de-epidermized dermis35 (Fig. 2a–c).
The colony-forming efficiency of RN7SK-depleted cells was
significantly reduced (Fig. 2a, b), and their ability to reconstitute
a multi-stratified epithelium ex vivo was abolished (Fig. 2c).
These results are in line with the loss of cellularity observed in our
RN7SK cKO mouse epidermis after 2 weeks of 4-OHT treatments
(Fig. 1d, e).

Next, we analyzed the consequences of RN7SK-depletion on
keratinocyte differentiation. We induced the terminal differentia-
tion programme by calcium induction, the best-studied pro-
differentiating stimulus for keratinocytes (Fig. 2d)36. While
expression of the undifferentiation marker ITGA6 decreased
two-fold, terminal differentiation markers (INV, TGM1)
increased more than five-fold in absence of RN7SK (Fig. 2e, f).
RN7SK-depletion also phenotypically enhanced terminal differ-
entiation by inducing the formation of a stratified epithelium in
culture (Fig. S2d, e). The increase in differentiation was
confirmed using three different RN7SK siRNAs and a siRNA
targeting LARP7 (Fig. 2g). We concluded that deletion of RN7SK
caused epidermal cell differentiation.

RN7SK maintains robust transcription of highly expressed
genes. To understand the underlying molecular mechanisms
leading to epidermal differentiation, we first tested how the
ablation of RN7SK affected global transcription. ChIP-sequencing
experiments confirmed a slight but significantly lower RNA Pol II
occupancy at transcription start sites (TSS) after RN7SK knock-
down (Fig. 3a). Calculation of the pausing index (number of reads
+250 base pairs around the TSS divided by the number of reads
across the rest of the gene body) indicated that ablation of RN7SK
moved Pol II from initiation into elongation (Fig. 3b). A reduc-
tion of Pol II pausing was further confirmed by a two-fold
increase in serine 2 phosphorylation levels at its C-terminal
domain (CTD) in the absence of RN7SK (Fig. 3c, Ser2), which is
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required for productive elongation37. In contrast, transcription
initiation requires phosphorylation at serine 5, and we measured
no differences in RN7SK-depleted cells (Fig. 3c, Ser5). We con-
cluded that depletion of RN7SK removed Pol II from the tran-
scriptional start sites.

If loss of RN7SK decreased Pol II pausing, RNA synthesis
should be enhanced. However, when we profiled newly
transcribed metabolically labelled RNA (4SU-seq) (Fig. S3a)38,
we unexpectedly measured a global decrease of nascent RNAs at
TSSs in the absence of RN7SK (Fig. 3d). This decrease of 4SU-
labelled RNAs was driven by robust gene-specific repression of

highly transcribed genes (Fig. 3e, f). In contrast, the overall
nascent transcript levels remained unchanged (Fig. S3b). Coun-
terintuitively, both up- and downregulated genes exhibited a
reduction in the pausing index when RN7SK was depleted
(Fig. S3c, d).

To confirm that loss of RN7SK inhibited rather than induced
transcription, we first identified all common differentially
transcribed genes in two independent 4SU RNA-sequencing
datasets (Fig. 3g; Fig. S3e−g). Then, we asked whether the
differences in new transcription were also found at mature
mRNA levels (Fig. 3h). Downregulation of nascent transcripts
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Fig. 1 Rn7sk regulates cellularity in the mouse epidermis. a Schematic representation of the targeted Rn7sk alleles in the two mouse lines generated. loxP
sites= black triangles; TATA= TATA box; PSE= proximal sequence elements; DSE= distal sequence elements. b Schematic representation of the
transgenes used to delete Rn7sk within the interfollicular epidermis (IFE). c Treatment regime of the experiment shown in (d). d Rn7sk RNA in situ
hybridization (brown; top panel), haematoxylin and eosin staining (H&E, middle panel) and KRT10 (K10; green) and KRT14 (K14; red) immunofluorescence
(bottom panel) of control (CTR) and Rn7sk knock-out (Rn7sk cKO) mice. e, f Quantification of skin area with reduced (red) (e) or increased (blue) (f)
epidermal cellularity at the indicated time points (n=mice). g Treatment regime of the experiment shown in (h, i). h H&E staining (top panel) and KRT10
(K10; green) and KRT14 (K14; red) immunofluorescence (bottom panel) of mice treated with 4-hydroxytamoxifen (4-OHT) as shown in (g). DAPI (blue):
nuclear counterstain (d, h). i Quantification of skin area with decreased (red; left panel) or increased (blue; right panel) epidermal cellularity in mice treated
as shown in (g) (n=mice). J Graphical summary of the data shown in (e, f, i). Mouse line 1 was used in (d, h, i). Pooled data from mouse lines 1 and 2 are
shown in (e, f). Scale bar: 10 μm (d, h). Shown is mean. Multiple two-tailed unpaired t-tests. Exact p-values are indicated. Source data are provided as a
Source Data file.
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correlated with reduced levels of total RNA after 24 and 48 h of
RN7SK knockdown (Fig. 3h, lower panel). In contrast, upregu-
lated nascent transcripts only modestly increased on total RNA
level (Fig. 3h, upper panel). We concluded that RN7SK was
required for efficient transcription of a specific set of highly
expressed genes.

7SK-sensitive genes are characterized by bidirectional tran-
scription and open chromatin. In search of a mechanism
causing the transcriptional changes in RN7SK-depleted cells, we
first inspected the most upregulated newly transcribed RNAs
(Fig. S3h, left panel). Upregulated transcripts often contained
several alternative start sites (Fig. 3i, AKAP12, upper panel;
Fig. S3i), possibly leading to the accumulation of new transcript
reads over the gene body.

A noticeable feature of the most repressed transcripts was the
enrichment of sequence reads upstream of the TSS, indicating
antisense transcription (Fig. 3i, lower panel, CDT1; Fig. S3j). To
test whether the downregulated transcripts were commonly
bidirectionally transcribed, we quantified all antisense sequence
reads. Only downregulated nascent RNAs contained a higher
number of antisense transcripts when compared to all genes
(Fig. 3j). Using CAGE sequencing data from the FANTOM
project, we confirmed that the downregulated genes were twice as
likely to have a bidirectional promoter when compared to all
genes (p= 3e−5, Fisher’s exact test) in human epidermal cells
(Fig. 3k). Moreover, ATAC sequencing data from human
keratinocytes39 revealed that the corresponding promoters were
highly accessible, even more so than promoters of upregulated
genes (Fig. 3l, m; Fig. S3k). Thus, deletion of RN7SK specifically
reduced transcription from bidirectional promoters of highly
expressed genes marked by open and accessible chromatin.

7SK regulates bidirectional transcription of highly expressed
gene pairs. At bidirectional promoters, Pol II initiates tran-
scription divergently from a central promoter and undergoes
promoter-proximal pausing into both directions40–42. We hypo-
thesized that RN7SK may be required to organize the symmetry
of Pol II bidirectional transcriptional initiation. To test this
hypothesis, we first determined all protein-coding genes having
another protein-coding gene upstream in sense (ss) or anti-sense
(as) direction less than 1 kb away (Fig. 4a). As an additional
control, we performed the same analysis searching for down-
stream genes (Fig. 4a). We discovered that 7SK-sensitive genes
were about three times more likely to have an upstream anti-
sense gene (3.1-fold in 4SU and 2.4-fold in total RNA sequencing
datasets) (Fig. 4b). We also observed a significant enrichment of
downstream genes in sense direction, albeit to a lesser extent
(Fig. 4c).

Bidirectional gene pairs are often co-expressed and transcrip-
tion is initiated in both directions through shared regulatory
elements43. When we asked whether the anti-sense orientated
gene pairs were co-regulated, we found a correlation for some but
not all gene pairs (Fig. 4d, e). The co-regulation was more
pronounced when the upstream anti-sense gene was also highly
expressed (Fig. 4f). RNA levels of lower expressed upstream anti-
sense genes remained largely unchanged (Fig. 4g). Bidirectional
promoters often co-regulate expression of genes that function in
the same biological pathway44–46, or coordinate expression
through different timepoints, such as genes involved in DNA
repair and the cell cycle47,48. Indeed, protein-coding genes
containing an upstream anti-sense gene in close proximity
(<1 kb) were enriched in regulating DNA repair, cell cycle, and
RNA metabolism (Fig. 4h). Notably, significantly downregulated
transcripts in the absence of RN7SK were similarly enriched for
genes involved in DNA repair and cell division (Fig. 4i). One
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well-known gene cluster regulated by bidirectional transcription
contains histone genes, where bidirectional promoters are used to
maintain stoichiometry49–51. Accordingly, a quarter of all
repressed nascent transcripts in the absence of RN7SK were
histone genes (Fig. S4a, b). We concluded that RN7SK was
required for efficient bidirectional co-expression of highly
expressed gene pairs.

RN7SK-mediated gene repression is not caused by changes in
chromatin. Since RN7SK regulated epidermal cellularity in
mouse, we more closely investigated how transcription of cell
cycle genes was affected. We selected consistently downregulated
genes (CDK1, CDC25c, CDC45, and MCM10) and confirmed
their significant reduction as early as 12 h after RN7SK-depletion
(Fig. S4c). Upregulated genes remained largely unaffected within
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24 h of RN7SK knock-down (Fig. S4d). The repression of cell
cycle regulators in the absence of RN7SK was confirmed in three
other independent human keratinocyte lines (Fig. S4e), and we
obtained similar results when using two different RN7SK siRNAs
(205 and 207) or a siRNA targeting LARP7 (Fig. S4f). Because we
found a slight reduction of global Pol II occupancy at transcrip-
tional start sites, we confirmed that GAPDH, used for normal-
ization, was not significantly repressed in any condition
(Fig. S4g). Furthermore, co-expression of a wild-type or mutated
version of human RN7SK (not targeted by siRNA 5) in RN7SK
knock-down cells, prohibited efficient downregulation of cell
cycle regulators (Fig. S4h, i). Since not all genes rely on P-TEFb
activity for transcription52, we also confirmed that inhibition of
P-TEFb with 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole
(DRB) caused downregulation of the four cell cycle regulators
(Fig. S4j). Thus, our data revealed that removal of RN7SK in
primary human epidermal cells directly repressed cell cycle genes.

We next asked whether loss of RN7SK correlated with the
formation of repressive chromatin at transcriptional start sites of
these cell cycle regulator genes6,53. However, when we depleted
RN7SK, nucleosome positioning around the TSS remained
unaltered (Fig. 5a−d). Our results excluded chromatin remodel-
ling at the TSS, yet high levels of RN7SK occupancy have also
been reported at active enhancers, where it limits enhancer-RNA
transcription31. However, ChIP-sequencing experiments for two
histone modifications commonly found at putative enhancers and
promoters (H3K4Me1, H3K27Ac)54, revealed no differences in
occupancies (Fig. 5e−j; Fig. S5a, b). Thus, 7SK-driven gene
expression appeared to be independent of chromatin remodelling
at promoters and putative enhancers.

RN7SK orchestrates mRNA synthesis and splicing. Next, we
investigated whether mis-regulation of bidirectional transcription
was sufficient to explain the epidermal phenotype caused by
RN7SK-depletion. We asked how the loss of RN7SK affected
mRNA processing and degradation for two reasons. First,
downregulated genes were more likely to have another down-
stream sense-strand gene in close proximity (<1 kb) (Fig. 4c).
Second, 7SK has been described to prevent transcription down-
stream of polyadenylation sites30. To determine whether RNA
synthesis, processing, or degradation was the most prevalent RNA
metabolic pathways affected by depletion of RN7SK, we used
INSPEcT, a tool that integrates intronic and exonic signals from
nascent and total RNA-seq data to derive the rates of pre-mRNA
synthesis, processing, and mature mRNA degradation55,56. In

both independent RNA sequencing datasets, RNA synthesis was
most affected by depletion of RN7SK (Fig. 6a−d; Fig. S6a−d).
Since mRNA syntheses take place in the nucleus, we confirmed
the downregulation of genes in the nucleus as early as 18 h after
RN7SK depletion (Fig. 6e).

Since some gene expression changes were predicted to be
caused by RNA processing and degradation, we tested how
RN7SK-depletion affected splicing. Indeed, we found increased
intron retention levels in downregulated genes in both RNA and
4SU sequencing datasets (Fig. 6f, g). Using rMATS to identify
alternative splicing events genome-wide57, we revealed exon
skipping as the most prevalent splicing differences (Fig. 6h;
Fig. S6e). The splicing differences were consistent in both
independent RNA sequencing datasets, but the overlapping genes
were not enriched in cell cycle regulation, DNA repair, or
chromosome organization (Fig. 6i−k; Fig. S6f−h). Thus, RNA
synthesis and splicing were likely to be regulated by independent
mechanisms involving 7SK.

Terminal differentiation is the consequence of cell cycle arrest
in the absence of RN7SK. To understand the molecular
mechanisms causing terminal differentiation in the absence of
RN7SK, we transcriptionally profiled undifferentiated and
calcium-differentiated epidermal cells (Fig. S7a). Several lines of
evidence indicated that loss of RN7SK- and calcium-induced
differentiation were two distinct regulatory processes. First, the
number of differentially expressed genes in response to deletion
of RN7SK was three-fold larger than transcriptional changes
induced by the calcium-switch alone (Fig. S7b). Second, the dif-
ferential gene expression profile of RN7SK knock-down cells in
calcium-low and -high conditions overlapped by more than 70%
(Fig. S7b). Third, while both calcium-induced differentiation and
RN7SK-depletion increased expression of genes involved in epi-
dermis differentiation (Fig. 7a; Fig. S7c), only RN7SK depletion
repressed cell cycle genes (Fig. 7b; Fig. S7d).

Since cell-cycle withdrawal is an early hallmark of skin
differentiation that occurs already in the undifferentiated basal
epidermal compartment58, we asked whether cell cycle arrest
explained the induction of terminal differentiation in the absence
of RN7SK. Indeed, RN7SK-depleted cells accumulated in G2/M
phase of the cell cycle 48 h after siRNA transfection (Fig. 7c, d;
Fig. S7e). Cell cycle arrest was confirmed in four independent
epidermal lines, yet one line arrested in G1 (Fig. 7d; Fig. S7f). As
expected, the cell cycle was also affected by calcium-induced
differentiation (Fig. S7g). We further confirmed a reduction of

Fig. 3 RN7SK knockdown induces robust repression of highly transcribed genes. a Metagene plot of RNA Pol II occupancy across protein-coding genes
in control (Ctr) siRNA (grey) and RN7SK siRNA (red) transfected cells. Normalization was done using all unchanged genes in Ctr and RN7SK siRNA
transfected cells. The first 1000 and last 500 bases of the transcript are shown unscaled, the region between has been scaled to the same length. Two-
tailed unpaired t-test between Ctr and RN7SK signal at the TSS. b Plot of RNA Pol II pausing index in primary human keratinocytes transduced with Ctr or
RN7SK siRNAs. Each dot represents one gene. cWestern blot for RNA Pol II Phospho-Serine 2 (Ser2), Phospho-Serine 5 (Ser5), and the C-terminal domain
(CTD). VCL: vinculin. Representative blot of two independent transfections. d–f Metagene plots of 4SU sequencing read across all genes (d) and
significantly (padj < 0.05; Wald test with FDR correction) downregulated or upregulated new transcripts (e, f) around the transcription start site (TSS).
g Cumulative relative (Rel.) frequency of sequence read counts of all genes (grey) or up- (orange) or down- (blue) regulated new transcripts. h Correlation
of significantly (padj < 0.05; Wald test with FDR correction) up- (upper panel) or downregulated (lower panel) new transcripts with total RNA levels after
24 (grey) and 48 (up: red; down: blue) hours (h) after RN7SK knockdown. Highlighted examples are shown in (i). i UCSC genome browser shots of 4SU
and total RNA sequencing reads of AKAP12 (upper panel) and CDT1 (lower panel). j Metagene plots of antisense reads of upregulated (upper panel) and
downregulated (lower panel) 4SU sequencing reads around the transcriptional start site (TSS) compared to all genes (dotted lines) in control (Ctr) and
RN7SK-depleted cells. n= genes in (d–h, j). k Percent of genes with antisense transcription in the first 100 nucleotides opposite to the TSS of up- (red),
downregulated (blue) genes in 4SU RNA seq dataset, or all genes (grey). l Density plot showing ATAC seq normalized reads at transcription TSSs of up-
(red) or downregulated (blue) genes in 4SU RNA seq dataset at 24 h. Grey band: 99.9% confidence interval (CI). m Heat maps showing ATAC seq signal
at TSS of up- (top) or downregulated (bottom) genes in 4SU RNA seq (padj < 0.05; Wald test with FDR correction, Log2Fc > 0.3). Source data are provided
as a Source Data file.
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Fig. 4 7SK orchestrates bi-directional transcription of highly expressed gene pairs. a Illustration of the analyses shown in (b, c). b, c Distance (upper
panels) and frequency (lower panels) of genes with upstream (b) or downstream (c) antisense (as) (left panels) or sense (ss) (right panels) genes within
1000 bases (1 kb) distance (grey dotted box). Up- (orange) and down- (blue) regulated genes were defined based on two independent 4SU and total RNA-
seq datasets. All (grey)= all protein-coding genes; Up= genes with log2FC > 0.3 and padj < 0.05; Down= genes with log2FC <−0.3 and padj < 0.05
(Wald test with FDR correction). The Up and Down groups were compared to all protein-coding genes. Violin plots show the median and interquartile
range and width indicating frequency (b, c upper panels). P-value calculation (see “Methods”). d Correlation of RNA levels of downregulated genes with
their upstream as genes shown as average log2 fold-changes (FC) in two independent 4SU (left panel) and total RNA (right panel) sequencing datasets.
P-value tests slope deviation from 0. e–g UCSC genome browser shots of bi-directional repressed DTL and its upstream anti-sense gene partner INTS7 (e).
RNA levels (reads) of new transcripts of downregulated genes (padj < 0.05; FC <−0.5; n= 485) with bi-directional as gene less than 1 kb away and more
than an average of 5 reads (n= 36 genes) (f) or less than 5 reads (n= 33 genes) (g) in upstream antisense (dark blue) or downstream sense (light blue)
directions in control (ctr) siRNA transduced cells. h Reactome of all bi-directionally orientated gene pairs less than 1 kb apart. i Gene ontology analyses
using all common significantly (padj < 0.5; Wald test with FDR correction) downregulated genes in the 4SU RNA seq datasets. Background: all expressed
genes. Source data are provided as a Source Data file.
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cell cycle genes in RN7SK cKO mouse epidermis (Fig. 7e). We
concluded that downregulation of cell cycle genes leading to cell
cycle arrest induced terminal differentiation of RN7SK-lacking
epidermal cells.

To prove that the cell cycle changes were directly caused by loss
of RN7SK, we re-expressed a wild-type or mutated RN7SK
construct in a RN7SK-depleted human epithelial cancer line
(FaDu) (Fig. 7f). As expected, cell cycle regulators were down-
regulated in the absence of RN7SK (Fig. S7h). Yet, re-expression
of wild-type and mutated RN7SK in these depleted cells
prohibited the accumulation of cells in the G2/M phase of the
cell cycle (Fig. 7g). We concluded that epidermal cells required
RN7SK to coordinate the expression of cell cycle genes, and
disruption of this co-regulation stimulated terminal differentia-
tion processes through cell cycle exit.

In summary, our data demonstrated that the 7SK snRNP
complex orchestrates efficient transcription of highly expressed
bidirectionally transcribed gene pairs potentially by tethering Pol
II to the transcriptional start sites. Loss of RN7SK in the
epidermis specifically represses cell cycle genes causing cell cycle
arrest and thereby stimulates differentiation, a process that was
reversible in vivo.

Discussion
Here, we investigated the transcriptional roles of Rn7sk in adult
tissues, using the epidermis as a model system. We show that
human RN7SK sustained Pol II activity at highly expressed

bidirectionally transcribed gene pairs. Although the 7SK ribo-
nucleoprotein complex regulates P-TEFb activity, we find no
evidence that RN7SK-depletion enhances RNA synthesis due to
an increased release of Pol II. However, previous studies identified
an inhibitory effect of 7SK on P-TEFb in response to stress such
as ultraviolet radiation19,20, while uninduced cells showed little
changes in global transcription upon RN7SK-depletion59. Thus,
the release of P-TEFb from 7SK upon stress might rather reflect
the transcriptional reprogramming upon the stress signal than a
general inhibitory role of the complex on transcriptional
elongation.

Our finding that RN7SK was required to maintain robust
bidirectional transcription of highly expressed gene pairs implies
a structural role for 7SK at promoters with complex and high
turnover of Pol II. An unexpectedly high RNA Pol II turnover has
also been reported at paused promoters60. We propose that the
7SK ribonuclear complex tethers P-TEFb and other transcrip-
tional regulators to highly transcribed bidirectional promoters to
regulate Pol II activity. Our data confirm that bidirectionally
transcribed genes often regulate DNA repair, cell cycle, and RNA
metabolism, a highly efficient way of coordinating the expression
of genes acting in the same cellular response pathway44–48. For
instance, out of 120 examined human DNA repair genes, 42% are
arranged in a bidirectionally divergent configuration with tran-
scription start sites less than 1 kb apart48.

In epidermal cells, cell cycle regulators and histones genes were
amongst the most sensitive genes to RN7SK-depletion. Histone genes
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are bidirectionally transcribed to maintain stoichiometry49–51. As a
consequence, depletion of RN7SK induced epidermal cells to exit the
cell cycle and undergo differentiation. However, in vivo, this loss of
cellularity was later compensated by a wound-like response. The
different phenotype in response to RN7SK-depletion in vitro versus
in vivo can be explained by our finding that RN7SK affects tran-
scription gene-specifically, thereby regulating cell context-specific

functions. For instance, in response to acute deletion of Rn7sk in
mouse skin, cycling epidermal populations will trigger the terminal
differentiation programme due to a synchronized cell cycle exit.
However, the cell cycle regulators are still expressed, albeit with lower
levels. The overall reduction of cell cycling might lead to a slightly
lower, yet sustainable, epidermal turn-over. In contrast, deletion of
Rn7sk in mouse embryonic stem cells specifically repressed a different
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cohort of transcriptionally poised genes with bivalent or activating
chromatin marks30. Embryonic stem cells display unique cell-cycle
features with a prolonged S-phase but truncated G1 and G2 phases61.

Although chromatin changes are known to influence Pol II
pausing62,63, we detected no epigenetic changes at promoters or
enhancers in the absence of RN7SK. However, we cannot exclude
a faster transcription elongation rate due to the absence of tightly
controlled Pol II activity, which might cause impaired splicing
leading to RNA decay. Increased RNA Pol II elongation rates can
affect co-transcriptional splicing and splicing efficiency, which
then compromises splicing fidelity64.

In summary, our work demonstrates that the precise co-
ordination of highly expressed bidirectional gene pairs required
the 7SK ribonuclear complex for epidermal homoeostasis.

Methods
Mice. All mice were housed in the Wellcome Trust-Medical Research Council
Cambridge Stem Cell Institute Animal Unit. All mouse husbandry and experiments
were carried out in compliance with the Animals (Scientific Procedures) Act 1986

following ethical review and approval by the University of Cambridge Animal
Welfare and Ethical Review Body (AWERB) under the terms and conditions of the
UK Home Office licences PPL80/2619 and PPLP36B3A804.

Generation of the Rn7sk cKO transgenic lines. All transgenic lines were bred on
a mixed background (F1 of B6SJL x CBA). To generate Rn7sk conditional knockout
mice (cKO), we produced targeting vectors by BAC recombineering65. To generate
the homology arms BACS bMQ337m02 and bMQ215m24 (Source Bioscience)
were used. We generated two targeting vectors, which differ for the position of the
loxP site located at the 5′ end of the Rn7sk gene locus, whereas the 3′ end loxP site
was in the same position in both constructs. In line 1, the 5′ loxP site was located
between the TATA Box and the proximal sequence element (TATA and PSE,
respectively) of the Rn7sk promoter (RNA Pol II promoter). In line 2, the 5′ loxP
site was instead positioned between the PSE and the distal sequence element (DSE).
Both lines showed the same phenotype. If not otherwise stated, all displayed data
were obtained from line 1.

E14 mouse embryonic stem cells were targeted by homologous recombination
with the Rn7sk cKO targeting vector. After 10 days in the selection medium
containing G418, around 100 clones per construct were picked and screened by
PCR for integration of both 3′ and 5′ arms. Three double-positive clones per
construct were injected into blastocysts derived from C57BL6 females. Chimeric
offspring was mated with C57BL6 mice and agouti F1s were genotyped for the
presence of the targeted Rn7sk allele. One line per construct was further mated with
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Fig. 7 Cell cycle exit causes differentiation in RN7SK-depleted epidermal cells. a, b Gene ontology analysis of up- (red; a) or downregulated (blue; b)
genes (padj < 0.001; log2FC > or < 0.75) in response to RN7SK knock-down in human keratinocytes grown in calcium low (Calow; light bars) or high (Cahigh;
dark bars) conditions. c, d Cell cycle profiles of primary human keratinocytes (c) and quantification of percent of cells in the different phases of cell cycle
(d) after 12, 24, or 48 h in control or RN7SK siRNA treated cells (n= 5 transfections). Data are presented as mean values ±SD. e RT-qPCR for five cell cycle
regulators in mouse epidermis of control (black) or RN7SK cKO (blue; mouse line 1) animals treated for 2 weeks with 4-OHT. f RN7SK levels after
repression (siRN7SK) in control empty vector (Ctr; red border) transfected cells or cells over-expressing wild-type (WT; dark blue border) or mutated
(MUT; light blue border) RN7SK constructs in an epidermal cancer line (FaDu) (n= 4 transfections). g Quantification of RN7SK-depleted cells in G1/G0-,
G2/M- and S-phase of the cell cycle in the presence of an empty vector as control (Ctr_ev; red) or the wild-type (WT; dark blue) or mutated (MUT; light
blue) RN7SK construct. (n= 4 transfections). Shown is mean ±SD (d–g). Two-way ANOVA (multiple comparisons) (d, f, g). Multiple two-tailed unpaired
t-tests (e). Exact p-values are indicated. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26083-4

10 NATURE COMMUNICATIONS |         (2021) 12:5864 | https://doi.org/10.1038/s41467-021-26083-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


FLP mice to induce excision of the selection cassette to generate the Rn7sk flox/flox

mice. Mouse genotyping was performed by standard PCR (Supplementary
Table 1).

Generation of Rn7sk-knockout mice was achieved by mating Rn7sk/flox with
Sox2:Cre mice33 To achieve interfollicular epidermis (IFE) specific deletion of
Rn7sk, Rn7sk/flox mice were further crossed to Tg(KRT14-cre/ERT)20Efu/J mice
(Krt14:Cre-ERT in the text)66 and Gt(ROSA)26Sortm9(CAG-tdTomato)Hze

(Rosa26:TdTomato)67. To conditionally delete the Rn7sk gene in the IFE, the back
skin of mice was topically treated every second day for the indicated time with
200 μl of a 4-hydroxy-tamoxifen (Sigma Aldrich) solution of 14,28 mg/ml in
acetone.

Tissue processing and staining. The mouse epidermis was fixed overnight in 4%
paraformaldehyde, dehydrated in ethanol gradient followed by xylene, paraffin-
embedded, and then cut using a microtome into 5 μm thick sections. Before
staining, sections were deparaffinised in xylene and rehydrated in an ethanol
gradient. For immunostaining, antigen retrieval was performed by boiling the
sections for 20 min in sodium citrate solution, followed by blocking in 10% FBS in
PBS tween. Primary antibodies (Supplementary Table 2) were diluted in blocking
solution and incubated overnight at 4 °C. After washing three times in PBS, sec-
tions were incubated with the appropriate secondary antibody (Alexa fluor-con-
jugated; Thermo Fisher Scientific) diluted 1:500 in PBS tween and DAPI when
indicated. After washing slides were then mounted in a 1:1 solution of PBS and
Glycerol. For RNA in situ hybridization of Rn7sk, an RNAscope probe (ACD bio)
was used following manufacturer instructions. Images were acquired with an
Axioplan2 microscope (Zeiss).

Quantification of epidermal cellularity. Epidermal cellularity was quantified on
images of large areas of HE stained sections using ImageJ (FIJI). Epidermal cel-
lularity was considered normal when a continuous single layer of nuclei was fol-
lowing each other; reduced if gaps were present between nuclei, increased if more
than one layer of nuclei was present. Data are represented as the percentage of the
skin surface that fell into each category.

Quantification of epidermal proliferation. To quantify IFE proliferation, sections
of mouse skin were stained with Ki67 antibody as described above. Images were
processed with Volocity (Perkin Elmer). The entire IFE or only the basal layer was
manually selected for analysis. The software was asked to identify nuclei on the
DAPI channel and then to identify how many of those had also a positive signal in
the Ki67 channel to identify the percentage of Ki67+ cells.

Cell culture, transfection, and infection. Unless otherwise stated, neonatal pri-
mary human keratinocytes (ScienCell; #2100) were cultured in KGM gold (Lonza)
or EpiLife added with human keratinocytes growth supplements (Thermo Fisher)
in presence of 0.06 mM CaCl2 and without the addition of antibiotics, in a
humidified incubator at 37 °C with 7% CO2. To induce differentiation, the calcium
concentration was raised to 1.2 mM. siRNAs were transfected using Lipofectamine
RNAi Max (Invitrogen), following manufacturer instruction using 1 μl of Lipo-
fectamine for each 0.6 μl of 10 μM siRNA. siRNAs were added to cells at a final
concentration of 10 nM (Supplementary Table 3). For P-TEFb inhibition, cells were
transfected with either control or RN7SK siRNAs and treated with 50 μM 5,6-
Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) (Sigma Aldrich) for the
last 6 h.

FaDu (HTB-43; ATCC) cells were grown in Eagles minimum essential medium
(ATCC) in the presence of Penicillin Streptomycin and 10% FBS, in a humidified
incubator at 37 °C with 5% CO2. siRNAs were transfected using Lipofectamine
RNAi Max (Invitrogen). Double the recommended concentration of lipofectamine
and siRNA were used, 2 μl of Lipofectamine for each 1.2 μl of 10 μM siRNA.
siRNAs were added to cells at a final concentration of 20 nM.

To over-express the wild-type or siRNA 5 resistant mutant RN7SK construct,
the full-length RNA was cloned into pSUPER (Addgene). The mutations were
generated by swapping three bases at position 226–228 from AAA to TTT and on
the opposite strand at position 246–248 from TTT to AAA (Fig. S2a).

To infect the wildtype and mutated RN7SK constructs into FaDu cells, Phoenix
A cells were cultured with DMEM (Thermo Fisher) supplemented with 10% FBS
(Lif Technologies), 1% non-essential amino acids (Life Technologies), 1%
glutamate (Fischer Scientific) and penicillin-streptomycin (Life Technologies).
These cells were transfected with 20 μg of plasmid (either an empty plasmid, or
containing wildtype RN7SK or RN7SK with a mutation preventing siRNA
targeting) using CaCl2 and HEPES Buffered Saline (HBS 2×) (Fischer Scientific).
FaDu cells were then transduced twice and polybrene (Sigma Aldrich) was added
to aid transduction. Twenty-four hours post transduction selection was started
using puromycin at a final concentration of 1 μg/ml. Cells were then cultured in the
presence of puromycin.

To infect human keratinocytes, the constructs were first transfected into
Phoenix E and the retroviral supernatants were used to stably infect AM12 cells.
Keratinocytes were infected by coculture with AM12 cells. AM12 cells were
removed and keratinocytes cultured in a defined medium were transfected with
siRNAs as described earlier.

Western blot. Proteins were extracted from a pellet of human primary kerati-
nocytes using RIPA buffer (50 mM Tris HCl pH 8.0, 150 mM NaCl, 1% Nonidet
P40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with complete protease
inhibitor and PhoSTOP (Roche). 50 μg of extracts were separated on 8% poly-
acrylamide gels and blotted onto nitrocellulose membranes. The membranes were
blocked 1 h in 5% milk in TBST buffer and incubated overnight at 4 °C with the
indicated antibodies. Next day they were washed in TBST and incubated 1 h at
room temperature with the appropriate HRP-conjugated secondary antibodies
(1:10,000 in PBS) washed three times in TBST. The bands were visualized after
incubation with ECL prime (Amersham).

Colony-forming assay. Keratinocytes cells were cultured in KGM gold with
0.06 mM CaCl for up to 24 h after transfection at which point they were seeded
onto mitomycin C-treated (Sima-Aldrich) (4 μg/ml for 2 h) 3T3-J2 (Kerafast)
mouse embryonic fibroblasts (500 cells in each 10 cm dish) and cultured in
complete low-calcium FAD medium (one part of Ham’s F12, three parts of
DMEM, 10% FBS, 18 mM adenine, 0.05 mM calcium, 0.5 mg/ml hydrocortisone,
5 mg/ml insulin, 0.1 nM cholera enterotoxin, and 10 ng/ml epidermal growth
factor) until colonies were clearly visible (about 3 weeks). The plates were fixed in
4% formaldehyde for 10 min, washed in PBS, and stained with 1% rhodamine B
and 1% nile blue in PBS for 20 min. After staining, the cells were washed in water
and imaged. Images were acquired with an Olympus ix 51 microscope with prior
XY stage, Z drive, DP72 camera, and Cell Sens software. The colony number was
manually quantified. Colony-forming assays were replicated twice.

Skin reconstitution on de-epidermized dermis (DED). Keratinocytes cells were
cultured in KGM gold with 0.06 mM CaCl for up to 24 h after transfection at which
point 4 × 105 cells were seeded onto de-epidermized human dermis (Addenbrookes
Tissue Bank) and cultured in a transwell at the liquid−air interface with complete
low-calcium FAD medium. About 3 weeks after seeding, the piece or reconstituted
skin was fixed overnight in 4% paraformaldehyde and processed as described in the
histology section. Skin reconstitution assays were replicated twice.

RNA extraction and RT-qPCR. RNA was extracted using TRIZOL reagent
(Thermo Fisher Scientific) following manufacturer instructions and quantified
using a Nanodrop. cDNA was synthesized from 1 μg of RNA using Superscript III
(Thermo Fisher Scientific) and following manufacturer instructions. RT-qPCRs
were performed using either Fast SYBR green master mix or Taqman fast universal
master mix (Thermo Fisher Scientific). Taqman probes were purchased from
Thermo Fischer Scientific (Supplementary Table 4). RT-qPCR results of target
genes were normalized to GAPDH or 18S rRNA (Mm03928990_g1).

For nuclear and cytoplasmic RNA extraction, human primary keratinocytes
were collected with trypsin, washed in PBS, centrifuged and the pellet was
processed with the NE-PER kit (Thermo Fischer Scientific) following manufacturer
instructions. Four replicates of each sample were processed, and the experiment
was performed twice.

For quantification of Rn7sk levels in mouse IFE, back skin was isolated from
Rn7sk cKO mice and was quickly snap frozen after fat was removed. Frozen skin
was then homogenized in TRIZOL reagent (Thermo Fisher Scientific) and RNA
was then extracted following manufacturer instruction.

Chromatin immmunoprecipitation. Epidermal cells were grown to 60–70% con-
fluency and transfected with control or RN7SK siRNA 5 (8 × 15 cm dishes per
siRNA). 18 h after transfection cells were fixed with 1% formaldehyde for 10 min at
room temperature. Cross-linking was terminated with 2.5 M glycine for 5 min. Cell
pellets were recovered by centrifugation at 1350 × g for 5 min at 4 °C. Cell pellets
were recovered and chromatin was isolated and sonicated for 17 cycles of 30 s with
an output of 30W, using an automated sonicator (3000; Misonix)68. Immuno-
precipitation was carried out overnight at 4 °C using 5 μg of H3K4Me1 (Abcam) or
10 μg of H3K27Ac (Abcam) or RNA Pol II N20 (Santa Cruz) antibodies previously
bound to Dynabeads protein G (Thermo Fisher Scientific). DNA-protein com-
plexes were eluted in 200 μl of elution buffer (50 mM Tris pH 8, 1 mM EDTA, 1%
SDS) by incubating at 65 °C with brief agitation every 2–3 min. Cross-links were
reverted both in the immunoprecipitated samples and the whole-cell extract,
separated from the sonicated material before immunoprecipitation, by incubating
overnight at 65 °C. DNA was then purified by phenol-chloroform extraction.
Libraries were prepared using NEXTflex Rapid DNA-Seq Kit (Bioo Scientific). Four
replicates per sample were sequenced on an Illumina HiSeq 2500 platform. Each
ChIP-seq experiment was performed once with four technical replicates per
sample.

Cell cycle profiling. Human primary keratinocytes and FaDu cells were collected
with trypsin, fixed in ice-cold 70% ethanol overnight. Next day they were cen-
trifuged, resuspended in PBS with DAPI, and analyzed with a LSRFortessa cell
analyzer (BD bioscience). Analysis of FACS data was performed using FlowJo
software (FlowJo LLC). G1, G0, S, and G2M peaks were manually delimited on the
405 nm histogram. Statistical analysis was performed in Prism (GraphPad
Softwares inc.).
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Metabolic RNA labelling and isolation. 4SU labelling and RNA isolation of newly
transcribed was performed as described in ref. 69. Briefly, for new RNA labelling
with 4SU human primary keratinocytes were cultured and transfected as described
above. At the indicated time point 4SU was added to the culture media at a
concentration of 583 μM for 10 min. After the indicated incubation time, cells were
quickly harvested by adding TRIZOL directly to the plates, and RNA was extracted
following the manufacturer protocol, followed by DNase treatment and phenol-
chloroform extraction. For isolation of 4SU labelled RNA, 80 μg of RNA were used
per replicate. The incorporated 4SU was biothinylated by incubating 1.5 h at room
temperature with EZ-link biothin-HPDP (Pierce) in biothinylation buffer (10 mM
Tris Ph 7.4, 1 mM EDTA). Biothinylated RNA was then purified by phenol-
chloroform extraction and loaded onto micro-MACS streptavidin columns (Mil-
tenyi biotech). After three washes with warm (65 °C) and three with room tem-
perature washing buffer (100 mM Tris pH 7.4, 10 mM EDTA, 1M NaCl, 0.1%
Tween 20), 4SU labelled RNA was then eluted directly into RLT buffer (Qiagen) by
adding twice 100 μl of 100 mM DTT (Sigma Aldrich) and processed using the kit
RNeasy MinElute (Qiagen), following manufacturer instructions.

MNase protection assay. Cells were collected with trypsin, quantified, and cen-
trifuged. The pellets were then lysed in 1 ml of NP-40 lysis buffer (10 mM Tris-HCl
pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.5% NP-40, 0.15 mM spermine, 0.5 mM
spermidine) per 106 cells on ice for 5 min. After centrifugation, the pellets were
then resuspended in MNase digestion buffer (10 mM Tris-HCl pH 7.4, 15 mM
NaCl, 60 mM KCl, 0.15 mM spermine, 0.5 mM spermidine), centrifuged, and
resuspended again in the same buffer supplemented with 1 mM CaCl2 and 120
units of MNase (New England Biolabs). Samples were incubated 30 min at 37 °C.
Digestion was stopped by adding an equal volume of one part of STOP buffer
(100 mM EDTA, 10 mM EGTA pH 7.5) and three parts of digestion buffer.
Nucleosomes were removed by proteinase K digestion. Monosomes were gel
extracted using the Gel extraction kit (Qiagen) and DNA was diluted to 5 ng/μl
prior to quantitative PCR. The signal of the PCR was normalized to total sonicated
DNA (Input) prepared as described in the ChIP section. Four replicates of each
sample were processed, and the experiment was performed once.

Statistical analysis. Quantified data are expressed as mean ± SD, unless otherwise
stated in the figure legends. Statistical significance between samples was assessed
using unpaired two-tailed Student’s t-tests with Welch’s correction unless other-
wise stated in the figure legends. For cell cycle profiles two-way ANOVA with
multiple comparisons was used. Quantitative data were analyzed using Excel and/
or Prism software, with the exception for sequencing data.

RNA library generation and sequencing. For RNA sequencing, RNA was
extracted from cells using TRIZOL (Thermo Fisher Scientific), following manu-
facturer instructions. After isolation, RNA was treated with turbo DNase (Thermo
Fisher Scientific) for 30 min at 37 °C. DNase was subsequently removed by phenol-
chloroform extraction. For total RNA sequencing at 48 h ribosomal RNA was
depleted using the Ribo-Zero kit (Cambio), following manufacturer instruction.
Ribo-depleted RNA was then processed with NEXTflex directional RNA-seq Kit
(dUTP-Based) v2 (bio Scientific), following manufacturer instructions. Four
replicates per sample were sequenced on an Illumina HiSeq 2500 platform. 4SU
RNA sequencing and total RNA sequencing at 24 h libraries were prepared using
the SMARTer Stranded Total RNA-Seq Kit, Pico Input Mammalian kit (Takara
biotech), following manufacturer instructions. Four replicates per sample were
sequenced on an Illumina HiSeq 4000 platform. Each experiment was performed
once with four technical replicates per sample.

RNA-seq analysis. Paired-end RNA-seq reads (for 4SU and total RNA) were quality-
trimmed using Trim Galore!, and mapped to the human reference genome (GRCh37/
hg19) using TopHat2 with the parameters “--max-multihits 1 --read-mismatch 2 --b2-
sensitive”. Ensembl (release 74) gene models were used to guide alignments with the
“-GTF” option. Read counts for genes or first exons were obtained using featureCounts
with the parameters “-p -s 1 -O --minOverlap 10 -B -C”. Read counts were normalized,
and the statistical significance of differential expression between RN7SK and WT was
assessed using the R Bioconductor DESeq2 package. To also identify a set of sig-
nificantly unchanged genes for the Pol II ChIP-seq normalization, we did a separate
analysis under the null hypothesis that log2FC > 0.3. Gene counts - normalized by
DESeq2 size factors - were subsequently normalized by their effective transcript length/
1000, and log2-transformed. Effective transcript lengths were obtained with feature-
Counts. Gene ontologies were calculated using the EnrichR online tool at http://amp.
pharm.mssm.edu/Enrichr, selecting GO biological process 2015 or 2018, g:Profiler at
https://biit.cs.ut.ee/gprofiler/gost or GOrilla at http://cbl-gorilla.cs.technion.ac.il using all
transcribed genes as a background.

ChIP-seq analysis. Single-end ChIP-seq reads for PolII, H3K27ac, H3K4me1
ChIP, and WCE (whole-cell extract) were quality-trimmed using Trim Galore!, and
reads were mapped to the human reference genome (GRCh37/hg19) using bowtie
with the parameters “-m 1 -v 2” to generate unique sequence alignments. Potential
PCR duplicates were removed with MACS2 ‘filterdup’. Narrow peaks for H3K27ac
versus WCE control were called by using MACS2 ‘callpeak’ with parameters “-B

--call-summits -q 0.05”; broad peaks were called for H3K4me1 versus WCE control
with parameters “--broad --broad-cutoff 0.05”. The overlapping peaks for the
replicates were merged using bedops (option -m).

Bioinformatics analyses. Genome browser shots and metagene profiles were
prepared using DeepTools. For this, the aligned reads were converted to bigWig
using bamCoverage. The Pol II ChIP-seq data was processed with the following
parameters: “--binsize 1 --ignoreForNormalization chrM --extendReads 150
--centerReads --normalizeUsingRPKM”. Read coverage per scaled gene was cal-
culated using computeMatrix with the parameters “scale-region --binSize 10 -b
1000 -a 500 --regionBodyLength 500 --unscaled5prime 1000 --unscaled3prime
500”. The regions were defined by the start and end coordinates of all protein-
coding genes (Gencode v19). To remove differences caused by variation in ChIP
efficiency, we normalized each library using a set of 199 high-expressed genes that
were unchanged in RN7SK knock-down in total RNA-seq (details in the RNA-seq
analysis section). Specifically, we first subtracted the mean baseline signal across the
gene body of those genes (excluding the regions closest to the TSS and TTS) and
then divided the resulting signal by the mean across the TSS ± 1 kb. The 4SU-seq
data was processed using “--binsize 1 --ignoreForNormalization chrM --normal-
izeUsingRPKM” for all reads or for the forward and reverse strand separately. Read
coverage across all TSSs was calculated using computeMatrix with the parameters
“reference-point --binSize 1 -b 500 -a 500” and a list of TSS coordinates. For this,
all exons in protein-coding genes (n= 1,071,216) were annotated as first, internal
and/or last. A set of unique exons that were exclusively first (n= 126,731) were
identified and used.

To calculate Pol II travelling ratios (TR), aligned and duplicate-filtered PolII
ChIP-seq reads were extended by 150 nt. The PolII travelling ratio (TR) was
calculated as described12, as the fraction of the PolII ChIP-seq read counts in the
(1) promoter-proximal region from 0 bp to +250 bp of the annotated
transcriptional start site versus the PolII ChIP-seq read counts in the (2)
transcribed region from +250 bp to the annotated transcriptional end site.

To generate enhancer heatmaps, cell-type-specific enhancers were defined as
H3K4me1 peaks, which did not overlap a promoter region (from −900 to +100 bp
of the annotated transcriptional start site) of an Ensembl transcript. Binding
profiles and heatmaps were calculated around the centre of the H3K4me1 peaks
+/−3 kb using deepTools.

To model RNA synthesis, processing and degradation we used the INSPEcT
tool. Exon and intron counts were derived for each nascent and total RNA-seq
replicate using the quantifyExpressionsFromBAM module in strand-specific mode.
RN7SK knock-down and control were treated as two separate steady-state
conditions and the labelling time was set to 10 min. Genes with significant
(padj < 0.05) differences in synthesis, processing, and degradation were extracted
using the compareSteady module.

The ATAC-seq samples from human keratinocytes36 were downloaded from
the sequencing read archive (SRX971579 and SRX971580). Adapter (Nextera) and
quality trimming were done with Trim galore! and the samples were aligned to the
human genome (hg19) using bowtie (-y -m 1 -S -X 2000). PCR duplicates were
removed using Picard MarkDuplicates. Binding profiles and heatmaps around the
TSS +/−3 kb were calculated using DeepTools. The alignment files were converted
to bigWig using bamCoverage with base-pair resolution and RPKM normalization.
The read coverage per scaled gene was calculated using computeMatrix with the
parameters “reference-point -b 3000 -a 3000”. The regions were defined by the TSS
of all protein-coding genes (hg19; Gencode v19). The up- and downregulated
subsets were defined by padj < 0.05 and abs(log2FC) > 0.3. The heatmap was
generated using plotHeatmap and the profile using custom R scripts. The null
distribution profile was defined as the 99.9% confidence interval of 10,000
randomly selected gene subsets of similar size to the up- and downregulated sets.
The two ATAC-seq replicates showed a very strong similarity and were therefore
combined in the final figure.

To calculate bidirectional transcription in promoters we used the FANTOM5
database containing CAGE-seq data for transcriptional initiation sites across
different tissues and cell lines (http://fantom.gsc.riken.jp/5/tet; “Expression (RLE
normalized) of robust phase 1 and 2 CAGE peaks for human samples with
annotation (hg19)”). Three replicates for human keratinocytes were used to
identify transcriptional initiation across the genome: http://fantom.gsc.riken.jp/5/
sstar/FF:11349-117G8, http://fantom.gsc.riken.jp/5/sstar/FF:11421-118F8, http://
fantom.gsc.riken.jp/5/sstar/FF:11272-116H3.

4SU RNA seq up- and downregulated genes (FC 0.3) in RN7SK-depleted cells
were screened for CAGE peaks on the opposite strand within 100 nucleotides from
the annotated TSS.

The intron/exon ratios were calculated based on Gencode v19 annotations.
Introns were defined for each gene by subtracting exonic regions from the full
transcript and adding the resulting regions as introns to the gtf file. Raw intron and
exon read counts were normalized using DESeq2-derived size factors based only on
the exonic counts. Total exon and intron lengths per gene were obtained from the
featureCounts output. The intron/exon ratio was calculated per gene as mean
intron coverage divided by mean exon coverage, where mean coverage is the
number of reads mapping to a feature divided by the feature-length. Only high-
expressed genes with mean counts per million above 20 were included. Genes with
extreme intron/exon ratios resulting from either no exon counts or (nearly) no
intron counts were replaced by 1 or 0.001, respectively.
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Differential splicing usage was computed with rMATS (v4.1.0) using
“--variable-read-length --novelSS --allow-clipping”. Splicing events with
FDR < 0.05 and absolute difference inclusion level > 0.1 were reported.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the corresponding
authors upon reasonable request. The next-generation sequencing (NGS) data generated
in this study have been deposited in the GEO database under accession code GSE101217.
ATAC-seq data from human keratinocytes are available through GEO (GSE67382;
sample GSM1645708 and GSM1645709). CAGE-seq data from human keratinocytes are
available through the FANTOM5 Table Extraction Tool (sample FF:11349-117G8,
FF:11421-118F8, and FF:11272-116H3; http://fantom.gsc.riken.jp/5/tet). The underlying
raw data generated in this study and the subsequent statistical analyses for each
experiment are provided in the Supplementary Information/Source Data file. Source data
are provided with this paper.

Code availability
Custom codes used in the paper are available on GitHub (https://github.com/susbo/
Bandiera-et-al-2021-scripts).
Trim Galore! https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
TopHat2 https://ccb.jhu.edu/software/tophat
featureCounts http://bioinf.wehi.edu.au/featureCounts
DESeq2 https://bioconductor.org/packages/release/bioc/html/DESeq2.html
Bowtie http://bowtie-bio.sourceforge.net
MACS2 https://github.com/taoliu/MACS
rMATs https://github.com/Xinglab/rmats-turbo
bedops https://bedops.readthedocs.io
deepTools https://deeptools.github.io
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