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Supplementary Fig. 1. A quantitative proteomics screen for telomere binders identifies the 

paralogs TEBP-1 and TEBP-2.  

(a) Scheme representing the label free quantitation workflow. Telomere (TTAGGC)n, or control DNA 

(AGGTCA)n baits are incubated with nuclear extract. Samples are processed and measured 

independently, and later compared by statistical data analysis.  

(b) Scheme representing the reductive dimethyl labeling workflow. Telomere (TTAGGC)n, or control 

DNA (AGGTCA)n baits are incubated with nuclear extract in duplicates. Per condition each peptide gets 

labeled with either light methyl groups (CH3) or heavy methyl groups (CD3). Afterwards, the heavy 

sample of one condition is combined with the light sample of the other condition and vice-versa to 

achieve a forward and a reverse experiment. Forward and reverse experiments are measured and 

analyzed by comparing intensities of the proteins (calculated from their peptide intensities) in the 

respective channel.  

(c) Pairwise sequence alignment of amino acid sequences of TEBP-1 and TEBP-2 using EMBOSS 

Needle, visualized using Jalview, showing the high sequence similarity between the two proteins. Amino 

acids are color coded according to the Clustal X colour scheme: blue – amino acids A, I, L, M, F, W, C 

and V; red: amino acids R and K; green – amino acids N, S, Q, T;  pink – amino acid C;  magenta – 

amino acids E and D; orange – amino acid G; cyan – amino acids H, Y; yellow – amino acid P. 

Conservation is shown in the yellow bars beneath the sequences, brighter yellow for higher 

conservation. Amino acid positions are indicated.  

(d) Scheme of the tebp-1 genomic locus. Below are indicated the positions with similarity to the 

homeodomain of human and yeast RAP1, as predicted by HHPred (3.2.0), deletions made by CRISPR-

Cas9 genome editing (alleles xf133 and xf134), as well as the locations of the tags (C-terminal GFP and 

3xFLAG), also inserted by CRISPRCas9 genome editing.  

(e) As in (d) but for the tebp-2 locus.  

(f-g) Chromatograms of Sanger sequencing of tebp-1 and tebp-2 deletion alleles compared to WT. 

Deletion sites are indicated with arrows. Colors indicate the different DNA bases: black – G; blue – C; 

red – T; green – A. 
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Supplementary Fig. 2. Telomeric double-strand binding preferences of TEBP-1 (R06A4.2) 

and TEBP-2 (T12E12.3).  

(a-b) Fluorescence polarization assays of 1 µM to 2 nM purified TEBP-1-His5 (a) and TEBP-2-His5 (b). 

Proteins were incubated with 2.5x, 2.0x, 1.5x T-rich, and 1.5x G-rich double-stranded telomeric FITC-

labeled oligonucleotides, as well as 2.5x double-stranded control. Error bars represent +/- the standard 

deviation of the mean values. Per data point n=3 technical replicates. FP, fluorescence polarization; mP, 

millipolarization, upward triangle: 2.5x TTAGGC double-strand, downward triangle: 2.5x TTAGGC 

single-strand, square: 2x TTAGGC double-strand, diamond: 1.5x TTAGGC T-rich double-strand, 

downward triangle: 1.5x G-rich GGCTAA double-strand, circle: 2.5x shuffled control AGGTCA double-

strand. 

(c) Overview of Kd and Bmax values from FP experiment (a-b). 
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Supplementary Fig. 3. The expression profiles of tebp-1 and tebp-2 throughout development 

and in isolated gonads.  

(a) Heatmap depicting mRNA expression levels, in Reads Per Kilobase Million (RPKM), of the known 

telomere binders pot-1, pot-2, and mrt-1, telomerase subunit trt-1, as well as tebp-1 and tebp-2. Data 

from a previously published RNA-seq dataset47.  

(b-c) Genome browser tracks with the mRNA expression of tebp-1 (b), and tebp-2 (c), in reads per 

million (RPM), across the different life stages of C. elegans. Data from [47]. (a-c) Emb, embryos; L1-L4, 

first to fourth larval stages; YA, young adults.  

(d) Expression of telomere factors in dissected fem-3 mutant gonads (exclusively spermatogenic) and 

fog-2 mutant gonads (exclusively oogenic), from previously published RNA-seq data48. pie-1 and ssp-

32 are genes known to be expressed in oogenesis and in spermatogenesis, respectively, according to 

[48]. 
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Supplementary Fig. 4. TEBP-1 and TEBP-2 regulate telomere length in embryos. 

(a-b) Genome browser tracks with the mRNA expression of tebp-1 (a) and tebp-2 (b), in Reads Per 

Kilobase Million (RPKM). RNA-seq data of wild-type, tebp-1(xf133), and tebp-2(xf131) mutants.  

(c-f) Representative maximum projection z-stacks of a qFISH assay using embryos of C. elegans mutant 

strains. The telomeres of these embryos were visualized by hybridization with a telomeric PNA-FISH-

probe. Nuclei were stained with DAPI. Scale bars, 10 μm. tebp-1(xf133) and tebp-2(xf131) were grown 

for approx. 98/120 generations before the experiment. N = 3 biologically independent experiments with 

similar results.  

(g) Barplot depicting analysis of qFISH images of the strains in (c-f), as indicated on the x-axis. Average 

telomere length is indicated by arbitrary units of relative integrated density on the y-axis, with wild-type 

N2 set to 1. The left hand plot is a zoomed-in inset of the N2 and tebp-2(xf131) values. n of analyzed 

independent embryos per strain: tebp-2(xf131): n=6, N2: n=10, tebp-1(xf131): n=6. Error bars represent 

the standard error of the mean (SEM) and p-values were calculated using Welch’s t-test. 
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Supplementary Fig. 5. Dissecting the role of TEBP-1 and TEBP-2 in fertility.  

(a) Overview of additional crosses performed to investigate distinct aspects of the synthetic sterility 

phenotype. For each cross, the columns indicate the genotype of the animals analyzed, the genotype 

of their parents, whether the animals have synthetic sterility, and if we could establish a homozygous 

line. The second row shows that the reciprocal cross between tebp-1 and tebp-2 also led to synthetic 

sterility. The third row shows that a tebp-2::gfp single-copy transgene rescues the synthetic sterility of 

tebp-1; tebp-2 double mutants, while their transgene-less siblings still display synthetic sterility (fourth 

row). The following rows demonstrate that the synthetic sterility is specific to tebp-1 and tebp-2, as it 

does not arise in crosses with other telomere-associated mutants.  

(b) Additional representative widefield DIC and fluorescence pictures of worms with germlines of 

categories 2 (left panels) and 3 (right panels). Scale bars, 200 μm. Atrophied germlines are indicated 

with white arrowheads.  

(c) Exemplary widefield DIC and fluorescence micrographs of worms showing growth defects and/or 

larval arrest. These animals were isolated concurrently to animals shown in (b), but did not reach 

adulthood. These two specific animals were offspring of tebp-2(xf131); tebp-1(xf133) +/-. Scale bars, 

200 μm.  

(d-e) Boxplots showing the brood sizes of wild-type N2, tebp-1 or tebp-2 single mutants, and tebp-

2(xf131); xfIs148(tebp-2::gfp). Central horizontal lines represent the median, the bottom and top of the 

box represent the 25th and 75th percentile, respectively. Whiskers represent the 5th and 95th percentile, 

dots represent the data points used to calculate the box plot. Experiments were carried out at 20°C (d) 

and 25°C (e). Statistical comparisons were performed with wildtype N2, calculated with two-sided and 

unpaired Mann–Whitney and Wilcoxon tests. N2 vs.tebp-2(xf131): 20°C p-value=0.145, 25°C p-value= 

0.097; N2 vs. tebp-2(xf131);xfIs148(tebp-2::gfp MosSCI): 20°C p-value=0.91, 25°C p-value=0.183; N2 

vs. tebp-1(xf133): 20°C p-value=0.052, 25°C p-value=0.41. Analyzed individuals per strain are indicated 

as n on the x-axis labels. 
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Supplementary Fig. 6. TEBP‐1 and TEBP‐2 interact with each other and with 

POT‐1/MRT‐1/POT‐2.  

(a) Western blot of the eluted fractions from size-exclusion chromatography of embryo extracts 

containing TEBP‐1::3xFLAG and TEBP‐2::GFP. The approximate molecular weight (MW) of the 

fractions is indicated above the blots. GTSF‐1 was used as a control, as it has a known elution profile 

in size‐exclusion chromatography76. Information about α‐GTSF-1 can be found in [76]. N = 2 biologically 

independent experiments with similar results. 

(b‐c) Volcano plots with quantitative proteomic analysis of TEBP‐1::3xFLAG (b) or TEBP‐2::GFP (c) IPs 

in young adults. IPs were performed in quadruplicates. Enriched proteins (threshold: 4‐fold, p‐

value<0.05) are shown as black dots, enriched proteins of interest are highlighted with red or orange 

dots, and the baits are named in red. Background proteins are depicted as grey dots. 

(d) Co‐IP western blot experiment of TEBP‐1::3xFLAG and TEBP‐2::GFP similar to Fig. 5e-f, except the 

IPs were performed with an α‐FLAG antibody. Actin was used as loading control. IPs with embryo 

extracts in the left panel and with young adult extracts in the right panel. N = 3 biologically independent 

experiments with similar results for both experiments.  

(e‐f) Volcano plots showing quantitative proteomic analysis of either TEBP‐1::3xFLAG (e) or TEBP‐

2::GFP (f) IPs in embryos. IPs were performed in quadruplicates and Sm nuclease was added to remove 

potential DNA‐dependent interactions. Enriched proteins (threshold >2‐fold, p‐value<0.05) are shown 

as black dots. Enriched proteins of interest are highlighted with red or orange dots, and baits are named 

in red.  

(g) Orthogonal grid of the Y2H spotting containing fusion constructs of the Gal4 activating or DNA-

binding domains with the full length sequence of telomere factors. Left panel shows growth control in 

non‐restrictive medium. Protein‐protein interactions allow for growth on TRP‐ LEU‐ HIS‐ medium (middle 

panel). TEBP‐2 bound to the Gal4 DNA‐binding domain is self‐activating, precluding the determination 

of interactions. The strongest interactions are permissive of growth on the highly stringent TRP‐ LEU‐ 

HIS- ADE- medium (right panel).  

(h) Co‐IP western blot experiments of TEBP‐1::3xFLAG and TEBP‐2::GFP in the presence and absence 

of POT‐1, where absence of POT‐1 refers to the pot‐1(tm1620) mutation. The IPs were performed with 

an α‐GFP antibody. Actin was used as loading control. IPs were performed with 800 μg of embryo 

extracts. Detection by ECL was performed sequentially, first for GFP and then for FLAG.  

(i) Y2H spotting as in (g) with TEBP-1 and TEBP-2 partial constructs fused to the GAL4 activation or 

DNA-binding domain as in Fig. 6d,h. The full length, f7, and f5 TEBP-2 constructs fused to the Gal4 

DNA-binding domain show self-activation. As in (g) the growth on the highly stringent TRP-LEU-HIS-

ADE-medium (right panel) indicates the strongest interactions. 
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Supplementary Fig. 7. Phylogenetic analysis of the N-terminal region of TEBP-proteins.  

Phylogenetic tree constructed as in Fig. 7a. The MAFFT protein alignment used for this tree comprised 

the first 600 alignment positions of the multiple sequence alignment in Supplementary Data 2 (sheet 2). 

Values on the nodes represent bootstrapping values of 10000 replicates, set to 100. 

 



Supplementary Table 1: List of strains used and created in this study. 

Listed are all strains with their respective genotype and source. 

 

 

 

Strain 
Reference Genotype Source 

 Wild-Type N2 CGC 

YA1197 ypIn2 [daz-1p::pot-1::mCherry::tbb-2 3'UTR + 
Cbr-unc-119(+)] II. 

A kind gift from Shawn 
Ahmed 

tm1620 pot-1(tm1620) III. 
National Bioresource 

Project for the nematode, 
Japan 

tm1400 pot-2(tm1400) II. 
National Bioresource 

Project for the nematode, 
Japan 

YA1116 mrt-1(tm1354) I. CGC 
YA1059 trt-1(ok410) I. CGC 
EG6699 ttTi5605 II; unc-119(ed3) III; oxEx1578 CGC 
RFK641 tebp-2(xf131) IV. This study 
RFK671 tebp-1(xf133) II. This study 
RFK672 tebp-1(xf134) II. This study 

RFK659 TEBP-2(xfIs148[tebp-2(prm)::tebp-2::GFP::tebp-
2(3'UTR)]) II; unc-119(ed9) III. This study 

RFK1096 tebp-2(xf235[TEBP-2::GFP]) IV. This study 
RFK1022 tebp-1(xf225[tebp-1::GFP]) II. This study 
RFK958 tebp-1(xf201[tebp-1::3xFLAG]) II. This study 

RFK1173 tebp-2(xf235[tebp-2::GFP]) IV; 
tebp-1(xf201[tebp-1::3xFLAG]) II. This study 

RFK1174 
tebp-2(xf235[tebp-2::GFP]) IV; ypIn2[daz-

1p::pot-1::mCherry::tbb-2 3'UTR + Cbr-unc-
119(+)] II. 

This study 

RFK1067 tebp-1(xf225[tebp-1::GFP]) II; ypIn2[daz-1p::pot-
1::mCherry::tbb-2 3'UTR + Cbr-unc-119(+)] II. This study 

RFK1086 pgl-1(xf233[pgl-1::mTagRFP-T]) IV. Jan Schreier, Ketting 
laboratory 

RFK1327 tebp-2(xf131) IV; pgl-1(xf233[pgl-1::mTagRFP-
T]) IV. This study 

RFK1328 tebp-1(xf133) II; pgl-1(xf233[pgl-1::mTagRFP-T]) 
IV. This study 

- tebp-2(xf131) IV; pot-2(tm1400) II. This study 
- tebp-1(xf133) II; mrt-1(tm1354) I. This study 

RFK1334 trt-1(ok410) I; tebp-1(xf133) II. This study 
RFK1309 tebp-1(xf260) II; pot-2(tm1400) II. This study 

- trt-1(ok410) I; pot-2(tm1400) II. This study 
AF16 C. briggsae Wild-type CGC 



Supplementary Table 2. Fractions of the gel filtration runs and correlated molecular weight. 

Separation range of the used column in red, fractions covered by the marker run in green. Fractions of the 
96-well column marked in bold were concentrated and used for western blot detection (Figs. 5a and S6a 
respectively). MW: molecular weight. 

 

Fraction volume 
[ml] 

log 
MW 

calculated MW 
[kDa] 96 well  

A1 1,0 8,982 960063,591 a1  

A2 2,0 8,727 533212,105 a2  

A3 3,0 8,472 296141,997 a3  

A4 4,0 8,216 164475,040 a4  

A5 5,0 7,961 91348,201 a5  

A6 6,0 7,705 50734,105 a6  

A7 6,5 7,578 37809,419 a7  

A8 7,0 7,450 28177,340 a8  

A9 7,5 7,322 20999,067 a9  

A10 8,0 7,195 15649,483 a10  

A11 8,5 7,067 11662,724 a11  

A12 9,0 6,939 8691,605 a12  

A13 9,5 6,811 6477,389 b12 

Superose 6 column 
separation range (5-

5000 kDa) 

A14 10,0 6,684 4827,252 b11 
A15 10,5 6,556 3597,493 b10 
A16 11,0 6,428 2681,020 b9 
A17 11,5 6,301 1998,021 b8 
A18 12,0 6,173 1489,018 b7 
A19 12,5 6,045 1109,686 b6  

A20 13,0 5,918 826,990 b5  

A21 13,5 5,790 616,311 b4 

covered by marker 
run 

A22 14,0 5,662 459,304 b3 
A23 14,5 5,534 342,295 b2 
A24 15,0 5,407 255,094 b1 
A25 15,5 5,279 190,108 c1 
A26 16,0 5,151 141,677 c2 
A27 16,5 5,024 105,584 c3 
A28 17,0 4,896 78,686 c4 
A29 17,5 4,768 58,641 c5 
A30 18,0 4,641 43,702 c6 
A31 18,5 4,513 32,569 c7 
A32 19,0 4,385 24,272 c8  

A33 19,5 4,257 18,088 c9  

A34 20,0 4,130 13,480 c10  

A35 20,5 4,002 10,046 c11  

A36 21,0 3,874 7,487 c12  

A37 21,5 3,747 5,580 d12  

A38 22,0 3,619 4,158 d11  

A39 22,5 3,491 3,099 d10  

A40 23,0 3,364 2,309 d9  

A41 23,5 3,236 1,721 d8  

A42 24,0 3,108 1,283 d7  
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