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Abstract 
Although proton therapy delivered using scanned pencil beams has the potential to produce better 
dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to 
anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques 
where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based 
dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose 
calculation. The calculation engine was implemented from scratch, with each step of the algorithm 
parallelised and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it 
employs several application-specific modifications and simplifications, and a fast scatter-based 
implementation of the computationally expensive kernel superposition step. The calculation time for a 
skull base treatment plan using two beam directions was 0.22 seconds on an Nvidia Tesla K40 GPU, 
whereas a test case of a cubic target in water from the literature took 0.14 seconds to calculate. The 
accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a 
gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 
3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system. 
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Introduction 
Adaptive proton therapy 
Owing to the Bragg peak (BP), which is a direct result of the fundamental interactions between a 
beam of charged particles and the traversed matter, charged particle radiotherapy (RT) can offer better 
dose conformity than conventional RT using photons. Although not a new innovation (Wilson 1946), 
it has seen an increased interest in recent years, as demonstrated by the many proton and carbon ion 
RT centres recently opened or under construction around the world (PTCOG 2014). However, 
charged particle RT as a standard treatment is still developing, and centres often lack some of the 
auxiliary technologies that are standard in modern photon RT systems. In particular, to benefit fully 
from the better dose conformity offered, adaptive radiotherapy (ART) methods would need to be 
introduced in particle RT, and are thus the subject of much research. ART comprises a wide range of 
techniques, from selecting a “plan of the day” from a number of pre-calculated plans, through daily 
imaging and dose recalculation, to real-time motion detection and compensation during dose delivery. 
The aim of this work has been to develop a proton therapy dose calculation engine that is fast enough 
for on-line dose calculation, whilst maintaining similar accuracy to current clinical standard. 
Specifically, the ART applications considered here will be those where there is a need to repeatedly 
recalculate a dose distribution during the course of the dose delivery, without noticeable prolonging 
the delivery time. One such application would be four-dimensional (4D) dose reconstruction for 
pencil beam scanning (PBS) systems similar to what was proposed by Richter et al (2014). Rather 
than a retrospectively calculation, the idea would be to calculate the dose delivered by each energy 
layer, spill, or part thereof in the corresponding phase (e.g. given by monitoring the patient breathing) 
of a 4D computed tomography (CT) image, and map it back to the reference image before continuing 
the dose delivery. This would make it possible to monitor the progressive emergence of a motion-
corrected dose distribution during treatment, which could be used for real-time detection, and 
potentially correction, of unacceptable motion artefacts. A different application of fast dose 
calculation would be in real-time interactive treatment planning, as described by Otto (2014). Here, 
the goal is to have a dose calculation engine that is fast enough that the dose distribution can be 
interactively manipulated by the clinician during treatment planning. 

Proton therapy dose calculation 
Monte Carlo (MC) simulation, where a beam is modelled as a collection of particles stochastically 
interacting with the surrounding matter, is the gold standard when calculating dose distributions for 
both conventional and charged particle RT. However, due to the statistical nature of MC simulations, 
a large number of particles need to be simulated to achieve results of acceptable accuracy. This is 
especially true when many different interactions are possible (as in the situation for charged particles), 
in which case the necessary calculation time has often been prohibitively long for practical 
applications (Jia et al 2012a). For this reason, a number of analytical algorithms have been developed 
for charged particle dose calculation. Many of these are variants on the pencil beam (PB) approach 
(Petti 1992, Hong et al 1996), which is widely used in clinical treatment planning. PB algorithms 
divide the fluence map of a beam or a field into a number of computational pencil beams (CPBs) and 
calculate the total dose as the sum of contributions from the CPBs.  The dose calculation for each 
CPB can be broken down into two steps. First, the dose distribution along the central axis of the CPB 
is calculated by scaling the integral depth dose (IDD) curve containing the longitudinal dose profile of 
a beam of the considered energy stopping in water. Second, the central axis dose distribution is 
widened through a multiplication with a two-dimensional (2D), depth-dependent kernel, 
perpendicular to the beam direction, in order to account for beam divergence and multiple Coulomb 
scattering. This step will be referred to as the kernel superposition (KS) and is usually the most 
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computationally expensive step of a PB algorithm. A Gaussian function, or a combination of several 
Gaussians, is generally chosen as the kernel. The dose D to a point (x,y,z) given in the beam’s eye 
view (BEV) Cartesian coordinate system with the beam direction parallel to the z-axis, is thus 
calculated as: 

 �(�, �, �) = ∑ 
� × IDD(��, �WEPL,�(�)) × �(� − ��, � − ��, ��(��, �, ��,�))
�

 Eq. 1 

The summation in Eq. 1 is over all CPBs i in a treatment plan, where Ni is the number of particles, or 
weight, of CPB i, IIDD is the IDD, and K is a kernel describing the lateral extent of a CPB. Ei, xi and yi 
are, respectively, the initial energy and lateral coordinates of CPB i. (Note that in this notation the 
lateral position of two or more CPBs i and j may coincide as long as their initial energies are different, 
e.g. xi=xj and yi=yj, as long as Ei≠Ej.) zWEPL,i is the water-equivalent path length (WEPL) from the 
calculation stating depth (normally the patient surface), z0, to the point z according to 

 �WEPL,�(��, ��, �) = ∫ �rel(��, ��, �′)d�′$
$0

 Eq. 2 

where Srel denotes the linear stopping power (SP) ratio between the medium and water. σi in Eq. 1 is a 
parameter describing the width of CPB i, e.g. the standard deviation in the case of a Gaussian kernel. 
For a particular system, σi is usually dependent on the initial beam energy, the absolute depth z, and a 
line integral zσ,i along the CPB from z0 to z. zσ,i accounts for the widening of the beam due to the 
different materials encountered along the CPB, and in a simple case zσ,i= zWEPL,i. 

GPU dose calculation 
With the stagnating increase in single-core processing power, recent years have seen a growing 
interest in many-core systems for speeding up computationally demanding tasks. Due to their low cost 
and high performance, the graphics processing unit (GPU) is likely the most popular such system, 
both in general and within the field of medical physics (Pratx and Xing 2011, Jia et al 2014). Initially 
developed for real-time rendering of three-dimensional (3D) scenes in computer games, modern 
GPUs with thousands of cores are now readily programmable through application programming 
interfaces (APIs) such as CUDA (Nvidia Corporation, Santa Clara, CA, USA) and OpenCL (Khronos 
Group, Beaverton, OR, USA). However, due to the very high level of parallelism and specialised 
hardware architecture of these systems, developing efficient GPU implementations of existing 
algorithms remains non-trivial. A substantial effort has gone into employing GPUs to speed up dose 
calculation for proton (as well as conventional) RT, with the majority of studies related to 
implementing MC methods (Jia et al 2012a). Despite considerable progress in decreasing calculation 
times, those reported in the literature remain relatively long: MC codes relying on realistic (but not 
complete) modelling of physical interactions needed 10 seconds to calculate a shallow energy layer of 
a patient case (Jia et al 2012b), while track repeating and simplified MC algorithms needed tens of 
seconds to achieve acceptable accuracy for full plans (Kohno et al 2011, Yepes et al 2010). Although 
this is sufficient for daily dose recalculation, dose monitoring or motion compensation during 
treatment would require faster calculation times by about two orders of magnitude. Despite the 
development of faster GPUs since these studies were published (e.g. the base performance of our 
GPU is estimated to be 4.2–4.9 times greater compared to those in the mentioned studies), there are 
two reasons to believe that such radical speedups of MC simulations will not be seen in the near 
future. First, since the accuracy of a MC based calculation is directly linked to the number of 
simulated particles, the computational burden will inevitably remain large. Second, the GPU 
architecture does not lend itself well to MC algorithms, due to the high levels of branching, 
synchronisation, and scattered memory accesses required, which makes it very challenging for such 
implementations to take full advantage of the available computational power (Jia et al 2012a). The PB 
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algorithm, on the other hand, is less computationally demanding and has a higher degree of inherent 
parallelism, which makes it a promising candidate for GPU implementation. Despite this, only a 
partial GPU implementation of a PB algorithm for charged particle RT has been found in the 
literature. In their paper, Fujimoto et al (2011) present an implementation where the computationally 
demanding KS step is carried out on a GPU, whereas all other steps are left to the central processing 
unit (CPU). Although showing some speedup compared to a single-threaded CPU implementation, 
they predict that better performance can be expected from an implementation running entirely on a 
GPU. To the best of our knowledge, we are the first to describe a PB implementation for proton RT to 
run all algorithm steps on a GPU. Through a novel scatter-based implementation of the KS operation, 
application and GPU specific optimisations and simplifications, and efficient use of GPU resources, 
we produce considerable speedups of the PB dose calculation. Importantly, the achieved calculation 
times show that on-line dose calculation using a standard PB algorithm is indeed feasible during the 
course of treatment delivery. 

Methods 
Pencil beam algorithm 
The dose calculation engine presented here is based on the PB implementation described by Soukup et 
al (2005), but contains several simplifications and adaptations to suit both the intended ART 
applications and GPU implementation. Descriptions of the main parts of the algorithm, highlighting 
the modifications introduced, are given in the following sub-sections. The description assumes that 
dose is delivered by PBS, although the general methods apply also to passively scattered protons. To 
avoid confusion between the CPBs and physical PBs produced by the treatment delivery system, the 
physical PBs will hereafter be referred to as “spots”. A collection of spots with the same energy and 
delivered from the same beam direction are further referred to as an energy layer. 

Coordinate system 
In the presented PB implementation, dose is calculated in a right-handed BEV coordinate system with 
its origin at the isocentre and the z-axis pointing towards the beam source, as shown in Figure 1. We 
use ∆z to denote the constant step length along the z coordinate when ray tracing CPBs through the 
computed tomography (CT) image of the patient, and �& = �0 − (∆� to denote the z coordinate at step 
n from the starting depth z0. For non-divergent CPBs, ∆x and ∆y denote the CPB spacing in the x- and 
y-directions of an orthogonal system, resulting in a dose volume made up of voxels of size ∆x×∆y×∆z 
mm3. For divergent CPBs, a coordinate system is chosen such that the x- and y-coordinates remain 
constant along any CPB and the z-coordinate coincides with that of the non-divergent system (Figure 
1). Transformations between the divergent and orthogonal BEV coordinate systems are given by 

 

⎩{{
{⎨
{{{
⎧�div = 1212 − �ort �ort

�div = 1515 − �ort �ort
�div = �ort

 
⎩{{
{⎨
{{{
⎧�ort = 12 − �div12 �div

�ort = 15 − �div15 �div
�ort = �div

 Eq. 3 

where dx and dy denote, respectively, the source distances along the z-axis in the xz- and yz-planes. We 
define ∆x and ∆y in a divergent system to be the CPB spacing at z=0, making the orthogonal voxel 
grid a special case of a divergent voxel grid with dx=dy=∞. In the rest of this paper, we therefore 
assume coordinates and voxels to be given in a general divergent system. In a divergent voxel grid, 
the physical distances between voxel centres along the x- and y-axes are given by ∆�& =
∆�(1 − �& 12⁄ ) and ∆�& = ∆�(1 − �& 15⁄ ), respectively (Figure 1). The voxels take the shape of 

truncated wedges, with all voxels at step n having identical volume given by 
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 :& = ∆�∆�∆� (1 − �&12 − �&12 + �&21215 + (∆�)2
121215) Eq. 4 

(where the last term can generally be disregarded). The physical distance between voxel centres along 

any CPB will be ∆�√1 + �2 122 +⁄ �2 152⁄  rather than Δz, but although this was included in the WEPL 

calculation, the difference will likely be negligible for many realistic set-ups. 

 

Figure 1. The orthogonal and divergent coordinate systems. To simplify the illustration, only the x- 
and z-coordinates are shown and the source distance has been greatly reduced. Lines of constant  z, 
which coincide for the two systems, are shown as solid black lines with the corresponding coordinates 
and step numbers at the bottom and top, respectively. Lines of constant x are shown as solid grey and 
dashed black lines, respectively, for the orthogonal and divergent systems, with the corresponding 
coordinates on the right. 

Single spot MC simulations 
MC simulations of single spots stopping in water, used as the input to the PB implementation and to 
validate the single spot accuracy, were obtained using the Fluka MC code (Ferrari et al 2005, Böhlen 
et al 2014). The nozzle geometry and the parameters of the beams entering the nozzle (i.e. list of 
accelerator energies, momentum spread, and full width at half maximum) used in the simulation were 
provided by the CNAO treatment centre. Simulations using the same parameters have been shown to 
accurately reproduce the results obtained from dosimetric measurements and were used both in the 
commissioning of the treatment centre and as input to their analytical treatment planning system 
(TPS) used clinically (Rossi 2011, Mairani et al 2013). In total, spots of 147 beam energies 
corresponding to BP depths of 30–319 mm in water were simulated and used to determine the input 
parameters to the PB implementation. 

Ray tracing and longitudinal CPB dose 
For each step along a CPB, the mass density at the centre of the step and the WEPL at the distal edge 
of the step are calculated by ray tracing through the patient CT volume. The mass density is required 
for the radiation length calculation described in the following sub-section and if calculating 
approximate dose to medium rather than dose to water. In the discrete case, the WEPL at the distal 
edge of a voxel is given by 
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 �WEPL,�(��, ��, �&+1 2⁄ ) = ∑ �rel(��, ��, �C)∆�&
C=0

 Eq. 5 

The conversion from local Hounsfield units (HU), as obtained through tri-linear interpolation for each 
point along the CPBs, to mass density and relative SP was based on work by Schneider et al (1996, 
2000). Specifically, the HU to relative SP conversion was the one optimised for head and neck cases 
employed at Centro Nazionale di Adroterapia Oncologica (CNAO) treatment centre in Pavia, Italy 
(adjusted to have air mapped to HU=−1000 to suit our implementation). Generally, Srel in Eq. 5 has a 
weak dependency on the residual particle energy. However, the effect of this dependency on particle 
range was deemed small enough to be ignored, and thus the suggested energy-dependent formula by 
Fippel and Soukup (2004) was not applied. By assuming that the SP relative to water is not dependent 
on energy, the WEPL calculation becomes identical for all energy layers, which means that it needs to 
be evaluated only once for each beam direction. 

The IDDs for scanning spots of different energies impinging on a water tank were derived from the 
single spot MC simulations. Since the IDDs have regions of rapidly varying derivative (e.g. around 
the BP), directly sampling the IDD as in Eq. 1 may lead to local under- or overestimation of the dose 
when discretising z. Therefore, cumulative IDDs (CIDDs), given by 

 CIDD(��, �) = ∫ IDD(��, �′)d�′$
0  Eq. 6 

were used in the calculation. As long as the numerical integration of Eq. 6, which can be done offline, 
is carried out with a sufficiently small step, substituting  

 IDD(��, �WEPL,�(�&)) ⟶
[CIDD(��, �WEPL,�(�))]$=$J−1 2⁄

$=$J+1 2⁄

�rel(��, ��, �&)∆�  Eq. 7 

in Eq. 1 solves this problem regardless of the size of ∆z. 

Lateral CPB model 
There are two main approaches to modelling the lateral dose distribution in the PB algorithm. Either 
the kernel K in Eq. 1 is obtained directly from the dose distribution of a scanning spot or passively 
scattered field (measured or simulated) at the corresponding depth in water. Alternatively, its shape is 
given by an analytical kernel whose width at each depth is determined by the individual CPB history. 
In both cases, a scaling with the physical distance to the beam source can be incorporated to account 
for the beam divergence in air. Despite being able to reproduce exactly any beam shape in water, the 
first approach may produce less accurate results in the presence of heterogeneities (Szymanowski and 
Oelfke 2002). Therefore, the second approach was used in the presented implementation, employing a 
single Gaussian kernel, given by 

 �Gauss(Q2, Q5, �) = 1
2R�2 exp (−(Q22 + Q52)

2�2 ) Eq. 8 

where σ is the standard deviation of the kernel and rx and ry are the respective distances between the 
CPB and the evaluation point along the x- and y-axes. Analogous to the substitution in Eq. 7, the 
accuracy when evaluating Eq. 8 over a discrete grid can be improved by replacing a direct function 
evaluation with an integral difference: 

 
1

2R�2 exp (−(Q22 + Q52)
2�2 ) ⟶ Verf(Q2, �)Verf(Q5, �) Eq. 9 

where 
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 Verf(QX, �) = 1
∆Y ∫ 1

√2R� exp (−Q2
2�2) dQ

[\+∆X 2⁄

[\−∆X 2⁄
= [ 1

2∆Y erf ( Q
√2�)]

[\−∆X 2⁄

[\+∆X 2⁄
 Eq. 10 

In the above equations, erf is the error function, Y ∈ {�, �}, and ∆Y ∈ {∆�&, ∆�&} is the local voxel 
spacing at step n. Since the Gaussian function has infinite support, a cut-off has to be chosen beyond 
which the function value is regarded small enough to be neglected. For the convolution and KS 
operations in this paper, a cut-off of a minimum of 3σ was used in accordance with Fujimoto et al 
(2011). 

Using a single Gaussian function to model the lateral dose implicitly neglects contributions from large 
angle scattering events including nuclear interactions. Many improvements to the single Gaussian 
beam model have been presented, most of which add the contribution from a second, wider Gaussian, 
e.g. by letting the kernel be a sum of two Gaussians or by adding a separate step for calculating the 
contribution from nuclear interactions. However, algorithms employing a single Gaussian beam 
model are still used for clinical dose calculation, e.g. Schaffner et al (1999), and the model was 
deemed adequate for a proof-of-principle implementation as presented here. 

Assuming small scattering angles, the kernel variance, σ2, can be modelled as a sum of squared 
contributions from independent sources. Specifically, we (explicitly) consider here only contributions 
from the inherent spot divergence in air, σair, and from multiple Coulomb scattering inside the patient, 
σMS. The variance in air as a function of z-position for spots of each initial energy, σair(E,z)2, was 
obtained from the single spot MC simulations and was seen to be adequately approximated by second 
order polynomials in z (expected from a beam in vacuum) in the region around the isocentre. The 
variance due to multiple scattering at step n along each CPB, σMS (E,zn)

2, was calculated by summing 
the contributions from the characteristic angle, dC, at each previous step k according to 

 �MS(�, �&)2 = ∑ dC2(�& − �C)2&−1
C=0

 Eq. 11 

(Soukup et al 2005). In the presented implementation, the characteristic angle was calculated 
according to the Rossi formula 

 d2 = (�hij)2 ∆�
m0(�, �, �) Eq. 12 

where ES is a constant energy parameter and X0 is the radiation length (Rossi and Greisen 1941). The 
relativistic factor times the momentum found in the denominator is given by ij = �C + n0 −
n02 (�C + n0)⁄ , where m0 is the proton rest mass expressed in MeV and the mean residual energy Ek of 
a CPB can be calculated according to the formula by Bortfeld (1997). The radiation length at a given 
point was calculated from the local mass density according to Fippel and Soukup (2004). When 
comparing results with single spot MC simulations (including contributions from all physical 
interactions) ES=14.1 MeV was seen to reproduce most accurately the spot shape in water across the 
considered energies.  

It should be noted that the sum in Eq. 11 does not have to be explicitly evaluated for each step along a 
CPB. To see this, let us first consider a simplified case where dC = d for all values of k. Then, Eq. 11 
can be written d2o&2(∆�)2, where o&p = 1p + 2p + ⋯ + (p is the sum of the m-th powers of the first n 

integers, by some referred to as the m-th degree snurkel of n. We note that o&2 = o&−12 + (2 and, in 

turn, that (2 = 2o&1 − o&0, where o&1 = o&−11 + o&0 and o&0 = o&−10 + 1. In the real case where dC 

depends on k, Eq. 11 can similarly be written as r&2(∆�)2, where r&p = 1pd&−12 + 2pd&−22 + ⋯ +
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(pd02 for n>0 and 0 otherwise.  Expanding this expression in the same way as the simplified case 
gives 

 

⎩{{
⎨{
{⎧ r&2 = r&−12 + (2r&1 − r&0)

2r&1 − r&0 = 2r&−11 + r&0 = (2r&−11 − r&−10 ) + r&−10 + r&0
r&0 = r&−10 + d&−12

 Eq. 13 

Thus, to calculate r&2 at step n we only need the three values r&−12 , (2r&−11 − r&−10 ), and r&−10  from 
the previous step. In our implementation, these are kept as temporary variables between steps so that, 
using �MS(�, �&)2 = r&2(∆�)2 and Eq. 13, all σMS up to n=N are calculated using in total 4N addition 
and N multiplication operations. For large values of N, this is a considerable improvement compared 
to the (N2+N)/2 addition and N2+N multiplication operations required for explicit evaluation. 

CPB subdivision 
To make the implementation as fast as possible, rather than calculating the dose contribution from 
each spot in an energy layer individually, the total contribution from all spots in an energy layer is 
calculated simultaneously (Schaffner et al 1999). Before the dose calculation starts, the depth at which 
any CPB first enters the patient, z0, is found (Figure 1). The fluence map of energy layer j in air at 
depth z0 is obtained by convolving the spot weight map with a Gaussian function of variance 
σair(Ej,z0)

2, and the CPB weights are calculated by resampling the fluence map according to the CPB 
grid at this depth. From this point, the width of each CPB, given by its associated path-dependent 
standard deviation σtot, develops independently according to 

 �tot(�, �) = √�MS(�, �)2 + �air(�, �)2 − �air(�, �0)2 + s Eq. 14 

δ in Eq. 14 is an empirical term added to the standard deviation to account for a small difference seen 
between the analytically calculated and MC simulated beam widths. The difference was seen for spots 
of all energies in water at all depths except for in the region close to the entry point. The mean value 
across the different energy spots, δ=0.21 mm, was used for all energies. 

GPU implementation 
A schematic overview of the dose calculation engine is shown in Figure 2. It comprises several 
components, each consisting of a separate GPU program, referred to as a kernel function (KF), 
implemented in the CUDA C/C++ programming language. Descriptions of the main KFs are given in 
the following paragraphs. In addition, auxiliary code is responsible for allocating and initialising 
memory on the GPU; copying data between the CPU and the GPU; launching KFs; and calculating 
additional input to the KFs, e.g. coordinate system transforms, offsets, and number of calculation 
steps for different energies. The auxiliary functions run either on the CPU or on the GPU, where CPU 
code was used where required by the API or for calculations small enough not to benefit from running 
on a GPU. It should be noted that none of the BEV volumetric intermediates, (i.e. WEPL, mass 
density, CPB depth dose, CPB variance, and final dose) are copied between the CPU and GPU during 
the whole computation. This considerably limits the amount of data transferred over the low-
bandwidth system bus, which is a common bottleneck in GPU programming. Due to their graphics 
rendering legacy, GPUs are designed to achieve best performance when working with single-precision 
floating-point arithmetic, and thus all (non-integer) calculations in the presented implementation were 
carried out in single precision. No part of the calculation where small errors would accumulate was 
identified, and thus no difference in the biologically relevant dose range is expected compared to a 
double-precision calculation. 
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Figure 2.  Flow chart of the presented PB dose calculation engine. Blue boxes represent retrieval of input 
data, memory allocations, and memory transfers, and purple boxes inside the shaded area marked 
GPU represent the main KFs executed on the GPU. 

Ray tracing and fluence map calculation 
The first KF handles the ray tracing and is called once for each beam direction. Threads are assigned 
one per CPB according to their spatial layout in the BEV coordinate system, and all CPBs are traced 
from where the first one enters the CT volume to where the last one exits. For each step, the WEPL 
and mass density is obtained from the local HU through look-up tables in texture memory, and stored 
in two separate arrays in global memory according to the spatial layout given by the BEV voxel grid. 
This ensures coalesced memory accesses, meaning that adjacent threads access adjacent memory 
locations, in this and all following steps, which is necessary to achieve good performance. It further 
constitutes the implicit transformation from the patient to the BEV coordinate system for a given 
beam direction. During the ray tracing, the step number at which each CPB enters and exits the patient 
is determined by comparing the local HU with a threshold value. Before the ray tracing KF finishes 
execution, this information stored in global memory to be used in the subsequent calculation steps to 
limit the amount of redundant dose calculation in the air outside the patient. The CT volume serving 
as input for the KF is stored in 3D texture memory, which allows us to take advantage of the spatial 
layout and the free linear interpolation of the texture cache. After the ray tracing, a small KF is called 
which calculates the fluence maps at the entry depth and assigns corresponding weights to the CPBs. 
Although this could be done individually for each energy layer, the CPB weights for all energy layers 
of a given beam direction are calculated simultaneously to ensure that the GPU is saturated. 

IDD scaling and CPB width calculation 
Once the CPB weights have been calculated the rest of the calculation is done per energy layer. A KF 
calculates the WEPL-scaled IDD and σtot (Eq. 14) at each step along the CPBs. As input the KF takes 
the WEPL and mass density arrays from the previous steps, as well as the CPB weights and the step 
numbers of the first and last step inside the patient, as calculated by auxiliary functions. The scaled 

IDD values and values of (√2�tot)−1
, the latter compensated for the voxel width at the given depth, 
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are stored in global memory arrays. If an approximation to dose to medium rather than dose to water 
is desired, Srel in the denominator of the right-hand side of equation (8) is replaced by the local mass 
density (Paganetti 2009). To avoid redundant calculations in the computationally expensive KS step, 
the status of the individual CPBs is checked at each step. A CPB is considered live if it is inside the 
patient, has not reached the end of its range, and has a particle number of at least one. The dose and 
variance at steps where a CPB is not live are both set to zero. 

Kernel superposition 
Before calling the KS KF, the BEV volume is divided into a large number of xy-tiles and a KF that 
calculates the cut-off radius corresponding to the largest value of σtot in each tile is launched. To 
ensure that the GPU is saturated, the KS is then carried out simultaneously for all tiles in the BEV 
volume that have the same cut-off radius. The KS algorithm used employs a scatter-based approach, 
described in detail elsewhere (da Silva et al 2015), instead of the conventional gather-based approach. 
Briefly, the KF assigns one thread to each input voxel and scatters the calculated results to the 
neighbouring voxels in the output (rather than assigning threads to the output voxels and gathering the 
results from neighbouring input voxels). The advantage of the scatter approach is that for separable 
kernels, such as the 2D Gaussian function, the number of kernel evaluations can be significantly 
reduced, which in turn can speed up the calculation considerably. However, to avoid having multiple 
threads trying simultaneously to write to the same memory location, a non-intrusive way of 
synchronising the threads is required. This was achieved by keeping the output from each tile in 
shared memory and relying on the lock-step execution of threads within a warp to reduce the number 
of explicit synchronisations necessary. To allow for loop unrolling and compile time optimisations, 
the KS KF was implemented as a template function, with the tile cut-off radius, expressed as an 
integer number of voxels, as the template parameter. Each call to the KS KF takes as input a list of 
tiles with the considered cut-off radius and their corresponding IDD values and variance from the 
previous steps, and outputs the corresponding final dose in the BEV system. 

Transformation to global dose grid 
At the end of the dose calculation for each beam direction, a KF analogous to the ray tracing KF 
transforms the dose calculated in the BEV system back to the global dose grid. This is done by first 
binding the BEV dose to 3D texture memory and then ray tracing along the dose grid z-coordinate 
whilst interpolating into the BEV dose volume and adding the contribution at each step to the global 
dose grid.  

Validation and benchmarking 

Single spot validation 
Single spot validation of the PB implementation was carried out by comparing the radial dose 
distribution in water of three spots with BP depths of 70, 131, and 220 mm, with the corresponding 
MC simulations described previously. Additional MC simulations of the 131 mm range spot were 
carried out after introducing 30 mm thick slabs of air and cortical bone perpendicular to the beam 
direction from 50 to 80 mm depth in the water tank. The results were compared to the equivalent dose 
distributions produced by the PB dose calculation engine by comparing the spot central axis dose and 
width along the path. The resolution of the dose grid was set to 1×1×1 mm3 in all the calculations, 
using ∆x=∆y=∆z=1 mm in the PB implementation. 

Patient case validation 
To evaluate the accuracy of the implemented dose calculation engine in a realistic setting, the 
planning CT image and plan files for a representative, 55.4 cm3 planning tumour volume (PTV) skull 
base case were obtained from the CNAO treatment centre. The plan employs two oblique beam 
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directions of 38 and 45 energy layers, respectively, including a total of 6776 spots of 34–131 mm BP 
depth in water. MC dose distribution as simulated in Fluka in accordance with Mairani et al (2013), to 
be used as the ground truth, and a dose distribution produced by the commercial Syngo PT Planning 
VB10 (Siemens AG, Munich, Germany) TPS, to serve as a comparison, were also provided. Syngo 
PT Planning is based on the PB algorithm by Szymanowski and Oelfke (2002) and uses a double 
Gaussian beam model. For both the provided dose distributions, the resolution was 2×2×2 mm3, 
which was also adopted for the dose calculation with the presented PB implementation, maintaining 
∆x=∆y=∆z=1 mm in the BEV calculation. The dose distribution from the presented PB calculation 
engine was evaluated directly against the MC ground truth by calculating the γ-indices according to Ju 
et al (2008) for the 3% (of prescription dose)/3 mm (distance to agreement) and 2%/2 mm criteria. It 
was also indirectly compared to the dose distribution produced by Syngo PT Planning by comparing 
γ-index passing rates. When calculating the passing rates, only non-air voxels (HU>−850) receiving at 
least 10% of the prescription dose were considered. 

Benchmarking 
Benchmarking was carried out for the same patient case as the validation. In addition, a plan for an 
artificial target consisting of a cube of side length 100 mm extending 100–200 mm below the surface 
of a water tank was created following Fujimoto et al (2011). 20 energy layers were used to cover the 
target and the calculation was done over a 256×256×256 voxel dose grid of resolution 1×1×1 mm3, 
with ∆x=∆y=∆z=1 mm (resulting in 128×128 CPBs). The calculation times reported for the complete 
plans are for all the calculation steps shown in Figure 2 (including memory allocation, transfers and 
deallocation, and the auxiliary functions not shown). However, it does not include initialisation of the 
GPU and the time to read data into CPU memory from the storage medium, which can both be done 
independent of the calculation. The per-energy layer times reported do not include memory transfers 
between the CPU and GPU, since in a setting where partial dose contributions are of interest it is 
assumed that all necessary data, e.g. a 4D CT image, are available before starting the treatment. They 
do, however, include the ray tracing and dose transformation steps, which would otherwise have to be 
carried out only once per beam direction, and which in the case of a single energy layer take up a non-
negligible amount of the calculation time. The calculations were carried out on an Nvidia Tesla K40 
GPU with 2880 cores at a clock frequency of 875 MHz.  

Results 
Single spot validation 
Figure 3 shows the difference between the radial dose distributions for individual spots as calculated 
by the PB implementation and by Fluka. As expected, the single Gaussian beam model cannot 
account for the extended low-dose halo resulting from large-angle scattering events and nuclear 
interactions. Since the laterally integrated dose at each depth remains unchanged, this small 
understatement of the dose to a large volume away from the spot central axis results in a larger 
exaggeration of the dose to a small volume close to the central axis. Due to the larger number of 
nuclear interactions, this behaviour is more pronounced for higher initial energies, as can be seen from 
the bottom panel of Figure 3. Still, the agreement is within −1.1 to 5.3 percent of the reference max 
dose for BP depths up to about 220 mm, and, as is shown in the patient case validation, the overlap 
between spots in a real treatment leads to a much smaller error in the total dose distribution. 
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Figure 3. Difference between the dose for individual spots as calculated by the presented PB implementation 
and by Fluka, as a percentage of the maximum dose for each spot. The contours show the MC dose, with each 
line corresponding to 10% of the max dose. The BP depths of the three spots are 70.0 mm (top left), 130.7 mm 
(top right), and 219.6 mm (bottom), as indicated by black arrow heads. 

Figure 4 compares the lateral dose distributions and central axis doses for the spot of intermediate 
energy in Figure 3, as calculated by Fluka and the presented PB implementation. In the case when no 
slab is present, very good agreement is seen both in the lateral distribution and central axis dose, with 
the PB implementation slightly overestimating both in the plateau region. The PB implementation 
further accurately captures the spot characteristics in both the considered slab geometries, with the 
central axis doses showing the same level of agreement as for the water-only case. The difference in 
lateral profile is slightly larger in the presence of the air slab, with the PB calculation consistently 
overestimating the spot standard deviation by about 0.1 mm downstream from the slab. A narrowing 
of the spot lateral profiles near the end of the particle range, as seen in the left panel of Figure 4, was 
seen for all energies. This was assumed to be due to particles being scattered at large angles stopping 
earlier, and thus leaving particles close to the central axis to travel further. In general, the spots were 
seen to be widest 1–2 mm before the BP. In the PB implementation, this behaviour was mimicked by 

ignoring the width calculation in Eq. 14 and instead subtracting an amount ∆�end2  from �tot2  for each 

step beyond or containing the BP. ∆�end2 = 3�rel∆�BP2 2⁄ , where S is the local relative stopping power 

and ∆�BP2  is the increment of �tot2  just before the BP, was empirically determined to give a fair 
agreement with experimental data. 
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Figure 4. Lateral beam profiles (left) and central axis doses (right) for a spot with 130.7 mm BP depth in water 
passing though slabs of different materials in a water tank. The slab materials are water (i.e. no slab), air, and 
cortical bone, and the extent of the slab is indicated by the vertical dashed lines. Upstream of the slab all values 
are expected to be equal, and for clarity only data for the case of no slab is shown. Due to the high level of noise 
inside the air slab, MC data for this region is not shown, which can be justified since dose to air is generally not 
of interest in clinical dose calculation. 

Patient case validation 
2D slices through the centre of the patient dose distributions as calculated by Fluka and the PB 
algorithm are shown, respectively, in the top and middle rows of Figure 5. Qualitatively, the 
agreement is good in the in the high-dose region for all views. The PB dose shows fewer sharp details 
(e.g. in the axial slices) and, as expected, the low-dose region is smaller for the PB dose calculation 
(e.g. in the coronal slices). The bottom row of Figure 5 shows the γ-index map of the test case. Due to 
its higher detail content, only the map corresponding to the stricter 2%/2 mm criterion is displayed. γ-
indices below one are seen for most voxels, with the  exceptions mainly found close to air cavities or 
bony anatomy. The 3%/3 mm passing rate for the PB algorithm was 99.2%, decreasing to 96.7% for 
the 2%/2 mm criterion. The same passing rates for the clinical dose calculation produced by Syngo 
were 99.0% and 96.8%, respectively, indicating a similar accuracy in the high- and medium-dose 
regions. 
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Figure 5. Sagittal (left column), coronal (central column), and axial views (right column) of the reference 
clinical case. The colour washes show the MC dose (top row), PB dose (middle row) and the 2%/2mm γ-indices 
(bottom row) for each view. 

Benchmarking 
The calculation time for the patient case was 0.22 seconds, with individual energy layers (excluding 
memory transfers between the CPU and GPU), taking between 2.2 and 6.4 ms to calculate. The same 
numbers for the cubic target in water were 0.14 seconds for the full plan and 5.9–13.0 ms for 
individual energy layers. 

Discussion 
The measured agreement between the presented PB implementation and the reference MC code is 
very good and comparable to that of a TPS in clinical use. The accuracy indicated by the γ-index 
passing rates should be sufficient for applications requiring on-line monitoring of dose conformity and 
detection of hotspots or interplay effects. However, the γ-index is a poor measure of agreement in the 
low-dose region, where a single Gaussian does not accurately account for the long-range, low-dose 
halo. Further, as indicated by Figure 3, the agreement with MC simulations is worse for higher beam 
energies, meaning that for plans with deep-seated tumours the γ-index passing rates might be slightly 
lower than presented here. Although the single Gaussian beam model is still used clinically (and much 
of our clinical experience is based on it), due to the above reasons, the trend is for TPSs to move 
towards more complex (e.g. multiple Gaussian) models. A natural extension to the work presented 
here, with the aim to improve the accuracy in the low-dose region, would thus be to implement the 
nuclear interaction correction introduced by Soukup et al (2005). Provided that the parameters for 
such a correction can be obtained, it can be implemented by carrying out a second calculation stage 
for the ‘nuclear’ CPBs, reusing the same workflow as described in Figure 2 (without the need to 
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repeat the memory transfers and ray tracing step). The kernel radii required for the nuclear correction 
are estimated to be about three times wider than those used for multiple scattering. However, if we 
follow Soukup et al (2005) and use only one nuclear CPB per treatment spot (and thus, in our case, let 
∆x=∆y=3 mm for this step), the CPB grid spacing grows by a similar amount, making the 
computational burden per CPB of the KS equal to the multiple scattering case. Using ∆x=∆y=3 mm 
further reduces the number of CPBs needed for the calculation, and hence the overall computational 
burden, by a factor of 9. We therefore estimate that, as long as there is enough work to keep the GPU 
saturated, including a second Gaussian to account for nuclear interactions would add roughly 10% to 
the presented calculation times. 

As expected from an analytical algorithm, the presented dose calculation engine is substantially faster 
than MC simulations: ignoring the difference in hardware, the calculation time for the clinical case 
presented here is two orders of magnitude, or more, shorter than what is reported for GPU MC codes. 
The simplified MC code by Kohno et al (2011), which is the fastest reported, required 19 and 130 
seconds, respectively, to calculate the dose (from two beam directions) for head and neck cases with 
PTVs of 11.8 and 214.5 cm3. Assuming that these calculation times scale with GPU performance and 
correcting for the estimated difference of 4.9 times (448 cores at 1150 MHz compared to 2880 cores 
at 875 MHz), this corresponds to their code requiring 18 times longer for a PTV of 0.2 time the size or 
120 times longer for a PTV 3.9 times the size. The presented calculation times compare favourably 
also to the partial GPU implementation of a PB algorithm by Fujimoto et al (2011), where the 
computationally intensive KS step alone runs on a GPU. They reported a calculation time of 0.41 
seconds (which was in turn faster than the corresponding CPU implementation) for the KS step of the 
deepest energy layer of the cubic target test case, when using a dose grid resolution of 1×1×1 mm3. 
The base performance of the GPU used in their study is estimated to be 3.7 times lower than the one 
used here (480 cores at 1401 MHz compared to 2880 cores at 875 MHz). Still, the 0.14 seconds 
reported here to complete all steps of all 20 energy layers of the plan (or 13.0 ms for the deepest 
energy layer excluding memory transfers) makes the presented implementation substantially faster, 
also when taking into account the difference in GPU performance. We attribute the difference to the 
novel, scatter-based implementation of the KS (da Silva et al 2015); to the fact that the presented 
calculation engine was built from scratch to suit the GPU architecture; and to all parts of the engine 
running on the GPU. The last point means that rather than having to copy the BEV intermediates 
between the CPU and GPU for each energy layer, these are kept in GPU memory throughout the 
calculation. Together, these points also ensure that calculation times will continue to decrease with the 
development of new hardware with an even higher degree of parallelism. 

The price of using an analytical algorithm compared to a MC calculation is lower accuracy in 
heterogeneous volumes. A full MC code is expected to reproduce exactly the gold standard and, 
although the GPU MC codes discussed above all employ some level of simplification, they are 
assumed to produce higher γ-index passing rates than the presented PB implementation. This is 
especially true for the code implementing realistic interaction models (c.f. Jia et al (2012b)) which is 
also the slowest. Further, the use of a single Gaussian beam model in the presented implementation 
results in less information in the low-dose region. Nonetheless, the accuracy of the presented PB dose 
calculation engine is deemed sufficient for the intended ART applications. With a typical time 
between energy layers or spills of between 0.1 and 3 seconds, the calculation times per energy layer 
should also be short enough for on-line dose calculation (with time to spare for dose mapping and 
other necessary steps in an ART application). In case the delivery time of an energy layer is long, and 
the delivery therefore spans several motion phases, several calculations would have to be carried out 
per energy layer. In this case, the reported per-energy layer times should be regarded as upper limits 
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for the partial calculations, and it is clear that these are well below the period of any motion that could 
reasonably be compensated for. If even shorter calculation times would be required, however, and a 
reduction in accuracy can be tolerated, the PB algorithm could be replaced by a ray casting algorithm 
(Schaffner et al 1999). Ray casting algorithms rely mostly on the same steps as PB algorithms, and 
could thus be implemented reusing many of the components presented here, but circumvent the need 
for the expensive KS step, which should considerably shorten the calculation time. 

A drawback of calculating the dose contribution per energy layer rather than spot by spot is that the 
calculation engine cannot be used in conventional plan optimisation, where knowledge of the dose 
contribution from each individual spot is required. Although this does not directly affect the intended 
application in ART systems, a fast calculation engine suitable for use in plan optimisation might be of 
interest. The per-spot contribution to the total dose could be calculated using the same approach as 
presented, simply by assigning each spot its own “energy layer” (c.f. Figure 2). However, to obtain 
better performance, the existing code would likely have to be reworked to suit this purpose. The 
performance increase when calculating the dose per energy layer compared to per spot stems from the 
lateral overlap between spots. This means that the weight of each CPB is the sum of contributions 
from several spots which would otherwise have required one CPB each (Schaffner et al 1999). By 
estimating this overlap we assume that calculating the per-spot dose contributions would increase the 
calculation time by a few tens of times compared to what has been presented here. However, if the 
dose calculation for optimisation purposes does not require as high resolution, the increase in 
calculation time could potentially be mitigated by lowering the resolution. The computational load of 
the dominating KS step scales with ((∆�)2(∆�)2∆�)−1, and thus, provided that there is enough work 
available to saturate the GPU, going from ∆x=∆y=∆z=1 mm to ∆x=∆y=∆z=2 mm could decrease the 
KS calculation time by a factor of 32. More exotic optimisation tasks, such as for intensity-modulated, 
passively scattered proton therapy (Sánchez-Parcerisa et al 2014), where entire fields have to be 
recalculated in each optimisation cycle, might directly benefit from the short calculation times of the 
presented calculation engine. 

We have identified two additional implications resulting from the per-energy layer calculation in 
conjunction with our choice of coordinate system. First, the particles contributed by a spot to CPBs 
away from the spot’s central axis when entering the patient, will be transported along the central axes 
of other spots, and thus diverge slightly from the parent spot direction. The resulting lateral shift is 
proportional to the longitudinal distance from z0 (i.e. the depth inside the patient) and the lateral 
distance from the spot centre, and inversely proportional to the source distance. Therefore, it mainly 
affects the end of the beam range and the small weight contributions found far away from the spot 
central axis. Even for these, however, the effect was small; the maximum shift for any contribution in 
water ranged from 0.15 mm to 0.55 mm for spots with 30 mm and 319 mm BP depth, respectively. 
Second, since away from the z-axis the CPBs are not perfectly perpendicular to the xy-plane (Figure 
1), an effective tilt of the kernel will be introduced when performing the KS (Sharpe and Battista 
1993). The resulting longitudinal shift is proportional to the distance between the contributing CPB 
and the receiving voxel and to the distance between the contributing CPB and the z-axis, and inversely 
proportional to the source distance (which, in general, is considerably larger for proton than for 
photon RT). Therefore, analogous to before, the effect is largest at deep depths (because of larger 
associated σtot) and for the small dose contributions at the tails of the Gaussian kernel. The largest 
shift among CPBs of a 200×200 mm2 field was still limited to between 0.10 and 0.58 mm for ranges 
of 30 to 319 mm respectively. Although the effect of both these shifts were considered small enough 
to ignore, it is noted that employing the coordinate system introduced by Lu (2010) limits the 
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effective kernel tilt at the expense of more complex expressions for the voxel volume and the 
coordinate transformations. 

Although the focus of this paper has been on dose calculation for PBS systems, it is worth noting that 
the presented dose calculation engine could, with minor modifications to the beam model, be used to 
calculate dose for passively scattered protons. Similarly, a fast dose calculation engine for heavier 
ions, such as carbon, could be built using the same components as presented here, with the addition of 
one or more components for biological equivalent dose calculation. 

Conclusion 
We have developed a fast, GPU-based proton dose calculation engine, employing the widely used PB 
algorithm, for use in on-line dose calculation. For a representative skull base case, the calculation time 
was 0.22 seconds on a single GPU, with individual energy layers taking 2.2–6.4 ms to calculate. The 
γ-index passing rates of the resulting dose distributions matched those of a commercial treatment 
planning system. We conclude that dose calculation using the PB algorithm can be made fast enough 
for on-line ART applications whilst maintaining the accuracy of current clinical systems. 
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