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Abstract: Membrane proteins reside in the lipid bilayer of biomembranes and the structure and func-
tion of these proteins are closely related to their interactions with lipid molecules. Structural analyses
of interactions between membrane proteins and lipids or detergents that constitute biological or
artificial model membranes are important for understanding the functions and physicochemical
properties of membrane proteins and biomembranes. Determination of membrane protein struc-
tures is much more difficult when compared with that of soluble proteins, but the development of
various new technologies has accelerated the elucidation of the structure-function relationship of
membrane proteins. This review summarizes the development of heavy atom derivative detergents
and lipids that can be used for structural analysis of membrane proteins and their interactions with
detergents/lipids, including their application with X-ray free-electron laser crystallography.

Keywords: membrane protein; lipid; detergent; chemical synthesis; X-ray free-electron laser (XFEL);
serial femtosecond crystallography (SFX); structure-function relationship

1. Introduction

All cellular organisms have biomembranes composed of lipids, which form a boundary
between the cell cytoplasm and the surrounding extracellular environment and organize
complex structures inside the cell to construct cellular organelles [1]. Membrane proteins
localize in the lipid bilayer of biomembranes and play a variety of important functions
such as transport of various substances between the inside and outside of the cell, signal
transduction, energy synthesis, and cell adhesion. In particular, membrane proteins asso-
ciated with human diseases are attracting considerable attention as drug targets and are
actively studied. Compounds that bind to membrane proteins and inhibit or promote their
functions are being explored as drug candidates, and membrane proteins overexpressed on
the surface of certain cancer cells are targets for the development of antibody drugs [2–5].
Thus, elucidation of the structure and function of membrane proteins including their
interactions with lipids at the molecular level is essential both from the perspective of
basic science to understand the mechanisms of life and from the perspective of medical
applications. However, the progress of membrane protein research has lagged behind that
of water-soluble proteins because of the difficulties associated with isolating hydrophobic
membrane proteins in sufficient quantity and quality for analysis. In the field of structural
biology, only about 6000 of the approximately 180,000 structural coordinates registered in
the Protein Data Bank (PDB) are those of membrane proteins.
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Nonetheless, advances in research technology have accelerated the study of membrane
protein structures. With the continuous development of genetic engineering, expressing
high levels of stable membrane proteins as recombinant proteins and purifying them with
a sufficient yield has gradually become possible. High-speed atomic force microscopy has
made it possible to image motion during functioning with nanometer-order spatial resolu-
tion without destroying the structure of biological samples [6]. Cryo-electron microscopy
has undergone remarkable technological improvements over the last decade, enabling
structural analysis of membrane proteins and their complexes with near-atomic resolution
without requiring crystal preparation [7]. Most attempts to visualize the three-dimensional
structure of membrane proteins and their interactions with lipids/detergents at near-atomic
resolution or better have been made using X-ray crystallography. Advancing synchrotron
radiation facilities and beamline technologies have facilitated the determination of crys-
tal structures of membrane proteins. This trend will continue with the development of
fourth-generation synchrotron radiation sources, including X-ray free-electron laser (XFEL)
facilities [8].

Solving new structures by X-ray crystallography requires both intensities and phases
of structure factors of diffracted X-ray waves; however, measured diffraction patterns only
give intensities (so-called “phase problem”). Therefore, experimental (de novo) phase
determination methods including single or multiple heavy-atom isomorphous replacement
(SIR or MIR), single- or multi-wavelength anomalous diffraction (SAD or MAD) or the
combination of SIR or MIR with anomalous scattering (SIRAS or MIRAS) must be applied
to solve the phase problem. Isomorphous replacement methods use the difference in
reflection intensities between the native crystal and the heavy atom-labeled derivative
crystal to determine the phases, whereas the anomalous diffraction method uses anomalous
differences between Bijvoet pairs [9]. Both methods require accurate measurement of
small intensity differences. However, expressing selenomethionine-labeled recombinant
proteins is time-consuming and costly, and even if the native crystals are soaked in a
heavy-atom solution, the heavy atoms often do not bind to the protein or the crystallinity
easily collapses, resulting in loss of diffraction ability. Thus, the development of heavy
atom labeled protein ligands is needed that bind various membrane proteins and facilitate
drawing electron density maps efficiently from X-ray diffraction data to reveal three-
dimensional structures.

In this review, we summarize the development and use of heavy atom derivative
detergents/lipids that can be used to analyze interactions between membrane proteins and
detergents/lipids and to determine the structure of membrane proteins. We also discuss
the potential of combining recently developed XFEL crystallography with heavy atom
detergents/lipids to understand the structure-function relationship of membrane proteins
and their interactions with detergents/lipids.

2. Heavy Atom Labeled Protein Ligands

Typical de novo methods to determine crystallographic phases involve heavy-atom
derivatization of protein crystals. These crystals can be used for isomorphous replacement
methods and anomalous diffraction methods. The period 4 to 6 elements, including
lanthanides, are often used as electron-rich heavy atoms for solving phase problems
when determining protein structures by X-ray crystallography. Soaking manipulation
introduces heavy metal ions or heavy atom-labeled compounds into protein crystals.
The successfully soaked ions or compounds in protein crystals are immobilized through
interactions with functional groups of proteins mostly by ionic and dipole linkages, H-
bonding, and coordination bonding [10,11]. Numerous conditions are typically screened
as a rule of thumb to ensure successful crystallization of the target protein and referring
to the chemistry of ionic interactions and covalent modifications is often useful for the
introduction of heavy atoms into protein crystals.

Protein ligands containing heavy atom moieties have been developed to achieve two
purposes. First, these ligands unveil the molecular interactions between proteins and
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ligands. The strong and characteristic diffraction of heavy atoms, due to their high electron
density and anomalous scattering, reveals the ligand position on the protein. Second, the
ligand can be used for de novo phasing to determine the protein structure. However,
careful design of the heavy atom ligand is essentially required to avoid disturbance for the
protein-ligand interaction. Heavy atom-containing detergents/lipids are potentially useful
for solving structures of membrane proteins because they have affinity for the hydrophobic
surface of membrane proteins and can be used to determine phases.

2.1. Halogens

Protein-ligand analogs carrying a Br or I atom have been used successfully to deter-
mine X-ray protein crystal structures with de novo phasing; however, careful design of
the analog structure is important because of the properties of halogen atoms. The car-
bon(sp3)–halogen bond length (C–Br: 191 pm; C–I: 216 pm) is significantly longer than the
corresponding carbon–carbon bond length (151 pm) [12]. Thus, careful consideration may
be required when selecting protein crystallization conditions because of the bulkiness and
lower bond-dissociation energy of the carbon(sp3)–halogen bond (C–Br: 72.4 kcal/mol;
C–I: 56.9 kcal/mol) [13]. Possible instability can be overcome by installing halogens on
an aromatic ring because the bond-dissociation energy between a benzene carbon (Ph)
and the halogen atom is higher (Ph–Br: 84 kcal/mol; Ph–I: 67 kcal/mol) than that of
carbon(sp3)–halogen bonds [13].

The high electron density and anomalous scattering from halogen atoms are used to
disclose the exact atom position in crystal structures. A powerful application is to elucidate
the binding of drugs to membrane proteins. For example, the anomalous scattering of Br
installed on Fluoxetine (Br–Fluoxetine), the antidepressant drug named Prozac®®, clearly
reported the ligand position at the fenestration of the K2P channel TREC-2, which is
regulated by arachidonic acid [14]. In a similar approach, Br-labeled Memantine, a drug
used for treating Alzheimer’s disease, was used to accurately unveil the binding mode to
the prokaryotic pentameric ligand-gated ion channel [15]. The crystal structure indicated
that the Br analog blocks the extracellular entryway of the channel pore to inhibit ion
passage through the channel.

Halogen labeling has also been used to determine the crystal structure of RNA
molecules. RNA is a biopolymer that plays a direct role in the regulation of cellular
activities through molecular interactions. Some structures of RNA have been successfully
determined through de novo phasing using halogen atoms such as 5-bromouridine [16]
and 5-iodouridine [17]. Nucleotides are crucial protein substrates for maintaining cellular
homeostasis. ATP mimicking analogs with a halogen atom are good inhibitors of protein
kinases. The affinity of protein-inhibitor binding is dependent on the number and position
of halogen substitutions, which contribute to “halogen bonding” [18]. Therefore, halogen
bonding is another important function of halogen atoms introduced on the protein ligand,
which may enhance ligand-protein interactions and possibly modulate the orientation of
the ligand [19].

Cell membrane lipids are indispensable for regulating the structure and function of
membrane-related proteins. Phospholipids carrying brominated hydrocarbon chains 1
and 2 have been used to examine phase separation and domain distributions
(Figure 1) [20–22]. Namely, an electron-rich Br atom selectively positioned in the mid-
dle or terminal position of a phospholipid hydrocarbon chain efficiently acts as a collisional
quencher for a fluorescence group close to the Br atom. These brominated fatty acids of
phospholipids are readily prepared by substituting the terminal alcohol with Br [23] or
adding Br2 to an unsaturated bond [24]. The electron-rich Br atom can be a good reporter in
X-ray diffraction studies for detecting particular atomic positions in lipid tails consisting of
continuous methylene and terminal methyl groups. X-ray diffraction data of a bilayer mem-
brane composed of mono-bromo dipalmitoylphosphatidylcholine (DPPC) 1 disclosed the
terminal position of the hydrocarbon chain in the membrane, where the terminus of lipid
chains was substituted with a Br instead of the ω-methyl group [25]. Br mimics the size of
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the ω-methyl group of the hydrocarbon chain because both have similar van der Waals
radii (Br: 185 pm; CH3: 200 pm). Bromination did not affect the transition enthalpy and
cooperativity significantly; although, mono-bromo DPPC showed a significant decrease by
9 ◦C in the phase transition temperature. Brominated lipids were also used to determine
lipid binding sites on the surface of membrane proteins in single-crystal X-ray structural
studies of proteins [26]. This was achieved by discriminating between the hydrocarbon
chains of lipids and those of detergents that were used to reconstitute membrane proteins
into membranes. When labeling phospholipids with Br atoms, the anomalous signals from
dibromo phospholipid 2 in Figure 1 and its analogs with different lipid headgroups make it
easier to discriminate lipid electron densities of surrounding lipids from those of detergents
and other molecules.
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Figure 1. Structures of the bromo-phospholipids.

Brominated lipids can be used to determine lipidic ligand–protein interactions
(Figure 2). Chemosensory proteins transport chemicals from air to the receptor and are
associated with olfaction or taste processes. 12-Bromododecanol was used in a crystalliza-
tion study as a surrogate for the hydrophobic ligand of a chemosensory protein [27]. The
clear observation of three peaks in the anomalous difference electron density map revealed
that three chain positions of the bromohydrocarbon occupied the large ligand cavity of the
protein after major structural changes. Pheromone binding proteins are another class of
odorant proteins. Similarly, iodohexadecane was used instead of the intrinsic pheromone,
bombykol, to determine the conformation of the binding cavity of the insect pheromone
binding protein from Bombyx mori [28].

We recently developed the synthetic route forω-doubly brominated 1,2-dimyristoyl-
sn-glycero-3-phosphocholine (Br2-DMPC) via the tosyl intermediate (Scheme 1). Esteri-
fication of the ω-tosyl fatty acid to the two hydroxy groups on glycerophosphocholine,
instead of using theω-bromo fatty acid, successfully produced an intermediate 3 in moder-
ate yield, and the following substitution reaction using LiBr afforded Br2-DMPC. These
brominated lipids will be used as ligands and as annular lipids in membrane protein
crystallization studies.

Large membrane proteins usually consist of multiple transmembrane helices and
sizable ectodomains. Therefore, labeling multiple sites of the membrane protein with heavy
atoms is an approach to solve phase problems in X-ray diffraction studies. The use of
appropriate detergents is often required to manipulate and crystallize membrane proteins.
Detergents used for crystallization can be conveniently labeled with heavy atoms, which
is suitable for de novo phasing. Accordingly, heavy atom-bearing tripod amphiphiles
shown in Figure 3 were developed previously [29]; the iododetergent 4, which solubilizes
membrane proteins, is suitable for manipulating membrane proteins.
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(PDB ID: 2P71) (B). Hydrocarbon chain of the ligands were shown in sky-blue, and Br and I were shown in purple and
magenta, respectively.
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We developed amphipathic compounds, phospholipid mimics and detergents bearing
multiple halogen substitutions on aromatic rings for de novo phasing and revealing lipid-
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protein interactions. The amphipathic properties manifested by the hydrophilic headgroups
linked to the lipophilic hydrocarbon tails are essential for these molecules to mix well with
bilayer membranes and interact with membrane proteins in a similar manner to intrinsic
lipids (Figure 3). Furthermore, the multiple halogens arrayed on a plane of the aromatic
ring assisted with the easy detection of the moiety. Commercially available benzoic acid or
phthalic acid derivatives carrying multiple halogen substitutions, some of which have been
used as a phasing reagent in protein crystallization [30,31], were coupled with lipophilic
moieties through amidation or esterification with alkyl amine, lysophosphatidylcholine
or fatty acids to give compounds 5a, 5b, 6a (HAD16), 6b, HAD13a [32], and HAD13b
(see Supplementary Materials for synthetic details). Importantly, HAD13 was developed
based on a successful phasing reagent 5-amino-2,4,6-triiodoisophthalic acid (I3C, or magic
triangle) [30,31] for application in X-ray imaging. I3C is a common synthetic intermediate
for several X-ray contrasting reagents safely used to improve the visibility of vascular
structures and organs during radiographic procedures in clinical diagnostics [33,34]. I3C
has been used for solving the crystal structure of more than 30 protein structures (mainly
soluble proteins) in the PDB. Recently, 5-amino-2,4,6-tribromobenzene-1,3-dicarboxylic acid
and tetrabromoterephthalic acid, which are bromo analogs of I3C, were successfully used
as phasing reagents in the crystallization of model proteins [35,36]. Further application of
I3C and other halogenated benzoates for membrane protein crystallization was achieved
by improving the amphiphilicity of the halogenated benzoate by introducing an acyl chain
at an amino group or coupling with a lysophospholipid. The amphiphilic nature of these
compounds ensures good miscibility with phospholipids and for acting as detergents by
surrounding membrane proteins. Phospholipid mimics 6a (HAD16) and 6b and detergents
HAD13a and HAD13b were miscible in DMPC/CHAPSO bicelles (q = 2.8), which were
used for crystallization of membrane proteins [37], whereas hydrophobic compounds 5a
and 5b were shown to readily form precipitates. In practice, HAD13a was used successfully
to perform de novo phasing of XFEL diffraction data obtained from membrane protein
microcrystals (see details in Section 3).

2.2. Selenium

Selenium is a major heavy atom that is used to achieve de novo phasing of protein
crystallographic data. Oxygen and sulfur belong to the second and third periods of the
group 16 elements in the periodic table, thus being potentially substituted with a selenium
element in the 4th period. Therefore, recombinant expression using selenocysteine and
selenomethionine readily furnishes target proteins with heavy atom labels, which are
suitable for the SAD/MAD phasing method [38]. However, care must be taken because the
toxicity of selenomethionine sometimes hampers the growth of recombinant organisms
used to overexpress target proteins. In addition, selenium derivatives of nucleic acids have
been incorporated into DNA and RNA to solve the phase problem in MAD phasing [39].

Selenium-labeled derivatives of ligands that bind to proteins have been synthesized
for protein crystallography. The selenium atom on the protein ligand is used to phase
X-ray diffraction data and determine the exact atomic position of the bound ligand by
using anomalous scattering, as is the case with halogen ligands. In carbohydrate chemistry,
selenium-containing sugars and their derivatives have been developed as antioxidants and
glycosidase inhibitors [40,41]. Although selenium is a highly toxic element, the potential of
these seleno-sugars as lead compounds for therapeutic reagents has been examined [42].

Selenomethyl-N-acetylglucosamine (βMeSe-GlcNAc), a selenium-labeled sugar, was
first used for protein crystallization to solve the phasing of data obtained on bacterial
F17-G adhesin (Scheme 2) [43] because GlcNAc is a native ligand of this adhesin. The
selenomethyl group was smoothly installed at the anomeric position of 1-chloro-GlcNAc.
βMeSe-GlcNAc successfully mimics the native ligand because the binding constants of
GlcNAc and βMeSe-GlcNAc to the adhesin are similar. Imberty and co-workers developed
a selenomethyl derivative of fucose (β-MeSe-Fuc) (Scheme 2). βMeSe-Fuc was first used as
a seleno-ligand for phasing when solving the crystal structures of fucose-binding lectins
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derived from a plant pathogenic bacteria [44]. βMeSe-Fuc was also used to determine the
co-crystal structure of other lectins AFL [45] and BC2L-C [46], which originate from the
opportunistic infection-related fungus Aspergillus fumigatus and the bacterium Burkholderia
cenocepacia, respectively. αMeSe-Fuc was readily synthesized by anomerization of βMeSe-
Fuc with a Lewis acid [47] or glycosylation between fucosyl imidate and a selenoacetal
acceptor [48]. Recently, Shimabukuro et al. successfully introduced the MeSe group at
the 2–, 3–, or 4–OH position of fucose (Figure 4) and these compounds were used as
ligands for a fucose binding lectin that originated from Aspergillus oryzae [49]. The MeSe
substitution disclosed the essential hydroxy group for interaction with the lectin. Currently,
the selenium atom can be incorporated into an oligosaccharide structure, which facilitates
applications of seleno probes to elucidate oligosaccharide binding to proteins by not only
crystallography but NMR because 77Se (I = 1/2, 7.6% natural abundance) is an NMR active
nucleus that gives rise to a sharp signal [50].
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Figure 4. Fucose derivatives with selenomethyl substitutions at the 2, 3, or 4 hydroxy group (A) and sialylglucose derivative
with three selenomethyl substitutions (B).

The hydrophilic sugar moieties are also used as headgroups of detergents to manipu-
late and crystallize membrane proteins. Detergents carrying a heavy atom can be used in
membrane protein studies. Dodecyl-β-D-selenomaltoside (SeDDM), a heavy atom analog
of dodecyl-β-D-maltoside (DDM), was used to achieve MAD phasing when solving the
structure of leukotriene C4 synthase by X-ray crystallography (Figure 5A) [51]. Further-
more, SeDDM was used successfully as a phasing detergent to solve the structure of the
prokaryotic pentameric ligand-gated ion channel [52]; however, the sugar headgroups
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were poorly resolved (Figure 5B). Detergent bundles of SeDDM were clearly observed
inside the pore.
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Fatty acids are amphiphilic compounds ubiquitously present in our body. A seleno-
fatty acid whose methylene group was substituted with a selenium atom was developed
because their van der Waals radii are very similar (Se: 190 pm; CH2: 200 pm). Carbon
belongs to group 14 and is thus different from selenium in the periodic table. This difference
results in a slightly longer bond length (C–Se: 194.5 pm; C–C: 154.0 pm) and a smaller bond
angle (C–Se–C: 96.3◦; C–C–C 112.6◦). Thus, the distance between the two carbon atoms
of a C–Se–C moiety is 289.8 pm, which is 34 pm longer than the distance of 1,3-carbon
atoms in an alkane. However, this difference does not affect the conformation of the whole
acyl chain significantly, except for the selenoether and its neighboring portions. Therefore,
selenium can be used as a bioisostere for a methylene unit, which is particularly useful
for introducing a heavy atom into the hydrophobic part of detergents and ligands. For
example, Fredga and Lindgren first reported the synthesis of 4-seleno-hexadecanoic acid
and 12-seleno-hexadecanoic acid, the seleno analogs of palmitic acid (Scheme 3) [53]. Two
or more selenium atoms were also incorporated into a fatty acid using a similar synthetic
pathway [54]. Sadek and Basmdjian incorporated radioactive 75Se into fatty acid chains for
imaging [55].
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Scheme 3. Conventional synthesis of seleno-fatty acids.

Selenium is an essential trace element and a source of the antioxidant selenoproteins.
Ether-type lipids bearing a selenomethyl moiety at the terminus of a hydrocarbon chain
were synthesized to gain antioxidant activity [56,57]. Interestingly, seleno fatty acids were
also developed as antimicrobial agents [58]. These seleno-lipid derivatives can be used to
solve the phase problem in appropriate protein crystallization studies.

Lipidic ligands carrying a heavy atom moiety are also useful for revealing lipid–
protein interactions, not only for phase determination but by making the heavy atom
position conspicuous with the anomalous difference map. Recently, we developed a
heavy atom derivative of α-galactosylceramide (α-GalCer) known as KRN7000, which
activates immune responses by inducing cytokine production upon binding to the protein
CD1d (Figure 6) [59]. Selenium was incorporated into the fatty acid chain of α-GalCer by
substitution of a methylene group through chemical synthesis. The selenium andω-halo
derivatives were potent inducers of IFN-γ and IL-4 production in murine splenocytes. The
heavy atom-modified lipid derivatives of α-GalCer were accommodated deeply in the
lipid-binding cavity of CD1d.
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Figure 6. Structures of heavy atom derivatives of α-galactosylceramide and binding model with CD1d. The chemical
structures of α-GalCer derivatives with terminal halogens or selenium (A), and the superposed structures of murine CD1d
complexed with Th1-selective ligand C8PhF (PDB ID: 3GMO; pink ribbon and purple wire) and that with KRN7000 (PDB
ID: 3HE6; sky-blue ribbon and blue wire) (B). C26′ of KRN7000 is shown as a dark green ball and C12′/C18′ are shown
with gray balls, which corresponded to halogen and selenium positions of the synthetic analogues, respectively.
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3. Serial Femtosecond Crystallography (SFX)

An important recent innovation in quantum beam technology for structural biology is
the emergence of XFEL. The world’s first XFEL facility, LCLS [60], was built at Stanford
University in the United States in 2009. In 2011, SACLA [61] was established in Japan, fol-
lowed by the European XFEL [62] in Germany, PAL-XFEL [63] in Korea and SwissFEL [64]
in Switzerland. Serial femtosecond crystallography (SFX) is a new data measurement
technique of X-ray crystallography, which takes advantage of the ultra-high beam bril-
liance, femtosecond pulse duration and high spatial coherence of XFEL [65]. At SACLA,
an operation mode with a wavelength range of 0.62–2.76 Å, a pulse duration of 2–10 fs, a
pulse energy ~400 uJ at 10 keV, and a frequency of 30–60 Hz is available for SFX [66].

In SFX measurements, many microcrystals are ejected at random orientations from
an injector and introduced into the orbit of the XFEL beam, and the diffraction image
produced when a single pulse of XFEL hits a microcrystal within a femtosecond exposure
time is recorded at room temperature. Because the brightness of the XFEL is typically a
billion times brighter than synchrotron radiation such as SPring-8, the diffraction intensity
obtained with a single XFEL pulse is comparable to the diffraction intensity of a 1-s exposure
with synchrotron radiation. Diffraction images of thousands to a half-million microcrystals
are collected for structural analysis. In the case of synchrotron radiation crystallography
(SRX), at least milliseconds of exposure time are required for data collection, which results
in radiation damage and photoreduction, a phenomenon where hydrated electrons that are
generated on the order of picoseconds by the interaction of X-rays with water molecules in
the crystal react with protein molecules in the crystal to break chemical bonds and reduce
metal active centers [67]. Because femtosecond XFEL diffraction in SFX is completed on a
shorter timescale than the process of radiation damage and photoreduction, this technique
captures the damage-free structure of samples [68].

3.1. De Novo Phasing in SFX

Since the first construction of the XFEL facility in 2009, all SFX structures reported
in international journals had been solved by the molecular replacement method using
known structures as search models. This is because phase determination by the anomalous
scattering method requires accurate measurement of small intensity differences between
the reflections of the Bijvoet pairs, which is much more difficult with SFX than with the
conventional SRX oscillation method. In SFX, data are collected by irradiating a large
number of microcrystals of different sizes and orientations with XFEL pulses that have
fluctuations in intensities and wavelength spectra. This leads to large errors in the observed
diffraction intensities, and all measurements are partial reflections, making it difficult to
determine the phases. In 2014, the first de novo structure determined with SFX was reported
by the Gd-SAD method using a model protein lysozyme [69]. Subsequently, we reported
de novo phasing of the luciferin-regenerating enzyme by the Hg-SIRAS method [70] and
lysozyme by the S/Cl-SAD method [71] in 2015 and successfully determined the structure
of copper-containing nitrite reductase by the Cu-SAD method in 2016 [67]. In the same year,
the phase determination of BinAB by the Hg/Gd/I-MIRAS method [72] and streptavidin
by the Se-SAD method [73] were reported. Thus, successful cases of de novo phasing by
SFX were reported. However, these data analyses are all from water-soluble proteins and
required tens or hundreds of thousands of high-resolution diffraction images of 1.7–2.3-Å
resolution. Therefore, the authors took on the challenge of developing an efficient method
for the phase determination of membrane proteins by SFX.

3.2. De Novo Phasing with the HAD13a Detergent

In general, the diffraction quality of membrane protein crystals is lower when com-
pared with that of water-soluble proteins. This is also true for SFX using the most brilliant
XFEL light source available today. In the experimental phasing method of SRX, heavy
atoms such as Se, Hg, Au, and Pt, which have absorption edges around 1.000 Å, have been
selected frequently and used to derivatize relatively large crystals (50–200 µm). This is
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because, in most cases, the beamlines used for X-ray crystallography of biological macro-
molecules are optimized for wavelengths around this range. In contrast, because SFX
uses microcrystals (1–50 µm), X-ray beams with longer wavelengths are often selected to
obtain larger diffraction signals. We selected iodine, which has an excellent anomalous
scattering effect at longer wavelengths (f ” = 8.6e at 1.771 Å). HAD13a was synthesized
by attaching a hydrophobic alkyl chain (caprylic acid) to I3C to give HAD13a affinity
toward hydrophobic surfaces of membrane proteins [32]. HAD13a has detergent properties
(CMC: 4.6 mM) and was used to label membrane proteins with heavy atoms by simply
mixing it with microcrystals of bacteriorhodopsin crystallized by the bicelle method or
G protein-coupled A2a adenosine receptor (A2A GPCR) obtained by the LCP method
(Figure 7). The HAD13a-labeled bacteriorhodopsin was successfully phase-determined
by SAD, SIR, and SIRAS methods using iodine atoms. For phase determination by the
SAD method, 23,000 indexed diffraction images and a resolution of 2.1 Å were required. In
contrast, in the SIRAS method with the addition of native crystal data, reflections up to
a resolution of 3.3 Å were sufficient for phasing, and when the resolution was extended,
only 7000 (4000 derivative and 3000 native) indexed images were required to determine
the phase. This indicates that the SIRAS method is more powerful than the SAD method
for efficient de novo phasing in SFX. At a similar time as our study, Batyuk et al. succeeded
in determining A2A GPCR by the S-SAD method, which required 500,000 images and
obtained a resolution of 2.5 Å [74].
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3.3. Binding of the HAD16 Lipid to a Membrane Protein

HAD16 was synthesized by modifying the aromatic head group of HAD16H with
multiple heavy-atom halogen groups to furnish a hydrophobic alkyl tail (Scheme 4, Supple-
mentary Materials Section S6). The structural properties of HAD16 mimic a phosphatidyl-
choline structure. HAD16 can be used as a tool for analyzing lipid-membrane protein
interactions. Microcrystals of bacteriorhodopsin obtained by the bicelle method were
mixed with HAD16 and then SFX data were collected at SACLA (Supplementary Materials
Section S7). We tried de novo phasing the HAD16 dataset. Although two heavy atom
sites were located by the SIR, SIRAS or SAD method, auto-tracing was not possible even
with all 18,069 lattices obtained. This is most likely because of the smaller isomorphous
and anomalous signal from HAD16, which contains only one I atom and one Br atom per
molecule instead of three I atoms in HAD13a, as well as only one HAD16 molecule in the
asymmetric unit when compared with two HAD13a molecules.

Membranes 2021, 11, x  13 of 18 
 

 

 

Scheme 4. Synthetic reaction scheme for HAD16. HAD16 was readily produced via a single step 

synthesis by the esterification. The easy preparation will expand its application range. Details of this 

synthesis were described in Supplementary Materials. 

The HAD16 molecule adopting alternative conformations binds to an interface re-

gion among three symmetry-related bacteriorhodopsin molecules (Figure 8). The long al-

kyl tail of HAD16 interacts with the hydrophobic transmembrane surface. The choline and 

phosphate group face the bulk solvent. The aromatic ring in the head group ring is stabi-

lized by π–π stacking with Y26 (Figure 8B) and hydrophobic interactions of I/Br atoms 

with L22, G23, V127, and L221 from a bacteriorhodopsin molecule and W80 from a neigh-

boring molecule. Because a lipid or detergent molecule is located in the corresponding site 

of the native bacteriorhodopsin structure, we concluded that HAD16 binds to the same 

site by partially replacing the lipid or detergent. Thus, we modeled lipid/detergent-de-

rived alkyl chains and HAD16 together using partial occupancies. We also collected a da-

taset from microcrystals soaked with HAD16H lacking the alkyl tail to study the im-

portance of the tail region for bacteriorhodopsin binding (Scheme 4). The anomalous dif-

ference map did not show any significant peaks assignable to the compound (data not 

shown). This establishes that the alkyl chain was indispensable for HAD16 binding to 

bacteriorhodopsin. 

 

Scheme 4. Synthetic reaction scheme for HAD16. HAD16 was readily produced via a single step
synthesis by the esterification. The easy preparation will expand its application range. Details of this
synthesis were described in Supplementary Materials.

The HAD16 molecule adopting alternative conformations binds to an interface region
among three symmetry-related bacteriorhodopsin molecules (Figure 8). The long alkyl
tail of HAD16 interacts with the hydrophobic transmembrane surface. The choline and
phosphate group face the bulk solvent. The aromatic ring in the head group ring is
stabilized by π–π stacking with Y26 (Figure 8B) and hydrophobic interactions of I/Br
atoms with L22, G23, V127, and L221 from a bacteriorhodopsin molecule and W80 from a
neighboring molecule. Because a lipid or detergent molecule is located in the corresponding
site of the native bacteriorhodopsin structure, we concluded that HAD16 binds to the same
site by partially replacing the lipid or detergent. Thus, we modeled lipid/detergent-derived
alkyl chains and HAD16 together using partial occupancies. We also collected a dataset
from microcrystals soaked with HAD16H lacking the alkyl tail to study the importance of
the tail region for bacteriorhodopsin binding (Scheme 4). The anomalous difference map
did not show any significant peaks assignable to the compound (data not shown). This
establishes that the alkyl chain was indispensable for HAD16 binding to bacteriorhodopsin.
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Figure 8. Structure of bacteriorhodopsin in complex with HAD16. (A) Final refined structure (gray ribbon model) after
structure determination by molecular replacement. Anomalous difference map (purple mesh; contoured at 4.0 σ) is also
shown. (B) Close-up view of the HAD16 binding site in the final refined structure with 2mFo–DFc map (cyan mesh; 1.0 σ).
The C, N, O, I, and Br atoms of HAD16 (stick models), which is assigned as alternative conformations, are colored yellow,
blue, red, purple, and brown, respectively. Alkyl chains derived from native lipid or DMPC/CHAPSO bicelles are depicted
as orange stick models.

4. Conclusions

Biomembranes are the last frontier in life science and the most challenging subject to
study. Biomembranes are composed of a lipid bilayer consisting of phospholipids, glycol-
ipids, sterols, and membrane proteins. We presented here artificial lipids and detergents
containing heavy atoms, which can be used as components of model biomembranes for
analyzing interactions with membrane proteins. In addition to the examples presented
above, there is also a study of a detergent labeled with Hg [75]. In combination with
X-ray crystallography, these artificial lipids and detergents can be used to determine novel
structures of membrane proteins or to identify the orientation of lipid/detergent molecules
by visualizing the position of the heavy atoms using anomalous X-ray scattering. In par-
ticular, SFX can observe damage-free structures at physiological temperatures. Future
applications of these lipids/detergents for elucidating structure–function relationships of
membrane proteins and biomembranes include: (i) labeling of various model lipids to dis-
tinguish between outer and inner leaflet regions that bind specifically to membrane proteins;
(ii) observation of peripheral lipids surrounding membrane proteins with weak affinity at
high resolution; and (iii) visualization of the dynamics of lipid localization on the surface
of membrane proteins by time-resolved SFX analysis [76].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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A2A GPCR G protein-coupled A2a adenosine receptor
α-GalCer α-galactosylceramide
β-MeSe-Fuc selenomethyl derivative of fucose
βMeSe-GlcNAc Selenomethyl-N-acetylglucosamine
CHAPSO 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxypropanesulfonate
CMC critical micelle concentration
DDM dodecyl-β-D-maltoside
DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine
DPPC dipalmitoylphosphatidylcholine
ERATO Exploratory Research for Advanced Technology
I3C 5-amino-2,4,6-triiodoisophthalic acid
JST Japan Science and Technology Agency
LCLS Linac Coherent Light Source
LCP lipidic cubic phase
MAD multi-wavelength anomalous diffraction
MEXT Ministry of Education, Culture, Sports, Science and Technology
MIR multiple heavy-atom isomorphous replacement
MIRAS multiple heavy-atom isomorphous replacement with anomalous scattering
PAL-XFEL Pohang Accelerator Laboratory X-ray Free Electron Laser
PDB Protein Data Bank
PRESTO Precursory Research for Embryonic Science and Technology
SACLA SPring-8 Angstrom Compact Free Electron Laser
SAD single-wavelength anomalous diffraction
SeDDM dodecyl-β-D-selenomaltoside
SFX serial femtosecond crystallography
SIR single heavy-atom isomorphous replacement
SIRAS single heavy-atom isomorphous replacement with anomalous scattering
SRX synchrotron radiation crystallography
SwissFEL Swiss X-ray Free Electron Laser
XFEL X-ray free-electron laser
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