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Abstract 
Techniques for calcium imaging were first demonstrated in the mid-
1970s, whilst tools to analyse these markers of cellular activity are still 
being developed and improved today. For image analysis, custom 
tools were developed within labs and until relatively recently, software 
packages were not widely available between researchers. We will 
discuss some of the most popular methods for calcium imaging 
analysis that are now widely available and describe why these 
protocols are so effective. We will also describe some of the newest 
innovations in the field that are likely to benefit researchers, 
particularly as calcium imaging is often an inherently low signal-to-
noise method. Although calcium imaging analysis has seen recent 
advances, particularly following the rise of machine learning, we will 
end by highlighting the outstanding requirements and questions that 
hinder further progress and pose the question of how far we have 
come in the past sixty years and what can be expected for future 
development in the field.
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           Amendments from Version 1
This latest version of the review article “Calcium imaging analysis 
– how far have we come?” contains a clearer breakdown of the 
possible image analysis options for different experimental set-
ups of calcium imaging experiments such as in vitro versus  
in vivo methods. We also expand on the ‘Quantification’ section 
as this is an important section that was previously very brief. In 
this section we discuss identification of action potentials from 
calcium signals as this can be a controversial topic.

Any further responses from the reviewers can be found at 
the end of the article

REVISED

Introduction
The ability to image calcium ion (Ca2+) dynamics in cells  
has long been of interest, particularly in the neurosciences, 
where it can be used as a marker for neuronal excitability.  
The origins of calcium imaging began in the mid-1970s (Blinks 
et al., 1976; Moisescu et al., 1975), however the most Ca2+ 

specific BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-
tetraacetic acid)-based dye was developed in 1980 by Roger  
Tsien, and its derivatives are still used today (Tsien, 1980). 
In the past forty years, the methods available for measuring 
Ca2+ fluxes in cells have expanded to include ratiometric, fluo-
rescence lifetime, or fluorescence intensity-based dyes, and 
genetically-encoded calcium indicators (GECIs) (Miyawaki 
et al., 1997; Ohkura et al., 2005). The use of micros-
copy modalities has also advanced to include light-sheet 

microscopy (LSM; Huisken et al., 2004) for long-term imag-
ing, and 2-photon microscopy (2PM; Denk et al., 1990)  
for deep tissue and cell specific uncaging techniques. The  
combination of Ca2+ indicator and imaging modality used 
will reflect the properties of the sample and the scientific 
question, as well as the methodologies available to the 
researcher. For example, in vitro imaging, or in vivo inverte-
brate imaging, may use exogenous or GECIs, imaged using  
LSM, epifluorescence, 2PM or other fluorescence micro-
scopes depending on the temporal and spatial resolution, times-
cale of imaging, and thickness of the sample being taken into  
consideration. Other specialist options for in vivo imaging  
of GECIs are available for imaging in awake and behaving  
animals including miniaturized forms of 1- or 2- photon endo-
scopic fluorescence microscopes (miniscopes) for single-cell 
in vivo recordings (Cai et al., 2016; Chen et al., 2013; Silva,  
2017).

Calcium imaging is an inherently noisy method due to the 
high spatiotemporal information desired from a sample often  
showing low signal-to-noise alongside drift or cell movement, 
particularly for living organisms. In recent years, a number of  
software packages have been written for individual aspects 
of the commonly used pipeline in calcium imaging analysis  
(Figure 1). This processing pipeline includes image denois-
ing, motion correction, classification for cell identification, and  
quantification of calcium signals. As calcium imaging is used 
across a broad range of samples, from sub-cellular, cellular,  

Figure 1. The steps of a common pipeline for calcium imaging analysis can be subdivided into three areas before quantitative 
analysis is performed. Denoising is an optional step that can help to improve signal-to-noise and enhance features. Motion correction 
may be necessary in cases of drift or movement. Classification can select regions of interest for which quantitative analysis is performed.
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networks, bulk tissue dynamics to whole organisms and behaving  
animals, aspects of this pipeline can vary substantially with no  
‘one size fits all’ approach.

Denoising
Live-cell imaging generally requires short exposure times  
and low excitation power to limit the effects of photo-toxicity 
and photo-bleaching. This leads to image degradation in the  
form of noise. In fluorescence microscopy the two prevalent 
noise sources are Poisson noise and Gaussian noise. Poisson  
noise is caused by the stochastic and discrete nature of photon 
emission and tends to be dominant at low light levels, whereas  
Gaussian noise describes the intrinsic thermal and electronic  
fluctuation in the image sensor (Luisier et al., 2011)

Although denoising is not a required step in the pipeline,  
effective denoising can improve the subsequent steps by artificially 
enhancing signal-to-noise. Traditionally, image denoising has 
been based on local averaging approaches, such as the application 
of a Gaussian smoothing filter (Buades et al., 2005; Lindenbaum  
et al., 1994). Alternative methods include a local filter method  
such as anisotropic filters (Broser et al., 2004; Kitamura &  
Häusser, 2011) (Perona & Malik, 1990), or in the frequency 
domain, Wiener filters (Wiener, 1950) and wavelet threshold-
ing methods (Donoho, 1995)(Besbeas et al., 2004; Wegner et al.,  
2006).

Local methods are computationally light but have clear limi-
tations. First, the averaging often involved in local methods  
introduces blur, causing features to appear less well defined. 
Second, they do not perform well for high noise levels, 
since the correlations between neighbouring pixels deterio-
rate (Shao et al., 2014). In the context of calcium imaging, 
local methods have been shown to perform well (Malik et al.,  
2011).

Non-local filters solve some of the problems by using  
self-similarity of natural images beyond neighbouring pixels, 
thus exploiting global information (Shao et al., 2014). The first  
method to propose this is the non-local means method (Buades  
et al., 2005), in which subregions of an image referred to as  
patches are restored by weighted averaging of all other 
patches in an image. Since then, there have been a number of  
improvements such as invariance to patches that are rotated or 
mirrored with respect to each other (Grewenig et al., 2011), 
improved computational efficiency, and automated parameter 
tuning and extension to 3D image stacks (Coupé et al., 2008).  
Although non-local filters are better at high noise levels,  
they will typically lead to artefacts like over-smoothing (Shao  
et al., 2014). A modern, well-balanced and state-of-the-art 
non-local method is ND-SAFIR, which is specifically geared  
towards application in fluorescence microscopy imaging  
(Boulanger et al., 2010). ND-SAFIR is a powerful method 
for removing Poisson-Gaussian noise. It is based on non-local 
means denoising using a variance stabilisation step, followed by  
calculating the spatial and temporal patch-based weighted  
averages for intensity values. The method is widely applica-
ble between experimental samples and can be used directly for  
2D+t and 3D+t datasets (Buades et al., 2011).

In recent years, deep learning methods have become state-of-
the-art for denoising. Methods such as DnCNN (Zhang et al.,  
2017), FFDNet (Zhang et al., 2018) and CARE (Weigert et al., 
2018) rely on convolutional neural networks that are trained in 
a supervised learning approach. However, this requires ground  
truths to be available for model training, which may be diffi-
cult to obtain in practice. A different approach was developed in  
noise2noise (Lehtinen et al., 2018), where instead of learning 
the mapping from noisy images to clean targets, the model is 
trained with other noisy images as targets. The images must be  
corresponding pairs displaying the same objects but with  
independent noise. Assuming the noise sources underlying the 
images have zero-mean distributions, the weights of the network 
will then converge during training to the same values as a net-
work trained with clean targets because the noise that manifests 
in the weights cancels out. A more recent method, noise2void  
(Krull et al., 2019), aims to resolve this issue of needing ground 
truths, by using self-supervised learning. Here, the network is 
optimised to predict the value of each pixel from the values 
of neighbouring pixels in an image, thus requiring no sepa-
rate ground truths. In another recent method, DeepInterpolation  
(Lecoq et al., 2020), the need for ground truth training data 
is avoided by treating the denoising task as a nonlinear interpo-
lation problem. This assumes that the data have a sequential  
component, such that spatiotemporally overlapping features  
can be exploited. DeepCAD is a new deep self-supervised 
denoising method that reduces detection noise and thereby  
improve the signal-to-noise more than tenfold, which it claims 
can improve the accuracy of neuron extraction and spike 
inference (Li et al., 2021).

Motion correction
Motion correction is often required to ensure consistent image 
processing across a time stack. We distinguish between two  
types of motion: (a) drift occurring in the imaging system itself 
caused by thermal gradients in the microscope, vibrations and 
mechanical instability (Kreft et al., 2005); (b) subject motion  
such as fluctuations in the immersion media or the movement 
of organisms (Jenkinson et al., 2002). Drift will typically play  
a significant role when imaging the same field of view over 
multiple days, which can be rectified by using standard reg-
istration methods (Dubbs et al., 2016)(Thévenaz et al.,  
1998).

More complex motion such as organism movement can be  
harder to correct as it is often non-uniform, over a large area, and 
causes movement in-and-out of the focal plane. These require  
non-rigid registration methods or motion tracking. A commonly 
used example available in Python and MATLAB is Non-Rigid 
Motion Correction, NoRMcorre (Pnevmatikakis & Giovannucci,  
2017), which uses patch-based field of view registration  
whereby separate images are then merged by smooth  
interpolation. The popularity of NoRMcorre may in part be  
due to its general applicability.

Two correction methods have been produced for in vivo  
imaging in awake rodents, one based on the rigid-transform-
based Lucas–Kanade (gradient descent) (Lucas & Kanade, 1981) 
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image registration algorithm using MathWorks® MATLAB  
platform (Greenberg & Kerr, 2009), the other using a Hidden 
Markov Model (Dombeck et al., 2007). Although effective, these  
methods have not been packaged for easy implementation and 
are reliant on cells remaining in the x- and y- dimensions as 
it cannot track following movement between z-axes. In cases  
with z-axis movement, tracking-based methods may be more 
reliable, and specialist options exist using control theory and 
machine learning approaches for post-processing (Nguyen et al.,  
2017), or applied to a motorised stage (Cong et al., 2017;  
Kim et al., 2017). A MathWorks® MATLAB toolbox, miniscope 
1-photon imaging pipeline (MIN1PIPE), has been developed 
to include denoising, motion correction and signal extraction  
(Lu et al., 2018). MIN1PIPE motion correction includes several 
steps including the Lucas-Kanade and Kanade-Lucas-Tomasi 
(Lucas & Kanade, 1981; Shi & Tomasi, 1994) trackers, and  
Log-Demons registration (Vercauteren et al., 2009), and outper-
forms the Lucas-Kanade, Kanade-Lucas-Tomasi, and NoRMcorre 
for using sample 2-photon videos (Lu et al., 2018).

Tracking methods specifically designed to be more basic to 
implement and widely available include plug-ins for image 
processing packages (Abramoff et al., 2004) such as Trackmate  
(Tinevez et al., 2017), or Time Series Analyzer (Balaji, 2014).

Classification
Classification is required to ensure that the quantification  
can be performed over specific regions of interest, such as for 
subcellular area, specific cells, or tissue regions. Classification 
can be achieved through pixel- or object-based segmentation.  
Pixel-based methods map each pixel to a class according to the 
spectral similarities. Popular pixel-based methods for calcium 
image analysis include Maximum Likelihood Classification  
(MLC) (Malik et al., 2011) or Otsu thresholding to separate 
‘light’ and ‘dark’ clustered pixels (Otsu, 1979) as used as part 
of the SIMA Python package ROI pipeline (Kaifosh et al.,  
2014).

Object-based segmentation is a two-step process using both 
spectral and spatial/contextual information to group pixels  
into objects which are then classified. CaImAn is an open-source 
package with modules for classification, motion correction, 
source extraction, and spike deconvolution. The classification  
method is based on convolutional neural networks (Giovannucci  
et al., 2019). It was packaged into EZcalcium in an effort to  
improve usability by providing a GUI in MathWorks® MAT-
LAB (Cantu et al., 2020). However, using limited CaImAn func-
tion in EZcalcium does not easily allow for segmentation of more  
complex structures or large organelles or clusters of cells and 
is better for somas or smaller, less complex areas. Cellpose is  
another generalist, deep learning-based segmentation method 
that uses entirely open source packages in Python with a GUI 
to aid implementation. There is also a web-based option for  
testing Cellpose, which makes it very easy to use (Stringer 
et al., 2020), though it too can be limited at detecting more  
complex cell shapes such as dendrites and axons.

DenoiSeg is an extension of Noise2Void that offers an  
end-to-end neural network, which is jointly optimised to  

denoise and segment images. The denoising capability is learnt  
by the self-supervised learning principle that noise2void  
introduced (Krull et al., 2019). By combining this with a  
supervised learning approach using a few annotated ground 
truths of segmentation maps, the final segmentation performance 
ends up performing better than without co-learning, i.e. having 
two separate networks perform the respective tasks (Buchholz  
et al., 2020).

Cell classification methods have been discussed with the 
conclusion that ‘learning-based methods score among the  
best-performing methods, but well-optimized traditional meth-
ods can even surpass these approaches in a fraction of the time’  
(Vicar et al., 2019).

Quantification
The aim of each step is for signal extraction to allow a  
quantitative output from the images of calcium signals.  
The most commonly used measure is the relative fluorescence  
variation (ΔF/F0) for classified cells. Packages will therefore  
either provide this data of the baseline fluorescence (F0) and  
deviations from baseline (ΔF), for further analysis, or provide a 
direct plot. Background subtraction may need to be considered 
as not all packages will take this into account. Multiple methods  
can be used, including subtracting the intensity values from a  
region of the image that does not contain Ca2+ indicator from 
the intensity values in regions of interest. However care should  
be taken using background subtraction with ratiometric indi-
cators (Shkryl, 2020). F0 baseline values can be calculated by  
averaging the values before the onset of stimulation in the 
same region (Galizia et al., 1999), or by low-pass filter-
ing the signal (Balkenius et al., 2009) (For review (Balkenius  
et al., 2015).

Signal extraction from single cells can be particularly diffi-
cult for in vivo recordings due to large background fluxes and  
high spatial overlaps of cells outside of the focus plane which 
is further increased in 1-photon compared to 2-photon imag-
ing. Semi-automated ROI analysis (Barbera et al., 2016; Klaus 
et al., 2017; Pinto & Dan, 2015), principal component analysis 
independent components analysis (PCA/ICA) (Mukamel et al.,  
2009), clustering based approaches (like Suite2P; (Pachitariu 
et al., 2017), and constrained nonnegative matrix factorization  
(CNMF) (Pnevmatikakis et al., 2016) approaches are techniques 
that have been explored with different strengths for detecting 
background and spatial overlap. An ‘extended’ CNMF method  
(CNMF-E) has been developed with an adjusted spatiotem-
poral background model that outperformed PCA/ICA for the  
simulated and experimental datasets that were tested (Zhou 
et al., 2018). For a package method, the toolbox MIN1PIPE  
combines a CNMF (Pnevmatikakis et al., 2016) with  
additional steps to remove false positives (Lu et al., 2018).  
CaImAn also builds upon the CNMF algorithm (Pnevmatikakis 
et al., 2016) to allow it to be fully automated, and CNMF-E for  
1-photon endoscopic data (Zhou et al., 2018).

Another feature commonly needed by researchers is timing  
of neuronal action potentials (APs) or ‘spike detection’ 
through deconvolution of the extracted signal. A wide range of  
algorithms can be used as discussed in the results to the  
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Spikefinder challenge (Berens et al., 2018) as there are multiple 
methods of varying complexity that can be used. EZcalcium 
directly shows the raw fluorescence, inferred activity and decon-
volved neural ‘spiking’, whereby the data can then be exported 
into file formats for proprietary (.mat, .xlsx) or open (.csv)  
software programmes for further analysis (Cantu et al., 2020;  
Giovannucci et al., 2019). The ability to accurately detect 
spikes requires knowledge of ground truth, usually from  
electrophysiological recordings. Calcium imaging can be  
susceptible to variation between neuron type, calcium indicator 
and its concentration used, the optical resolution, the sampling 
rate and the noise level. Therefore, it is fundamental to understand 
how specific indicators react under the given imaging conditions,  
which cannot be readily generalized across protocols. To  
try and improve the accuracy of spike detection, a toolkit using 
a supervised algorithm of spike inference has been developed  
using a ‘ground truth database’ from a large number of sets  
of calcium imaging with corresponding electrophysiological  
measurements (Rupprecht et al., 2021).

Conclusion
A great number of analysis advancements have been made since 
calcium imaging was first developed. Popular packages for  
various steps of the pipeline (Figure 1) include CaImAn, SIMA, 
Suite2P, and EZcalcium (Cantu et al., 2020; Giovannucci et al., 
2019; Kaifosh et al., 2014; Pachitariu et al., 2017). Although 
these packages are great starting tools for the community, many 
require programming knowledge in Python or commercial pack-
ages such as MathWorks® MATLAB. Many of the available  
options are only semi-automated and the limited automated  
options available are often designed for a very limited experi-
mental context and are not actively supported when problems are 
experienced, e.g. other than for cells of a specific size and shape 
imaged in vitro. EZcalcium is one of the most intuitive options, 
which has improved the usability of CaImAn, NoRMCorre, 
but again seems best suited to analyse cell bodies. Suite2P 
and EZcalcium both attempt to offer an automated pipeline  
from raw images to spike extraction with no prior programming 
knowledge required by the user (Cantu et al., 2020; Pachitariu  
et al., 2017). As both packages are suited to similar experi-
mental data, the choice may be based upon personal  
preference.

It therefore seems that perhaps some of the biggest advances 
could be made by designing packages for detecting neuritic  
structures or organelles and improving the spatial resolution 
of the analysis to be intracellular, such as has been used for  
calcium sparks (Berens et al., 2018). Longitudinal tracking 
of specific cells across imaging sessions also remains a chal-
lenge so that individual cells can be identified between multiple  
imaging sessions. A MathWorks® MATLAB toolkit has been 
made with reported error rates of < 5 % (Sheintuch et al., 2017);  
an alternative approach is also available using CaImAn  
(Giovannucci et al., 2019) though direct comparisons between 
these methods is difficult without knowing ground truths.  
Calcium imaging for population activity has also been  
highlighted as an area that requires further research, particu-
larly when imaging over larger fields of view. Using models spe-
cific for neuron types imaged may improve detection of APs,  
which are commonly under-represented in population activity 
measurements (Huang et al., 2021). Recent toolboxes with large  
datasets containing ground-truths may reduce false negatives 
during analysis (Rupprecht et al., 2021). On the other end of 
the scale, pipelines for functional imaging in organisms such 
as zebrafish, C. elegans and Drosophila, where motion correc-
tion is often required and improved analysis for connectomics  
purposes are much needed.

As the application of machine learning in calcium imaging  
analysis matures, a higher level of automation and throughput 
for analysis tasks can be expected to follow. This will be ena-
bled by more generalised and robust machine learning models.  
The barrier to training and deploying these methods will also  
reduce as more research is made into few-shot learning (using 
small training datasets) in addition to training approaches such  
as self-supervised and unsupervised learning.
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While there are still some parts where improvements could still be made, these issues are 
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Overall, this review provides important information for researchers using calcium imaging, and 
can be used as a resource for finding analysis tools that fit their needs. The new definitions 
provided give further clarity to the concepts and tools discussed in the paper, and the up to date 
citations will direct the reader to papers that have applied these tools to their research.  After all 
these changes and additions to the manuscript, we have no further corrections and feel that the 
paper is ready for indexing.
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Anubhuti Goel   
Department of Psychology, University of California, Riverside (UCR), Riverside, CA, USA 

The review by Miranda et al provides an overview of the calcium imaging pipeline and the open 
source resources available to the scientific community. Overall the review is a helpful resource to 
anyone aiming to analyze their calcium imaging data. However a clearer understanding of which 
resource is better suited to which model system or type of analysis will be a helpful addition 
(maybe some examples will be particularly insightful). The authors mention Suite2P and EZCalcium 
as the top analysis tools available however it is not clear which one the reader should pick. 
Furthermore both Suite2P and EZCalcium come with a user interface which means other than 
downloading either python or MATLAB no programming knowledge is needed. This fact is not 
clear in the review. 
 
One reference is mentioned as "Balaji, UCLA". The authors  should specify if indeed that is a 
personal communication or perhaps an unpublished tool.
 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Systems neuroscience, Calcium imaging, mouse behavior, electrophysiology.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 16 Aug 2021
Miranda Robbins, MRC Laboratory of Molecular Biology, Cambridge, UK 

The review by Miranda et al provides an overview of the calcium imaging pipeline and the 
open source resources available to the scientific community. Overall the review is a helpful 
resource to anyone aiming to analyze their calcium imaging data. 
 
We thank the reviewer for their helpful suggestions for our article. 
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However a clearer understanding of which resource is better suited to which model system 
or type of analysis will be a helpful addition (maybe some examples will be particularly 
insightful). 
 
We have included in the introduction information about the methods that may better suit in vitro, 
versus in vivo imaging methods: 
“The combination of Ca 2+ indicator and imaging modality used will reflect the 
properties of the sample and the scientific question, as well as the methodologies 
available to the researcher. For example, in vitro imaging, or in vivo invertebrate 
imaging, may use exogenous or GECIs, imaged using LSM, epifluorescence, 2PM or 
other fluorescence microscopes depending on the temporal-resolution, timescale of 
imaging, and thickness of the sample being taken into consideration. Other specialist 
options for in vivo imaging of GECIs are available for imaging in awake and behaving 
animals including miniaturized forms of 1- or 2- photon endoscopic fluorescence 
microscopes (miniscopes) for single-cell in vivo recordings (Cai et al., 2016; Chen et al., 
2013; Silva, 2017).” 
 
We have added more information for 1 photon in vivo imaging paragraph in ‘motion correction’ 
section. 
We have added more information to the in vivo quantification section: 
“Signal extraction from single cells can be particularly difficult for in vivo recordings 
due to large background fluxes and high spatial overlaps of cells outside of the focus 
plane. Semi-automated ROI analysis (Pinto and Dan, 2015; Barbera et al., 2016; Klaus et 
al., 2017), principal component analysis independent components analysis (PCA/ICA) 
(Mukamel, Nimmerjahn and Schnitzer, 2009), and constrained nonnegative matrix 
factorization (CNMF) (Pnevmatikakis et al., 2016; Zhou et al., 2018) approaches are 
techniques that have been explored with different strengths for detecting 
background and spatial overlap. An ‘extended’ CNMF method has been developed with 
an adjusted spatiotemporal background model that outperformed PCA/ICA for the 
simulated and experimental datasets that were tested (Zhou et al., 2018). For a 
package method, the toolbox MIN1PIPE combines a CNMF (Pnevmatikakis et al., 2016) 
with additional steps to remove false positives (Lu et al., 2018).” 
 
The authors mention Suite2P and EZCalcium as the top analysis tools available however it is 
not clear which one the reader should pick. Furthermore both Suite2P and EZCalcium come 
with a user interface which means other than downloading either python or MATLAB no 
programming knowledge is needed. This fact is not clear in the review. 
 
We have added the following in the conclusion: 
“Suite2P and EZcalcium both attempt to offer an automated pipeline from raw images 
to spike extraction with no prior programming knowledge required by the user ( 
Cantu et al., 2020; Pachitariu et al., 2016). As both packages are suited to similar 
experimental data, the choice may be based upon personal preference.” 
 
One reference is mentioned as "Balaji, UCLA". The authors  should specify if indeed that is a 
personal communication or perhaps an unpublished tool. 
We understand that this may cause confusion; as this plug-in is not published and we have now 
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added the ImageJ webpage as a reference.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 24 May 2021

https://doi.org/10.5256/f1000research.54953.r84794

© 2021 Zeiger W. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

William Zeiger   
Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA 

In their review “Calcium imaging analysis – how far have we come?”, Robbins et al. present a 
concise overview of the basic steps involved in transforming raw microscopy images from calcium 
imaging experiments to quantifiable data. This is an extremely important topic with broad 
relevance to many fields. As such, the review should draw considerable interest. The review is well 
written. It is logically organized, with the analysis pipeline broken down into 4 distinct steps, each 
of which is discussed separately. The language is easy to follow for a broad audience of varying 
degrees of expertise. Many of the most popular software implementations are covered at least to 
some degree. Overall, I think this will be a useful and important review with significant impact. 
 
However, I do have some suggestions that I believe could strengthen the manuscript. My main 
concern is that the target audience for the review is not clear. Calcium imaging is broadly used in 
many areas of the life sciences, including both in vitro and in vivo preparations, across multiple 
species, multiple tissues, and widely varying spatial scales (sub-cellular, cellular, bulk tissue 
signals). Given that much of the review is devoted to denoising and motion correction (problems 
which are relatively minor in in vitro preparations with no organismal movement and relatively 
high signal-to-noise), and that quantification focuses on spike detection, the review feels most well 
suited to in vivo two-photon imaging applications in the brain. If this was the intention, it would 
benefit the review to make this more explicit and provide more discussion tailored to this 
technique, particularly in the quantification section. If this assumption is not correct and the 
review is meant to be targeted at a more general audience, I would suggest the introduction be 
expanded to include at least a brief discussion of the types of calcium indicators available 
(ratiometric, FRET, fluo, GCaMP, etc) and imaging techniques in use (widefield fluorescence, 
confocal, 2P, miniscopes, etc). This is important for a beginner/generalist audience as the indicator 
and imaging technique used will strongly influence the subsequent processing pipeline needs. 
 
In addition to this primary concern I have a few other suggestions that would improve the scope 
of the review:

The quantification section should be significantly expanded. This step is the shortest in 
description, yet arguably can be fraught with the most pitfalls to which investigators fall 
prey. 

○
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CaImAn is included under the “classification” section, but includes modules to do more than 
just classify, including motion correction and registration across imaging sessions 
 

○

Spike detection is mentioned, but it should be made explicit that spike detection is 
completely dependent on knowledge of ground truth about how specific indicators under 
specific imaging conditions relate and cannot be readily generalized across 
labs/indicators/preparations. See this recent preprint (Rupprecht et. al 
https://www.biorxiv.org/content/10.1101/2020.08.31.272450v21) 
 

○

On a related point about spike detection, the authors may want to include information 
about the relative sensitivity (or in some cases lack thereof) of calcium indicators for spike 
detection (see Hunag et. al https://elifesciences.org/articles/516752). 
 

○

It would be interesting for the authors to comment on 1P miniscope calcium imaging, as 
this technique is rapidly disseminating and poses specific challenges for imaging analysis. 
See Lu et. al (https://www.cell.com/cell-reports/fulltext/S2211-1247(18)30826-X3) 
 

○

Longitudinal tracking of cells across imaging sessions remains a challenge for the field – I 
am not aware of many algorithms that are widely available to tackle this problem. It could 
be included in the future directions. 
 

○

The Allen institute recently published a preprint on a new denoising technique which looks 
promising (See Lecoq et. al https://www.biorxiv.org/content/10.1101/2020.10.15.341602v24)

○
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Is the topic of the review discussed comprehensively in the context of the current 
literature?
Partly

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes
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Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Stroke, neural circuits, two-photon calcium imaging

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 16 Aug 2021
Miranda Robbins, MRC Laboratory of Molecular Biology, Cambridge, UK 

In their review “Calcium imaging analysis – how far have we come?”, Robbins et al. present a 
concise overview of the basic steps involved in transforming raw microscopy images from 
calcium imaging experiments to quantifiable data. This is an extremely important topic with 
broad relevance to many fields. As such, the review should draw considerable interest. The 
review is well written. It is logically organized, with the analysis pipeline broken down into 4 
distinct steps, each of which is discussed separately. The language is easy to follow for a 
broad audience of varying degrees of expertise. Many of the most popular software 
implementations are covered at least to some degree. Overall, I think this will be a useful 
and important review with significant impact. 
 
We thank Dr. Zeiger for his positive comments about our review and interesting literature 
references that he has provided. 
 
However, I do have some suggestions that I believe could strengthen the manuscript. My 
main concern is that the target audience for the review is not clear. Calcium imaging is 
broadly used in many areas of the life sciences, including both in vitro and in vivo 
preparations, across multiple species, multiple tissues, and widely varying spatial scales 
(sub-cellular, cellular, bulk tissue signals). 
Given that much of the review is devoted to denoising and motion correction (problems 
which are relatively minor in in vitro preparations with no organismal movement and 
relatively high signal-to-noise), and that quantification focuses on spike detection, the 
review feels most well suited to in vivo two-photon imaging applications in the brain. If this 
was the intention, it would benefit the review to make this more explicit and provide more 
discussion tailored to this technique, particularly in the quantification section. If this 
assumption is not correct and the review is meant to be targeted at a more general 
audience, I would suggest the introduction be expanded to include at least a brief 
discussion of the types of calcium indicators available (ratiometric, FRET, fluo, GCaMP, etc) 
and imaging techniques in use (widefield fluorescence, confocal, 2P, miniscopes, etc). This is 
important for a beginner/generalist audience as the indicator and imaging technique used 
will strongly influence the subsequent processing pipeline needs. 
 
 
 

 
Page 15 of 26

F1000Research 2021, 10:258 Last updated: 16 SEP 2021



We were indeed targeting the review at a more general reader. We have therefore expanded the 
regions of the introduction where we mention calcium indicators and imaging techniques as well 
as including a sentence to discuss differences between in vivo and in vitro samples as follows: 
 
“The combination of Ca 2+ indicator and imaging modality used will reflect the 
properties of the sample and the scientific question, as well as the methodologies 
available to the researcher. For example, in vitro imaging, or in vivo invertebrate 
imaging, may use exogenous or GECIs, imaged using LSM, epifluorescence, 2PM or 
other fluorescence microscopes depending on the temporal-resolution, timescale of 
imaging, and thickness of the sample being taken into consideration. Other specialist 
options for in vivo imaging of GECIs are available for imaging in awake and behaving 
animals including miniaturized forms of 1- or 2- photon fluorescence microscopes 
(miniscopes) for single-cell in vivo recordings (Chen et al., 2013; Cai et al., 2016; Silva, 
2017). 
 
 
As calcium imaging is used across a broad range of samples, from sub-cellular, 
cellular, networks, bulk tissue dynamics to whole organisms and behaving animals, 
aspects of this pipeline can vary substantially with no ‘one size fits all’ approach.” 
 
In addition to this primary concern I have a few other suggestions that would improve the 
scope of the review:

The quantification section should be significantly expanded. This step is the shortest 
in description, yet arguably can be fraught with the most pitfalls to which 
investigators fall prey.

○

We have expanded the quantification section: 
“Signal extraction from single cells can be particularly difficult for in vivo recordings 
due to large background fluxes and high spatial overlaps of cells outside of the focus 
plane. Semi-automated ROI analysis (Barbera et al., 2016; Klaus et al., 2017; Pinto & 
Dan, 2015), principal component analysis independent components analysis (PCA/ICA) 
(Mukamel, Nimmerjahn, & Schnitzer, 2009), and constrained nonnegative matrix 
factorization (CNMF) (Pnevmatikakis et al., 2016; Zhou et al., 2018) approaches are 
techniques that have been explored with different strengths for detecting 
background and spatial overlap. An ‘extended’ CNMF method has been developed with 
an adjusted spatiotemporal background model that outperformed PCA/ICA for the 
simulated and experimental datasets that were tested (Zhou et al., 2018). For a 
package method, the toolbox MIN1PIPE combines a CNMF (Pnevmatikakis et al., 2016) 
with additional steps to remove false positives (Lu et al., 2018).” 
 
 

CaImAn is included under the “classification” section, but includes modules to do 
more than just classify, including motion correction and registration across imaging 
sessions

○

We have clarified this by adding the sentence:  
 “CaImAn is an open-source package with modules for classification, motion 
correction, source extraction, and spike deconvolution. The classification method is 
based on convolutional neural networks( Giovannucci et al., 2019).”
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Spike detection is mentioned, but it should be made explicit that spike detection is 
completely dependent on knowledge of ground truth about how specific indicators 
under specific imaging conditions relate and cannot be readily generalized across 
labs/indicators/preparations. See this recent preprint (Rupprecht et. al 
https://www.biorxiv.org/content/10.1101/2020.08.31.272450v21)

○

Thank you for bringing this very interesting preprint to our attention. We appreciate this point 
and we have included the addition:  
 
“The ability to accurately detect spikes requires knowledge of ground truth, usually 
from electrophysiological recordings. Calcium imaging can be susceptible to variation 
between neuron type, calcium indicator and its concentration used, the optical 
resolution, the sampling rate and the noise level. Therefore, it is fundamental to 
understand how specific indicators react under the given imaging conditions, which 
cannot be readily generalized across protocols. To try and improve the accuracy of 
spike detection, a toolkit using a supervised algorithm of spike inference has been 
developed using a ‘ground truth database’ from a large number of sets of calcium 
imaging with corresponding electrophysiological measurements (Rupprecht et al., 
2021).” 
 

On a related point about spike detection, the authors may want to include 
information about the relative sensitivity (or in some cases lack thereof) of calcium 
indicators for spike detection (see Hunag et. al https://elifesciences.org/articles/51675
2).

○

We have included a discussion in the conclusion about the sensitivity of spike detection: 
 
“Calcium imaging for population activity has also been highlighted as an area that 
requires further research, particularly when imaging over larger fields of view. Using 
models specific for neuron types imaged may improve detection of Aps, which are 
commonly under-represented in population activity measurements (Huang et al., 
2021). Recent toolboxes with large datasets containing ground-truths may reduce 
false negatives during analysis (Rupprecht et al., 2021).” 
 

It would be interesting for the authors to comment on 1P miniscope calcium imaging, 
as this technique is rapidly disseminating and poses specific challenges for imaging 
analysis. See Lu et. al (https://www.cell.com/cell-reports/fulltext/S2211-
1247(18)30826-X3)

○

We have added discussion of miniscopes to Introduction: 
 
“Other specialist options for in vivo imaging of GECIs are available for imaging in 
awake and behaving animals including miniaturized forms of 1- or 2- photon 
fluorescence microscopes (miniscopes) for single-cell in vivo recordings (Chen et al., 
2013; Cai et al., 2016; Silva, 2017).” 
to the Motion correction section: 
“A MathWorks® MATLAB toolbox, miniscope 1-photon imaging pipeline (MIN1PIPE),  
has been developed to include denoising, motion correction and signal extraction (Lu 
et al., 2018). MIN1PIPE motion correction includes several steps including the Lucas-
Kanade and Kanade-Lucas-Tomasi (Lucas and Kanade, 1981; Shi and Tomasi, 1994) 
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trackers, and Log-Demons registration (Vercauteren et al., 2009), and outperforms the 
Lucas-Kanade, Kanade-Lucas-Tomasi, and NoRMcorre for using sample 2-photon 
videos (Lu et al., 2018).” 
to the Quantification section: 
“For a package method, the toolbox MIN1PIPE combines a CNMF (Pnevmatikakis et al., 
2016) with additional steps to remove false positives (Lu et al., 2018).” 
 

Longitudinal tracking of cells across imaging sessions remains a challenge for the 
field – I am not aware of many algorithms that are widely available to tackle this 
problem. It could be included in the future directions.

○

We have added to the discussion on future challenges: 
 
“Longitudinal tracking of specific cells across imaging sessions also remains a 
challenge so that individual cells can be identified between multiple imaging sessions. 
A MathWorks® MATLAB toolkit has been made with reported error rates of  < 5 % 
(Sheintuch et al., 2017); an alternative approach is also available using CaImAn 
(Giovannucci et al., 2019) though direct comparisons between these methods is 
difficult without knowing ground truths.” 
 

The Allen institute recently published a preprint on a new denoising technique which 
looks promising (See Lecoq et. al 
https://www.biorxiv.org/content/10.1101/2020.10.15.341602v24)

○

This is an interesting preprint that does indeed seem promising. It can be seen as an extension of 
the Noise2void method, which we already touch on. We have added the following sentence to the 
manuscript: 
“In another recent method, DeepInterpolation (Lecoq et al., 2020), the need for ground 
truth training data is avoided by treating the denoising task as a nonlinear 
interpolation problem. This assumes the data have a sequential component, such that 
spatiotemporally overlapping features can be exploited.”  

Competing Interests: No competing interests were disclosed.
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The authors present a brief review of processing and analysis methods for calcium imaging data 
in neuroscience. The article breaks down the processing steps typically required to view calcium 
signals from neurons, including denoising, motion correction, and classification, and then the 
quantification of the data. It appears that the primary contribution of the article is to summarize 
the most recent and up-and-coming methods for the processing of calcium activity in neurons. 
The abstract describes the intentions of the paper well, bringing the reader up to date on the last 
60 years of calcium analysis tools, however several claims are made which are not followed up in 
the manuscript. For example, the authors do not highlight their preferred methods as they state 
they will in the abstract, much less provide justification for these choices. The abstract concludes 
by stating the authors will describe the future needs in the field, and this is successfully done in 
the conclusion, albeit briefly and without much justification – we would have liked to see some 
examples of the kinds of groups who might be making progress in these fields, or papers in 
different fields which might be applicable to calcium activity monitoring. 
 
Overall we find the contents of this review to be beneficial to users applying calcium imaging to 
their research, however some additional information or clarification needs to be included or 
clarified. The following corrections should be made to the review before formal ‘publication’: 
The description of the purpose and benefits of denoising is well explained at the start of the 
section. In the following sections of motion correction and classification however, the authors 
proceed directly to the methods used to perform the task, and while this is comprehensive, they 
fail to justify why these steps are needed in the calcium processing and analysis pipeline. An 
‘introduction’ sentence or paragraph for each section is needed. 
 
The acronym BAPTA should be defined before it is used. 
 
In the motion-correction section, more distinction should be made between ‘camera-based’ 
motion correction, where the whole image is captured simultaneously, and ‘scanning-based’ 
motion correction. There are distinct differences in capabilities and limitations for each approach 
(for example, scanning-based imaging can suffer from ‘warping’ which affects camera-based 
imaging much less, but can also sample regions of interest as opposed to the whole image, 
speeding up imaging to overcome motion artifacts). 
The authors successfully reference the original papers for the different approaches to denoising, 
motion correction, and classification, but they should also include the references for when the 
techniques were first applied and used in calcium image analysis, as this is the focus of the review. 
 
The standard of presentation is OK, but should really be improved before ‘publication’. The first 
sentence of the abstract is difficult to parse and is not a complete statement. Furthermore, 
throughout the manuscript there are several difficult-to-parse sentences and some that are 
ungrammatical (e.g. “to include ratiometric, fluorescence lifetime, or fluorescence intensity, based 
reporters, and genetically-encoded options […] alongside dyes”, “rendering features to be less 
defined.”, “ND-SAFIR is a powerful method for removing Poisson-Gaussian noise, which is based 
on non-local means denoising […] to first use a variance stabilisation step, followed by spatial and 
temporal patch-based weighted averages of intensity values”, “over multiple days. which can be 
well rectified using standard registration methods” and so on). Finally, the structure could be 
improved (“Motion correction can be split into two main categories” really should be followed by 
an explanation of what those two categories are, and background subtraction is alluded to in the 
“Quantification” section but not elaborated upon). 
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Figure captions should generally be self-contained and comprehensive – they should explain what 
the reader is expected to observe/pay attention to, and what conclusions should be drawn. Some 
more elaboration in the figure caption would therefore be welcome. 
 
Other more minor adjustments that are recommended (but not required) include: 
It would be nice to see a definition of Poisson-Gaussian noise since this is unlikely to be 
understood by many readers. Similarly clear definition of a ‘patch’ would be helpful, as would 
explanation of the difference between local and non-local methods. 
 
As stated previously, further expansion of the methods used for the analysis of calcium signals, 
such as calculation of dF/F and spike sorting, that are touched on in the quantification section, 
would be helpful. This section is very brief but would seem to be the section of most interest to the 
general reader. 
 
The authors state the paper will describe the methods used for calcium imaging analysis however 
the focus of the paper is more on the pre-processing methods rather than the analysis. It would 
be nice to elaborate further on what kinds of analyses are performed on the data after pre-
processing – how these calcium traces can be used to infer useful neurobiological information. 
 
In summary, this is a brief but well-focussed review on a topic that is of interest to several 
researchers and thus should be formally published after the necessary revisions have been made.
 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Partly

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Microscopy, instrument development, automation and data analysis, 
neurophotonics, biophotonics

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.
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Miranda Robbins, MRC Laboratory of Molecular Biology, Cambridge, UK 

The authors present a brief review of processing and analysis methods for calcium imaging 
data in neuroscience. The article breaks down the processing steps typically required to 
view calcium signals from neurons, including denoising, motion correction, and 
classification, and then the quantification of the data. It appears that the primary 
contribution of the article is to summarize the most recent and up-and-coming methods for 
the processing of calcium activity in neurons. 
 
We thank the reviewers for highlighting areas of improvement in our review article. 
 
The abstract describes the intentions of the paper well, bringing the reader up to date on 
the last 60 years of calcium analysis tools, however several claims are made which are not 
followed up in the manuscript. For example, the authors do not highlight their preferred 
methods as they state they will in the abstract, much less provide justification for these 
choices. 
 
We acknowledge this inconsistency between the abstract and the content of the manuscript. On 
closer inspection, we have decided that we do not want to explicitly emphasise our personal 
preferences and justify them, but rather objectively discuss the strengths of the respective 
methods and leave it to the reader – particularly as the “best” methods will often be dependent 
upon the experimental methods used by individual researchers. We have therefore removed the 
mentioning of “our preferred [methods]” in the relevant sentence in the abstract from: 
 
“We will discuss some of the most popular, alongside our preferred, methods for 
calcium imaging” 
 
The abstract concludes by stating the authors will describe the future needs in the field, and 
this is successfully done in the conclusion, albeit briefly and without much justification – we 
would have liked to see some examples of the kinds of groups who might be making 
progress in these fields, or papers in different fields which might be applicable to calcium 
activity monitoring. 
 
We have extended the discussion on future challenges to include: 
 
“Longitudinal tracking of specific cells across imaging sessions also remains a 
challenge so that individual cells can be identified between multiple imaging sessions. 
A MathWorks® MATLAB toolkit has been made with reported error rates of  < 5 % 
(Sheintuch et al., 2017); an alternative approach is also available using CaImAn 
(Giovannucci et al., 2019) though direct comparisons between these methods is 
difficult without knowing ground truths. Calcium imaging for population activity has 
also been highlighted as an area that requires further research, particularly when 
imaging over larger fields of view. Using models specific for neuron types imaged may 
improve detection of APs, which are commonly under-represented in population 
activity measurements (Huang et al., 2021). Recent toolboxes with large datasets 
containing ground-truths may reduce false negatives during analysis (Rupprecht et 
al., 2021).” 
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Overall we find the contents of this review to be beneficial to users applying calcium 
imaging to their research, however some additional information or clarification needs to be 
included or clarified. The following corrections should be made to the review before formal 
‘publication’: 
The description of the purpose and benefits of denoising is well explained at the start of the 
section. In the following sections of motion correction and classification however, the 
authors proceed directly to the methods used to perform the task, and while this is 
comprehensive, they fail to justify why these steps are needed in the calcium processing 
and analysis pipeline. An ‘introduction’ sentence or paragraph for each section is needed. 
 
We have added introductory sentences as follows: 
 
“Motion correction is often required for samples due to drift during imaging, or 
organism movement.” 
“Classification is required to ensure that the quantification can be performed over 
specific regions of interest, such as for subcellular area, specific cells, or tissue 
regions.” 
 
The acronym BAPTA should be defined before it is used. 
 
We have now included this. 
 
In the motion-correction section, more distinction should be made between ‘camera-based’ 
motion correction, where the whole image is captured simultaneously, and ‘scanning-based’ 
motion correction. There are distinct differences in capabilities and limitations for each 
approach (for example, scanning-based imaging can suffer from ‘warping’ which affects 
camera-based imaging much less, but can also sample regions of interest as opposed to the 
whole image, speeding up imaging to overcome motion artifacts). 
 
We agree with this suggestion to more clearly outline the types of motion correction described. 
Most importantly, we want to distinguish between motion that occurs in the imaging system 
(such as the camera-based and scanning-based motion effects mentioned here) and the more 
complex motion effects that are due to specimen movement. We have added the following to the 
“Motion correction” section: 
“Motion correction is often required to ensure consistent image processing across a 
time stack. We distinguish between two types of motion: (a) drift occurring in the 
imaging system itself caused by thermal gradients in the microscope, vibrations and 
mechanical instability (Kreft et al., 2005); (b) subject motion such as fluctuations in the 
immersion media or the movement of organisms (Jenkinson et al., 2002).” 
 
 
The authors successfully reference the original papers for the different approaches to 
denoising, motion correction, and classification, but they should also include the references 
for when the techniques were first applied and used in calcium image analysis, as this is the 
focus of the review. 
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We thank the reviewer for this comment. We can appreciate the point that references describing 
applications of processing methods specific to calcium imaging should be more plentiful. These 
references are often difficult to find from the existing reviews on calcium imaging and we have 
therefore tried to add relevant references to this review where possible: 
For anisotropic filters we have added the references: (Broser et al., 2004; Kitamura and 
Häusser, 2011). For wavelet thresholding methods we have included: (Besbeas, Feis and 
Sapatinas, 2004; Wegner, Both and Fink, 2006). We have added: “In the context of calcium 
imaging, local methods have been shown to perform well (Malik et al., 2011).”. 
For motion correction using rigid methods we have added (Dubbs, Guevara and Yuste, 
2016). 
In ‘Classification’ we have added (Malik et al., 2011) as an example of Maximum Likelihood 
Classification. 
While the calcium imaging literature does not have a lot of examples of non-trivial image 
processing applications, we have augmented the section with a new reference that indeed 
does: “Malik, Wasim Q., et al. "Denoising two-photon calcium imaging data." PloS one 6.6 
(2011)”. 
 
The standard of presentation is OK, but should really be improved before ‘publication’. The 
first sentence of the abstract is difficult to parse and is not a complete statement. 
Furthermore, throughout the manuscript there are several difficult-to-parse sentences and 
some that are ungrammatical (e.g. “to include ratiometric, fluorescence lifetime, or 
fluorescence intensity, based reporters, and genetically-encoded options […] alongside 
dyes”, “rendering features to be less defined.”, “ND-SAFIR is a powerful method for 
removing Poisson-Gaussian noise, which is based on non-local means denoising […] to first 
use a variance stabilisation step, followed by spatial and temporal patch-based weighted 
averages of intensity values”, “over multiple days. which can be well rectified using standard 
registration methods” and so on). Finally, the structure could be improved (“Motion 
correction can be split into two main categories” really should be followed by an explanation 
of what those two categories are, and background subtraction is alluded to in the 
“Quantification” section but not elaborated upon). 
 
Thank you for highlighting these errors. We have edited the sentences as follows: 
 
“Techniques for calcium imaging were first demonstrated in the mid-1970s, whilst 
tools to analyse these markers of cellular activity are still being developed and 
improved today” 
“In the past forty years, the methods available for measuring Ca 2+ fluxes in cells have 
expanded to include ratiometric, fluorescence lifetime, or fluorescence intensity-
based dyes, and genetically-encoded calcium indicators (GECIs) ( Miyawaki et al., 1997; 
Ohkura et al., 2005).” 
“… causing features to appear less well defined.” 
“ND-SAFIR is a powerful method for removing Poisson-Gaussian noise. It is based on 
non-local means denoising using a variance stabilisation step, followed by calculating 
the spatial and temporal patch-based weighted averages for intensity values.” 
“…view over multiple days, which can be rectified by using standard registration 
methods.” 
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We have deleted the sentence “Motion correction can be split into two main 
categories” which has been replaced with the introductory sentence on motion 
correction.  
We have expanded the sentence on background subtraction to say:  
“Multiple methods can be used, including subtracting the intensity values from a 
region of the image that does not contain Ca2+ indicator from the intensity values in 
regions of interest. However, care should be taken using background subtraction with 
ratiometric indicators (Shkryl, 2020). F0 baseline values can be calculated by averaging 
the values before the onset of stimulation in the same region (Galizia, Menzel and 
Holldobler, 1999), or by low-pass filtering the signal (Balkenius, Bisch-Knaden and 
Hansson, 2009)(For review Balkenius, Johansson and Balkenius, 2015). “ 
 
Figure captions should generally be self-contained and comprehensive – they should 
explain what the reader is expected to observe/pay attention to, and what conclusions 
should be drawn. Some more elaboration in the figure caption would therefore be welcome. 
 
We have adapted the Figure caption as follows:  
 
“Figure 1. The steps of a common pipeline for calcium imaging analysis can be 
subdivided into three areas before quantitative analysis is performed. Denoising is an 
optional step that can help to improve signal-to-noise and enhance features. Motion 
correction may be necessary in cases of drift or movement. Classification can select 
regions of interest for which quantitative analysis is performed. 
“ 
 
Other more minor adjustments that are recommended (but not required) include: 
It would be nice to see a definition of Poisson-Gaussian noise since this is unlikely to be 
understood by many readers. Similarly clear definition of a ‘patch’ would be helpful, as 
would explanation of the difference between local and non-local methods. 
 
Thank you for these suggestions. We agree that these things were not necessarily clear to the 
general reader, so we have incorporated various changes to address these points. First of all, 
definitions of the noise sources in fluorescence microscopy and a reference that deals more 
thoroughly with the subject: 
“Live-cell imaging generally requires short exposure times and low excitation power 
to limit the effects of photo-toxicity and photo-bleaching. This leads to image 
degradation in the form of noise. In fluorescence microscopy the two prevalent noise 
sources are Poisson noise and Gaussian noise. Poisson noise is caused by the 
stochastic and discrete nature of photon emission and tends to be dominant at low 
light levels, whereas Gaussian noise describes the intrinsic thermal and electronic 
fluctuation in the image sensor (Luisier et al., 2011). “ 
 
Secondly, non-local methods are now described as using global information, a distinction to local 
methods that we believe should now make the difference clear. Lastly, we have included a 
definition of patch as a block of pixels representing a subregion of an image. 
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As stated previously, further expansion of the methods used for the analysis of calcium 
signals, such as calculation of dF/F and spike sorting, that are touched on in the 
quantification section, would be helpful. This section is very brief but would seem to be the 
section of most interest to the general reader. 
The authors state the paper will describe the methods used for calcium imaging analysis 
however the focus of the paper is more on the pre-processing methods rather than the 
analysis. It would be nice to elaborate further on what kinds of analyses are performed on 
the data after pre-processing – how these calcium traces can be used to infer useful 
neurobiological information. 
 
We have included the following in the ‘quantification’ section: 
“Packages will therefore either provide this data of the baseline fluorescence (F0) and 
deviations from baseline (ΔF), for further analysis, or provide a direct plot.” 
 
“Signal extraction from single cells can be particularly difficult for in vivo recordings 
due to large background fluxes and high spatial overlaps of cells outside of the focus 
plane which is further increased in 1-photon compared to 2-photon imaging. Semi-
automated ROI analysis (Barbera et al., 2016; Klaus et al., 2017; Pinto & Dan, 2015), 
principal component analysis independent components analysis (PCA/ICA) (Mukamel 
et al., 2009), clustering based approaches (like Suite2P; Pachitariu et al., 2016), and 
constrained nonnegative matrix factorization (CNMF) (Pnevmatikakis et al., 2016) 
approaches are techniques that have been explored with different strengths for 
detecting background and spatial overlap. An ‘extended’ CNMF method (CNMF-E) has 
been developed with an adjusted spatiotemporal background model that 
outperformed PCA/ICA for the simulated and experimental datasets that were tested 
(Zhou et al., 2018). For a package method, the toolbox MIN1PIPE combines a CNMF 
(Pnevmatikakis et al., 2016) with additional steps to remove false positives (Lu et al., 
2018). CaImAn also builds upon the CNMF algorithm (Pnevmatikakis et al., 2016) to 
allow it to be fully automated, and CNMF-E for 1-photon endoscopic data (Zhou et al., 
2018).” 
 
“The ability to accurately detect spikes requires knowledge of ground truth, usually 
from electrophysiological recordings. Calcium imaging can be susceptible to variation 
between neuron type, calcium indicator and its concentration used, the optical 
resolution, the sampling rate and the noise level. Therefore, it is fundamental to 
understand how specific indicators react under the given imaging conditions, which 
cannot be readily generalized across protocols. To try and improve the accuracy of 
spike detection, a toolkit using a supervised algorithm of spike inference has been 
developed using a ‘ground truth database’ from a large number of sets of calcium 
imaging with corresponding electrophysiological measurements (Rupprecht et al., 
2021).” 
 
 
In summary, this is a brief but well-focussed review on a topic that is of interest to several 
researchers and thus should be formally published after the necessary revisions have been 
made. 
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We thank you for your positive comments and helpful additions to our article.  
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