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Abstract: Long-term, individual-based field studies, the application of genetic techniques and 

phylogenetic reconstructions have led to substantial advances in our understanding of the diversity 

and evolution of mammalian breeding systems and their consequences.  They show how contrasts 

in ecology, life histories and phylogeny affect the distributions of breeding females and breeding 

males; how the distributions of both sexes affect the evolution of breeding systems and the 15 

composition and kinship structure of social groups; how contrasts in breeding systems and the 

social environment that individuals encounter affect the selection pressures operating on both 

sexes and the evolution of their behavior, physiology and morphology; and how these differences 

affect the demography and dynamics of populations and their responses to variation in density, 

climate and human impact.  20 

One Sentence Summary: Long-term studies of mammals shed new light on the causes and 

consequences of variation in mammalian breeding systems.  
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Main Text:  
 
Summary  

Social evolution in mammals 

Background 5 

Early studies of animal evolution focused principally on the evolution of adaptations to the 

physical environment that increased the survival of individuals while research since the 1960’s has 

explored selection operating through variation in reproductive success as well as through survival, 

showing how contrasts in breeding systems affect selection on females and males and the evolution 

of their behavior, physiology morphology and ecology.  Field studies of mammals have played a 10 

particularly important role since they have been able to explore the causes of individual differences 

in reproductive success in species with contrasting breeding systems (Fig. 1).  Over the last thirty 

years, the development of genetic analyses of paternity have made it possible to measure the 

reproductive success of individuals of both sexes and to assess kinship between group members.  

In addition, gene-based phylogenies have made it feasible to reconstruct evolutionary sequences 15 

and to investigate the social and ecological conditions associated with particular transitions.  The 

results of these studies now provide the basis for an integrated understanding of the diversity of 

mammalian breeding systems and their consequences for the evolution and ecology of both sexes.    

  

Advances  20 

The first mammals were probably nocturnal and breeding females probably lived in separate 

ranges while males may either have lived in overlapping ranges or shared those of individual 

females.  Where mixed sex pairs share a common range, they often breed together in successive 

seasons and males commonly contribute to the care of young.  Some singular breeders live in 
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cohesive family groups that include non-breeding adult offspring of the breeding pair (and 

occasionally, immigrants, too) who assist in rearing the young of the breeding pair.  Help from 

non-breeders can mitigate the effects of fluctuating environments and cooperative systems have 

often evolved in species that occupy challenging, unpredictable habitats.  

 5 

In around a third of all contemporary mammals, multiple breeding females aggregate in stable or 

unstable groups.  ‘Plural’ breeding systems of this kind usually appear to be derived from species 

where breeding females lived in separate ranges or in mixed sex pairs and are most commonly 

found where the risk of predation is high, direct competition for resources is reduced or group-

living facilitates foraging or range defense.  Groups differ widely in stability and size and 10 

commonly consist of related females that have remained in their birth groups.  However, where 

there is substantial risk of close inbreeding to females that remain in their birth groups, they often 

disperse, so that groups consist of unrelated females.  While all adult females are fertile in most 

plural breeders, their breeding success can vary widely, sometimes depending on their social 

status, which often depends on the number of relatives and allies that will support them in 15 

competitive encounters with other group members.  Where breeding competition between females 

is intense, females may kill each other’s offspring and can be larger and more aggressive than 

males. 

 

The aggregation of breeding females in plural breeders strengthens selection on males to   guard 20 

potential breeding partners and has often led to the evolution of polygynous or polygynandrous 

mating systems where competition between males is intense.  Where female group size is small, a 

single breeding male usually defends access to each group while larger groups often include 

several breeding males. The breeding success of males is often correlated with their weight and, 
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especially in species where single males guard access to female groups, they are commonly larger 

than females.  Males in these species often have more highly developed weaponry and successful 

breeding is frequently restricted to a relatively short number of years.  Intense breeding 

competition between males also affects their treatment of females: males often adopt coercive 

mating tactics that can have substantial costs to females and individuals that have recently 5 

immigrated into breeding groups may kill the dependent offspring of co-resident females, 

advancing the timing of their next conception.  Intense reproductive competition between males 

and the adaptations associated with it commonly increase their susceptibility to starvation or 

predation when resources are scarce and, in some species, can lead to adult sex ratios that are 

strongly biased towards females. 10 

 

Outlook 

Many important questions about the causes and consequences of mammalian breeding systems 

remain unresolved.   A broader range of field studies is needed that includes more solitary, 

nocturnal and marine species.    Future studies also need to explore the demographic consequences 15 

of contrasting breeding systems and their implications for the conservation and management of 

populations as well as for evolutionary processes.  
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Review:   
Social evolution in mammals 

Main text 

Mammal societies and breeding systems  

Background 5 

Early studies of animal evolution focused principally on adaptations to the physical environment 

that were likely to increase the survival of individuals (1-3).  In contrast, research since the 1960’s 

has explored the selection pressures operating through individual differences in reproductive 

success as well as survival in both sexes and has shown how contrasts in breeding systems and 

social environments affect the selection pressures operating on females and males and the 10 

evolution of their  behavior, physiology, morphology and ecology (4-6).  While studies of a wide 

range of animals have made important contributions to these developments, research on mammals 

has played a particularly important role since field studies of species with contrasting breeding 

systems have been able to explore the extent and causes of variation in the breeding success in  

large samples of recognizable individuals of both sexes (7-9). 15 

 

Compared to other major groups of vertebrates, mammals are unusual because the evolution of 

gestation and lactation commits all females to heavy energetic investment in their offspring (7, 

10).  This intensifies intrasexual competition between females for the resources necessary to raise 

offspring and often reduces the potential benefits of parental investment  to males, increasing 20 

competition between them  to guard access to multiple breeding partners, contributing to the 

evolution of polygynous mating systems  (7, 11).  As a result, the principal factor limiting breeding 

success in male mammals is commonly their access to breeding females while the principal factor 

limiting reproductive success in females is often their access to resources (7, 12, 13).  Where 
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breeding females aggregate in groups, this further intensifies breeding  competition in both sexes 

and reduces levels of kinship between group members (14), with far-reaching consequences for 

the evolution of their reproductive strategies and social behavior (7, 15). 

 

Over the last forty years, our understanding of the diversity and evolution of mammalian societies 5 

and breeding systems has improved rapidly as a result of three principal developments.  First, an 

increasing number of long-term field studies of social mammals have monitored the movements 

and life histories of large numbers of  recognizable individuals from birth to death in successive 

generations (8, 16).  Second, the application of genetic analysis has provided quantitative  

measures of individual breeding success and kinship in both sexes in an increasing number of 10 

species (17), making it possible to move on from categorical descriptions of mating systems to 

direct estimates of  the relative breeding success of individuals and the  degree of reproductive 

skew  (16).  In  some cases, it has also been possible to construct multi-generational pedigrees that 

can be used to assess the heritability of particular traits and the extent of inbreeding (18).  And 

third, the development of gene-based phylogenies has made it possible to reconstruct evolutionary 15 

sequences and to identify major transitions in behavior and life history parameters and explore 

their social and ecological correlates (19-21). 

 

Here, I review developments in our understanding of the evolution of mammalian breeding 

systems and their downstream consequences for the morphology, behavior and ecology of females 20 

and males.  Since the factors limiting breeding success often differ between females and males, it 

is useful to start by considering the evolution of reproductive strategies  in each   of the sexes 

before exploring how their strategies interact (7).  I group mammals initially into ‘singular 
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breeders’, where breeding females live in separate ranges and are usually intolerant of each other 

during the breeding season even if they aggregate outside it, and ‘plural breeders’ where several 

breeding females share a common range and frequently collect in groups (7, 22)(see Table 1).  

Within ‘singular’ and ‘plural’ breeders, I then describe how contrasts in the size, stability and 

kinship composition of female groups affects the evolution of reproductive strategies and   5 

phenotypes of both sexes, as well as their population dynamics and demography. 

 

Singular breeders 

Solitary breeders 

Phylogenetic reconstructions suggest that some form of singular breeding probably represents the 10 

ancestral condition in several Orders where social breeding also occurs, including primates and 

carnivores (23-25).  It may also have been the ancestral form of social organization in the earliest 

mammals (26), for all three contemporary monotremes are solitary breeders (27).   A combination 

of the high energetic costs of gestation and lactation, the limited mobility of non-volant mammals 

and the need for crypsis to minimize predation on neonates and adults probably explains why 15 

breeding females are solitary in the majority of mammals (7, 10).  As might be expected, systems 

where breeding females live in separate ranges and avoid or are intolerant of each other during the 

breeding season (‘solitary breeders’) are particularly common in insectivores and carnivores as 

well as in many small mammals, nocturnal species and forest-dwelling terrestrial herbivores (7, 

10).  20 

 

Few of these species have yet been studied in detail and  the ecological  factors maintaining solitary 

life styles are not well understood (7, 28).  Aspects of their  feeding ecology, anti-predation tactics 
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and  reproduction  may all   constrain the aggregation of breeding females in these species (7, 29).  

In some of them, females produce litters of relatively altricial young that need to be concealed or 

protected from predators or conspecifics in nests or burrows (30).  Others, like many of the smaller 

cats and nocturnal mongooses, feed on mobile prey that would be disturbed if several individuals 

foraged together (31), though many terrestrial frugivores and herbivores living in closed habitats 5 

are also singular breeders,  suggesting that feeding competition or the need for crypsis to avoid 

predation may also limit the evolution of female sociality (23, 28, 32). 

 

Social relationships between males and females vary widely between species.  In some, like North 

American red squirrels, males and females occupy separate territories and only come together  to 10 

mate (33, 34) but, in many of them, males occupy  ranges or territories that are larger than those 

of females  and  overlap the ranges  of several females, as in many rodents, cats, bears and nocturnal 

primates (7).  The number of breeding partners that  males can access consequently depends on 

the density of females and the relative size of the ranges of the two sexes and often varies with  

population density (7, 35, 36) and the intensity of intrasexual competition between males probably  15 

varies  with the relative size of male and female ranges (7) as well as with the adult sex ratio (37) 

but comparative data are scarce.  Males can be substantially heavier than females, similar in size 

or slightly smaller and rarely contribute to the care of young (38-41). 

 

In most solitary breeders, offspring typically disperse from their mother’s range when they reach 20 

breeding age, though the timing of dispersal  and the distance moved varies with social and 

ecological conditions and often differs between the sexes (7, 42). Breeding females are often more 

tolerant of their own daughters than of immigrants and female recruits may settle in areas adjoining 
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their mother’s range, so that populations often have a well-defined genetic structure (43, 44).  In 

North American red squirrels, females even prepare food caches for their adolescent offspring and 

change their ranging patterns to allow them to take over part of their original territory, together 

with caches of food that will support them through their first winter (45).   

 5 

Pair-breeders 

In some singular breeders, individual males occupy ranges or territories whose boundaries coincide 

closely with those of a single breeding female so that adults form mixed-sex pairs where partners 

share a common range and offspring of both sexes typically disperse from their parents’ ranges (7, 

46). Pairs commonly persist until one partner dies or is displaced and ‘divorce’ is often uncommon 10 

(7).  Pair-breeding is frequently associated with the defense of  shared ranges by partners  of  both 

sexes and is widely distributed, though it is relatively  common  in rodents, primates and carnivores 

(7).  Pair-breeding often appears to have evolved from solitary breeding (24, 26), though reversions 

from plural breeding  also occur (24, 47). In diurnal species where single males and females share 

ranges, like titi monkeys and owl monkeys (48) or klipspringers and dik diks (49), partners 15 

commonly forage and sleep together, forming small family groups with their adolescent offspring.  

In  other species, including some nocturnal lemurs, pairs  share feeding territories and may sleep 

together but often forage alone and, in some cases,  only associate with each other during the 

mating season (50, 51).  Pair-breeders are often described as ‘monogamous’ (see Table 1) but 

genetic analyses have shown that, although partners often breed with each other, both sexes may   20 

breed with other  individuals, too (46, 52), and that differences in the frequency of extra-pair 

breeding are associated with variation in breeding seasonality, population density and group 

composition (53, 54). 
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In many (but not all) pair-breeding species, males contribute to the care of juveniles, assisting in 

births, guarding young at the burrow or nest and feeding dependent young (7).  The  death  or 

removal  of males is often associated  with reductions in the survival of  their dependent young: 

for example, in pair-breeding California mice, the experimental removal of fathers reduces 5 

offspring survival by 60% (55).  Although females are  more usually  the principal care-givers, in 

some pair-breeders, like titi monkeys, males contribute more to care and juveniles respond more 

strongly to the absence of their fathers than that of their mothers (56).  Male care may also help to 

reduce the costs of breeding to females and interspecific comparisons suggest that it is often 

associated with increases in litter size and in the breeding frequency of females (57, 58). 10 

 

Since pair-breeding constrains access to multiple partners for both sexes, it raises important 

questions about its potential benefits (52, 59, 60).  Three main groups of explanations of the 

evolution of pair-breeding have been suggested, though none of them yet provides a satisfactory 

explanation of its distribution (52, 60, 61).  First, pair-breeding may evolve in species where bi-15 

parental care is necessary for the protection and successful rearing of young or for their protection 

against predators or infanticidal attacks by other males and that this generates benefits to pair-

breeding in either or both sexes (52, 62, 63).  However, in some pair-breeders, males are not 

involved in provisioning or protecting young (61, 64) and two independent phylogenetic 

reconstructions suggest that the evolution of pair-breeding is likely to have preceded or evolved at 20 

the same time as the evolution of paternal care (26, 62).  In addition, there is no obvious reason 

why males cannot provide adequate defense against infanticide for the offspring of more than one 

female (65).  A second group of arguments suggest that males are seldom able to defend breeding 
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access to more than one female and her range at a time or that they cannot do so effectively and 

may maximize their breeding success by guarding  breeding access to a single partner (52).  There 

is anecdotal evidence  that males that attempt to guard more than one female soon lose one of their 

partners (64) and comparative evidence that pair breeding species may  show low population 

densities, though there is no consistent tendency for females to have unusually large ranges (26, 5 

66).  A third group of explanations suggest that pair-breeding enhances coordinated defense of 

feeding territories (67),  though  this is unlikely where pair members spend most of their time apart.  

At the moment, there is currently no single satisfactory s explanation of the distribution of pair-

breeding and it seems likely that different social and ecological contexts favor its evolution in 

different taxa (60, 61, 68).  10 

 

Pair-breeding has important evolutionary consequences.  In many pair-breeders, females and males 

both compete with members of the same sex for territories and breeding partners (7, 60) and  sex 

differences in  reproductive skew,  selection for competitive ability and the development of 

weaponry and ornamentation  are typically smaller than in plural breeders where females live in 15 

groups and males can monopolize access to multiple breeding partners (7). Sex differences in adult 

size, foraging behavior and mortality are usually small, too, and, in some species, females are 

larger than males (7, 41, 69, 70).  The incidence of sperm competition is also reduced and males 

typically have relatively small testes and lack the reproductive adaptations found in species where 

sperm competition is common (71).  The  consequences of pair-breeding for population dynamics 20 

in mammals have not yet been systematically explored though early studies of the population 

dynamics of territorial birds suggested that pair-breeding may be associated with increasing 
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stability in population size (72) and adult sex ratios in pair-breeding mammals are usually close to 

parity, suggesting that sex differences in survival are typically small (7).    

 

Singular cooperative breeders 

In a  small number of mammals, several adult females and one or more adult males typically share 5 

a common range and aggregate in breeding groups but a single dominant female in each group 

prevents other females from breeding regularly and is the mother of a large proportion (usually 

>75%) of young born in the group (7, 22, 73).  Breeding systems of this kind have been most 

intensively studied in rodents, canids, social mole-rats, social mongooses and the marmosets and 

tamarins (74, 75).  Subordinate females frequently show lower levels of estrogen, LH and 10 

progesterone than dominants and can be temporarily infertile, though they are usually able to 

activate their reproductive systems within a few days or weeks (76-78).  Since subordinate females 

are often ‘natal’ individuals that have not left the group where they were born, they often lack  

regular access to unrelated males within their group  and this, too, may contribute to reproductive 

suppression (7, 76, 79).  All group members usually help to protect and provision young born to 15 

the breeding female and, in some species, females are unable to breed successfully without 

assistance from non-breeding helpers (Fig. 2) (7, 22).  Subordinates also contribute to communal 

activities that benefit all group members  (80) which can  include defense of the group’s range 

against intruders (most species), maintaining foraging tunnels (mole-rats), communal  hunting 

(several canids) and alternating as sentinels while the group is feeding (meerkats) (80).  20 

  

Phylogenetic reconstructions suggest that  singular cooperative breeders  have usually  evolved 

from pair-breeding ancestors (81) though this may not be the case in marmosets and tamarins (75).  
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Groups are usually stable, but vary widely in size both within and between species, ranging from 

less than five individuals to over a hundred in  some colonies of  naked mole-rats (82).  In meerkats 

and mole-rats, female immigration is rare while, in some canids and tamarins, both sexes may 

immigrate into established breeding groups (7, 75, 83).  Cooperative breeders share some of the 

characteristics of eusocial insects but subordinate helpers are potentially fertile in all cooperative 5 

vertebrates and there is no clear evidence of discrete castes that have divergent  patterns of 

development in any cooperative vertebrates (80, 84), so it is debatable whether any mammals 

should be regarded as eusocial (85).  Moreover, qualitative differences in the form and context of 

cooperation often make it difficult to compare the extent to which breeders rely on helpers or to 

distinguish clearly between direct and indirect fitness benefits  (80). 10 

  

The evolution of singular breeding systems and cooperative care of young raises important 

evolutionary questions.  First, why do dominant females suppress subordinates, kill their young 

and evict them from their group – especially if they are often their own offspring and are likely to 

act as helpers?  Studies of meerkats  have shown that subordinate breeding can have substantial 15 

costs to dominants: pregnant subordinates often kill any pups born to dominants (86, 87) and the 

presence of pups from other litters reduces the growth of the dominant female’s offspring (88).  In 

addition, suppressing their reproduction may often increase the contributions of subordinates to 

rearing the dominant’s offspring (7). 

 20 

Second, why should subordinate females ‘allow’ themselves to be suppressed and remain in their 

birth groups rather than dispersing or struggling against suppression, as they do in many plural 

breeders?  Part of the answer appears to be that resident groups are territorial, local habitats are 
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often saturated, mortality during dispersal is often high - so that a female’s best chance of acquiring 

a breeding position may often be to remain in her breeding group and to maximize the chance that 

she will inherit the dominant position there (7, 89, 90).  When vacant habitat is available, 

adolescents commonly disperse and attempt to breed independently, so social groups may be 

reduced to breeding pairs (91, 92).  Since dominants often evict subordinates that attempt to breed, 5 

unsuccessful breeding attempts may also reduce the chances that subordinates will inherit the 

breeding position in their birth group (7). 

 

Third, why do subordinates assist with rearing the offspring of dominants rather than conserving 

their resources?  There is little evidence either that cooperative behavior is enforced or that it is 10 

directed selectively at an individual’s closest relatives in any of these species (7, 93).  However, 

genetic analyses suggest that,  in most groups, a single female and a single male are usually  the 

parents of a large proportion  of the surviving young and that average kinship between group 

members is unusually high (94, 95) (see Fig. 1).  As a result, the indirect benefits of helping are 

often likely to be relatively large, facilitating the evolution of cooperation (94).  Moreover, the 15 

contributions of helpers to cooperative activities are often adjusted to their foraging success and 

condition, so that the fitness costs of helping may be small (96, 97).  Finally, dominant breeders 

are often more likely to rear young successfully than subordinates and may evict them if they 

attempt to breed.  As a result, the combined direct and indirect fitness benefits that subordinates 

derive from attempting to breed may often be lower than those of forgoing reproduction and 20 

helping to rear the dominant’s pups. 
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Singular cooperative breeding systems have a number of unusual evolutionary consequences.  

Individual differences in female breeding success are  large and competition for breeding status 

between females is intense (98).  For example, in meerkats, most females that reach sexual maturity 

fail to breed at any stage in their lives while successful individuals can rear more than eighty 

surviving young (90) and even larger differences in breeding success may occur in the social mole-5 

rats where litter size is larger and their potential breeding lifespans are longer than in meerkats (80, 

99).  In several of these species, breeding females have unusually high testosterone levels (77, 100) 

and tend to be more frequently aggressive than males and dominant to them, even where  sex 

differences in growth and adult size are small (7).  In some of them (including meerkats and social 

mole-rats) individuals that acquire breeding positions  also show a secondary period of growth in 10 

the months following their acquisition of dominant status that increases their size and their capacity 

to maintain their position against potential competitors or to bear larger litters (77, 101, 102).  In 

meerkats, subordinates also increase their growth rates in response  to potential breeding 

opportunities as well as to potential challenges by competitors (101, 103).    

 15 

Cooperative breeding also has demographic consequences.  In some cases, it is associated with 

increases in breeding frequency: for example, among the African mole-rats,  species that breed 

cooperatively also breed more frequently than solitary breeders and often produce relatively large 

litters (80).  By sharing the costs of raising young among multiple adults, helpers mitigate the 

effects of adverse climatic conditions and low food availability on growth, survival and 20 

reproduction (104, 105), which probably  explains why cooperative breeders are often found in 

challenging, unpredictable environments (106, 107).  However, as the  breeding success of 

dominant females is positively related to  the number of helpers which falls when population 
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density declines, recruitment rates often fall when population density is low, generating ‘inverse’ 

density dependence and delaying the recovery of populations (7, 108).  Environmental events that 

reduce population density, like droughts or epidemics, may consequently depress recruitment in 

cooperative breeders and groups and local populations can be slow to recover, increasing their 

instability and the risk of local extinctions (108, 109). 5 

 

While cooperative breeding systems involving nonbreeding helpers have often evolved in 

association with singular breeding, they also occur in some plural breeders.  For example,   banded 

mongooses  live in large groups of around twenty or more individuals  in more mesic environments 

than meerkats (110).  In contrast to meerkats and dwarf mongooses, multiple females in each group 10 

breed in almost perfect synchrony, mostly  giving birth  on the same day  and pups born out of 

synchrony are usually killed (110).   Allo-parental care by females is limited, but non-breeding 

males escort and feed particular pups, which are not necessarily close relatives.  Why dominant 

females do not suppress breeding in subordinate females in banded mongooses is still unclear, but 

one possibility is that reductions in relatedness between group members resulting from increases 15 

in group size (r=0.11:(111) limit the indirect fitness that subordinate females can gain by helping 

to rear the dominant female’s young and so make them more resistant to suppression.  

 

Plural breeders 

Female sociality in plural breeders 20 

In plural breeders, multiple breeding females typically share a common range and aggregate in 

stable or unstable groups (7, 22, 112).  All adult females are usually fertile and attempt to breed 

regularly, although individuals differ in their breeding success.  ‘Plural’ breeding systems of this 
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kind are common in bats, rodents, ungulates, primates and cetaceans and are less common in 

carnivores and insectivores (7, 22, 73, 113).  In several Orders, including primates and ungulates, 

plural breeding  appears to have evolved from solitary breeding or pair-breeding ancestors (23, 24, 

26), often in association with the production of single, relatively precocial young (73). In some 

species, populations oscillate between singular breeding when density is low and plural breeding 5 

when it is high while, in others, females continue either to occupy separate ranges or to live in 

groups at all densities although territory size often declines when density is high (114, 115). 

 

Since the movements and distributions of breeding females are commonly adjusted to the 

distribution of resources while those of breeding males are adjusted to the distribution  of receptive 10 

females or to the distribution of  resources that attract them it is often  useful to explore the factors 

affecting sociality in females and males separately (7, 12, 22, 112).  Groups of breeding females 

vary widely in size  ranging from small, stable  groups that frequently defend feeding territories  

and  usually include no more than two or three breeding females to the unstable herds of migratory 

deer and antelope that can include several thousand individuals (7, 23, 116) and the colonies of 15 

some bats  that can have more than a million members (116).  Group size also varies widely both 

within and between populations and commonly increases with population density (114, 115, 117). 

 

The stability of female groups also varies widely.  In  plural breeders that live in relatively small 

ranges or territories, like many  primates and carnivores, females commonly live in ‘closed’ groups 20 

where female immigration is rare, group membership is stable over long periods and group 

members are often hostile to intruders (7).  Members of closed groups may either forage together, 

as in meerkats and chacma baboons, or in unstable parties whose size varies with food abundance 
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and distribution, as in chimpanzees and spotted hyenas (118, 119).  In species where females range 

over relatively large areas, including many deer and antelope and some bats, cetaceans and seals, 

females often form ‘open’ groups whose membership changes from hour-to-hour as individuals or 

parties join or leave each other (7, 120).  In some of these species, like red deer and African 

elephants, maternally related females associate with each other disproportionately often and larger 5 

herds usually consist of females from several different kin groups (120, 121) though, in migratory 

species, like blue wildebeest, there may be no long-lasting social connections between individuals 

(122). 

 

Interspecific differences in female sociality usually  appear to be a consequence of variation in the 10 

relative costs and benefits of group-living to females,  though these can  be affected by the  

reproductive strategies of males (7, 123).  Contrasts in female sociality are often associated with 

differences in life-history parameters, diet, habitat type and activity timing, or with variation in the 

risk of predation and anti-predator tactics (7, 23, 29, 32).  Associations between group size and 

food distribution are common within species, too (7, 124).  The costs of living in groups can 15 

include reductions in foraging success, breeding success or lifespan as a result of increases in direct 

or indirect competition for resources (7, 23, 125), increased detectability of groups by predators 

(126), increased transmission of parasites (127), and increased breeding interference between 

resident females (128).   Direct benefits of sociality are sometimes divided into benefits associated 

with the defense of resources or nests and those associated with foraging (129) and can include 20 

heat conservation (130), the defense of territories against neighboring groups (131), increases in 

the ability of individuals to find, catch or subdue prey (83) and reduced risks of predation as a 

result of dilution effects or improvements in vigilance or defense (7).  Where resident individuals 
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are related, sociality may also generate important indirect fitness benefits arising from the benefits 

of aggregation to the fitness of kin (7, 132). 

 

The kinship composition of female groups also varies widely.   In many plural breeders that live 

in stable groups, females are individuals that have either remained in their birth groups or have 5 

founded new groups, so that most female group members are maternal relatives.  In contrast, in a 

minority of species (including some bats, several social equids, several  Old and New World 

monkeys and all three African apes) females usually disperse from their natal groups and often 

immigrate into established breeding groups, so that most co-resident females are unrelated (7, 

133).  There is extensive evidence of inbreeding costs in wild mammals and of female avoidance 10 

of mating with familiar males that are likely to be close relatives (7, 134, 135).  Contrasts in female 

dispersal often appear to be related to variation  in the breeding tenure of resident  males and the 

risks of inbreeding to females that remain in their natal group (7): where the breeding tenure of 

individual males is relatively short, so that  breeding males have usually been replaced by the time 

their daughters reach sexual maturity, females do not need to disperse to obtain access to unrelated 15 

breeding partners and often remain and breed in their birth groups (133), avoiding  mating with 

familiar  males that are likely to be siblings (7).  In many of these species, males usually disperse 

from their birth groups after reaching sexual maturity (7, 133, 136).  In contrast, in species  where 

the tenure of individual breeding males or male kin groups is typically longer than the age at which 

females mature, females often disperse to breed after reaching sexual maturity and either join other 20 

established groups or found new groups (137, 138).  In some of these species (including several 

of the larger New World monkeys and chimpanzees) males may remain in their birth groups, 

mating with females that immigrate from neighboring groups (137, 139).  One interesting 
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exception to the tendency for members of one sex to disperse from their birth groups occurs in 

killer whales, where both sexes may remain in their birth groups throughout their lives and adults  

of both sexes usually mate with members of other groups (140, 141). 

 

Plural breeding and competition between females 5 

The aggregation of breeding females often intensifies reproductive competition between females 

though escalated fights are seldom as frequent as they are in males, which probably explains why 

weaponry is seldom as highly developed in females (7, 142).  Increases in group size reduce levels 

of maternal kinship between group members and average coefficients of relatedness between 

group members fall rapidly as the number of breeding females increases (14, 95) or where female 10 

immigration is common, as in chimpanzees, intensifying conflicts of interest between group 

members (see Fig. 1).  In species that live in relatively large stable groups, where average levels 

of kinship are low, aggressive interactions between females  are often  relatively  common and 

related females frequently support each other so that the status, breeding success and longevity of 

individuals often depends on the number of relatives and allies that will support them (143, 144). 15 

Intense competition between females can be associated with reductions in the relative survival of 

female juveniles.  For example, in spotted hyenas, siblicide is more frequent between female litter-

mates than between males (145) while, in some plural breeders  where related females form 

coalitions with relatives, dominant females focus aggression on the daughters of subordinates (7, 

146).  20 

 

In a substantial number of  plural breeders, resident females also interfere  directly with each 

other’s breeding attempts and both socially induced abortions and female infanticide are common 
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in subordinate females (147, 148).   Where female competition is particularly intense, as in spotted 

hyenas and some lemurs, females  can have relatively high androgen levels and may  show a variety 

of male-like anatomical and physiological  traits (149, 150).  The  evolutionary  consequences of 

intense female competition are well illustrated by  research on Alpine fighting cows, where 

selective breeding of females for competitive ability over multiple generations has raised  5 

testosterone levels in females and produced a complex of male-like traits, so that females closely 

resemble males (151) (Fig. 3).  

 

Male sociality in plural breeders   

Since the size and stability of female groups affects the number of females that individual males 10 

can guard, female sociality also increases the intensity of direct competition between males and 

affects the tactics they adopt, which  vary widely both between and  within species (7, 152).  Where 

females live in small, stable groups and mating is not highly synchronized, single males often 

defend access to female groups throughout the year while, where stable groups are larger, several 

breeding males frequently associate with each group of females, forming ‘multi-male groups’ and 15 

both sexes often mate with more than one partner (7, 153).  In litter-bearing species, like lions and 

meerkats, males commonly emigrate from their birth groups together and immigrate into 

established groups together, so that co-resident males are often close relatives that have been 

familiar with each other since birth.  In contrast, in species that produce single young, like many 

group-living monkeys, males usually emigrate and immigrate independently, so that co-resident 20 

males are seldom closely related to each other (7, 95).  In some species, like plains zebras and 

gelada baboons, multiple stable breeding units aggregate together in large, unstable herds (154, 

155) .  
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Where female groups are unstable and females range widely but regularly visit resource-rich sites, 

as in many antelope and some deer, breeding males often defend resource-based territories in areas 

regularly used by females (156, 157) or small,  clustered territories on traditional mating grounds 

or ‘leks’ where they are joined by  receptive females, as in some bats and a number of ungulates 5 

(158-160).  Finally, where the density of receptive females is low and receptive females are widely 

dispersed, as in whales and elephants, males often cruise in search of receptive partners, defending 

individual females for short periods before moving on to search for other breeding opportunities 

(7, 152).   

 10 

Plural breeding and male competition 

 The aggregation of breeding females commonly increases the number of females that  individual 

males can guard, leading to  increases in reproductive skew among males and intensifying 

reproductive competition between them (7).  Fighting is particularly frequent in plural breeders 

where mating is seasonal and individual males collect and defend large ‘harems’ of females, 15 

mating with females as they become receptive as in many deer and land-breeding seals (7, 161, 

162) (see Fig. 4).   The aggregation of  multiple breeding females often generates strong selection 

in males for traits that increase their competitive ability and is frequently associated with the 

evolution of large sex differences in body size and weaponry, especially in species where single 

males guard access to female groups and breeding is seasonal (7, 163).   Where females form 20 

relatively large, stable groups, several males often associate with each female group, 

polygynandrous mating systems and sperm competition are common and the reproductive anatomy 

of males is frequently adapted to maximize their success in fertilizing mating partners. Ejaculate 
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volumes and testes are often unusually large, penises may be modified to displace sperm from 

previous mating and the size and swimming speed of sperm is often increased (164-166).   

 

Intense breeding competition between males also has important consequences for their treatment 

of females.  In plural breeders with polygynous mating systems, males often adopt coercive mating 5 

tactics to induce females to mate with them.  These can include persistent attempts to mate, forced 

copulation and punishment of females that are reluctant to mate or which  associate with 

subordinate males (167, 168).   Male coercion can cause serious damage to females, who may be 

wounded during the attempts of males to mate with them or in the course of punishing attacks by 

dominant males (see Fig. 5).  Although this might appear to be counter-productive for males, if 10 

coercive tactics increase their chances of mating, collateral damage to females is unlikely to 

constrain the evolution of coercive tactics, unless costs to females are very large (169).  Males that 

have recently acquired breeding positions may also kill dependent young  fathered by their  

predecessors if this advances the  next conception of  females and so increases their mating 

opportunities and, in some species, male infanticide is one of the commonest causes of mortality 15 

in infants and juveniles (170, 171).  For example, in lions and bears, male infanticide can be 

frequent enough to affect rates of recruitment and population size (172, 173).  Females frequently 

respond by cooperatively defending their young, by forming close social bonds with mating 

partners or, in some species, by prematurely aborting young that are likely to be killed (174, 175). 

  20 

Breeding competition between males can have profound consequences for the evolution of male 

life-histories.  Intense competition between males often delays the onset of successful breeding in 

males until they approach full adult weight while their capacity to guard females successfully often 
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ends as soon as their strength and condition begin to decline with increasing age (7).  As a result, 

the  breeding careers  of males  can be very short (176) and are often considerably shorter than 

those of females (7, 177) (see Fig. 4).  Several processes contribute to reductions in the duration 

of male tenure and increased mortality in males, including fighting injuries, loss of appetite and 

condition during the breeding season, increased susceptibility to predators and reductions in 5 

immune response associated with increased parasite loads (176, 178, 179).   

 

The shortening of breeding lifespans in males has important consequences for both sexes.  In 

males, it is often associated with the evolution of tactics that help to extend their breeding lives.  

For example, in Cape buffalo and Uganda kob, breeding males alternate between periods of 10 

reproductive activity and ‘resting’ periods in bachelor groups (7, 157).  In other species, it has led 

to the evolution of age- or size-specific breeding tactics in males (180) and, in some, to the 

evolution of  alternative reproductive strategies and balanced polymorphisms in anatomy and 

breeding tactics (181) (see Fig. 6).  The effects of male competition on the breeding tenure of 

males may also help to explain why males tolerate the presence of potential rivals in their group, 15 

for the tenure of breeding males declines less rapidly with female group size if more than one 

breeding male is present and similar effects occur within as well as across  species (7, 65, 182). 

Reductions in the breeding tenure of males  also reduce the  likelihood that females will reach 

sexual maturity when their father still monopolizes reproduction in their birth group and that they 

will need to disperse to locate unrelated breeding partners (7) and so may help to explain the 20 

prevalence of female philopatry and male dispersal in mammals.  
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The evolution of male characteristics associated with breeding competition has ecological and 

demographic consequences, too. In many dimorphic species, male infants are born heavier and 

grow faster than females and male infants nurse more frequently, extracting more milk from their 

mothers and females that have reared sons are less likely to survive the following winter than those 

that have raised daughters (183-185).  The greater costs of raising male infants can also enhance 5 

the effects of the mother’s phenotype on the  post-natal survival, development and eventual 

breeding success of her sons compared to that of their daughters (186, 187), which can lead to 

selection for qualitatively superior mothers to produce male-biased sex ratios and inferior ones to 

produce female-biased ones (188).  Biased birth sex ratios have been documented in several 

ungulates, though it is often difficult to tell whether they are a consequence of biases in the sex 10 

ratio at conception or of sex differences in pre-natal mortality (7, 183, 189).  

  

Sex differences in juvenile growth and adult size also increase the relative nutritional requirements 

of males (7, 190) and, in strongly dimorphic species, are often associated with sex differences in 

feeding behavior, diet and habitat use (191-193) as well as with male avoidance of areas of high 15 

female density outside the breeding season (69, 194).  Sex differences in  growth are often  also 

associated with higher parasite loads in males than females (179) and with increased risks of 

starvation (7, 195) and mortality is often higher in males than females at most stages of 

development (187, 195, 196).   Sex differences in survival are often most pronounced when 

weather conditions are unfavorable or food is scarce (7, 197) and, together with increases in male 20 

dispersal, can generate strong female biases in  local adult populations (7).   Analyses of temporal 

changes in age-related  breeding success among males show that female biased  adult sex ratios 

reduce the intensity of breeding competition between males and the degree of reproductive skew 
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(197, 198).  In some cases, these biases are large enough to have important consequences for the  

management of populations (199) and they may even  reduce the resilience of populations for, in 

some animals, sexually dimorphic species have substantially higher rates of extinction than 

monomorphic ones (200).  

 5 

Recent theoretical studies have argued that female-biased adult sex ratios may encourage males to 

breed with multiple partners and so may intensify reproductive competition between males (201) 

and have suggested that sex differences in size may be a consequence of sex differences in size 

and growth (37, 202).  While this may be the case in some taxa, in group-living mammals variation 

in the spatial and temporal distribution of breeding females appears to be the principal driver of 10 

variation in reproductive competition between males and associated adaptations – and breeding 

competition and associated adaptations, in turn, generate increases in male mortality and female-

biased adult sex ratios (7, 123, 203). 

 

Outlook 15 

Research on mammals over the last forty years has revealed the extensive connections and 

interactions between ecology, social behavior and evolutionary processes.  It has shown how 

contrasts in ecology, life histories and phylogeny affect the size and composition of social groups 

and the nature of breeding systems; how contrasts in breeding systems affect the selection 

pressures operating on both sexes and the evolution of their behavior, physiology and morphology; 20 

and how contrasts in behavior, physiology and morphology, in turn, affect the demography and 

dynamics of populations and their responses to  changes  in  population density, resource 

availability, climatic factors and human impact.   
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Technical developments in data collection and analysis have played an important role in these 

advances.  The development of automated recording techniques had extended the range of 

biological parameters that can be measured in wild mammals and the species that can be studied 

in detail (204-206).  Improvements in the storage and analysis of long-term data have made it 5 

possible to answer questions about temporal and spatial variation in a matter of minutes that would 

previously have taken months or years.  And new developments in genetical and genomic analysis 

have transformed our understanding of variation in reproduction and breeding success in both 

sexes, of the development of social and reproductive behavior within individuals (18, 207) and of 

evolutionary sequences and major  transitions in behavior between species (208-210).  10 

 

Despite these advances, many important questions are still unresolved.   Much of our knowledge 

of the causes and consequences of mammalian breeding systems relies on detailed studies of a 

small number of diurnal, terrestrial plural breeders that live in relatively open habitats and we still 

know relatively little about the larger number of species where breeding females are solitary (7, 15 

211).  There are many specific questions that have still to be resolved: for example, we do not yet 

understand the distribution of pair-breeding (60, 61), the factors affecting interspecific differences 

in male tenure (7) and the lack of development of weaponry in females (142).  In addition, we are 

only starting to glimpse the consequences of variation in breeding systems for the demography, 

dynamics  and genetic structure of  populations  and their responses to  environmental change (212, 20 

213). 
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In the future, theoretical, empirical and technical developments are all likely to play an important 

role in extending our understanding of the causes and consequences of breeding systems in 

mammals as well as in those of other species. The further development of automated recording 

techniques will help to extend the range of biological parameters that can be measured in wild 

mammals and the species that can be studied in detail (204-206).  Continuing improvements in  5 

genetical  analysis  are likely to  provide new insights both into the development of behavior in 

individuals and the causes of individual variation (214).  And genomic comparisons should provide 

an improved understanding of evolutionary sequences and the causes of major transitions in 

behavior (215, 216).  However, neither automated recording techniques nor genetical analyses can 

replace the information that can be gained from long-term, individual-based field studies and 10 

maintaining existing long-term studies and developing new ones will continue to be a priority. 
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Table 1 
Definitions 

___________________________________________________________ 
 
Breeding systems 5 

Singular breeders:  

Solitary breeders: species or populations where most breeding females live in separate 

ranges that overlap to varying extents and avoid or are intolerant of each other during the 

breeding season, though they may aggregate at other times of year.   Males may occupy 

separate ranges or ranges overlapping those of several adult females, providing access to 10 

more than one potential breeding partner.  

Pair breeders: species where a single adult male and a single adult female and her 

dependant offspring share the same range and usually breed together in successive seasons 

or breeding attempts.  

Singular cooperative breeders:  species living in groups including more than one adult of 15 

either or both sexes where a single female in each group virtually monopolizes 

reproduction and subordinates of either or both sexes help to rear her young. 

Plural breeders:  group-living species or populations where two or more breeding females share 

the same range and associate with each other in stable or unstable groups during the breeding 

season, either foraging together in cohesive groups or foraging in unstable parties.  Breeding 20 

groups may include one adult breeding male (Single male groups) or more than one breeding male 

(Multi-male groups).   Where female groups are unstable, males may defend temporary groups of 

females, cruise between female groups or defend mating territories in areas regularly used by 

foraging females or in clusters that are visited by receptive females (Leks). In some species, groups 
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of related females or breeding groups that include both sexes aggregate in larger herds (Multi-level 

societies). 

Mating systems  

Monogamy: mating systems where the same mixed sex pair usually mate together in 

successive breeding attempts.  5 

Polygyny: mating systems where single males commonly mate with several different 

females in the same breeding season and multiple breeding females may mate with the 

same   male. 

Polyandry: mating systems where individual females commonly mate with multiple males 

in the course of a single season, while males do not mate with more than one female. 10 

Polygynandry: mating systems where both sexes commonly mate with multiple different 

partners in the same or successive breeding seasons. 

Benefits and costs 

Direct fitness benefits or costs: increments or reductions to the survival or breeding success 

of individuals 15 

Indirect fitness benefits or costs: increments or reductions to the survival or breeding 

success of non-descendent relatives. 
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Figure legends 

Summary figure 

Twenty-two mammals that are the subject of continuing long-term, individual-based field 

studies covering multiple generations.  Dates show the approximate date of the beginning of 

each study (7).  Gene-based estimates of variation in the breeding success of individuals of both 5 

sexes are now available for the majority of these species. 

Continuing long-term individual-based field studies of wild mammals. 

a) Rhesus macaques, Cayo Santiago, Puerto Rico Ó Alex Georgiev 

b) Chimpanzees, Gombe, Tanzania Ó Ian C. Gilby 

c) Yellow-bellied marmots, Colorado, USA Ó Dan Blumstein 10 

d) Spotted hyenas, Tanzania & Kenya Ó Tim H. Clutton-Brock 

e) African lions, Serengeti, Tanzania Ó Craig Packer 

f)  Northern elephant seals, Año Nuevo, USA Ó Burney Le Boeuf 

g) Mountain gorillas, Rwanda Ó Alexander Harcourt/Kelly Stewart/Anthrophoto 

h) Red deer, Rum, Scotland Ó Tim H. Clutton-Brock 15 

i) Yellow baboons, Amboseli, Kenya Ó Elizabeth Archie 

j) Bighorn sheep, Alberta, Canada Ó Fanie Pelletier 

k) African elephant, Amboseli, Tanzania Ó Harvey Croze 

l) Black-tailed prairie dogs, South Dakota, USA Ó Elaine Miller Bond 

m) Cheetah, Serengeti, Tanzania Ó Dom Cram 20 

n) White-faced capuchin monkeys, Santa Rosa, Costa Rica Ó Tom Houslay 
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o) Northern muriquis, Cataringa, Minas Gerais, Brazil Ó Thiago Cavalcante / Projeto       

Muriqui de Caratinga 

p) Sifakas, Beza Mahafaly, Madagascar Ó Claudia Fichtel 

q) Soay sheep, St. Kilda, Scotland Ó Arpat Ozgul 

r) Red squirrels, Yukon, Canada Ó Ryan W. Taylor 5 

s) Kalahari meerkats, Southern Kalahari, South Africa Ó Tim H. Clutton-Brock 

t) Banded mongooses, Queen Elizabeth National Park, Uganda Ó Harry Marshall 

u) Red-fronted lemurs, Kirindy Forest, Madagascar Ó Claudia Fichtel 

v) Owl monkeys, Province of Formosa, Argentina Ó E. White / Owl Monkey Project. 

Fig. 1.  10 

Average kinship between group members in four plural breeders and four singular breeders. 

The figure shows average coefficients of relatedness between resident females (upper values) and 

all group members (lower values) for four plural breeders (Upper row: (A) Chimpanzees; (B) 

yellow baboons; (C) spotted hyenas; (D) African lions) and four singular breeders (Lower row: 

(E) African wild dogs; (F) moustached tamarins; (G) Kalahari meerkats; (H) Damaraland mole-15 

rats).   

Sources: (94) and (95) and (A) (139, 217); (B) Tung, J., pers. comm.; (C) (218); (D) (219); (E) 

(220); (F) (221); (G) (222); (223); (H) (224).  

Photo sources: (A) © Ian C. Gilby; (B) © E. Archie; (C) © T. Clutton-Brock; (D) © Craig Packer; 

(E) © Lorna Harvey; (F) © Hector Bottai under Creative Commons Attribution - ShareAlike 4.0 20 

International License; (G) © Tim Clutton-Brock; (H) © Kyle Finn. 

Fig. 2.  

Cooperative activities in Kalahari meerkats 
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In meerkats (Suricata suricatta), non-breeding subordinates of both sexes assist dominant breeders 

by caring for their young, guarding and feeding pups and acting as sentinels when their group is 

foraging (90).  

Photo source: © Kalahari Research Trust. 

Fig. 3 5 

Consequences of selection for competitive ability in females in fighting cows 

In spring in the Italian Western Alps, fights are staged between cows which have been selectively 

bred for their aggressiveness and fighting ability and now share many of the characteristics of 

bulls, including relatively high testosterone levels. 

Photo source: © Cristina Sartori 10 

Fig. 4. 
 
Age-related changes in reproductive success in male red deer and elephant seals 

In many polygynous mammals, like red deer and elephant seals, there is intense competition 

between breeding males, with the result that only ‘prime’ males breed successfully and males have 15 

substantially shorter breeding lifespans than females (225, 226).   

Photo sources: © Tim Clutton-Brock; Burney Le Bouef. 

Fig. 5. 
 
Costs of male competition to females in chacma baboons 20 

Coercive mating tactics are common in males in terrestrial mammals.  In chacma baboons, adult 

males frequently threaten or attack cycling females (A), sometimes generating serious injuries (B).  

The frequency with which cycling females show injuries increases with the rate of male-female 

aggression (C).  The probability that males will be able to monopolize access to females during 
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the period when they are likely to conceive (POP) increases with the rate at which individual males 

have directed aggression at them (D) (168).   

Photo sources: © Alecia Carter; Alice Baniel. 

Fig. 6. 

The evolution of horn types in Soay sheep 5 

In Soay sheep on the island of St. Kilda, high survival costs of breeding competition between males 

maintain a balanced polymorphism in horn size which is associated with differences in behavior.  

Fully horned males (A, B) are either homozygous or heterozygous for an allele (Ho+) at the horns 

locus (RXPF2), while males that either have very small horns or no horns at all (C) are 

homozygous for an alternative allele (Hop).  Males that are homozygous or heterozygous for Ho+ 10 

have higher annual breeding success than individuals that are homozygous for Hop (D) while 

individuals that are heterozygous for Ho+ and those that are homozygous for Hop show higher 

survival that those homozygous for Ho+ (E).  As a result, heterozygotes for Ho+ have the highest 

fitness (F) and both alleles are maintained in the population.  

Photo source: © Arpat Ozgul 15 

 


