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ABSTRACT: In this paper, the ability of three selected machine learning neural and
baseline models in predicting the power conversion efficiency (PCE) of organic
photovoltaics (OPVs) using molecular structure information as an input is assessed.
The bidirectional long short-term memory (gFSI/BiLSTM), attentive fingerprints
(attentive FP), and simple graph neural networks (simple GNN) as well as baseline
support vector regression (SVR), random forests (RF), and high-dimensional model
representation (HDMR) methods are trained to both the large and computational
Harvard clean energy project database (CEPDB) and the much smaller experimental
Harvard organic photovoltaic 15 dataset (HOPV15). It was found that the neural-based
models generally performed better on the computational dataset with the attentive FP
model reaching a state-of-the-art performance with the test set mean squared error of
0.071. The experimental dataset proved much harder to fit, with all of the models
exhibiting a rather poor performance. Contrary to the computational dataset, the
baseline models were found to perform better than the neural models. To improve the ability of machine learning models to predict
PCEs for OPVs, either better computational results that correlate well with experiments or more experimental data at well-controlled
conditions are likely required.

1. INTRODUCTION

With a strong global push toward clean energy generation,
more resources are being invested in researching and
developing photovoltaic devices. While silicon-based solar
cells remain the most prominent in the solar cell market, other
materials have also been rapidly gaining interest, such as
perovskite-based solar cells1,2 that have been seen to achieve
promising power conversion efficiencies (PCEs).3 However,
perovskite-based cells are known to have environmental
stability and processing issues.4 As a consequence, organic
solar cells (OSCs) have been gaining interest, due to their low
weight, flexibility, environmental stabilities, and ease of
manufacture.5−7 Although OSCs often have substantially
lower PCEs,6,8 recent synthesis efforts and theoretical
predictions have suggested that OSCs could achieve
conversion efficiencies that make them competitive with
silicon and perovskite-based materials,9−11 with potential
PCEs reaching as high as 20%9 or even 30%11 in some cases.
As conducting experiments can prove to be challenging both

time and resourcewise, computational methods are often
employed to enable rapid screening of candidate materials for
organic solar cells based on PCE. Frequently, computational
estimates of the PCE employ the widely used Scharber
equation,6 which predicts the PCE of a given organic solar cell
architecture from only a few key parameters, all of which can
be determined by application of quantum chemical methods

such as density functional theory (DFT). However, DFT
calculations require substantial computational time that is not
conducive to fast screening. Therefore, machine learning (ML)
methods are often used to derive quantitative structure−
property relationships (QSPR) between the performance of
the organic photovoltaic and the underlying properties of the
materials, as they can make use of existing computational and
experimental data and make predictions at a fraction of the
cost.
A wide variety of machine learning algorithms have been

applied to predict the performance of organic photovoltaics
using different target datasets. The Harvard clean energy
project database (CEPDB),8 is one such target dataset for ML
models that contains computationally determined PCE values
for 2.3 million organic photovoltaic candidates. An example of
ML methods being applied to the CEPDB is the artificial
neural network (ANN) trained by Pyzer-Knapp et al.,12 who
achieved good prediction accuracy for PCE and other
molecular properties. Various deep learning models have also
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been applied, including the convolutional neural network of
Sun et al.,13 who classified organic photovoltaic candidates into
low-performance (<5% PCE) and high-performance (5−10%
PCE) materials, as well as various graph neural network
(GNN) approaches that directly predict PCE.14−16 Recent
approaches have integrated the attention mechanism, originally
introduced for recurrent neural networks for machine trans-
lation,17 to improve the performance by focusing on local
substructures that are relevant for the prediction task. For
example, Wu et al.18 used an attention layer to couple a
bidirectional long short-term memory (LSTM),19 and multi-
layer perceptron (MLP) to predict PCE based on sequential-
ized molecular structure and fragment types. The authors
achieved a very high degree of prediction accuracy on the
CEPDB and identified functional groups that contribute
toward a molecule having higher PCE.
However, it has been noted that computational predictions

of PCE of OSCs often do not agree well with experimental
measurements, and that machine learning approaches like
Gaussian process regression are necessary to improve agree-
ment.8,20,21 As a consequence, experimental OPV datasets,
such as the Harvard organic photovoltaic dataset
(HOPV15),22 are often used to train ML methods instead.
Examples include the k-nearest neighbors (k-NN) and Kernel
ridge regression (KRR) models used for direct PCE prediction
by Padula et al.,23 ANN and RF methods used for classification
by Nagasawa et al.,24 and the five ML models (MLP, deep
neural network (DNN), convolutional neural network, RF, and
support vector machine (SVM)) trained by Sun et al.25 In
general, ML models perform worse on experimental data than
the CEPDB, with better performing models reaching Pearson
correlation coefficients r of 0.7. Given this, studies have also
tried to include additional DFT-computed molecular descrip-
tors in the ML models to improve performance on
experimental datasets. This includes the training of RF,
ANN, and gradient boosting regression trees by Sahu et
al.,26 Sahu and Ma27 in conjunction with 13 DFT-derived
molecular descriptors and 300 experimental PCEs, as well as
the work by Zhao et al.,28 who trained SVM, k-NN, and KRR
models with a variety of different DFT-derived descriptors and
566 experimental PCEs. The performance of these ML models
was similar, achieving correlations of r = 0.7−0.8, and suggests
that including DFT descriptors achieves only a modest
improvement, possibly due to many descriptors being
implicitly linked to the structure.
Ultimately, the goals of these studies is to train an ML model

that can accurately and quickly screen candidate OPV
materials to identify potential high-performance candidates
for further characterization. While it appears that several
different ML approaches can achieve similar levels of
performance, a crucial aspect is the choice of training data.
Training to computationally determined PCEs has the
advantage of large and standardized datasets with controllable
and known degrees of freedom,29 but these PCEs correlate
poorly with experimental measurements, which can undermine
their utility. However, training to experimentally characterized
PCEs is harder due to the wide variety of experimental
conditions, expected experimental errors, larger number of
degrees of freedom, and usually smaller amount of available
data.
The bulk of literature studies focus primarily on developing

more sophisticated machine learning models to achieve better
predictions of PCE. However, even though several studies do

achieve high predictive capability on computational datasets,
less attention is given to the suitability of the datasets
themselves and whether these predictions would agree with
experimental PCE measurements. In light of these consid-
erations, the aim of this paper is to critically test the ability of
machine learning models to predict the PCE of organic
photovoltaics based on the SMILES-derived molecular
structure information, as well as assess the impact and
implications of the choice of training data. To do this, three
neural machine learning models are trained: the BiLSTM
model used by Wu et al.,18 the attentive fingerprints (FP) used
by Xiong et al.,15 and a simple graph neural network (simple
GNN) that serves as an intermediate between these two
models in terms of featurization included. Three baseline
models: random forests (RF), support vector regression
(SVR), and high-dimensional model representation (HDMR)
are also trained for comparative purposes. These six models are
trained to predict PCE based on descriptions of the molecular
structure generated from SMILES strings and fingerprint
analysis. To test the impact of training data, the six models are
trained to both the large, entirely computational CEPDB, and
the small, experimental HOPV15 dataset. Finally, the impact of
the training data and choice of the ML model on predicting
PCEs that are ultimately useful for guiding organic photo-
voltaic design is critically assessed based on the training results.

2. DATA
2.1. Harvard Clean Energy Project Dataset. The first

major dataset used in this work is the Harvard CEPDB,
developed originally by Hachmann et al.8 There are two main
reasons for utilizing CEPDB in this work. First, it is the most
widely used computational dataset in the literature, and has
been the target of numerous studies that train various models
to achieve prediction of PCE.12−16,18 Thus, applying the
models in this work to the CEPDB allows confirmation that
the performance is comparable to the state of the art that is
reported in the literature. Second, using the models on a
computational dataset provides a point of juxtaposition when
the same models are used on experimental datasets. This
should help determine whether models that achieve good
prediction on computational data truly give predictions that
reflect measured PCE values.
As mentioned previously, the CEPDB only contains

computational results for approximately 2.3 million organic
solar cell acceptor candidate materials. While the original
servers and websites for the CEPDB are no longer in use, the
data can be accessed from the following website: https://www.
matter.toronto.edu/basic-content-page/data-download. The
CEPDB provides substantial data for training machine learning
algorithms. The molecular structures in the CEPDB are
generated from 26 different building blocks, as detailed in
Hachmann et al.8 Each species in the CEPDB is assigned an
ID, with the stoichiometry and SMILES string also provided to
give the basic molecular structural information for the organic
solar cell acceptor species. For each species, the PCE, the
short-circuit current density Jsc, the open-circuit voltage Voc,
the HOMO energy, the LUMO energy, and the HOMO−
LUMO gap are reported as computed by the DFT methods
described by Hachmann et al.8 The PCE values reported in the
CEPDB are computed using the Scharber equation
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where FF is the fill factor and Pin is the input power. Scharber
et al.6 also developed models for the various parameters in the
Scharber equation, which are used to derive the CEPDB data.
The fill factor, FF is assumed to be 0.65, and the open-circuit
voltage given by the following expression, derived by Scharber
et al.6

V
e

E E
1

( HOMO LUMO ) 0.3oc
donor acceptor= | | − | | −

(2)

with e as the electron charge, EdonorHOMO being the energy of
the highest occupied molecular orbital (HOMO) of the donor
material in the cell, EacceptorLUMO similarly being the energy of
the lowest unoccupied molecular orbital (LUMO) of the
acceptor material in the cell, and 0.3 being an empirical
correction. In the CEPDB, the acceptor is assumed to be
PCBM, a class of fullerene derivatives commonly used as
electron acceptors in both hybrid perovskite and organic
photovoltaic materials. The magnitude of EacceptorLUMO is
assumed to be 4.3 eV, in accordance with experimental
measurements.30

The two remaining parameters in the Scharber equation, Jsc,
and Pin, are both derived from the incident solar photon flux
density, which essentially amounts to integrating the air mass
1.5 (AM1.5) spectra.31 For this spectra, integrating the spectra
across the wavelength gives a Pin of approximately 1000 W/m2.
The short-circuit current density is given by

J e E EEQE ( ) d
Esc ph

g

∫ ϕ= ×
∞

(3)

with the external quantum efficiency EQE set to 0.65 in the
Scharber model, Eg as the band gap of the donor material, and
ϕph being the incident solar photo flux density as a function of
energy E.
The Scharber model shows that computing PCE, Voc, and Jsc

only requires determining the HOMO and LUMO levels of
the donor material in the OSC, which is readily derived from
the quantum chemical calculations performed by Hachmann et
al.8

Before implementing and training the various machine
learning algorithms to the data in the CEPDB, the data is first
preprocessed to understand the characteristics of the species in
the CEPDB. First, all of the provided SMILES strings are
checked to see if they are valid, in that they successfully encode
a sensible molecular structure that can be identified by RDKit.
In total, 9821 invalid SMILES were identified and thus these
species were removed from consideration for training
purposes. Next, the maximum length of the valid SMILES,
the maximum number of atoms in a single molecule in the
dataset, and the different atom types are identified, as these
define the bounds of the structures that the machine learning
methods will need to model. For the CEPDB, the maximum
length of SMILES and maximum number of atoms in a single
molecule are 83 and 53, respectively. There are seven different
atoms in the CEPDB, namely C, H, O, N, Si, and Se. However,
several atoms can be either aromatic or nonaromatic. This can
significantly impact the underlying chemistry and molecular
behavior, which is another factor to be taken into account. A
final layer of preprocessing is related to the reported PCE
values, in which molecules with a PCE value smaller than the
defined threshold value of 0.0001 are also removed from
consideration, as such species are not going to be useful for
OSC applications. This resulted in another 109 425 species

being removed from the CEPDB set, resulting in the 2 203 603
remaining species to be used as potential training data.
After the CEPDB is preprocessed, stratified sampling is then

applied to derive a set of 25 000 candidate OSC donors for
training and testing the machine learning models, as utilizing
the full preprocessed CEPDB is computationally prohibitive. A
set size of 25 000 species is both computationally affordable
and large enough for the training of machine learning models
to be tractable, and is in line with previous literature studies.18

In this case, the maximum PCE value in the preprocessed
CEPDB is 11.13%. As such, the preprocessed data are first
assigned to 56 bins of equal widths of 0.2%, with the first bin
including species with PCE [0,0.2) and the last bin including
species with PCE [11.0,11.2). Once the preprocessed data is
divided into the 56 bins, stratified sampling without
replacement is then performed with respect to these bins.
This is done so that the PCE profile of the selected 25 000
species is close to the PCE profile for the entire preprocessed
dataset. Once the 25 000 species are selected, this is then
divided into a set of 15 000 species for training the machine
learning method, a validation set of 5000 species used to
evaluate the ML model fit while tuning hyperparameters, and a
test set of 5000 species used to give the final evaluation of the
ML model fit.

2.2. Harvard Organic Photovoltaic Dataset. The
second major dataset used in this work is the HOPV15
dataset, which consists of 350 different experimentally
characterized organic solar cell donor structures that have
been collated from various studies in the literature by Lopez et
al.22 The HOPV15 data is accessible as a single file from the
original publication.22 For each of the 350 species, the
HOPV15 dataset contains the SMILES and InChI strings
that define the molecular structure, as well as the DOI for the
original work that experimentally characterized the species in
question. The experimental data in HOPV15 also includes the
construction type of the donor species, the architecture of the
solar cell, the complement used (i.e., the acceptor material),
and any measured photovoltaic characteristics of the organic
solar cell. These photovoltaic characteristics include the
HOMO and LUMO energies of the donor, the electrochemical
and optical gaps of the donor, as well as the PCE, Jsc, Voc, and
fill factor, but not all of these properties are measured for all
350 species in HOPV15.
The HOPV15 dataset contains experimental results from a

variety of different experimental conditions, which can be seen
in the breakdown of the solar cell characteristics. There are 127
solar cells that made use of molecular constructions for the
donor, while 220 used polymeric constructions for the donor
species. In terms of the architecture, 270 experiments involved
bulk heterojunction solar cells, 13 made use of bilayer solar
cells for measurements, and 64 used dye-sensitized-solar cells
(DSSCs). The acceptor material used also varies, unlike in
CEPDB. In this case 139 experiments made use of PC61BM as
an acceptor, 133 used PC71BM, 9 used C60, 64 used TiO2, 1
used ICBA, and 1 used PDI. For three species in the HOPV15,
no experimental information was provided at all.
Given the variety of experiments used to generate the data in

HOPV15, preprocessing and sampling are again applied to the
data before any training and testing of machine learning
algorithms is performed. As with CEPDB, the SMILES strings
are first checked for validity. In this case, all 350 SMILES
strings are able to be processed using RDKit. The second
preprocessing step removes species that do not have
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experimental PCEs, which excludes 7 species. This leaves 343
species to be sampled from. It is worth noting that for these
species, there is an extra atom type compared to CEPDB,
namely, that of fluorine, meaning 8 different atoms are
possible. Additionally, while the smallest species in HOPV15
contains just 12 atoms, the largest contains 142 atoms, and the
average size of species is roughly 71 atoms, meaning that in
general the donor candidates here are much larger than the
species in CEPDB. This, in addition with the extra atom type
mean that HOPV15 contains substantially different structures
for the ML methods to model when compared to CEPDB.
Although it is very affordable to train to the entirety of the

HOPV15 data, as this involves just 343 PCE values and
SMILES strings to be processed, there is the additional issue of
the variability of experiments and solar cell setups used to
measure these PCEs. As a consequence, not all of the
measured PCEs in HOPV15 are directly comparable as they
are in the CEPDB, due to the differences in experimental
methodology. Therefore, only PCEs measured using similar
experimental conditions were selected to try and get a
consistent dataset. Specifically, since the CEPDB PCE values

assume a PCBM-type material for the acceptor, PCEs
measured with a solar cell that did not use PCBM or similar
materials as the acceptor, namely, those that used TiO2 were
excluded. Similarly, only PCEs measured for solar cells using a
bulk heterojunction architecture were chosen to remove this
variable from the dataset. This sampling meant that 267 PCEs
were selected from the HOPV15 dataset to provide a more
consistent set of experimental values to train the ML methods.
It is worth noting that the HOPV15 dataset also contains

substantial computational data for each of the 350 organic
solar cell donor candidates. This includes optimized geo-
metries for up to 20 conformers for each species, which are
within 5 kcal/mol of the minimum energy structure at the
BP86/def2-SVP level of theory.22 Additionally, for each
conformer, the HOMO, LUMO, HOMO−LUMO gap, Jsc,
Voc, and Scharber equation PCE are reported having been
computed using the def2-SVP basis set and four DFT
functionals, namely, BP86, B3LYP, PBE0, and M06-2X. This
does provide DFT data that could be incorporated as
descriptors in the machine learning model. However, a sample
comparison between the HOMO−LUMO gap, LUMO energy,

Figure 1. Comparison between the donor gap, donor LUMO energy, and Scharber PCE predicted computationally by DFT and by various
experiments in HOPV15.

Figure 2. Overview of neural networks and baselines used in this paper and alignment of their building blocks to three general steps: feature
generation, circular iteration, and readout.
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and PCE predicted using B3LYP/def2-SVP and the corre-
sponding experimentally measured values for these properties
suggest poor agreement between computation and experiment.
This is seen in Figure 1. The agreement is also poor for the
other three functionals used. This does suggest that PCEs
purely predicted by the Scharber equation are insufficient to
predict the actual performance of the material, in agreement
with Padula et al.23 Furthermore, the plots also suggest that
these popular DFT methods struggle when predicting the
HOMO−LUMO gap and LUMO energy of the donor, two
popular descriptors used for machine learning models of PCE.
This may also explain why inclusion of properties computed by
DFT in the previous work of Zhao et al.28 resulted in only a
modest improvement of the ML model performance, in that
these properties are not well described by DFT and thus may
not correlate well with experimental PCE results. The authors
further suggest that while some physical properties predicted
through DFT might correlate with PCE, they do not really
improve the machine learning performance as they are already
correlated strongly with the molecular structure. Given this, it
was decided that no additional descriptors predicted by DFT
would be included in subsequent machine learning models and
that the models would only be trained to relate PCE to the
underlying molecular structure of the donor as described by
the SMILES strings.

3. METHODOLOGY
3.1. Models and Descriptors Summary. While the

neural networks and ML methods utilized in this paper differ
in many respects, they also have some general methodological
steps in common. The steps common to all of the ML methods
are introduced here, whereas details specific to each ML
method are provided in the Supporting Information. An
overview of the structure of the ML methods utilized in this
work is presented in Figure 2. The left-hand side of Figure 2

shows an example of a SMILES string and its corresponding
structure for one of the smaller molecules in the CEPDB. This
example structure contains only 21 atoms, including hydro-
gens, which are treated explicitly throughout this work. Figure
2 also illustrates three general methodological steps in the ML
methods: feature generation, circular iteration, and readout.
Each of these are discussed in turn below.

3.1.1. Feature Generation. Feature generation is where a
SMILES string is converted into a molecular graph. This graph
represents the moleculuar structure, with node features
including properties such as the atom type and aromaticity
and edge features including properties like the bond type.
These node and edge features are determined by RDKit.32

3.1.2. Circular Iteration. For a given node, circular iteration
transforms and joins the features of this node with the features
of its neighbor nodes and of the edges that connect them in a
circular and iterative manner. An example is illustrated in
Figure 2, for the carbon atom marked by a dark green dot. This
carbon atom has three direct neighbor nodes with atom types
O, C, and C, which are connected by two aromatic bonds, and
one single bond. The green circle indicates the merge of the
bond and neighbor features for the marked carbon atom in the
first iteration. In parallel, the merge is performed analogously
for each further node in the molecular graph and its direct
neighbors. Afterward, all node states are updated with the
merged result. All ML methods perform these transformations
and merging, but they do differ in the way of how they
transform and merge the information.
Once one iteration is complete, the entire procedure may be

repeated once again for the updated node states. After the
second iteration, the updated node states now not only include
information about the directly neighboring nodes and
connections, but also information about the direct neighbors’
neighbors. For the carbon atom in Figure 2, this is indicated by
the light green oval covering all nodes with a distance of one or

Figure 3. Strategy I: hyperparameter optimization and model re-training.
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two edges. As a consequence, as more merge and update
iterations are performed, each node state will contain
information on an increasingly large environment within the
molecular graph.
3.1.3. Readout. First, all node states resulting from the

previous circular iterations are aggregated to a single state on
the graph level (i.e., on the molecule level). Next the
aggregated state is used to predict the target value, e.g., by
feeding it into a multilayer perceptron. The execution of these
two steps comprises readout.
Note that some models in Figure 2 contain additional

building blocks or steps that do not align perfectly with these
three overarching steps. For instance, the BiLSTM is a central
block in the g-FSI/BiLSTM model and is placed between the
steps “circular iteration” and “readout”. Detailed descriptions
of the steps that are specific to each ML method are provided
in the Supporting information.
3.2. Training and Hyperparameter Optimization.

Given the complexity and the number of different machine
learning models considered in this work, performing manual
hyperparameter fine-tuning for all of the models would present
a substantial challenge. Furthermore, if each model has manual
fine-tuning of its hyperparameters, it becomes difficult to create
a fair comparison between models, as one may have just had its
hyperparameters tuned more carefully than another. Instead,
two different automated strategies have been used to try and
keep a level of consistency in how the different models have
their hyperparameters tuned. These strategies are explained
below.

3.2.1. Strategy I. This strategy is depicted in Figure 3 and
has been used for hyperparameter optimization when training
each ML method on the CEPDB dataset. The dataset is split
into three sets: training, validation, and test sets with a ratio of
0.6/0.2/0.2. Then, a Bayesian optimization-based hyper-
parameter tuning is performed where the models are trained
on the training set with different configurations (trials)
sampled within the search space. In the case of the neural
models (g-FSI/BiLSTM, simple GNN, and attentive FP), the
training process is performed for 400 epochs using Adam
Optimizer.33 The validation set is used to monitor the training
process using the mean squared error as the performance
metric. For the neural models, this metric was employed for
early stopping to prevent overfitting, as well as assessing the
performance of suggested parameter configurations. For all
models aside from HDMR, 10 trials are first randomly sampled
for the hyperparameter optimizer to estimate a statistical
model for the objective function. The remaining 90 trials are
suggested by an acquisition function that is continuously
updated over the performance of the sampled combination of
hyperparameters. The whole process is handled by the tree-
structured Parzen estimator algorithm implemented in the
Optuna framework.
In the case of the HDMR model, since the only considered

hyperparameters are six different fingerprint bit numbers and 4
different radii (as shown in Table S2), it was possible to do a
full manual grid-search approach, resulting in 24 trials
performed. Subsequently, the hyperparameters of the best
trial are used in the final model re-training step. The training
and validation sets are combined and reshuffled with a different

Figure 4. Strategy II: hyperparameter optimization and model re-training.
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seed for the new split. Each model was again trained with early
stopping monitored. The final model performance is checked
on the test set, which is withheld from the machine learning
method throughout the hyperparameter optimization process.
3.2.2. Strategy II. This strategy is depicted in Figure 4 and

has been used to fine-tune the ML models on the HOPV15
dataset. It can be seen that strategy II differs from strategy I
only by the additional use of nested cross-validation. In this
approach, the hyperparameter optimization and the model
generalization error estimation are performed m times by
separating m different test and training sets from the whole
dataset. This is also called the outer loop. Then, for each m-
fold dataset split, the training set is further split into k different
training and validation sets, which constitutes an inner loop.
Subsequently, for the same set of hyperparameters suggested
by the optimizer, k different models are trained, each using a
different k-fold split of the total training data. Then, the mean
squared validation error across all of the trained models is used
to assess the final trial performance. In the end, m best trials
are found and tested in the model re-training step. The final
model test score is taken as the mean squared test error across
all m-folds. Given that the HOPV15 dataset size is not too
prohibitive, the total number of outer and inner folds, (m, k),
was set to 5 for all of the models. The remaining details of the
model training and trial sampling procedures are the same as in
strategy I.
Further information regarding the choice of hyperpara-

meters set for each model and their sampling ranges can be
found in the Supporting Information.
3.3. Software and Tools. All of the machine learning

models considered in this work, except the HDMR, were
implemented in Python. The g-FSI/BiLSTM model was
reimplemented using the PyTorch framework and by following
the original description of the model by Wu et al.18 The
PyTorch backend of the Deep Graph Library (DGL)34 was
used to build the simple GNN model. For attentive FP, the
code was obtained from a publicly available repository.35 The
RF and SVR baseline models were built in Python using the
Scikit learn library,36 whereas all of the HDMR simulations
were performed using a commercial software, Model Develop-
ment Suite (MoDS).37 The conversion of SMILES strings to
molecular graphs as well as molecular fingerpint generation
were done using the RDKit library.38 Finally, the hyper-
parameter optimizations were performed with Optuna39 for all
models aside from HDMR.

4. RESULTS AND DISCUSSION
4.1. Harvard Clean Energy Project Dataset Results.

This section presents the results obtained by optimizing and
training the selected ML models on the CEPDB dataset using
strategy I. The final models’ performance metrics for predicting
power conversion efficiencies of organic solar cells, in terms of
mean squared error (MSE), mean absolute error (MAE),
coefficient of determination (R2), and Pearson correlation
coefficient (r), are collated in Table 1.
The results in Table 1 suggest that all models can achieve a

reasonably good fit for the CEPDB data, with the largest test
set MSE being 0.569 for random forests. However, there are
still some differences between the performances of the ML
methods, and so each method is discussed in turn.
4.1.1. g-FSI/BiLSTM. Although this model still performs

rather well with a quite low test set MSE of 0.225, it performs
relatively poorly when compared to the other neural models.

By comparing the training and validation sets errors, it can be
inferred that there is some degree of overfitting. As mentioned
previously, this ML architecture has also been applied to the
CEPDB dataset by Wu et al.18 who managed to obtain the test
set MSE of 0.12. Although this is lower than the current
results, it is important to understand that the sampled CEPDB
data points used in this and Wu et al.18 studies were not the
same, hence the difference in performance.

4.1.2. Attentive FP. This model performs the best out of all
of the ML methods, with the MSE as low as 0.071 on the test
set. This is to the best of our knowledge, the best result
obtained so far on the CEPDB dataset. The next best result is
from our simple GNN model (explained in the next
paragraph), whereas the next best literature result of 0.12
MSE is from Wu et al.,18 as explained previously. Figure 5
visualizes the predicted vs measured PCEs for the training and
test sets, where only a little scatter is observed. Xiong et al.15

evaluated their attentive FP on several datasets ranging from
quantum chemistry to physiology and achieved state-of-the-art
predictive performance. They also trained their model on a
CEPDB subset and reported a mean MSE of 0.82 ± 0.07,
which was calculated from three runs for different seeds using
optimized hyperparameter values. As described in Section 2,
species with a PCE value smaller than 0.0001 were removed
from CEPDB during preprocessing. Without the removal of
these species, the implementation for attentive FP used in this
work yields an error of the same order, suggesting that the
results are consistent with those of Xiong et al.15

4.1.3. Simple GNN. The model has been found to have the
second best performance with the test set MSE of 0.091. This
is somewhat surprising, given the simplicity of the method and
the fact that it uses only two atom features. This demonstrates
the power of graph neural networks, and how they are a rather
natural machine learning approach to modeling molecules.
The optimal hyperparameters derived for each neural

method are collated in Table S3 in the Supporting
Information. It can be seen that the g-FSI/BiLSTM and
simple GNN methods have the same optimal embedding
dimension and number of MLP hidden layers. The optimal
number of neurons in the hidden layer is also nearly the same
for these two methods.

Table 1. Performance of the Models Trained on CEPDB
Data in Predicting the PCE Values of Organic Photovoltaics

CEPDB

model/dataset set MSE MAE R2 r

g-FSI/BiLSTM train 0.038 0.151 0.993 0.997
val 0.207 0.322 0.964 0.982
test 0.225 0.329 0.961 0.981

simple GNN train 0.036 0.145 0.994 0.997
val 0.085 0.208 0.985 0.993
test 0.091 0.209 0.984 0.992

attentive FP train 0.024 0.118 0.996 0.998
val 0.062 0.176 0.989 0.995
test 0.071 0.180 0.988 0.994

SVR train 0.008 0.009 0.999 0.999
test 0.297 0.383 0.949 0.974

RF train 0.008 0.060 0.999 0.999
test 0.569 0.534 0.902 0.950

HDMR train 0.413 0.475 0.929 0.964
test 0.530 0.536 0.909 0.953
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4.1.4. Baseline Models. The three selected baseline models
have shown to offer a robust alternative to their neural model
counterparts. Support vector regression is the best performing
baseline model with a test set MSE of 0.297. Figure 6 shows
the predicted vs measured PCEs for the training and test sets.
It can be seen that these plots have a bit more scatter in them
when compared to the same plots for attentive FP. It can also
be noticed from Table 1 that HDMR and random forests have
comparable performance with their test set MSEs of 0.530 and
0.569, respectively. This is rather surprising for HDMR, as the
model is not naturally suited to deal with integer-valued inputs,
making this particular application a rather challenging one.
Table S4 in the Supporting Information lists the most

optimal hyperparameters for all of the baseline models.

Noticeably, the optimal fingerprint size and radius is same
across all three models. This means that there is some
generality as to which parameters are suitable for the CEPDB
dataset for both the neural and baseline ML methods.

4.2. Harvard Organic Photovoltaic Dataset Results.
This section presents the results obtained by optimizing and
training the selected ML models on the HOPV15 dataset using
strategy II. Table 2 collates the mean performance metrics for
all of the models across all five outer loop cross-validation
folds. The error bar estimates are also provided and are given
as one population standard deviation, which for a normal
distribution would correspond to a 68% confidence interval.

4.2.1. g-FSI/BiLSTM. The model mean test MSE is the
second lowest of the neural models. Nevertheless, the model

Figure 5. Attentive FP regression plot showing the predicted vs measured PCEs for the training (a) and test (b) sets. The marginal distribution of
the measured and predicted PCE values are plotted at the side and on the top.

Figure 6. Support vector regression plot showing predicted vs measured PCEs for the training (a) and test (b) sets. The marginal distribution of
the measured and predicted PCE values are plotted at the side and on the top.
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performance (MSE) is much worse compared with the
CEPDB dataset. The obtained mean test MAE of 1.480 is a
bit higher than the value reported by Wu et al.,18 where it was
about 1.25 (without cross-validation).
4.2.2. Attentive FP. This model now has the highest MSE of

4.417 across all of the tried models. The model also has the
largest variation across the outer cross-validation folds,
meaning it is very sensitive to the partition of the training
set. This is in complete contrast to its performance on the
CEPDB dataset, when it was found to be the best performer. A
potential explanation for these “surprising” findings could be
that among all of the ML models, attentive FP is the most
sophisticated one. Therefore, the small and varied amount of
data in the HOPV15 dataset might make it difficult to train.
4.2.3. Simple GNN. Although the model has the best test

MSE and MAE among all of the tried neural models and one of
the lowest variations across outer cross-validation folds, its
performance on HOPV15 is still much worse compared to
CEPDB.
4.2.4. Baseline Models. In the case of the HOPV15 dataset,

the three baseline models have smaller MSE than their neural
counterparts. This time, SVR is not only the best performing
baseline model with respect to the test MSE, as it was on the
CEPDB dataset, but it is also the best performing overall
model. The second best performing model is RF with the test
set MSE of 2.876 followed by the HDMR model with 3.185
MSE. However, the mean test errors for SVR, RF, and HDMR
only slightly differ, in particular when considering their
relatively large empirical variance. Nevertheless, the baseline
model results confirm the known fact that when training to
smaller datasets with larger variability, it can be advantageous
to have fewer degrees of freedom in the models.
As the models generally performed poorly on the HOPV15

dataset, the potential of transfer learning to improve model
performance was also assessed. Transfer learning was
implemented for all three neural network models by taking
the best model identified during the hyperparameter
optimization on the CEPDB dataset and continually training
on the HOPV15 dataset in an end-to-end fashion. The
rationale is that the neural network models are believed to be
able to generalize the fragments and substructures of a

molecule that are important to PCE when trained on the
CEPDB, thus accelerating the learning process when the model
is applied to a smaller but somewhat different dataset like
HOPV15. The model performance when utilizing transfer
learning was compared to the model performance when the
weights were randomly initialized and trained on the HOPV15
dataset. However, the transfer learning did not result in any
statistically significant improvement in performance.
Analyzing the results it can be seen that for the HOPV15

dataset, the selected machine learning models are all unable to
present a clear correlation between the molecular structures
from SMILES and the target PCE, which was not the case for
the CEPDB dataset. It is then important to discuss potential
causes of such a poor model behaviour on HOPV15.
One clear difference between the CEPDB and HOPV15

datasets is that the HOPV15 dataset is substantially smaller. To
explore this, learning curves were constructed using strategy II
and the random forest baseline model, by training to 40, 60,
80, and 100% of the HOPV15 dataset. However, as detailed in
Supporting Information Figure S1, no clear correlation could
be found between the sample size and the MSE. This would
suggest that additional reasons other than the sample size
should also be considered.
Another, rather obvious, reason is that the HOPV15 data are

inhomogeneous, meaning that they were collated across
different labs, so it is very unlikely that the data points are
from the same experimental setups. As a consequence, the
PCEs are much more difficult to compare, as they are not all
determined using the same method as is done computationally
with the CEPDB. Different experiments also have different
associated errors with them, which have not been included or
taken into consideration here. Furthermore, there is an extra
atom type included in the HOPV15 that is not in the CEPDB,
which is fluorine. The number of fragment types in HOPV15 is
also much larger in comparison to CEPDB, with HOPV15
having 156 fragments in comparison to just 56 in CEPDB.
This means that the chemical complexity of HOPV15 is higher
than CEPDB, which poses a challenge as the dataset is much
smaller to begin with. Additionally, the number of variables
influencing PCE in the real-world OPV materials is likely larger
compared to the number of variables in the simple Scharber

Table 2. Performance of Models Trained on HOPV15 Data in Predicting the PCE Values of Organic Photovoltaicsa

HOPV15

model/dataset set MSE MAE R2 r ̅
g-FSI/BiLSTM train 1.072 ± 0.675 0.780 ± 0.271 0.776 ± 0.149 0.900 ± 0.079

val 3.273 ± 0.447 1.425 ± 0.141 0.363 ± 0.067 0.625 ± 0.052
test 3.486 ± 0.647 1.480 ± 0.169 0.299 ± 0.090 0.580 ± 0.064

simple GNN train 1.494 ± 0.712 0.918 ± 0.300 0.711 ± 0.128 0.866 ± 0.065
val 2.641 ± 0.695 1.293 ± 0.166 0.426 ± 0.073 0.680 ± 0.063
test 3.295 ± 0.279 1.454 ± 0.092 0.330 ± 0.053 0.598 ± 0.047

attentive FP train 2.936 ± 1.101 1.377 ± 0.377 0.420 ± 0.211 0.648 ± 0.138
val 3.020 ± 0.964 1.397 ± 0.227 0.355 ± 0.081 0.597 ± 0.070
test 4.417 ± 1.503 1.672 ± 0.223 0.127 ± 0.193 0.455 ± 0.113

SVR train 0.276 ± 0.479 0.196 ± 0.306 0.946 ± 0.093 0.973 ± 0.046
test 2.687 ± 0.487 1.319 ± 0.095 0.453 ± 0.109 0.684 ± 0.083

RF train 0.703 ± 0.610 0.579 ± 0.343 0.859 ± 0.123 0.934 ± 0.059
test 2.876 ± 0.415 1.318 ± 0.065 0.414 ± 0.089 0.657 ± 0.061

HDMR train 0.724 ± 0.171 0.673 ± 0.070 0.855 ± 0.035 0.927 ± 0.019
test 3.185 ± 0.540 1.411 ± 0.080 0.350 ± 0.135 0.623 ± 0.078

aProvided model accuracy metrics are given as a mean across all m-folds and the error bars are given as σ, which for a normal distribution would
correspond to a confidence level of 68%.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c02156
ACS Omega 2021, 6, 23764−23775

23772

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c02156/suppl_file/ao1c02156_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c02156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


model (CEPDB dataset). While some of these variables may
correlate with structural information encoded in SMILES
strings, it is plausible that there are other nonaccounted for
factors. For example, this includes bulk properties of OPV
materials such as the structure of the layer and OPV itself, the
microstructure of any polymers used in the OPV conjunction,
and the contact area between the donor and acceptor in the
OPV to name a few.40 These factors likely make the HOPV15
dataset more challenging for machine learning purposes.

5. CONCLUSIONS
In this paper, the ability of five machine learning models and
HDMR to predict the PCE of organic photovoltaics based on
molecular structure information is assessed, including the
impact and implications of the choice of training data. Three
neural (gFSI/BiLSTM, simple GNN, and attentive FP) and
three baseline (SVR, RF, and HDMR) models are trained on
the larger, computational Harvard CEPDB dataset and on the
much smaller, experimental HOPV15 dataset.
The contrasting datasets result in contrasting performance of

the machine learning models. In the case of the CEPDB, the
simple GNN and attentive FP neural models work very well,
and the attentive FP in particular achieves very low test MSE.
The g-FSI/BiLSTM performs noticeably worse. The baseline
models perform worse on average than the neural models,
although SVR does reasonably well. In general, all of the
machine learning models are able to derive high correlation
coefficients between the learned PCE values and the actual
PCE values in the CEPDB, suggesting that the CEPDB PCE
values correlate well with the SMILES string of the donor
molecules.
In the case of the HOPV15, the performance of all machine

learning models is much worse. Attentive FP, in terms of test
set MSE, now performs the worst, with simple GNN and g-
FSI/BiLSTM also presenting very large MSE errors. Contrary
to the CEPDB, the baseline models now outperform the neural
methods, which could be due to the fact that the neural
methods need to train the weights and have insufficient data to
do so. Still, the performance of all machine learning models is
not very good. This is likely due to the nature of the HOPV15
dataset, which is smaller and also much less homogeneous than
that of CEPDB due to expected differences in experimental
setups, larger chemical complexity of the species in the dataset,
and possibly a larger number of variables influencing real-world
organic solar cell PCEs that may not be strongly correlated
with the structural information of the donor molecules
encoded in the SMILES strings, such as bulk solar cell
properties. Transfer learning was also tried for the neural
models by first training on CEPDB and then training on the
HOPV15 dataset. The transfer learning did not result in any
statistically significant changes in performance, which is
possibly due to the aforementioned differences between the
two datasets.
Ultimately, while a variety of machine learning methods can

accurately model PCEs predicted by the Scharber model and
DFT, they struggle with modelling experimentally determined
PCEs. This is an issue as the computed PCEs do not match
well with experimentally determined PCEs. Going forward, to
improve the performance of ML models in predicting PCEs
that agree with experimental methods, more experimental
measurements at a consistent set of experimental conditions
would be useful. Alternatively, trying to improve the
computational results so that they are more in line with

experimental measurements, either by making use of more
accurate quantum chemical calculations, or better methods for
estimating the PCE, may also help, as these are much easier to
standardize and a large amount of starting data that can be
improved upon already exists. A suggestion could be to
investigate which computational chemical methods can give
predictions of the physical properties of interest (like the
HOMO−LUMO gap) that are in line with experimental
measurements. This will hopefully improve the potential of
fast, computational screening of candidate organic photovoltaic
donors for clean energy generation in the future.
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