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Abstract
Introduction Inductively coupled plasma mass spectrometry (ICP-MS) experiments generate complex multi-dimensional 
data sets that require specialist data analysis tools.
Objective Here we describe tools to facilitate analysis of the ionome composed of high-throughput elemental profiling data.
Methods IonFlow is a Galaxy tool written in R for ionomics data analysis and is freely accessible at https:// github. com/ 
wanch anglin/ ionfl ow. It is designed as a pipeline that can process raw data to enable exploration and interpretation using 
multivariate statistical techniques and network-based algorithms, including principal components analysis, hierarchical 
clustering, relevance network extraction and analysis, and gene set enrichment analysis.
Results and Conclusion The pipeline is described and tested on two benchmark data sets of the haploid S. Cerevisiae ionome 
and of the human HeLa cell ionome.

Keywords Ionomics · Network biology · Galaxy platform

1 Introduction

The multi-omics era has seen an increase in the acquisi-
tion of multivariate and megavariate datasets to describe the 
functional genetic patterns that arise from multiple levels 
of complexity of the cell, including the genome, the epig-
enome, the transcriptome, the metabolome, the proteome, 
the lipidome and the ionome (Fondi & Liò, 2015; Haas et al., 
2017; Pinu et al., 2019).

In particular the ionome, defined as the elemental com-
position of an organism, is studied through the quantitative 

and simultaneous measurement of intracellular elements and 
changes in their composition in response to environmental 
and genetic perturbations (Salt et al., 2008). Inductively cou-
pled plasma mass spectrometry (ICP-MS) is a technology 
used in systems biology and clinical research to profile the 
concentration of elements within samples and cells of living 
organisms (Amais et al., 2020; Barkla et al., 2016; Baxter, 
2010; Konz et al., 2017; Meyer et al., 2018). This technology 
has been coupled with screening experiments using genetic 
modifications to study genome-wide genetic associations 
that are revealed by phenotypical cellular responses at the 
level of element abundances, in diverse model organisms, 
including yeast (Danku et al., 2009; Eide et al., 2005; Yu 
et al., 2012), and plants (Baxter et al., 2008; Chao et al., 
2011; Salt et al., 2008).

Ionome data sets are generally analysed using multi-
variate statistical techniques such as principal components 
analysis (PCA) and clustering, as well as methods for net-
work inference and analysis. These approaches have shown 
to be effective in revealing patterns of correlation between 
intracellular abundances of different elements and between 
elemental profiles of different samples (Eide et al., 2005; 
Iacovacci et al., 2020; Yu et al., 2012). However, at pre-
sent, no bioinformatics pipeline exists that allows the per-
formance of this type of analysis in a standardised fashion. 
For this reason, we developed IonFlow, an R-based Galaxy 
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tool designed for the analysis of ionome data sets from ICP-
MS experiments. The software is freely available on Galaxy 
(https:// usega laxy. org/, Jalili et al., 2020) and is designed to 
have a simple user-friendly interface.

2  Materials and methods

2.1  Workflow

In Fig. 1 we schematically outline the IonFlow pipeline. The 
format of the raw data is a csv table describing a set of N 
measurements (rows) of the concentration of M distinct ele-
ments (columns). Because usually the elements are profiled 
via mass-spectrometry in the form of ions, we also refer to 
them as ‘ions’ here (but note these ions may be complex 
adducts). The column Line describes the variable associated 
with the N measurements, which can be a gene ID associated 
to a single-gene mutant of a model organism under study.

Multiple samples of the same line can be present 
(repeated line ids in the rows) and one column in the table 
(Batch_ID in figure) typically provides the batch identifica-
tion number, a label that groups the measurements accord-
ing to the experimental design, describing for example the 
samples that were measured in the same batch or that were 
measured in the same plate, and is used to correct the data 
for batch effects (Mertens, 2017).

2.2  Data pre‑processing

The PreProcessing function processes the raw data accord-
ing to a series of sequential operations.

1. Log-transformation raw data are automatically log-trans-
formed, a common practice in the analysis of mass spec-
trometry data, which improves analysis of features (ions 
concentrations) by transforming the data to a distribu-
tion that is closer to a Gaussian distribution (Mertens, 
2017).

2. Batch correction three arguments of the function give 
the user a customised way to normalise the data for batch 
effects; these are method_norm, for setting the batch cor-
rection method, control_use which indicates how to use 
the control lines for batch correction, and control_lines, 
a string specifying the cell lines to be used as control. 
If the parameter method_norm is equal to “none”, no 
correction is performed; if “median” is assigned as a 
value, then all the measurements of each ion m in batch 
b are scaled by the median value of the corresponding 
ion in that batch; if “median + std” is assigned to the 
parameter the concentrations are further scaled by the 
standard deviation (std) of the ion concentrations within 
the batch.

  When the parameter control_use is set to “all” then all 
lines in the batch are used to compute the batch median 
and std; when control_use is set to “control” the batch 
median and std are computed using a subset of lines 

Fig. 1  The functional architecture of the IonFlow pipeline

https://usegalaxy.org/
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specified in the character vector control_lines passed to 
the function. Finally, if control_use is set to “control.
out”, all lines except the control lines are used to com-
pute the values of batch median and std.

3. Outlier detection after all measurements are normalised 
to their batches, outlier values are detected and removed 
according to three alternative methods that can be speci-
fied by the input parameter method_outliers. thres_outl 
is a threshold variable that is passed to the function to 
define outlier measurements. When method_outliers 
is set to “log.FC.distance” outliers are detected as the 
values in concentrations that are thres_outl times above 
or below the zero median reference value. When the 
method is “mad”, concentration values that deviate at 
least ± thres_outl median absolute deviations are con-
sidered outliers. When the method is “IQR” the upper 
and lower limits for outlier concentrations correspond 
respectively to (Q1—thres_outl x IQR) and (Q3 + thres_
outl x IQR), where Q1 and Q3 are the first and third 
quartile values and IQR is the interquartile range.

  After outlier concentration values are detected, all 
samples containing at least one outlier value in their ion 
profile are removed from the data set. The user can also 
set the parameter method_outliers to “none” in order to 
skip the outlier analysis.

4. Profile Standardisation the normalised and filtered con-
centration values are then standardised. Two options are 
available through the input parameter stand_method. If 
it is equal to “std” the concentration values of each ion 
m are scaled by the standard deviation of all values, if 
equal to “mad” then the values are scaled by the median 
absolute deviation, which is a robust estimator of the std 
when the overall number of measurements is not very 
large. The user can also pass to the function a vector 
stdev of length M containing user-defined scaling values 
and set stand_method to “custom” for a custom stand-
ardisation.

  After standardisation the z-score profiles are aggre-
gated at the line level by computing for each line the 
median value of the m-th element from the z-score pro-
files associated to the samples of that line.

5. Profile Symbolisation a value thres_symb, corresponding 
to a threshold in unit of standard deviation, is passed to 
the function and cell line symbolic profiles are extracted 
from their corresponding z-score profiles. The m-th ele-
ment of the symbolic profile will be equal to + -1 if the 
corresponding element in the z-score profile is, respec-
tively, above thres_symb or below -thres_symb, or oth-
erwise it will equal 0.

The PreProcessing function provides the user with the 
following outputs:

• stats.raw.data a table containing the statistic of the 
unprocessed elemental concentrations measured.

• stats.batches a table containing the statistic of the batch 
corrected elemental concentrations across batches.

• stats.outliers a table containing the statistic of measure-
ments detected as outlier.

• stats.std a table containing the scaling values used to 
standardise the elements.

• data.long a table containing the raw data of elemental 
concentrations.

• data.line.logFC a table containing batch corrected pro-
files (line aggregated).

• data.line.zscores a table containing z-score profiles (line 
aggregated).

• data.line.symb a table containing symbolic profiles (line 
aggregated).

• plot.overview a plot overviewing all values of elemental 
concentrations after batch correction and outlier detec-
tion.

• plot.hist a plot containing histograms describing the dis-
tribution of z-scores for each element.

• plot.change.stat a histogram plot describing the statistic 
of number of changed elements per cell line.

• plot.change.dir a histogram plot describing the statistic 
of increase and decrease of elemental abundances across 
cell lines.

• plot.medians a line plot of batch median values of ele-
ment log-transformed concentrations.

• plot.CV a line plot of absolute coefficients of variation 
of the element log-transformed concentrations across 
batches.

2.3  Analysis of ions

The IonAnalysis function is designed to perform an explora-
tory analysis of the elemental variability and of the correla-
tions between the different measured ions using multivariate 
statistical methods including PCA and relevance networks 
inference (Butte & Kohane, 1999; Butte et al., 2000; Liang 
et al., 1998; Werhli et al., 2006). The function takes as input 
a data frame of z-score profiles of the type data.line.zscores 
returned by the PreProcessing function, a parameter thres_
ion_corr representing a correlation threshold (default value 
set to 0.15), and a parameter method_ion_corr that specifies 
a measure to compute correlation coefficients compatible 
with the cor function (default method “pearson”) from the 
R package stats (Team, 2019). The function outputs the fol-
lowing results to the user:

• data.pca.loads a table containing the loadings of each 
element along the first two Principal Components.
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• plot.pca an overview plot of the PCA analysis of the 
z-score profiles.

• plot.corr a correlation plot showing the pattern of ele-
ment-element correlations extracted from the z-score 
profiles.

• plot.net a plot showing the relevance network between 
the elements given the input correlation threshold: nodes 
represent elements and the width of the link between two 
elements is proportional to their correlation coefficient.

• plot.heat a heatmap showing the clustering of rows and 
columns of the input z-score profile matrix using the R 
hclust(stats) method “ward.D” and the Euclidean dis-
tance, which has been shown to be a powerful nonlinear 
combination (Szekely & Rizzo, 2005).

2.4  Clustering and network analysis of profiles

The IonAnalysis function focuses on the relations between 
the ions/features of the pre-processed data (columns of the 
data frame of z-score profiles). The ProfileClustering and 
the GeneticNetwork functions deal with the analysis of the 
z-score profiles to study the relations between the cell lines/
observations of the data set.

The ProfileClustering function is designed to cluster lines 
based on the similarity of their symbolic profiles according 
to their Hamming distance. It takes as input a data frame of 
the type data.line.symb returned by the PreProcessing func-
tion, and uses three additional parameters: min_clust_size, 
an integer which corresponds to the minimal size in terms 
of number of lines that defines a cluster to be of interest 
(default equal to 10); h_tree, an integer which corresponds 
to the Hamming distance that defines the clusters (the 
default algorithm uses h_tree = 0 and groups together lines 
with identical symbolic profiles, meaning that their Ham-
ming distance is zero); and filtering_zero_string, a logical 
parameter that removes from the input dataset the lines with 
all zeros in their symbolic profile, that can be interpreted as 
a cluster with no-phenotype of a phenotype consistent with 
the control lines.

ProfileClustering gives as output:

• clusters.vector a table containing the cluster id of each 
line.

• tab.clusters a table reporting the cluster size of each clus-
ter (number of genes).

• tab.clusters.subset a table reporting the cluster size of 
each cluster (number of genes) only for clusters of a 
selected size (size greater than min_clust_size).

The GeneticNetwork function is designed (i) to extract a 
relevance network between the lines based on their profile 
similarity and (ii) to perform a graph analysis which includes 
community detection (Bianconi et al., 2014; Fortunato, 

2010) and betweenness analysis (Latora et al., 2017), and 
(iii), to provide the means for network visualisation. The 
function is based on the methodology described in (Iacov-
acci et al., 2020). It takes as input a data frame of the type 
data.line.zscores and the following additional parameters: 
method_corr specifies a similarity/correlation measure to 
extract the relevance network; supported options include 
“pearson”, “spearman”, “kendall” from the cor(stats) R 
function, “cosine” from the cosine(lsa) R function (Wild, 
2007), and “mahal_cosine” (Mahalanobis cosine) and 
“hybrid_mahal_cosine” (hybrid Mahalanobis cosine) (Iac-
ovacci et al., 2020; Patil & Deore, 2014). The parameter 
thres_corr corresponds to the correlation threshold that 
define relevant similarities (the default value is set to 0.7). 
The parameter network_modules, can be set to “louvain”, in 
which case network modules are defined using the Louvain 
algorithm for community detection (Blondel et al., 2008), 
or “input”, in which case the network modules are passed as 
input to a cluster_vector object of the type clusters.vector 
returned by ProfileClustering and in addition cluster name 
labels can be passed as an object cluster_label_vector. The 
parameter n_labels is an integer proportional to how many 
nodes will be labelled in one of the output plots and is set 
to 3 as the default. R network packages used in the function 
include igraph (Csardi, 2013) and network (Butts, 2008).

GeneNetwork produces as output:

• network an edge list describing the network between the 
lines.

• network.modules a table containing network modules id’s 
of nodes.

• stats.impact_betweenness a table reporting the values of 
network betweenness and the impact of each line in the 
network. The impact is defined as the  L2 norm of the 
z-score profile and it is an indicator of the overall devia-
tion in elemental abundance.

• plot.network produces a plot showing the relevance net-
work between the lines given the input correlation thresh-
old.

• plot.impact_betweenness produces a scatter plot of net-
work betweenness versus impact for each line.

2.5  Enrichment analysis

In the case of dataset analysis where lines can be associated 
with genes (for example single gene knock-outs mutants) the 
user can perform a gene set enrichment analysis for KEGG 
metabolic pathways or GO Ontology terms by taking as gene 
sets the clusters obtained from the ProfileClustering or the 
network modules from the GeneNetwork function. The func-
tion is available for three different organisms, namely yeast, 
mouse and human.
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The functions KeggEnricher and GOEnricher take as 
input a vector cluster_vector of the type clusters.vector or 
network.modules; a parameter pval specifying the p-value 
for the enrichment significance threshold; a character vec-
tor gene_uni specifying the gene universe list to be used 
(the default is NULL, in which case lines in cluster_vector 
also represent the gene universe); and a parameter annot_
pkg which specifies the database to be used (for yeast 
S.Cerevisiae genes it has to be set to “org.Sc.sgd.db”, for 
mouse to “org.Mm.eg.db”, and for human to “org.Hs.eg.
db”).

Additionally, the function GOEnricher takes as input a 
parameter ont to indicate which types of ontology should 
be used: “BP” for biological processes, “MF” for molecular 
functions, and “CC” for cellular components.

The genes in cluster_vector and gene_uni must be listed 
as ORF or ENTREZ IDS for yeast or ENTREZ IDS for 
human and mouse.

KeggEnricher and GOEnricher give as the output:

• enrichment.summary a table summarising the results 
from the enrichment analysis.

• enrichment.full.results a table containing cluster-specific 
details of the enrichment analysis.

3  Results and discussion

3.1  Case study 1: the genetic network of the S. 
Cerevisiae ionome

To illustrate the IonFlow pipeline we have used the iHUB 
Yeast Ionome data set (Yu et al., 2012), a large collection 
of population-average intracellular concentrations of 14 dif-
ferent elements (Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Mo, Na, 
Ni, P, S, and Zn) quantified using ICP-MS in a collection of 
4945 S. cerevisiae haploid mutant cell lines, where in each 
cell line a single non-essential ORF (open reading frame) 
was deleted. ICP-MS data were normalised by optical den-
sity (OD). Experimental details of the dataset are described 
in (Danku et al., 2009). Most of the cell lines (4207) were 
measured in 4 replicates, 684 lines in 8 replicates, 48 lines 
in 12 replicates, and 2 lines in 16 replicates giving a total of 
26,976 samples screened in 305 different plates. Also, 4 con-
trol lines were present on the plates, generally in replicates 
of 4, namely BY4741, YDL227C, YLR396C, YPR065W.

ICP-MS raw data and OD corrected data can be down-
loaded from the iHUB (https:// www. ionom icshub. org/ yeast/ 
beta/ DataS earch. action). A table with the OD corrected data 
used in this study is available at https:// github. com/ wanch 
anglin/ ionfl ow.

In Fig. 2 we show some diagnostic output plots from the 
PreProcessing function after the raw data are processed. 

A plate-based normalisation of ion concentrations was 
enforced using the median value of all available lines in each 
plate. Outliers were defined as concentrations values deviat-
ing more than 3 times from the median after normalisation 
and all lines containing outlier values in their profiles were 
removed. Figure 2A shows the log-transformed normalised 
values across the plates (batches) after outlier detection 
and removal, and Fig. 2B shows the absolute coefficient of 
variation of the ions across plates (batches). The normalised 
profiles were standardised using the standard deviation of 
the ions measured across all samples and Fig. 2C shows the 
z-score distributions of the ions in the lines after standardi-
sation together with the threshold set for the symbolisation 
(± 2 standard deviations).

We also repeated the PreProcessing using only the sam-
ples of the control line BY4741, a wild type yeast strain, and 
from the output table we converted back the in-plate median 
log-transformed concentration to the original part per billion 
(ppb) scale. In Fig. 2D the S.Cerevisiae BY4741 wild type 
ionome is shown, that was estimated from the mean value 
(green line) of the within-plate median measured concentra-
tions (grey lines). The plot reveals that the elements with 
higher across-median CV (Fig. 2B) are, in general, the ones 
that are present in lower absolute concentration, as expected 
from an experimental perspective.

It is of interest to compare Fig. 2D with a previously 
reported diploid S.Cerevisia ionome quantification (Cyert 
& Philpott, 2013; Eide et al., 2005) to gain insights into the 
genetic background and the external cellular environment 
and how they play a role in the internal elemental balance 
of the cell. Despite the level of potentially toxic elements 
such as cadmium and sodium being artificially increased in 
the yeast growth media for the data set under study (Danku 
et al., 2009) most of the elements agree in order of mag-
nitude with the level reported in (Cyert & Philpott, 2013).

We then proceeded to the analysis of the processed 
z-score profiles and symbolic profiles from the PreProc-
essing function. In Fig. 3A, B the data.line.symb table is 
used to produce a histogram plots that describe the statistics 
of changes in the yeast ionome for the selected symbolic 
threshold. Figure 3A reveals that most lines (3171, ~ 75%) 
do not show any change at the level of their symbolic pro-
file, and that, for most of the remaining lines that show a 
phenotype, the probability of having a profile with k altered 
ions decreases exponentially with k. Figure 3B illustrates 
the changes by element, together with the change direc-
tion, and it is interesting to note that copper, zinc, iron and 
sulphur, that have an essential role in the cell in shaping 
protein structure/function and acting as enzyme cofactors 
(Cyert & Philpott, 2013), are the elements that are less likely 
to be altered and that also show a preferential increase in the 
directionality of the change, suggesting that robust mecha-
nisms must exist in S.cerevisiae to control the homeostasis 

https://www.ionomicshub.org/yeast/beta/DataSearch.action
https://www.ionomicshub.org/yeast/beta/DataSearch.action
https://github.com/wanchanglin/ionflow
https://github.com/wanchanglin/ionflow
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of these elements and that their decrease is likely to produce 
unviable mutants.

This elemental analysis was extended via the IonAna-
lysis function (in Fig. 3C–E the output plots are shown). 
The PCA plot (Fig. 3C) shows, as expected, that the pro-
jected eigenvector length (blue vectors) is proportional to 
the variance of that element in the data (Fig. 3B) and that 
the smaller the angle between the projected eigenvectors, 
the more the ions are likely to be clustered together when 
hierarchical clustering analysis is performed using their 
z-score profile across the lines (Fig. 3D). Figure 3E depicts 
the relevance network extracted from the element-element 
correlations using the default threshold and Pearson’s cor-
relation coefficient (green links indicate positive corre-
lations, while red links indicate negative correlations). 

Mg and P, that show a preferential change in direction 
towards a decrease in intracellular concentration, are the 
most correlated elements and are significantly clustered 
with Ni and Co, and Cd, which is consistent with results 
reported in (Eide et al., 2005). It is interesting to note that 
the observed correlation is likely to reflect ATP consump-
tion in activation of gene-deletion compensatory mecha-
nisms, given that most of the  Mg2+ intracellular ions are 
bound to ATP and ribosomes (Milo & Phillips, 2015). Na 
and K, that are mostly found within the cell as monovalent 
ions  Na+ and  K+, are weakly correlated to other elements, 
and the fact that sodium appears to be mostly anticorre-
lated with other elements might reflect the difficulty in its 
quantification due to various contamination sources (Milo 
& Phillips, 2015).

Fig. 2  IonFlow diagnostic analysis of the yeast S. Cerevisiae ionome 
data set from the PreProcessing function. A The log-transformed 
normalised element concentrations are visualised across batches 
after outlier detection and removal. Different colours indicate differ-
ent measurement plates (batches). B Absolute coefficient of variation 
of the elements across batches. C The distributions of the element 

z-score concentration values across the yeast mutants after standardi-
sation together with the threshold (red vertical lines) set for the sym-
bolisation. D The S. Cerevisiae BY4741 wild type ionome is shown, 
estimated by computing the mean value (green line) of the within-
batch median concentrations (grey lines) (Color figure online)
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Fig. 3  Elemental analysis of the yeast S. Cerevisiae ionome data set. 
A The statistic of the number of altered elements per yeast knockout 
mutant; 75% of mutants do not show any change at the level of their 
symbolic profile given a ± 2 z-scores threshold, and the probability of 
having a profile with k altered elements decreases exponentially with 
k. B The statistic of changes by element, together with the change of 
direction (increase or decrease in concentration with respect to the 
mean). C mutant elemental profiles are visualised in the plane of PC1 
vs PC2; the projected eigenvector length (blue vectors) is propor-

tional to the variance of the elements and the angle between the pro-
jected eigenvectors is proportional to the correlation of abundances 
across the mutants between the corresponding elements. D Hierarchi-
cal clustering of the z-score profiles. E Relevance network (relevance 
threshold 0.15) describing the element-element correlations: green/
red links indicate positive/negative correlations respectively, and the 
width of the link is proportional to the absolute correlation value 
(Pearson’s correlation) (Color figure online)
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The symbolic profiles were then clustered using the Pro-
fileClustering function with default parameter choice and 
the resulting cluster vector was given as input as the mod-
ules vector to the GeneticNetwork function together with 
the z-score elemental profiles in order to perform a network 
analysis of the profile correlations between the mutant lines. 
For this analysis the cosine similarity was used as the cor-
relation measure and a relevance correlation threshold of 
0.7 was chosen.

Figure 4A shows the z-score profiles of the lines clus-
tered according to ProfileClustering for all clusters with a 

minimum size of 10 lines corresponding to the most com-
mon ionome phenotypes (average within-cluster profiles are 
shown in red). Figure 4B shows a visualisation of the genetic 
network inferred from elemental profile correlations between 
the knock-out mutants found in the most common pheno-
types. Nodes represent genes, edges represent a genetic 
association (deletion produces a similar phenotype), and 
the network modules correspond to the clusters in Fig. 4A, 
with labels describing the cluster features in terms of altered 
elemental levels (‘u’ indicates up, ‘d’ indicates down). Fig-
ure 4C reports the plot of impact versus betweenness for all 

Fig. 4  Mutant elemental profile analysis of the yeast S. Cerevisiae 
ionome data set. A The z-score profiles (grey lines) of the mutants 
revealing the most common phenotypes are shown together with the 
average within-cluster profile (red lines); the clustering, based on the 
similarity between the mutant’s symbolic profiles, was performed 
using the ProfileClustering function. B The genetic relevance network 
inferred from elemental profile correlations between the knockout 
mutants found in the most common phenotypes is shown (cosine sim-
ilarity, relevance threshold 0.7); the nodes represent genes, and the 
edges represent a genetic association (correlated elemental profile in 

response to deletion); the network modules correspond to the pheno-
type clusters in A, with labels describing the cluster features in terms 
of altered elemental levels (‘u’ indicates up level, ‘d’ indicates down 
level). C Impact versus network betweenness analysis of the network 
nodes; the impact is defined as the  L2 norm of the z-score profile. D 
Gene clusters enrichment analysis performed with the GOEnricher 
function; the heatmap shows the percentage of universe genes anno-
tated for all enriched mitochondrial terms in function of the cluster 
phenotypic characteristics (Color figure online)
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nodes in the network. The impact is defined as the  L2 norm 
of the z-score profile and it is a measure of the overall altera-
tion of a profile, while the betweenness quantifies the role 
of a node in bridging between modules. Nodes are catego-
rised and coloured according to high/low impact and high/
low betweenness. These in turn are determined by including 
in the high group the 25% highest values of each descrip-
tor. The 3 nodes with highest impact and the 3 nodes with 
highest betweenness are also labelled within each category. 
SMF2, a very important manganese transporter, has the 
highest impact, with a z-score for Mn of approximately − 25 
(25 standard deviations below the median value). MTF1, a 
mitochondrial gene from cluster 10, which shows reductions 
of K and of Na levels, is the gene with highest betweenness.

Finally, the GOEnricher function was used to perform 
a biological process enrichment analysis of the common 
clusters. Results revealed that several of these clusters were 
enriched by mitochondrial related processes suggesting that 
mitochondrial dysfunction is associated with disruption of 
ion homeostasis.

The heatmap in Fig. 4D shows the percentage of genes 
annotated for given mitochondrial terms that are found 
inside each cluster enriched for that term. These results 
imply that the genome partition obtained from the ionome 
data is biologically informative and that mitochondrial 
enriched clusters are in general associated with reduction 
of specific elements; namely potassium, sodium, manganese 
and molybdenum.

Fig. 5  IonFlow analysis of the human ionome data set from HeLa 
cells. A PCA of the elemental profiles of the knockdown mutants. B 
The relevance element-element correlation network is shown (Pear-
son’s correlation, relevance threshold 0.15). C The genetic relevance 
network between selected high-impact elemental profiles of knock-

down mutants is depicted (Mahalanobis cosine similarity, relevance 
threshold 0.6); nodes are coloured according to network modules 
found via network community detection. D Impact-betweenness anal-
ysis of the knockdown mutants
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3.2  Case study 2: the HeLa ionome

To provide a second illustrative example we processed 
another ionome data set that describes concentrations of 
trace elements in human HeLa cells obtained through a 
genome-wide high-throughput siRNA/ionomics screen 
(Malinouski et al., 2014). Data were not pre-processed, 
instead the z-score profiles provided by the authors of the 
study were used as additional benchmark data for the ele-
mental analysis and for the genetic network analysis. The 
z-score data contains normalised and standardised concen-
tration measurements for 18 elements (As, B, Ca, Cd, Co, 
Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, S, Se, and Zn) pro-
filed for 775 mutant lines of HeLa cells, each having a single 
different gene silenced.

In Fig. 5A, B results from the ion analysis are shown. The 
profiles projected onto the first two principal components, 
along with the ion loadings are shown in Fig. 5A while the 
relevant ion-ion correlation network is displayed in Fig. 5B. 
While some relations between the ions such as correlated 
levels of Mg and P can still be identified in this ionome, 
the overall interpretation is difficult, probably due to the 
cancerous nature and rapid proliferation of the HeLa cells 
(Pavlova & Thompson, 2016). The genetic network analy-
sis is illustrated in Fig. 5C, D. All profiles with an impact 
below the median impact value were filtered out (387 lines). 
The genetic network (Fig. 5C) between the selected lines 
was extracted using a relevance threshold of 0.6 and the 
Mahalanobis cosine as a correlation measure, which is more 
effective when profiles are characterised by an extended, 
dense pattern of element-element correlations (Fig. 5B) such 
as in this case. Nodes are coloured according to network 
modules assessed by the Louvain community detection algo-
rithm. Isolated nodes are not visualised in the plot. Table 1 
reports the results of the enrichment analysis for KEGG 

metabolic pathways obtained with the KEGGEnricher func-
tion for the network modules.

In Fig. 5D the impact-betweenness analysis of the knock-
down mutants is plotted. Among the high impact and high 
betweenness genes is NFX1, that plays a role in the export 
of mRNA of the HSP70 family (whose members are known 
to become strongly upregulated by heavy metals such as 
arsenic, cadmium and copper) and MRPL53, a component 
of the mitochondrial large ribosomal subunit.

4  Conclusion

We presented IonFlow, a tool that makes the analysis of 
ionomics data accessible to Galaxy users and that allows 
them to quickly explore, visualise, and interpret their data 
via multivariate approaches used in the field of ionomics 
including PCA, correlation analysis, network inference and 
enrichment analysis. IonFlow also incorporates recently 
developed methods for ionome data sets, such as ion-pro-
file-specific similarity measures (Iacovacci et al., 2020) that 
optionally, can be used by the user. Each function of Ion-
Flow was described in detail and the pipeline was tested on 
two large benchmark ionome datasets, the ionome of hap-
loid S.Cervisieae and the ionome of HeLa human cells, to 
illustrate its applicability and its outputs within two concrete 
case studies.

We showed that IonFlow is very versatile and it can be 
used to process raw data as well as directly process nor-
malised and standardised data for advanced analysis such 
as genetic network extraction and study of element-element 
correlations. For these reasons IonFlow is of interest for 
researchers dealing with ionomics experiments beyond those 

Table 1  results of the KEGG 
pathway enrichment analysis 
on the network modules of the 
genetic network extracted from 
the HeLa cell ionome

Cluster KEGGID P value Count Size Term

69 3013 0.06249663 3 20 RNA transport
81 52 0.0016808 3 6 Galactose metabolism
81 4910 0.00735846 4 18 Insulin signaling pathway
81 4114 0.01940962 3 13 Oocyte meiosis
106 4114 0.01387635 3 13 Oocyte meiosis
101 10 0.00088208 4 12 Glycolysis/gluconeogenesis
101 4270 0.0084409 3 11 Vascular smooth muscle contraction
78 3050 0.0674506 4 21 Proteasome
95 4666 0.0464702 3 14 Fc gamma R-mediated phagocytosis
95 4810 0.07688909 3 17 Regulation of actin cytoskeleton
55 5016 0.02274157 4 20 Huntington's disease
55 4141 0.04970889 3 15 Protein processing in endoplasmic reticulum
55 240 0.07943879 3 18 Pyrimidine metabolism
60 4270 0.02379386 3 11 Vascular smooth muscle contraction
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performed with ICP–MS technology and its applicability 
potentially extends to the analysis of metabolomics data.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11306- 021- 01841-z.
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