SUPPLEMENTARY INFORMATION

The double-stranded DNA-binding proteins TEBP-1 and TEBP-2 form a telomeric complex with POT-1

Sabrina Dietz^{1,5}, Miguel Vasconcelos Almeida^{1,2,5}, Emily Nischwitz¹, Jan Schreier¹, Nikenza Viceconte¹, Albert Fradera-Sola¹, Christian Renz¹, Alejandro Ceron-Noriega¹, Helle D. Ulrich¹, Dennis Kappei^{3,4}, René F. Ketting¹, Falk Butter^{1,*}

¹Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
²Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; and Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
³Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
⁴Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore
⁵These two authors contributed equally to this work

*Correspondence: f.butter@imb-mainz.de, +49 6131-39-21570

Supplementary Fig. 1

Supplementary Fig. 1. A quantitative proteomics screen for telomere binders identifies the paralogs TEBP-1 and TEBP-2.

(a) Scheme representing the label free quantitation workflow. Telomere (TTAGGC)_n, or control DNA (AGGTCA)_n baits are incubated with nuclear extract. Samples are processed and measured independently, and later compared by statistical data analysis.

(b) Scheme representing the reductive dimethyl labeling workflow. Telomere (TTAGGC)_n, or control DNA (AGGTCA)_n baits are incubated with nuclear extract in duplicates. Per condition each peptide gets labeled with either light methyl groups (CH₃) or heavy methyl groups (CD₃). Afterwards, the heavy sample of one condition is combined with the light sample of the other condition and vice-versa to achieve a forward and a reverse experiment. Forward and reverse experiments are measured and analyzed by comparing intensities of the proteins (calculated from their peptide intensities) in the respective channel.

(c) Pairwise sequence alignment of amino acid sequences of TEBP-1 and TEBP-2 using EMBOSS Needle, visualized using Jalview, showing the high sequence similarity between the two proteins. Amino acids are color coded according to the Clustal X colour scheme: blue – amino acids A, I, L, M, F, W, C and V; red: amino acids R and K; green – amino acids N, S, Q, T; pink – amino acid C; magenta – amino acids E and D; orange – amino acid G; cyan – amino acids H, Y; yellow – amino acid P. Conservation is shown in the yellow bars beneath the sequences, brighter yellow for higher conservation. Amino acid positions are indicated.

(d) Scheme of the *tebp-1* genomic locus. Below are indicated the positions with similarity to the homeodomain of human and yeast RAP1, as predicted by HHPred (3.2.0), deletions made by CRISPR-Cas9 genome editing (alleles *xf133* and *xf134*), as well as the locations of the tags (C-terminal GFP and 3xFLAG), also inserted by CRISPRCas9 genome editing.

(e) As in (d) but for the tebp-2 locus.

(f-g) Chromatograms of Sanger sequencing of *tebp-1* and *tebp-2* deletion alleles compared to WT. Deletion sites are indicated with arrows. Colors indicate the different DNA bases: black – G; blue – C; red – T; green – A.

Protein	Oligo Sequence	Kd	B _{max}
TEBP-1-HIS₅	(TTAGGC) _{2.5} ds	53.05 nM	184.5
TEBP-1-HIS₅	(TTAGGC) _{2.0} ds	75.25 nM	111.1
TEBP-1-HIS ₅	(TTAGGC) _{1.5} ds	65.26 nM	117.0
TEBP-1-HIS₅	(GGCTTA) _{1.5} ds	78.74 nM	60.80
TEBP-1-HIS₅	(AGGTCA) _{2.5} ds	110.6 nM	39.88
TEBP-2-HIS₅	(TTAGGC) _{2.5} ds	29.37 nM	219.6
TEBP-2-HIS₅	(TTAGGC) _{2.0} ds	42.77 nM	213.2
TEBP-2-HIS₅	(TTAGGC) _{1.5} ds	40.53 nM	199.8
TEBP-2-HIS₅	(GGCTTA) _{1.5} ds	99.08 nM	191.3
TEBP-2-HIS₅	(AGGTCA) _{2.5} ds	195.4 nM	104.9

Supplementary Fig. 2

С

Supplementary Fig. 2. Telomeric double-strand binding preferences of TEBP-1 (R06A4.2) and TEBP-2 (T12E12.3).

(a-b) Fluorescence polarization assays of 1 µM to 2 nM purified TEBP-1-His₅ (a) and TEBP-2-His₅ (b). Proteins were incubated with 2.5x, 2.0x, 1.5x T-rich, and 1.5x G-rich double-stranded telomeric FITC-labeled oligonucleotides, as well as 2.5x double-stranded control. Error bars represent +/- the standard deviation of the mean values. Per data point n=3 technical replicates. FP, fluorescence polarization; mP, millipolarization, upward triangle: 2.5x TTAGGC double-strand, downward triangle: 2.5x TTAGGC single-strand, square: 2x TTAGGC double-strand, diamond: 1.5x TTAGGC T-rich double-strand, downward triangle: 1.5x G-rich GGCTAA double-strand, circle: 2.5x shuffled control AGGTCA double-strand.

(c) Overview of K_d and B_{max} values from FP experiment (a-b).

Supplementary Fig. 3

Supplementary Fig. 3. The expression profiles of *tebp-1* and *tebp-2* throughout development and in isolated gonads.

(a) Heatmap depicting mRNA expression levels, in Reads Per Kilobase Million (RPKM), of the known telomere binders *pot-1*, *pot-2*, and *mrt-1*, telomerase subunit *trt-1*, as well as *tebp-1* and *tebp-2*. Data from a previously published RNA-seq dataset⁴⁷.

(b-c) Genome browser tracks with the mRNA expression of *tebp-1* (b), and *tebp-2* (c), in reads per million (RPM), across the different life stages of *C. elegans*. Data from [47]. (a-c) Emb, embryos; L1-L4, first to fourth larval stages; YA, young adults.

(d) Expression of telomere factors in dissected *fem-3* mutant gonads (exclusively spermatogenic) and *fog-2* mutant gonads (exclusively oogenic), from previously published RNA-seq data⁴⁸. *pie-1* and *ssp-32* are genes known to be expressed in oogenesis and in spermatogenesis, respectively, according to [48].

c tebp-1(xf133)

е

g

Quantification of qFISH signal

Supplementary Fig. 4

d tebp-2(xf131)

f _{N2}

Supplementary Fig. 4. TEBP-1 and TEBP-2 regulate telomere length in embryos.

(a-b) Genome browser tracks with the mRNA expression of *tebp-1* (a) and *tebp-2* (b), in Reads Per Kilobase Million (RPKM). RNA-seq data of wild-type, *tebp-1(xf133)*, and *tebp-2(xf131)* mutants.

(c-f) Representative maximum projection z-stacks of a qFISH assay using embryos of *C. elegans* mutant strains. The telomeres of these embryos were visualized by hybridization with a telomeric PNA-FISH-probe. Nuclei were stained with DAPI. Scale bars, 10 μ m. *tebp-1(xf133)* and *tebp-2(xf131)* were grown for approx. 98/120 generations before the experiment. N = 3 biologically independent experiments with similar results.

(g) Barplot depicting analysis of qFISH images of the strains in (c-f), as indicated on the x-axis. Average telomere length is indicated by arbitrary units of relative integrated density on the y-axis, with wild-type N2 set to 1. The left hand plot is a zoomed-in inset of the N2 and tebp-2(xf131) values. n of analyzed independent embryos per strain: tebp-2(xf131): n=6, N2: n=10, tebp-1(xf131): n=6. Error bars represent the standard error of the mean (SEM) and p-values were calculated using Welch's t-test.

Genotype	Father	Mother	Synthetic sterile F2	Could grow double mutant homozygous line
tebp-2(xf131); tebp-1(xf133)	tebp-2(xf131)	tebp-1(xf133)	Yes	No
tebp-1(xf133); tebp-2(xf131); xfls148(tebp-2::gfp MosSCI)	tebp-1(xf133)	tebp-2(xf131); xfls148(tebp-2::gfp MosSCI)	No	Yes
tebp-2(xf131); tebp-1(xf133)	tebp-1(xf133)	tebp-2(xf131); xfls148(tebp-2::gfp MosSCI)	Yes	No
tebp-2(xf131); pot-2(tm1400)	tebp-2(xf131)	pot-2(tm1400)	No	Yes
tebp-1(xf133); trt-1(ok410)	tebp-1(xf133)	trt-1(ok410)	No	Yes
tebp-1(xf133); mrt-1(tm1354)	tebp-1(xf133)	mrt-1(tm1354)	No	Yes
pot-2(tm1400); trt-1(ok410)	pot-2(tm1400)	trt-1(ok410)	No	Yes
tebp-2(xf131); trt-1(ok410)	tebp-2(xf131)	trt-1(ok410)	No	Yes
tebp-1(xf260);	N/A. Used CRISPR- Cas9 to introduce tebp-1 mutation due to linkage	pot-2(tm1400)	N/A not a cross	Yes

е

b

а

Category 2: one gonad arm atrophied

Category 3: both gonad arms atrophied

d

С

Supplementary Fig. 5

Supplementary Fig. 5. Dissecting the role of TEBP-1 and TEBP-2 in fertility.

(a) Overview of additional crosses performed to investigate distinct aspects of the synthetic sterility phenotype. For each cross, the columns indicate the genotype of the animals analyzed, the genotype of their parents, whether the animals have synthetic sterility, and if we could establish a homozygous line. The second row shows that the reciprocal cross between *tebp-1* and *tebp-2* also led to synthetic sterility. The third row shows that a *tebp-2::gfp* single-copy transgene rescues the synthetic sterility of *tebp-1; tebp-2* double mutants, while their transgene-less siblings still display synthetic sterility (fourth row). The following rows demonstrate that the synthetic sterility is specific to *tebp-1* and *tebp-2*, as it does not arise in crosses with other telomere-associated mutants.

(b) Additional representative widefield DIC and fluorescence pictures of worms with germlines of categories 2 (left panels) and 3 (right panels). Scale bars, 200 µm. Atrophied germlines are indicated with white arrowheads.

(c) Exemplary widefield DIC and fluorescence micrographs of worms showing growth defects and/or larval arrest. These animals were isolated concurrently to animals shown in (b), but did not reach adulthood. These two specific animals were offspring of *tebp-2(xf131); tebp-1(xf133)* +/-. Scale bars, 200 μ m.

(d-e) Boxplots showing the brood sizes of wild-type N2, *tebp-1* or *tebp-2* single mutants, and *tebp-2(xf131); xfls148(tebp-2::gfp)*. Central horizontal lines represent the median, the bottom and top of the box represent the 25th and 75th percentile, respectively. Whiskers represent the 5th and 95th percentile, dots represent the data points used to calculate the box plot. Experiments were carried out at 20°C (d) and 25°C (e). Statistical comparisons were performed with wildtype N2, calculated with two-sided and unpaired Mann–Whitney and Wilcoxon tests. N2 vs.*tebp-2(xf131)*: 20°C p-value=0.145, 25°C p-value= 0.097; N2 vs. *tebp-2(xf131);xfls148(tebp-2::gfp MosSCI)*: 20°C p-value=0.91, 25°C p-value=0.183; N2 vs. *tebp-1(xf133)*: 20°C p-value=0.052, 25°C p-value=0.41. Analyzed individuals per strain are indicated as n on the x-axis labels.

Supplementary Fig. 6

Supplementary Fig. 6. TEBP-1 and TEBP-2 interact with each other and with POT-1/MRT-1/POT-2.

(a) Western blot of the eluted fractions from size-exclusion chromatography of embryo extracts containing TEBP-1::3xFLAG and TEBP-2::GFP. The approximate molecular weight (MW) of the fractions is indicated above the blots. GTSF-1 was used as a control, as it has a known elution profile in size-exclusion chromatography⁷⁶. Information about α -GTSF-1 can be found in [76]. N = 2 biologically independent experiments with similar results.

(b-c) Volcano plots with quantitative proteomic analysis of TEBP-1::3xFLAG (b) or TEBP-2::GFP (c) IPs in young adults. IPs were performed in quadruplicates. Enriched proteins (threshold: 4-fold, p-value<0.05) are shown as black dots, enriched proteins of interest are highlighted with red or orange dots, and the baits are named in red. Background proteins are depicted as grey dots.

(d) Co-IP western blot experiment of TEBP-1::3xFLAG and TEBP-2::GFP similar to Fig. 5e-f, except the IPs were performed with an α -FLAG antibody. Actin was used as loading control. IPs with embryo extracts in the left panel and with young adult extracts in the right panel. N = 3 biologically independent experiments with similar results for both experiments.

(e-f) Volcano plots showing quantitative proteomic analysis of either TEBP-1::3xFLAG (e) or TEBP-2::GFP (f) IPs in embryos. IPs were performed in quadruplicates and Sm nuclease was added to remove potential DNA-dependent interactions. Enriched proteins (threshold >2-fold, p-value<0.05) are shown as black dots. Enriched proteins of interest are highlighted with red or orange dots, and baits are named in red.

(g) Orthogonal grid of the Y2H spotting containing fusion constructs of the Gal4 activating or DNAbinding domains with the full length sequence of telomere factors. Left panel shows growth control in non-restrictive medium. Protein-protein interactions allow for growth on TRP- LEU- HIS- medium (middle panel). TEBP-2 bound to the Gal4 DNA-binding domain is self-activating, precluding the determination of interactions. The strongest interactions are permissive of growth on the highly stringent TRP- LEU-HIS- ADE- medium (right panel).

(h) Co-IP western blot experiments of TEBP-1::3xFLAG and TEBP-2::GFP in the presence and absence of POT-1, where absence of POT-1 refers to the *pot-1(tm1620)* mutation. The IPs were performed with an α -GFP antibody. Actin was used as loading control. IPs were performed with 800 µg of embryo extracts. Detection by ECL was performed sequentially, first for GFP and then for FLAG.

(i) Y2H spotting as in (g) with TEBP-1 and TEBP-2 partial constructs fused to the GAL4 activation or DNA-binding domain as in Fig. 6d,h. The full length, f7, and f5 TEBP-2 constructs fused to the Gal4 DNA-binding domain show self-activation. As in (g) the growth on the highly stringent TRP-LEU-HIS-ADE-medium (right panel) indicates the strongest interactions.

Supplementary Fig. 7

Supplementary Fig. 7. Phylogenetic analysis of the N-terminal region of TEBP-proteins.

Phylogenetic tree constructed as in Fig. 7a. The MAFFT protein alignment used for this tree comprised the first 600 alignment positions of the multiple sequence alignment in Supplementary Data 2 (sheet 2). Values on the nodes represent bootstrapping values of 10000 replicates, set to 100.

Supplementary Table 1: List of strains used and created in this study.

Listed are all strains with their respective genotype and source.

Strain Reference	Genotype	Source	
	Wild-Type N2	CGC	
YA1197	ypIn2 [daz-1p::pot-1::mCherry::tbb-2 3'UTR + Cbr-unc-119(+)] II.	A kind gift from Shawn Ahmed	
tm1620	pot-1(tm1620) III.	National Bioresource Project for the nematode, Japan	
tm1400	pot-2(tm1400) II.	National Bioresource Project for the nematode, Japan	
YA1116	mrt-1(tm1354) I.	CGC	
YA1059	trt-1(ok410) I.	CGC	
EG6699	ttTi5605 II; unc-119(ed3) III; oxEx1578	CGC	
RFK641	tebp-2(xf131) IV.	This study	
RFK671	tebp-1(xf133) II.	This study	
RFK672	tebp-1(xf134) II.	This study	
RFK659	TEBP-2(xfls148[tebp-2(prm)::tebp-2::GFP::tebp- 2(3'UTR)]) II; unc-119(ed9) III.	This study	
RFK1096	tebp-2(xf235[TEBP-2::GFP]) IV.	This study	
RFK1022	tebp-1(xf225[tebp-1::GFP]) II.	This study	
RFK958	tebp-1(xf201[tebp-1::3xFLAG]) II.	This study	
RFK1173	tebp-2(xf235[tebp-2::GFP]) IV; tebp-1(xf201[tebp-1::3xFLAG]) II.	This study	
RFK1174	tebp-2(xf235[tebp-2::GFP]) IV; ypIn2[daz- 1p::pot-1::mCherry::tbb-2 3'UTR + Cbr-unc- 119(+)] II.	This study	
RFK1067	tebp-1(xf225[tebp-1::GFP]) II; ypIn2[daz-1p::pot- 1::mCherry::tbb-2 3'UTR + Cbr-unc-119(+)] II.	This study	
RFK1086	pgl-1(xf233[pgl-1::mTagRFP-T]) IV.	Jan Schreier, Ketting laboratory	
RFK1327	tebp-2(xf131) IV; pgl-1(xf233[pgl-1::mTagRFP- T]) IV.	This study	
RFK1328	tebp-1(xf133) II; pgl-1(xf233[pgl-1::mTagRFP-T]) IV.	This study	
-	tebp-2(xf131) IV; pot-2(tm1400) II.	This study	
-	tebp-1(xf133) II; mrt-1(tm1354) I.	This study	
RFK1334	trt-1(ok410) I; tebp-1(xf133) II.	This study	
RFK1309	tebp-1(xf260) II; pot-2(tm1400) II.	This study	
-	trt-1(ok410) I; pot-2(tm1400) II.	This study	
AF16	C. briggsae Wild-type	CGC	

Supplementary Table 2. Fractions of the gel filtration runs and correlated molecular weight.

Separation range of the used column in red, fractions covered by the marker run in green. Fractions of the 96-well column marked in bold were concentrated and used for western blot detection (Figs. 5a and S6a respectively). MW: molecular weight.

Fraction	volume [ml]	log MW	calculated MW	96 well	
Δ1	1.0	8 982	960063 591	a1	
Δ2	2.0	8 727	533212 105	532212 105 22	
Δ3	3.0	8,472 296141 997		a3	
Δ4	4.0	8 216 164475 040		164475 040 a	
A5	5.0	7 961 91348 201		013/8 201 25	
A6	6.0	7,705	50734,105	a6	
A7	6.5	7.578	37809 419	a7	
A8	7.0	7.450	28177.340	a8	
A9	7.5	7.322	20999.067	a9	
A10	8.0	7.195	15649.483	a10	
A11	8.5	7.067	11662.724	a11	
A12	9.0	6.939	8691.605	a12	
A13	9.5	6.811	6477.389	b12	
A14	10.0	6.684	4827,252	b11	
A15	10.5	6.556	3597,493	b10	Superose 6 column
A16	11.0	6.428	2681.020	b9	separation range (5-
A17	11.5	6.301	1998.021	b8	5000 kDa)
A18	12.0	6.173	1489.018	b7	
A19	12.5	6.045	1109.686	b6	
A20	13.0	5,918	826,990	b5	
A21	13.5	5,790	616.311	b4	
A22	14.0	5.662	459.304	b3	
A23	14.5	5.534	342,295	b2	
A24	15.0	5.407	255.094	b1	
A25	15.5	5.279	190.108	c1	
A26	16.0	5.151	141.677	c2	covered by marker
A27	16.5	5.024	105.584	c3	run
A28	17.0	4.896	78.686	c4	
A29	17.5	4.768	58.641	c5	
A30	18.0	4.641	43.702	c6	
A31	18.5	4.513	32,569	c7	
A32	19,0	4,385	24,272	c8	
A33	19,5	4,257	18,088	c9	
A34	20,0	4,130	13,480	c10	
A35	20,5	4,002	10,046	c11	
A36	21,0	, 3,874	7,487	c12	
A37	21,5	3,747	5,580	d12	
A38	22,0	3,619	4,158	d11	1
A39	22,5	3,491	3,099	d10	
A40	23,0	3,364	2,309	d9	
A41	23,5	3,236	1,721	d8	
A42	24,0	3,108	1,283	d7	