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Structure of a human replisome shows the
organisation and interactions of a DNA replication
machine
Morgan L Jones† , Yasemin Baris† , Martin R G Taylor & Joseph T P Yeeles*

Abstract

The human replisome is an elaborate arrangement of molecular
machines responsible for accurate chromosome replication. At its
heart is the CDC45-MCM-GINS (CMG) helicase, which, in addition
to unwinding the parental DNA duplex, arranges many proteins
including the leading-strand polymerase Pol e, together with
TIMELESS-TIPIN, CLASPIN and AND-1 that have key and varied
roles in maintaining smooth replisome progression. How these
proteins are coordinated in the human replisome is poorly under-
stood. We have determined a 3.2 �A cryo-EM structure of a human
replisome comprising CMG, Pol e, TIMELESS-TIPIN, CLASPIN and
AND-1 bound to replication fork DNA. The structure permits a
detailed understanding of how AND-1, TIMELESS-TIPIN and Pol e
engage CMG, reveals how CLASPIN binds to multiple replisome
components and identifies the position of the Pol e catalytic
domain. Furthermore, the intricate network of contacts contrib-
uted by MCM subunits and TIMELESS-TIPIN with replication fork
DNA suggests a mechanism for strand separation.
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Introduction

Molecular machines participate in all aspects of cellular function

including protein synthesis, gene transcription and chromosome

replication. The latter is accomplished by the coordinated activities

of multiple diverse proteins functioning together as the replisome.

Understanding how these activities synergise requires detailed struc-

tural knowledge of replisomes engaged with DNA. Recent advances

in budding yeast replisome reconstitution and electron cryomi-

croscopy (cryo-EM) have yielded unprecedented new insights into

replisome structure and mechanism (Yeeles et al, 2015, 2017; Geor-

gescu et al, 2017; Douglas et al, 2018; Eickhoff et al, 2019; Bareti�c

et al, 2020; Rzechorzek et al, 2020). By contrast, the current picture

of the human replisome is more limited and only high-resolution

structures of individual components have so far been determined.

Moreover, due to the additional complexity of human cells, the

human replisome contains additional factors that do not have ortho-

logs in yeast. These include proteins involved in replisome disas-

sembly, replisome stability and coupling DNA replication to repair,

some of which are essential and/or mutated in genetic conditions

(Reynolds et al, 2017; Bellelli & Boulton, 2021; Wu et al, 2021).

Direct structural investigation of human replisomes is therefore criti-

cal to uncover mechanisms that underpin accurate and efficient

chromosome replication in human cells.

The molecular machine that unwinds template DNA during repli-

cation, and around which the replisome is built, is the CDC45-MCM-

GINS (CMG) helicase. CMG is a hexameric ring of related MCM2-7

subunits stabilised by CDC45 and the tetrameric GINS complex (Costa

et al, 2011; Yuan et al, 2016). Each MCM subunit has distinct N- and

C-terminal domains that form two tiers referred to as the N- and C-

tier. The C-tier harbours the AAA+ ATPase domains that power DNA

unwinding, while the N-tier contains helical, oligonucleotide/

oligosaccharide-binding (OB) and zinc finger (ZnF) domains. CMG

translocates in a N-tier first orientation (Georgescu et al, 2017;

Douglas et al, 2018), with the leading-strand template pulled 30–50

through a central pore in the MCM ring. Cryo-EM structures of droso-

phila CMG unwinding a model replication fork revealed several

translocation states suggesting a non-symmetric rotary mechanism

for ssDNA translocation (Eickhoff et al, 2019). This model is

supported by a 3.3 �A structure of human CMG (hsCMG) bound to

single-stranded DNA and ATP-c-S (Rzechorzek et al, 2020).

As the leading-strand template is pulled through the MCM central

pore, the lagging-strand template is excluded (Fu et al, 2011). All

structural data indicate the point of template unwinding sits within

a secondary N-tier ring formed by the ZnF domains (Georgescu

et al, 2017; Goswami et al, 2018; Eickhoff et al, 2019; Bareti�c et al,

2020; Yuan et al, 2020a). A recent structure of S. cerevisiae CMG

(scCMG) bound to fork DNA visualised a network of interactions

between MCM subunits and DNA that appear to block the lagging
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strand from entering the central pore and divert it towards a puta-

tive exit channel between the MCM3 and MCM5 ZnFs (Yuan et al,

2020a). We observed a similar configuration in a structure of scCMG

bound to fork DNA, the fork protection complex (FPC) and Ctf4

(Bareti�c et al, 2020). Additionally, the N-terminal hairpin (NTH) of

MCM7 was positioned against the final base pair of duplex DNA,

suggesting it might function as a strand separation pin.

Three replicative DNA polymerases function within the repli-

some. Pol a initiates synthesis and the high-fidelity Pol d and Pol ε

perform the bulk of lagging- and leading-strand replication, respec-

tively (Nick McElhinny et al, 2008; Guilliam & Yeeles, 2020).

Evidence from S. cerevisiae suggests all three polymerases are

retained in the replisome for prolonged periods (Kapadia et al, 2020;

Lewis et al, 2020). Although it is currently unclear how Pol a and

Pol d are localised to replication forks, Pol ε forms a stable complex

with scCMG (Sengupta et al, 2013; Langston et al, 2014; Sun et al,

2015; Goswami et al, 2018). Here, the Pol ε subunits Pol2 and Dpb2

(human POLE1 and POLE2, respectively) contact Mcm2, 3, 5 and

GINS (Goswami et al, 2018). Notably, the Pol ε catalytic domain,

which is part of the Pol2 subunit, has not been visualised in the

budding yeast replisome owing to its flexible tethering (Zhou et al,

2017; Goswami et al, 2018). Recently, a cryo-EM structure of

isolated budding yeast Pol ε showed Pol2 in a rigid linear conforma-

tion mediated by the Dpb3 and Dpb4 subunits (human POLE4 and

POLE3, respectively) (Yuan et al, 2020b). It is currently unknown

whether human Pol ε can adopt this configuration and whether it

represents an active form of the polymerase in the replisome.

The FPC is composed of TIMELESS-TIPIN and CLASPIN (S. cere-

visiae Tof1-Csm3 and Mrc1). It is essential for rapid and efficient

replisome progression (Szyjka et al, 2005; Tourriere et al, 2005;

Petermann et al, 2008; Somyajit et al, 2017; Yeeles et al, 2017) and

coupling replication to other processes including sister-chromatid

cohesion (Chan et al, 2003; Leman et al, 2010; Cortone et al, 2018)

and checkpoint activation (Kumagai & Dunphy, 2000). AND-1

(S. cerevisiae Ctf4) is a trimeric scaffold protein that binds directly

to CMG and functions as a hub to recruit additional proteins to the

replication fork (Simon et al, 2014; Samora et al, 2016; Villa et al,

2016). We recently determined a high-resolution cryo-EM structure

of the FPC and Ctf4 bound to scCMG and model replication fork

DNA (Bareti�c et al, 2020). Ctf4 contacts scCMG predominantly via

the b-propeller of its SepB domain at the interface between GINS

and CDC45 (Yuan et al, 2019; Bareti�c et al, 2020). A 6.7 �A cryo-EM

structure of hsCMG bound to AND-1 showed this configuration is

conserved but had insufficient resolution to reveal details of the

interactions (Rzechorzek et al, 2020). The Tof1-Csm3 heterodimer

has an a-solenoid structure and is positioned at the front of the

replisome in advance of Mcm2, 6, 4 and 7 (Bareti�c et al, 2020). This

positioning enables Tof1-Csm3 to grip dsDNA before strand

separation to ensure the replisome responds appropriately to protein

barriers (Bareti�c et al, 2020). Tof1-Csm3:MCM binding is mediated

by two large loops inserted between helical repeats in the Tof1 a-
solenoid termed the Ω-loop and MCM-plugin (Bareti�c et al, 2020).

These loops were not present in the crystal structure of the N-

terminal half of human TIMELESS (Holzer et al, 2017), and there

are currently no structures of TIMELESS-TIPIN in isolation or bound

to hsCMG. While Mrc1 was present in our yeast replisome prepara-

tions, we did not recover density that could be unambiguously

assigned to the protein. Cross-linking mass spectrometry (XL-MS)

showed Mrc1 was positioned across one side of the replisome

extending from Tof1, across Mcm2 and 6, towards Cdc45 (Bareti�c

et al, 2020). It is yet to be determined if CLASPIN is similarly posi-

tioned in the human replisome.

Although much of the eukaryotic replisome is highly conserved,

including Pol ε, TIMELESS-TIPIN, CLASPIN and AND-1, important

structural similarities and differences between yeast and human

replisomes will not be known until a high-resolution human repli-

some structure is determined. Nor will there be an experimental

system to directly investigate the structure of replisomes containing

factors that are critical for human DNA replication but absent from

yeast. To address these matters, and to establish how hsCMG coor-

dinates replication fork DNA, Pol ε, the FPC and AND-1, we have

determined the cryo-EM structure of the core human replisome at

an overall resolution of 3.2 �A.

Results

Assembly of the core human replisome for cryo-EM

To prepare human replisomes for cryo-EM, we utilised the

method we developed for the budding yeast replisome (Bareti�c

et al, 2020). Here, CMG is bound in the presence of the non-

hydrolysable ATP analogue AMP-PNP to a replication fork

consisting of a 46 bp duplex with non-complementary 39 nt lead-

ing and 15 nt lagging single-stranded DNA arms (Fig 1A). Addi-

tional replisome proteins are added and complexes are isolated

through glycerol gradients. Prior to complex assembly, we con-

firmed that our preparations of hsCMG and Pol ε were proficient

for DNA helicase and polymerase activity, respectively

(Appendix Fig S1A and B). Considering the behaviour of their

budding yeast counterparts (Bareti�c et al, 2020), we reasoned that

TIMELESS-TIPIN, CLASPIN, AND-1 and Pol ε might stably associ-

ate with hsCMG. Indeed, Fig 1B and Appendix Fig S1C show that

all four proteins co-migrated with hsCMG in a native glycerol

gradient. For cryo-EM sample preparation, glycerol gradients were

performed in the presence of glutaraldehyde and BS3 because

▸Figure 1. Cryo-EM structure of the core human replisome.

A Schematic illustrating the in vitro reconstitution method of sample preparation for cryo-EM experiments.
B Silver-stained SDS–PAGE of a peak fraction from a native glycerol gradient (Fraction 13, Appendix Fig S1C).
C, D Multiple views of the Cryo-EM density map (C) and the corresponding atomic model displayed as stubs and cylinders (D) for the core human replisome. The cryo-

EM density displayed in (C) is a composite map generated by combining the highest resolution regions of discrete refinements using Phenix Combine-focussed-
maps.

E End-on view of the MCM2-7 C-tier illustrating which subunits engage ssDNA, and AMP-PNP occupancy.
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mild cross-linking improved data quality for budding yeast repli-

some reconstructions (Bareti�c et al, 2020) (Appendix Fig S1D).

Peak gradient fractions were pooled, concentrated, buffer

exchanged and applied to EM grids, and data were collected on a

Titan Krios equipped with either a K2 Summit or Falcon 3 detec-

tor (Appendix Fig S1E and Table 1).

Overall structure of the core human replisome

After data processing (Appendix Figs S1 and S2), we obtained a

three-dimensional (3D) reconstruction of the core human replisome

at an overall map resolution of 3.2 �A, with good density for hsCMG,

TIMELESS-TIPIN, AND-1 and Pol ε (Fig 1C). This, together with

multi-body refinement (Nakane et al, 2018) (see Materials and

Methods and Appendix Figs S1 and S2 for details), enabled model-

ling of hsCMG, the majority of TIMELESS-TIPIN, the trimeric SepB

domains of AND-1 and approximately half of Pol ε comprising the

POLE2 subunit and the C-terminal non-catalytic domain of the

POLE1 catalytic subunit (POLE1nonCat), collectively termed the Pol ε

non-cat module (Fig 1D and Table 2). We also observed five regions

of well-resolved but disconnected density that were initially chal-

lenging to identify. However, subsequent analysis—that we describe

in detail in a later section of the manuscript—demonstrated that

four of these regions were dependent on CLASPIN, which enabled

us to build an atomic model encompassing three regions of the

CLASPIN N-terminus.

The conformations of the MCM N-tier, CDC45 and GINS are very

similar to those observed for isolated hsCMG (Rzechorzek et al,

2020) (Fig EV1A). The prior hsCMG preparation used an MCM3

isoform containing 45 additional N-terminal amino acids (a.a.) and

assigned a region of density between the MCM3 N-tier and PSF3

(GINS subunit) to the first 14 a.a. of this extension (Rzechorzek

et al, 2020). However, despite our MCM3 construct lacking these

amino acids, we observed almost identical density in this region that

we attribute to MCM3 residues 524-533 (Fig EV1B). In contrast to

the hsCMG:ssDNA:ATP-c-S structure, where ssDNA is held in the C-

tier pore by MCM6, 4, 7 and 3 (Rzechorzek et al, 2020), we observe

11 nt of ssDNA bound on the opposite side of the pore engaging

MCM3, 5, 2 and 6 (Figs 1E and EV1C). Accordingly, clear density

for AMP:PNP is visible at the MCM3:5, 5:2 and 2:6 interfaces

(Figs 1E and EV1D). This configuration is very similar to one of the

three conformations (conformation 1) we observed for scCMG

bound to fork DNA, the FPC and Ctf4 in the presence of AMP-PNP

(Bareti�c et al, 2020), and the manner in which ssDNA is coordinated

by the presensor 1 (PS1) hairpins and helix 2 (H2)/helix 2 insertion

(H2I) loops that protrude into the MCM central pore, is almost iden-

tical (Fig EV1C, E and F). Importantly, the conformation we observe

here, and the conformation observed for the hsCMG:ssDNA:ATP-c-S
structure (Rzechorzek et al, 2020), are both similar to conforma-

tional states observed for drosophila CMG in the presence of ATP

(Eickhoff et al, 2019), indicating that they represent distinct translo-

cation states of CMG.

The overall architecture of the core human replisome is remark-

ably similar to S. cerevisiae (Fig EV1G). The Pol ε non-cat module is

positioned to the rear of the replisome on the C-tier side of hsCMG

beneath CDC45 and GINS, whereas the disc-like AND-1 trimer is

Table 1. Cryo-EM data collection.

Replisome (+) CLASPIN

Data collections Data collection Merged collections Replisome (�) CLASPIN

#1 and #2 #3 #1-3 Data collection #1

Data collection and processing

Grids Cu R2/2 400 mesh (Quantifoil) Cu R2/2 400 mesh (Quantifoil) Cu R2/2 400 mesh (Quantifoil)

Surface Continuous carbon Continuous carbon Continuous carbon

Freezing method Manual plunger Manual plunger Manual plunger

Microscope Titan Krios (Thermo) Titan Krios (Thermo) Titan Krios (Thermo)

Detector K2 Summit (Gatan) Falcon III (Thermo) K2 Summit (Gatan)

GIF slit width (keV) 20 N/A 20

Number of micrographs 4,923 2,400 2,998

Voltage (kV) 300 300 300

Electron exposure (e�/�A2) 39.8 37.5 39.2

Defocus range (lm) (�1.5) to (�3.5) (�1.5) to (�3.5) (�1.5) to (�3.5)

Pixel size (�A) 1.145 1.07 1.1

Symmetry C1 C1 C1

Initial particle images (no.) 324,532 165,578 482,101

Final particle images (no.) 72,442 37,824 110,266 107,833

Map resolution (�A) 3.6 3.7 3.2 3.4

FSC threshold 0.143 0.143 0.143 0.143

Map resolution range (�A) 3.3–10 3.4–10 2.8–8 3–8
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bound side-on to CDC45 and GINS on the N-tier side of the complex

(Fig 1C and D). At the front of the replisome, the parental DNA

duplex extends approximately 2 turns from the central pore and is

tilted towards the TIMELESS-TIPIN heterodimer that sits on the

leading edge of hsCMG. Like Mrc1 in the yeast replisome (Bareti�c

et al, 2020), CLASPIN extends across one side of the human repli-

some where it directly contacts TIMELESS and MCM subunits

(Fig 1C and D).

AND-1 docking in the human replisome

AND-1 comprises an N-terminal WD40 domain, SepB domain and

C-terminal HMG-box (Fig 2A), the latter being absent in yeast

Ctf4. The SepB domain, that consists of a six-bladed b-propeller
and C-terminal bundle of five a-helices, mediates AND-1 trimerisa-

tion via the b-propellers (Guan et al, 2017; Kilkenny et al, 2017).

Similar to prior structures of the budding yeast replisome (Yuan

et al, 2019; Bareti�c et al, 2020) and a lower resolution hsCMG:

AND-1 complex (Rzechorzek et al, 2020), we resolved ordered

density only for a trimer of AND-1 SepB domains, indicating the

N-terminal WD40 domains and HMG boxes are highly flexible.

The SepB trimer is bound near-perpendicular to the N-tier face of

CMG where it forms an extensive interface with CDC45 and the

PSF2 subunit of GINS (Figs 1C and D, and 2B). Comparison of the

SepB domain from the core human replisome with the crystal

structure of the isolated domain revealed minimal structural dif-

ferences (RMSD of 0.8 �A), indicating it docks onto CMG as a rigid

body (Fig EV2A). AND-1 is reported to interact directly with TIPIN

(Errico et al, 2009). However, no cryo-EM density is observed

connecting the two proteins (Fig 1C). Furthermore, the positioning

of the SepB domains is not influenced by the additional replisome

proteins present in our structure relative to the hsCMG:AND-1

complex (Fig EV2B).

Figure EV2C shows that the resolution of our cryo-EM map at

the AND-1:CMG interface is 2.9–3.5 �A, which enabled unambiguous

modelling of the majority of side-chain rotamers in this region. The

interface is formed by a single monomer of AND-1 and buries

410 �A2 of PSF2 and 651 �A2 of CDC45 (Fig 2B). The AND-1:CDC45

interface is mainly electrostatic and comprises blade 1 of the SepB

b-propeller, which sits across CDC45 a9 and a11 (Fig 2C). In

contrast, the interface between PSF2 and AND-1 is of a mixed elec-

trostatic and hydrophobic nature and involves a loop connecting the

b1 and b2 strands of PSF2 that projects into a cleft between blades 1

and 6 of the SepB b-propeller (Fig 2D). The interaction involving

blade 1 is primarily electrostatic, whereas the interaction involving

blade 6 is largely hydrophobic (Fig 2D). While the residues involved

in these interfaces are highly conserved in metazoa, there is weaker

sequence conservation between H. sapiens and S. cerevisiae

(Fig EV2D). However, despite the chemical nature of the interface

differing between species, the spatial positioning of residues making

contacts is well conserved (Fig EV2D), reflecting the similar

arrangement of AND-1 and Ctf4 in the human and budding yeast

replisomes (Yuan et al, 2019; Bareti�c et al, 2020; Rzechorzek et al,

2020) (Fig EV1G).

TIMELESS-TIPIN structure

TIMELESS-TIPIN sits at the leading edge of the replisome in advance

of MCM2, 6, 4 and 7 where it cradles the parental DNA duplex prior

to strand separation (Figs 1C and D, and 3A). Well-ordered density

for approximately the first two-thirds of TIMELESS (Fig EV3A)

enabled modelling of residues 7-803. This region adopts a right-

handed horseshoe-shaped a-solenoid comprising 9 helical repeats,

the curvature of which mimics that of the MCM2-7 ring (Figs 3A

and B, and EV3B). In contrast, the C-terminal ~400 a.a. of TIME-

LESS, that contains DNA binding and PARP binding domains (DBD

and PDB, respectively) (Lerner et al, 2020), is invisible and therefore

not stably positioned in the core human replisome (Fig 1C). Similar

behaviour was observed for the equivalent region of Tof1 in the

budding yeast replisome (Bareti�c et al, 2020). TIPIN is located at the

C-terminal end of the TIMELESS a-solenoid atop the N-terminal

domain of MCM7 (Fig 3A). We modelled ~90 a.a. of TIPIN (residues

62–147) comprising a compact tetra-helical helix-turn-helix domain

(HTH) and a short DBM (Fig 3A and C). The HTH packs against the

C-terminal end of the a-solenoid forming a hydrophobic interface

involving TIPIN a-helices 2–4 and TIMELESS a-helices 27–29

(Fig 3B–E).

Like S. cerevisiae Tof1, human TIMELESS contains an MCM-

plugin (Fig 3A and F). However, in contrast to Tof1, the Ω-loop is

absent (Figs 3A and EV3C and D). The TIMELESS MCM-plugin is ~

90 a.a and links helical repeats 4 and 5 (Figs 3A and EV3B). It

contains four distinct structural features called the Bridge, Anchor,

Wedge and MCM6-interacting loop (6-loop) that serve to attach the

TIMELESS-TIPIN complex to MCM (Fig 3F). The Bridge is a helix

connecting the MCM6 and MCM4 N-terminal domains. It is secured

in place at one end by polar and hydrophobic contacts with the

MCM6 helical domain (Fig EV3E), several of which are conserved in

S. cerevisiae, and at the other end by the Anchor that sits in a

depression on the surface of MCM4 between the OB-fold and helical

Table 2. Model refinement and validation statistics.

Core replisome

Refinement

Model resolution (�A) (FSC 0.5) 3.2

Map-sharpening B-factor (�A2) �40

Model composition

Non-hydrogen atoms 67,592

Protein residues 8,367

Ligands 3 AMP-PNP, 3 Mg2+, 5 Zn2+, SO42-

RMS deviations

Bond lengths (�A) 0.006

Bond angles (°) 0.922

Validation

MolProbity score 0.88

Clashscore 0.34

Poor rotamers (%) 0.77

Ramachandran plot

Favoured (%) 96.23

Allowed (%) 3.74

Outliers (%) 0.02
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domain (Figs 3F and EV3F and G). The a.a. sequence of the Anchor

is invariant between S. cerevisiae and human, emphasising its

importance in TIMELESS-TIPIN replisome attachment (Fig EV3G).

After the Anchor, the Wedge sits between MCM4 and TIPIN and

also contacts the MCM7 ZnF (Figs 3F and EV3H and I). Like S. cere-

visiae Tof1 (Bareti�c et al, 2020), the TIMELESS Wedge is composed

of a b-hairpin and short helical turn. However, in contrast to Tof1,

which contains a helix after the helical turn that contacts the MCM4

and MCM7 ZnFs, the TIMELESS Wedge has a stretch of random coil

contacting these domains. Although the secondary structure and

positioning of the Wedge in human TIMELESS are very similar to

S. cerevisiae Tof1 (Bareti�c et al, 2020) (Fig EV3H and J), the a.a.

sequence comprising the b-hairpin differs significantly (Fig EV3K).

This divergence in sequence but not structure underscores the

importance of the Wedge b-hairpin as a structural element in Tof1/

TIMELESS proteins.

The TIMELESS MCM-plugin then projects towards dsDNA, where

it forms a DBM, and traces its way back to helical repeat 5 across

the surface of MCM6, forming the 6-loop (Figs 3F and EV3l). The

architecture of Tof1 and TIMELESS differs significantly in this region

because TIMELESS lacks the Ω-loop. This enables the N-terminus of

MCM6 to extend into the core of TIMELESS, occupying a cavity

formed by helical repeats 3–6 and the MCM-plugin that is partially

occupied by the Tof1 MCM-plugin and Ω-loop in the S. cerevisiae

replisome (Bareti�c et al, 2020) (Figs 3A and EV3M and N). In addi-

tion, the N-terminus of TIMELESS contacts the N-terminal extension

of MCM2 (Fig EV3O), while a7 of TIMELESS helical repeat 3 sits on

top of the MCM6 ZnF (Fig EV3P). Together, these extensive and

varied protein:protein interactions stably position TIMELESS-TIPIN

at the front of the human replisome.

Pol e structure and contacts with CMG

We obtained a map of the non-cat module of Pol ε at an average

resolution of 6 �A (Fig EV4A) that enabled modelling of POLE1nonCat

(residues 1,371–2,280) and POLE2 (residues 1–527) (Fig 4A and B).

This involved rigid-body docking I-TASSER homology models (see

Materials and Methods, model building and refinement for details)

(Yang et al, 2015) for both subunits followed by real-space refine-

ment using both Phenix (Afonine et al, 2018) and ISOLDE (Croll,

2018; Pettersen et al, 2021). In regions of the POLE1 map where the

local resolution was insufficient to identify secondary structure

features, primarily those most distal from hsCMG (Fig EV4A), the

model was simply docked as a rigid body. Similar to yeast Pol2
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Figure 2. Structure of AND-1 in the replisome.

A Schematic for the domain architecture of AND-1. Regions visualised in this structure are coloured, with domain boundaries demarcated by primary sequence
numbering.

B Model of the AND-1 SepB domain trimer bound to CMG rendered as a surface. The AND-1 monomer mediating the interaction with PSF2 and CDC45 is displayed
using both transparent surface rendering and backbone cartoon rendering.

C Detailed view of the AND-1:CDC45 interface. Side chains of residues key to this interaction are displayed and annotated. The cryo-EM density for these selected
residues is displayed as a transparent mesh with yellow dashed lines indicating hydrogen-bond formation.

D Detailed view of the interface between AND-1 and PSF2 displayed as in (C).

6 of 23 The EMBO Journal e108819 | 2021 ª 2021 MRC Laboratory of Molecular Biology

The EMBO Journal Morgan L Jones et al



TIMELESS

TIPIN

TIMELESS

TIPIN

MCM6 MCM4 MCM6 MCM2

C C

N

C

C

N

A

7 1208803526 685

1 32 4 5 6 7 8

MCM
Plugin

816 945

1

1000 1098

TIMELESS

301

62 147

α0 α1 α2 α3 α4

DBM

Tetra-helical
HTH domain

TIPIN

B

C

DBD PBD9

1

MCM2 MCM4 MCM7

MCM-plugin

MCM-plugin

180 O

F748 F777

F778

F788

F85

F90
L103

L100

I104

α2

α27

α28
α29

E

F

6-loop

Wedge

MCM7

MCM4

MCM6

ZnF

ZnF

Helical
domain

Anchor

DBM
dsDNA

Helical
domain

OB

Bridge

F278

R274

ZnF

-hairpin

α0
α1

α2

α3

α4

MCM-Plugin
MCM7-ZnF

TIMELESS

TIPIN

D

TIPIN 

Figure 3. Structure of TIMELESS-TIPIN in the human replisome.
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displayed using surface rendering.
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(Goswami et al, 2018), POLE1nonCat adopts a polymerase fold with a

wide-open jaw and C-terminal zinc finger (Figs 4B and EV4B).

POLE2 has a multidomain organisation with a flexibly tethered N-

terminal helical domain, followed by an OB domain and inactive

calcineurin-like phosphoesterase domain (PDE) that is responsible

for the majority of the contacts between POLE2 and POLE1nonCat

(Figs 4A and B, and EV4B) (Baranovskiy et al, 2017). The conforma-

tion of the Pol εnonCat domain in the core human replisome shares a

high degree of structural homology with the crystal structure of the

POLE2-POLE1C-term complex (PDB:5VBN, RMSD - 1.21 �A) (Bara-

novskiy et al, 2017) and the NMR structure of the POLE2 N-terminal

helical domain (PDB:2V6Z - 1.23 �A) (Fig EV4C) (Nuutinen et al,

2008).

We observed good local map resolution (3–5 �A) at the majority

of interfaces between hsCMG and Pol ε (Fig EV4A), revealing how

Pol ε is attached in the replisome. Pol ε forms two multi-subunit

interfaces with CMG, one involving MCM2 and CDC45 (docking site

1) and the other involving MCM5 and PSF1 (docking site 2)
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Figure 4. Structure and attachment of the Pol e non-cat module.

A Primary structure diagram for POLE1 and POLE2. Regions of the protein visualised in this study are coloured and domain boundaries are demarcated using primary
sequence numbering.

B Overview of the interactions between the Pol ε non-cat module and hsCMG. POLE1, POLE2 and the hsCMG subunits with which they interact (MCM2, MCM5, PSF1
and CDC45) are coloured according to subunit and displayed using cartoon rendering. The N-terminal helical domain of POLE2 that interacts with PSF1 is also shown as a
transparent surface. The remaining hsCMG subunits are shown with light grey surface rendering and dsDNA is shown as a coloured surface. AND-1 is not shown to aid
visualisation of the interactions between the Pol ε non-cat module and hsCMG.

C Expanded views of the interactions between the Pol ε non-cat module and hsCMG.
D Detailed view of the interface between the POLE2 N-terminal helical domain and PSF1. Cryo-EM density is displayed as a grey mesh.
E Comparison of cryo-EM maps where the Pol ε non-cat module is either ordered or disengaged from the MCM C-tier as indicated. See Fig EV4 for details of the cryo-EM

maps. Maps are coloured as in Fig 1C.
F Cryo-EM map where the Pol ε non-cat module is disengaged from the MCM C-tier displayed as a transparent surface with the structure of the core human replisome,

coloured as in Fig 1D, docked into the density. Clear density is observed for the POLE2 N-terminal helical domain bound to PSF1.
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(Fig 4B). Docking site 1 is primarily composed of electrostatic

contacts between POLE1 (a20 and a22) and the C-terminal MCM2

winged-helix (WH) (a29 and a30) (Fig 4C centre and right panels

and Fig EV4D), a ring-stacking interaction between the well-

conserved F2138 of POLE1 and invariant Y821 of MCM2 (Fig EV4F),

and a small electrostatic interface between the C-terminus of CDC45

and POLE1 a20 (Figs 4C and EV4G). To form docking site 1, the

MCM2 WH is repositioned from its location in the hsCMG:ssDNA

complex (Rzechorzek et al, 2020), where it sits at the base of the C-

tier, and the linker connecting the WH with the C-terminal domain

of MCM2 is remodelled (Fig EV4E). This is accompanied by a loss

of density for the MCM6 WH, likely because the two WH domains

interact in the hsCMG:ssDNA structure (Rzechorzek et al, 2020).

Docking site 2 consists of a number of smaller interfaces involv-

ing Pol ε, MCM5 and the GINS subunit PSF1 (Fig 4B and C left and

centre panels and EV4H). Low-resolution density is also observed

between the POLE1 zinc finger and polymerase domains in an anal-

ogous position to the MCM5 WH in S. cerevisiae (Goswami et al,

2018) (Fig EV4I). Finally, the high resolution of our map permitted

de novo building of an atomic model for the N-terminal helical

domain of POLE2 that docks into a surface exposed pocket of PSF1.

This domain is connected via a flexible linker and attaches to CMG

by forming an extensive network of hydrogen bonds with PSF1

(Fig 4D).

The prior structure of scCMG bound to Pol ε, fork DNA and ATP-

c-S indicated that only two ATPase sites, MCM2:5 and MCM5:3, were

nucleotide bound (Goswami et al, 2018). This contrasted with struc-

tures obtained in the absence of Pol ε where the MCM6:2 ATPase site

was also occupied (Georgescu et al, 2017), suggesting Pol ε could

alter the configuration of MCM active sites (Goswami et al, 2018).

While our structure has ssDNA bound on the opposite side of the

MCM central pore compared to the structure of hsCMG:ssDNA (Rze-

chorzek et al, 2020), this could be due to the presence of any one of

the four additional replisome components, or to differences in sample

preparation. Therefore, to more directly examine if Pol ε might alter

the configuration of the hsCMG C-tier, we identified a 3D class lack-

ing clear Pol ε density but containing the remaining replisome compo-

nents. Strikingly, Fig 4E shows that this class displayed a loss of

ssDNA engagement and considerable conformational flexibility in the

C-tier, especially for the MCM2 subunit. Upon closer inspection of the

cryo-EM map, well-ordered density for the N-terminal helical domain

of POLE2 bound to PSF1 was visible (Fig 4F). Therefore, the changes

in C-tier configuration observed in this 3D class are not due to a lack

of Pol ε, but might rather result from a failure of the Pol ε non-cat

module to correctly engage the MCM C-tier. Nevertheless, although

we cannot exclude the possibility that this configuration arose due to

failed complex assembly, the data are consistent with Pol ε having

the capacity to alter C-tier configuration, which might enable Pol εnon-

cat to modulate CMG helicase activity, as has been observed at protein

barriers (Hizume et al, 2018). Notably, the data also indicate that Pol

ε might retain CMG association via the POLE2 N-terminal helical

domain if the remainder of the protein were to detach from the MCM

C-tier at docking sites 1 and 2.

Location of the Pol e catalytic domain

Although the catalytic domain of POLE1 and the small accessory

subunits POLE3 and POLE4 were invisible in our highest resolution

cryo-EM map, diffuse density was observed in 2D class averages

radiating in an arc from the Pol ε non-cat module that we hypothe-

sised was contributed by the Pol ε catalytic domain (Fig 5A). This is

consistent with the flexible tethering of the Pol ε catalytic domain in

the S. cerevisiae replisome (Zhou et al, 2017; Goswami et al, 2018).

To further investigate the location of the Pol ε catalytic domain in

the replisome, we used additional data processing (Fig EV4J) to

recover a rare 3D class (1.4% of the total number of input particle

images) with a large region of ordered density extending from the

Pol ε non-cat module (Fig 5B). Although the resolution of this

density was too low for model building (12–16 �A), likely due to

limited particle numbers, we could dock the structure of yeast Pol ε

in the rigid linear configuration (Yuan et al, 2020b) into the density

with good agreement (Fig 5C). Therefore, our data demonstrate

that, not only can human Pol ε adopt this configuration, it can do so

when incorporated into the replisome. Notably, this positions the

active site of Pol ε 110–140 �A from the MCM central pore exit where

the unwound leading-strand template will emerge from the helicase

(Fig 5D).

CLASPIN binding in the human replisome

Despite not observing significant cryo-EM density that we could

initially attribute to CLASPIN, five distinct regions of density

remained unassigned following the completion of initial model

building (Fig 6A). Although several of these regions were resolved

to 3.2–4.5 �A (Fig 6A, regions 1–3) and displayed clear helical and

side-chain densities, amino acid sequence assignment was challeng-

ing due to the limited size and disconnected nature of the densities.

We hypothesised that the densities might represent regions of

CLASPIN because their positioning was reminiscent of similar unas-

signed densities in the yeast replisome that XL-MS experiments

suggested might be contributed by Mrc1 (Bareti�c et al, 2020). There-

fore, to further examine the identity of the unassigned densities, we

determined a cryo-EM structure of the human replisome lacking

CLASPIN to 3.4 �A resolution (Figs 6B and Appendix Fig S3).

CLASPIN omission did not significantly alter the structure of the

replisome (Fig EV5A). Despite this, four of the five regions of unas-

signed density were completely absent, strongly suggesting they

represent regions of CLASPIN (compare Fig 6A and B). Region 5,

which is bound to the N-terminal end of the TIMELESS a-solenoid,
remained present in the absence of CLASPIN (Figs 6A and B, and

EV5B). This surface of TIMELESS was previously proposed to be a

protein:protein interaction site because it bound to an affinity purifi-

cation tag in the crystal structure of Chaetomium thermophilum

Tof1 (Grabarczyk, 2020). The same study showed that mutation of

positively charged Tof1 residues in the area abolished interaction of

Tof1-Csm3 with a fragment of Mrc1. Given that our structures now

show that a replisome protein other than CLASPIN/Mrc1 can bind

to this surface of TIMELESS, the prior study may not have accu-

rately recapitulated Tof1-Csm3:Mrc1 interactions. Alternatively,

these observations might indicate that CLASPIN/Mrc1 competes

with another replisome protein for binding to this region of TIME-

LESS/Tof1.

Having established that the unassigned cryo-EM densities 1-4

were likely contributed by CLASPIN, we inspected the AlphaFold

structure prediction for H. sapiens CLASPIN (Jumper et al, 2021;

Tunyasuvunakool et al, 2021) to identify regions of the protein that
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were predicted to be helical. Interestingly, the majority of CLASPIN

is predicted to be unstructured with only a limited number of

regions confidently predicted to form a-helices (pLDDT score 70–

90). Therefore, we systematically inspected the fit to the CLASPIN-

dependent densities, of all regions predicted to be a-helical and of

appropriate length. This enabled docking of segments of the Alpha-

Fold structure prediction into three of the CLASPIN-dependent

densities (sites #1–3) with high confidence. The density at site #4

was of insufficient resolution to permit docking. Following fit-to-

density optimisation using real-space-refinement, we were able to

generate an atomic model for CLASPIN residues 284–319 (site #1),

residues 525–540 (site #2) and residues 592–618 (site #3) (Fig 6C

and D). These assignments are consistent with cross-linking mass

spectrometry data of the budding yeast replisome (Bareti�c et al,

2020) that demonstrated Mrc1 residues 300 and 322 cross-link to the

leading edge of Tof1, while Mrc1 residues 425, 454 and 462 cross-link

to the C-tier by Mcm6/Mcm2. Furthermore, upon reinspection of our

published S. cerevisiae cryo-EM map of the Tof1 N-terminus (Bareti�c

et al, 2020), we could unambiguously dock the AlphaFold structure

prediction for Mrc1 residues 325–335 (Jumper et al, 2021) into the

equivalent position to CLASPIN site #1 (Fig EV5C).

The first region of CLASPIN (residues 284–319) extends along

the top of TIMELESS (Figs 6E and EV5D), where residues E284-E299

form an a-helix that sits astride repeats 7 and 8 of the TIMELESS a-
solenoid (Fig 6F, left a). At low map thresholds, density for the N-

terminus of this helix extends to contact the parental DNA duplex

ahead of TIMELESS (Fig EV5E and F). CLASPIN residues S300-T313

then snake through a groove between TIMELESS helical repeats 5

and 6 (Fig 6F, centre b) before residues I314-F318 form a short a-
helix, highly conserved in metazoa, that nestles within a hydrophobic

patch between a8 and a11 of TIMELESS (Fig 6F, right c). We note

that this a-helix forms part of a previously identified PCNA-

interacting protein (PIP) motif that has been shown to mediate the

binding of CLASPIN to PCNA (Yang et al, 2016). Given that this

region is bound to TIMELESS/Tof1 in both the H. sapiens and S. cere-

visiae replisomes (Figs 6F and EV5C), further work is required to

determine whether replisome-associated CLASPIN can bind PCNA.

The second region of CLASPIN (residues N525-N540) forms a

short a-helix that is cradled by a9 and a19 of MCM6 in the MCM2-7

C-tier (Fig 6G). CLASPIN residues L528, L531, F535 and H538

project into a hydrophobic patch on MCM6 formed by residues

W334, F338, F578 and F582.

The third region of CLASPIN (residues E592-A618) extends N to

C from the base of the MCM2 N-tier towards helical repeat 1 of

TIMELESS (Fig 6H). The interface is of a primarily charged nature

with a trio of arginine residues on CLASPIN (R616, R613 and R609)

interacting with a beta-turn at the TIMELESS N-terminus (Fig 6H,

centre), while CLASPIN residues M605, N602 and K598 form exten-

sive contacts with a4 and a5 of MCM2 (Fig 6H, right).

Our structure shows that CLASPIN adopts an extended and flex-

ible configuration stretching across one side of the replisome, from

its N-terminal association with TIMELESS, across MCM6 and

MCM2, towards CDC45. Based on the stoichiometry of CLASPIN in

glycerol gradients (Figs 1B and Appendix Fig S1C), we consider it

likely that a single copy is present in the replisome. The arrange-

ment of CLASPIN is very similar to the positioning of Mrc1 in the

S. cerevisiae replisome that we determined by XL-MS (Bareti�c et al,

2020), indicating that it is conserved amongst CLASPIN/Mrc1

proteins. Importantly, our data have directly identified CLASPIN

binding sites in the human replisome, illustrating that the first 600
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Figure 5. Position of the Pol e catalytic domain in the replisome.

A 2D classes for the core human replisome for particles containing and lacking AND-1 density as indicated. Additional diffuse density that we attribute to the Pol
ε catalytic domain is indicated (dotted pink line).

B Model for the core human replisome docked into a cryo-EM map (transparent grey) displaying ordered density, continuous with the Pol ε non-cat module, projecting
away from CMG. Map obtained using extensive processing methods described in Fig EV4J.

C Model of the budding yeast (S.c.) Pol ε catalytic domain and Dpb3/4 (PDB: 6WJV) (Yuan et al, 2020b) rigid-body-docked into the unmodelled cryo-EM density described
in (B). Models for the human non-catalytic and yeast catalytic modules are visualised using cylinders and stubs cartoon rendering with MCM2, CDC45 and GINS visualised
using surface rendering.

D Illustration of the human replisome with Pol ε adopting the linear configuration. The putative path of the leading strand following extrusion from the C-tier, to the POLE1
active site, is highlighted.
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Figure 6. CLASPIN binding in the human replisome.

A Cryo-EM map of the complete core replisome coloured as in Fig 1C showing regions of density, labelled 1–5 (red), that remained unassigned after initial model
building.

B Cryo-EM map of a core replisome complex prepared in the absence of CLASPIN (Appendix Fig S3) coloured as in (A). Unassigned density 5 (red) is present in the
absence of CLASPIN.

C Schematic for the domain architecture of CLASPIN. Pink ovals represent previously characterised functional regions with primary sequence numbering in grey.
RFID: replication-fork interaction domain, CKBD: Chk1 binding domain. Red rectangles represent regions of CLASPIN visualised in this structure, with primary
sequence numbering in red and replisome components that contact each respective region labelled below.

D Schematic for the path of CLASPIN across one side of the replisome. Models visualised using surface rendering and coloured as in (A). CLASPIN model is displayed
using surface transparent rendering with ribbon model overlaid. Red and white dashed line represents CLASPIN sequence not visualised linking sites 1–3.

E–H Detailed views of the contacts between CLASPIN and replisome components. Models displayed using cartoon rendering overlaid with density for selected CLASPIN
residues displayed using grey mesh. (E) Overview of CLASPIN site 1. TIMELESS helical repeats are indicated by coloured circles. (F) Detailed views of interactions at
CLASPIN site 1. Left, a: CLASPIN residues E284-E299 form an a-helix that contacts TIMELESS helical repeats 7 and 8. CLASPIN R298 contacts TIMELESS Y474 with
density displayed for both residues. Centre, b: CLASPIN residues P305-H307 sit between TIMELESS helical repeats 5 and 6. Right, c: Two views of CLASPIN residues
F318-H315 docked into a hydrophobic pocket formed between TIMELESS helices a8 and a11. (G) CLASPIN site 2. Two views of CLASPIN residues N525-N540 binding
a hydrophobic patch formed by MCM6 a9 and a19 in the MCM C-tier. (H) CLASPIN site 3. Three views of CLASPIN residues E592-A618 interacting with both the
TIMELESS N-terminal b-hairpin (centre) and MCM2 a4 and a5 (right).
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a.a. of CLASPIN contains three discrete structural elements for

CLASPIN replisome attachment. Consistent with our assignment of

site #1 on TIMELESS, the first 350 a.a. of CLASPIN are sufficient for

its association with TIMELESS in 293T cells (Yang et al, 2016). Prior

work in Xenopus egg extracts identified a replication-fork interacting

domain (RFID) that was essential for CLASPIN to stably associate

with chromatin (Lee et al, 2005). Notably, the RFID is equivalent to

human CLASPIN residues 272–627 and therefore encompasses the

regions of CLASPIN at sites #1–3, illustrating that they are likely to

be crucial for CLASPIN function at the replication fork. Accordingly,

whereas N-terminal fragments of CLASPIN containing the RFID

could associate well with chromatin in Xenopus egg extracts that

contained full-length CLASPIN, deletion of CLASPIN residues at site

#1, or the helix at site #3, greatly reduced association with chro-

matin (Lee et al, 2005). Similar results were observed when these

regions were removed from full-length CLASPIN, or when residues

at site #1 were mutated to alanine (equivalent residues to human

CLASPIN Q294, R295, L296, P305, Y306, H307 (Fig 6Fa and Fb)),

indicating that both sites #1 and #3 contribute to CLASPIN repli-

some binding in Xenopus egg extracts. In contrast, when full-length

CLASPIN was depleted from egg extracts, CLASPIN constructs lack-

ing the regions required for attachment at sites #1 and #3 could bind

to chromatin (Lee et al, 2005). This suggests that, although both

sites #1 and #3 contribute to CLASPIN chromatin association, indi-

vidual sites are not essential.

Previous work identified DNA-binding activity in the N-terminus

of S. pombe Mrc1 (a.a. 160–317) and H. sapiens CLASPIN (a.a. 149–

340) (Sar et al, 2004; Zhao & Russell, 2004). Although this is consis-

tent with the positioning of the CLASPIN N-terminus in our struc-

ture, where it appears to contact the parental DNA duplex ahead of

TIMELESS, both studies found that CLASPIN/Mrc1 bound preferen-

tially to branched DNA structures rather than dsDNA. Furthermore,

two lysine residues in S. pombe Mrc1 (K235, K236), that when

mutated abolished DNA binding, are situated immediately ahead

the short a-helix that binds TIMELESS/Tof1 at site #1. These obser-

vations therefore indicate that DNA-binding studies using isolated

regions of CLASPIN may not accurately recapitulate CLASPIN DNA

binding in the human replisome.

Coordination of replication fork DNA in the human replisome

Ahead of strand separation, and at the fork junction, the human

replisome makes extensive contacts with DNA involving TIMELESS-

TIPIN and four MCM subunits (Fig 7A). We observed strong cryo-

EM density in this region providing high-resolution insights into

forked DNA co-ordination and the mechanism of strand separation.

We speculate this is a result of TIMELESS-TIPIN stabilising the

parental DNA duplex, because, in the prior structure of hsCMG:

ssDNA, although fork DNA was present in the sample, only ssDNA

in the C-tier was visible (Rzechorzek et al, 2020).

TIMELESS and TIPIN form a positively charged, concave groove

that grips a complete turn of dsDNA ahead of the fork junction

(Fig 7B). The groove is lined by numerous arginine and lysine resi-

dues (Fig 7C–E), many of which are conserved (Fig EV6A). These

basic residues are contributed by DBMs from the MCM-plugin and

TIPIN N-terminus, similar to S. cerevisiae Tof1- Csm3 (Bareti�c et al,

2020), as well as additional residues from the TIMELESS a-solenoid
and the TIPIN tetra-helical HTH. The DNA contacts are almost

exclusively with the phosphate backbone, which should enable the

dsDNA to rotate and slide across the surface of the groove as it is

pulled towards the MCM N-tier by the motor activity of CMG.

Approaching the point of strand separation, the dsDNA—that is

tilted at about 35° from the vertical axis of the MCM pore

(Fig EV6B)—is engaged by the N-terminal hairpins of MCM6 and

MCM4 that form an extensive network of contacts with the lagging-

strand template, often using conserved amino acids (Figs 7F and

EV6C). These contacts, together with residues from the MCM3 ZnF,

guide the DNA duplex onto the NTH of MCM7 that contains a short

helix at its tip that is wedged between the two DNA strands

(Fig EV6D). Here, an invariant phenylalanine (MCM7 F285) stacks

against the final base pair in a manner characteristic of separation

pins in diverse helicases (Velankar et al, 1999; Gao et al, 2019)

(Fig 7F). The position of the MCM7 NTH, and therefore the point of

strand separation, sits below the rim of a secondary N-tier ring

formed by the MCM ZnF domains (Figs 7A and EV6E). This

arrangement of DNA contacts suggests an unwinding mechanism

whereby, as the leading-strand template is pulled through the MCM

central pore by the C-tier motor domains, the lagging-strand

template is blocked from entering the pore resulting in the two

strands being forced apart. Although we observe only a single

unpaired lagging-strand nucleotide after strand separation

(Fig EV6F), it is positioned at the mouth of a positively charged

channel formed between the MCM3 and MCM5 ZnFs (Fig EV6G),

strongly indicating that the unwound lagging-strand template exits

the secondary ZnF ring through this channel. Indeed, consistent

with this hypothesis, processing of a subset of the cryo-EM data in

cryoSPARC (Punjani et al, 2020) (Fig EV6H) resulted in a recon-

struction at lower global resolution but with clear density extending

from the lagging-strand template at the base of the DNA duplex

though the putative MCM3/MCM5 ZnF exit channel (Fig 7H). Simi-

larly positioned density was attributed to the lagging strand in cryo-

EM reconstructions of drosophila CMG unwinding DNA in the pres-

ence of ATP (Eickhoff et al, 2019).

Discussion

We have determined the structure of an ~1.8 MDa human replisome

comprising the CMG replicative helicase, TIMELESS-TIPIN,

CLASPIN, AND-1, Pol ε and fork DNA. Consistent with the essential

function of the chromosome replication machinery, our structure

shows that the overall architecture of the core eukaryotic replisome

is extremely highly conserved, with human TIMELESS-TIPIN,

CLASPIN, AND-1 and Pol ε all occupying equivalent positions to

their S. cerevisiae counterparts (Goswami et al, 2018; Yuan et al,

2019; Bareti�c et al, 2020). This is consistent with human replisomes

having evolved additional complexity primarily through the addition

of new replisome components that modulate the function of the core

replisome, rather than by altering the structure and properties of the

core replisome itself. We anticipate our structure will form the basis

of future investigations that directly examine the structural and

mechanistic basis by which these additional replisome factors

augment human replisome function.

The high resolution of our cryo-EM map has enabled us to build

an atomic model for the core human replisome that provides a

wealth of information showing how five key replisome proteins are
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organised by CMG, the complex protein:protein interactions that

underpin this organisation and how replication fork DNA is coordi-

nated for template unwinding. The stable positioning of TIMELESS-

TIPIN at the front of the replisome enables it to grip dsDNA before

unwinding and this is likely to be important for TIMELESS-TIPIN-

dependent replication fork stabilisation and fork protection (Leman

et al, 2010; Rageul et al, 2020), perhaps by stabilising the entire

replisome on chromatin when its progression is perturbed. The C-

terminal ~400 a.a. of TIMELESS contains a DBD and PBD. and

promotes replication past G-quadruplex structures (G4s) (Lerner
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Figure 7. Coordination of replication fork DNA during template unwinding.

A Overview of the interactions between the MCM2-7 N-tier and TIMELESS-TIPIN with the parental DNA duplex and fork junction. Key regions of protein–DNA
contacts are circled with dashed lines and labelled. Surface rendering of the replisome model with DNA displayed as a cartoon.

B Surface rendering of TIMELESS-TIPIN coloured by Coulombic potential (see inset key) highlighting the positively charged concave groove that accommodates the
parental DNA duplex. Approximate positions of TIMELESS and TIPIN indicated using dashed lines.

C–E Detailed views of the contacts between TIMELESS-TIPIN and the parental DNA duplex. Cartoon model rendering with selected side chains displayed and overlaid
with their corresponding cryo-EM density in transparent mesh. Asterisks indicate conserved residues, red—charge conserved, blue—highly conserved, black—
invariant. (C) A network of positively charged residues from the TIMELESS MCM-plugin and helical repeats 6-7 interact with the DNA backbone across the minor
groove. (D) Positively charged residues extending from the TIPIN tetra-helical HTH contact the DNA backbone, an interface that is augmented by additional DNA
contacts formed by the N-terminal DNA-binding motif of TIPIN. (E) Positively charged residues from helical repeat 7 of TIMELESS project towards the leading
strand of the parental DNA duplex.

F, G Detailed view of the replisome contacts with DNA at the fork junction. Asterisks indicate conserved residues, red—charge conserved, blue—highly conserved, black
—invariant. (F) Contacts between MCM3,4,6 and 7 in the N-tier and the DNA fork junction. (G) Detailed view of the MCM7 NTH positioned against the final base of
dsDNA. The likely path of the leading-strand template following unwinding is depicted by a dashed line and two arginine residues likely to coordinate it are
highlighted (orange lines).

H (Left) Cryo-EM map for the core human replisome coloured according to chain occupancy using a radius of 5 �A. The cryo-EM map was obtained using a subset of
data processed in CryoSPARC (Fig EV6H). (Right) Zoomed in view of the fork junction displaying continuous density extending from the lagging-strand template at
the point of strand separation out through the MCM3/5 ZnF channel. Density in the MCM3/5 ZnF channel that we attribute to the lagging-strand template was
coloured manually in UCSF Chimera.
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et al, 2020). Because TIMELESS is positioned ahead of CMG, we

consider it likely the DBD senses G4s either in dsDNA ahead of the

fork junction or in the lagging-strand template, rather than the

leading-strand template. Likewise, the DDX11 helicase, which

contributes to G4 processing and sister-chromatid cohesion, is

presumably targeted to DNA at the front of the replisome via its

interaction with TIMELESS (Cortone et al, 2018; Lerner et al, 2020).

TIMELESS-TIPIN is displaced from the replisome in response to

redox changes to slow replication fork progression (Somyajit et al,

2017). It will be interesting to discover how the many protein:pro-

tein and protein:DNA interactions that attach TIMELESS-TIPIN to

the replisome are disrupted to induce its displacement.

CLASPIN/Mrc1 proteins are important for normal rates of DNA

replication in yeast (Szyjka et al, 2005; Tourriere et al, 2005; Hodg-

son et al, 2007), and human cells (Petermann et al, 2008) and exper-

iments with reconstituted yeast replisomes indicate that Mrc1 can

enhance fork rate when either Pol ε or Pol d is synthesising the lead-

ing strand (Yeeles et al, 2017), although how this is achieved is not

known. Our discovery that CLASPIN appears to contact the parental

DNA duplex directly, while also binding across both the MCM N-

and C-tiers (Figs 6D and EV5E), might enable it to influence replica-

tion fork rates by directly controlling CMG helicase activity, or

perhaps by limiting CMG backtracking (Burnham et al, 2019) during

replisome progression. Because CLASPIN/Mrc1 can also bind to Pol

ε (Lou et al, 2008; Sercin & Kemp, 2011), we propose that simulta-

neously contacting elements at the front and back of the replisome

enables CLASPIN to coordinate template unwinding with Pol ε-

mediated leading-strand synthesis (Katou et al, 2003). Together with

a need to accommodate conformational changes in CMG and Pol ε

during replisome progression, the extended configuration of

CLASPIN might necessitate the use of multiple binding sites for its

attachment. Consistent with data from Xenopus egg extracts, that

indicate the three CLASPIN binding sites we have discovered are

important for CLASPIN chromatin association (Lee et al, 2005),

disruption of site #1 by mutation or truncation of Mrc1 renders

S. pombe cells sensitive to hydroxyurea, indicating site #1 is impor-

tant for CLASPIN/Mrc1 function at the replication fork (Zhao &

Russell, 2004). Interestingly, overexpression of CLASPIN and TIME-

LESS protects cancer cells from replication stress making them

promising anti-cancer targets (Bianco et al, 2019). Therefore, the

insights afforded by our structure could potentially be exploited to

generate inhibitors of CLASPIN and TIMELESS replisome associa-

tion for anti-cancer therapy.

Pol ε contacts hsCMG via multiple small interfaces. This is likely

to be important to accommodate conformational changes in the heli-

case during replication, particularly in the C-tier, without Pol ε

dissociation. Indeed, our data indicate that the interaction between

the POLE2 N-terminal helical domain and PSF1 permits Pol ε to

completely dissociate from MCM while retaining contact with

hsCMG. This could be necessary during the bypass of roadblocks

such as DNA–protein crosslinks (Sparks et al, 2019) and interstrand

crosslinks (Huang et al, 2013) where the MCM ring presumably

opens to allow transverse of the blockage. The disorder observed in

the C-tier that accompanied loss of Pol ε density (Fig 4E) indicates

that Pol ε might have the capacity to modulate C-tier configuration

and therefore potentially CMG helicase activity. Further work is

required to establish how Pol ε modifies helicase activity and how

this could be augmented by Pol ε-mediated leading-strand synthesis

that itself might be regulated by CLASPIN/Mrc1 (Yeeles et al, 2017).

Although we show that the rigid linear conformation of Pol ε (Yuan

et al, 2020b) can be accommodated in the human replisome, it is

unclear whether it represents an active or paused state given the

considerable distance between the polymerase active site and the

emerging leading-strand template. Nevertheless, the fact that this

Pol ε configuration is conserved from budding yeast to human indi-

cates it has an important role during chromosome replication. Struc-

tures of hsCMG:Pol ε performing leading-strand synthesis are

required to determine the active configuration of Pol ε in the repli-

some.

The complex network of protein:DNA interactions surrounding

the fork junction determines that template unwinding occurs at a

fixed position in the eukaryotic replisome. Consequently, the

unwound lagging-strand template will always be extruded in the

same direction and all currently available data (Eickhoff et al, 2019;

Bareti�c et al, 2020; Yuan et al, 2020a), including this work, indicate

it exits the secondary N-tier ring between the MCM3 and MCM5

ZnFs. We propose that precise positioning of the lagging-strand

template after unwinding is critical to coordinate downstream

processes involving this template strand. These include nascent-

strand priming by Pol a, parental histone transfer and CMG ubiqui-

tylation during replication termination, that was recently shown to

be regulated by the presence of the lagging strand at the replication

fork by an unknown mechanism (Deegan et al, 2020; Low et al,

2020; Vrtis et al, 2021).

Until now, knowledge of the complex protein:protein and

protein:DNA interactions that underpin faithful genome duplica-

tion by the human replisome was largely limited to co-

immunoprecipitation experiments, biochemical and structural

characterisation of sub-complexes and inferences from replisome

structures determined using model systems, principally S. cerevisiae.

The structure of the core human replisome therefore represents a

major step forward, that, in addition to providing high-resolution

insights into human replisome organisation and DNA unwinding

mechanism, will serve as a powerful platform for the direct investi-

gation of larger and more elaborate human replisome assemblies.

Materials and Methods

Expression plasmid construction

cDNAs encoding all subunits of hsCMG (MCM2, MCM3, MCM4,

MCM5, MCM6, MCM7, PSF1, PSF2, PSF3, SLD5, CDC45), Pol ε

(POLE1, POLE2, POLE3, POLE4), RFC1, RFC2, RFC3, RFC4, RFC5

TIMELESS-TIPIN, AND-1 and CLASPIN were codon-optimised for

overexpression in insect cells; PCNA was codon-optimised for over-

expression in E. coli and synthesised by GeneArt Gene Synthesis

(ThermoFisher) (see Appendix Table S1 for isoform identifiers).

CDC45 was encoded with an internal flag tag, whereas SLD5 and

RFC1 contained an N-terminal twin strep tag. For AND-1 and

CLASPIN, N- and C-terminal 3X Flag tag were used, respectively.

For TIMELESS-TIPIN, TIMELESS was encoded with an N-terminal

twin strep tag along with TEV cleavage site (see Appendix Table S2

for affinity tag sequences). The codon-optimised sequences were

then cloned into a pACEBac1 vector separately. For expression of

hsCMG, individual genes were amplified by PCR and expression
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cassettes encoding MCM2-7 and GINS (PSF1, PSF2, PSF3 and SLD5)

were generated in pBIG2ab and pBIG1a vectors, respectively, using

a modified version of the BiGBac system (Weissmann et al, 2016).

Similar to hsCMG, individual genes encoding Pol ε subunits were

amplified and cloned into pBIG1a. For RFC, TIMELESS-TIPIN,

CLASPIN, and AND-1, PaCEBac1 constructs were used in subse-

quent virus generation. See Appendix Table S3 for details of expres-

sion plasmids used.

Protein expression

To prepare baculoviruses, vector constructs for each individual

protein and complexes were transformed into EMBacY E. coli

competent cells for bacmid generation. Isolated bacmid was then

transfected into Sf9 cells using FuGENE� HD (Promega). These

baculoviruses were then amplified before a large-scale culture was

infected. For expression of hsCMG, separate viruses expressing

MCM2-7, GINS and CDC45 were used to co-infect 3 l of Hi5 cells at

a density of 1 × 106 cells/ml. Individual viruses expressing the four

subunit Pol ε and RFC were used to infect 2 l of Hi5 cells. For

CLASPIN, TIMELESS-TIPIN and AND-1, 1 l of Hi5 cells was infected

with the viruses. Cell growth and viability were monitored and cells

harvested upon growth arrest (normally on day 3 after infection).

hsCMG purification

Cells from a 3-l culture were resuspended in lysis buffer (40 mM

Hepes-NaOH pH 7.5, 10% glycerol, 0.005% Tween-20, 0.5 mM

TCEP, 150 mM NaOAc) + protease inhibitors (cOmplete, EDTA- free

(Roche), one tablet per 50 ml buffer). Cells were lysed by dounce

homogenisation and insoluble material was removed by ultracen-

trifugation (235,000 g, 4°C, 45 min). Flag M2 affinity gel (Sigma)

(5 ml) was added to the lysate and incubated for 2 h at 4°C. Resin

was collected in 20-ml columns (Bio-Rad) (2 ml bed volume per

column) and washed with 100 ml lysis buffer per column. Proteins

were eluted with 1 CV (column volume) buffer + 0.5 mg/ml 3×

FLAG peptide (Sigma) and 2 CV buffer + 0.2 mg/ml 3× FLAG

peptide. Elutions were pooled, 0.5 ml strep-tactin XT superflow high

capacity (iba) was added, and the sample was incubated for 40 min

at 4°C. Resin was collected in 20-ml column and washed with 10 CV

buffer. Resin was further washed with 10 CV lysis

buffer + 5 mM Mg(OAc)2 + 0.5 mM ATP followed by 30 CV wash

without ATP and Mg(OAc)2. Proteins were eluted with 14 CV

(0.5 ml each fraction) lysis buffer + 30 mM biotin. Fractions were

pooled and applied to a MonoQ PC 1.6/5 (GE Healthcare) equili-

brated in 25 mM Tris–HCl pH 7.2,10% glycerol, 0.005% Tween-20,

0.5 mM TCEP, 150 mM KCl. CMG was eluted with a 30 CV gradient

from 150 to 1,000 mM KCl, and peak fractions were dialysed over-

night against 500 ml dialysis buffer (40 mM HEPES-KOH pH 7.6,

80 mM KOAc, 2 mM Mg(OAc)2, 0.25 mM EDTA, 1 mM DTT, 10%

glycerol). Protein was concentrated (Amicon Ultra, Ultracel - 30K),

frozen in liquid nitrogen and stored at �80°C.

CLASPIN purification

Cells from a 1-l culture were resuspended in lysis buffer (50 mM

Tris–HCl pH 8, 10% glycerol, 0.005% Tween-20, 0.5 mM TCEP,

400 mM NaCl) + protease inhibitors (cOmplete, EDTA-free, one

tablet per 50 ml buffer). Cells were lysed by dounce homogenisation,

and insoluble material was removed by centrifugation (235,000 g,

4°C, 45 min). Flag M2 affinity gel (1 ml) was added and the lysate

incubated for 2 h at 4°C. Resin was collected in 20-ml column (2 ml

bed volume) and was washed with 30 ml lysis buffer. Resin was

further washed with 10 CV lysis buffer + 5 mM Mg(OAc)2 + 0.5 mM

ATP, followed by 10 CV wash without ATP and Mg(OAc)2. CLASPIN

was eluted in 1 CV lysis buffer + 0.4 mg/ml 3× FLAG peptide and 2

CV lysis buffer + 0.2 mg/ml 3× FLAG peptide. Eluates were pooled

and 0.4 ml was applied to a Superose 6 10/300 (GE Healthcare)

column equilibrated in 25 mM Tris–HCl pH 7.2, 10% glycerol,

0.005% Tween-20, 0.5 mM TCEP, 150 mM NaCl. Peak fractions were

pooled, frozen in liquid nitrogen and stored at �80°C.

TIMELESS-TIPIN purification

Cell pellet from a 1-l culture was resuspended in lysis buffer

(25 mM Hepes-KOH pH 7.2, 150 mM KCl, 5% glycerol, 0.5 mM

TCEP, 0.01% NP-40-S) + protease inhibitors (cOmplete, EDTA-free,

one tablet per 50 ml buffer). Cells were lysed by Dounce homogeni-

sation, and insoluble material was removed by centrifugation

(235,000 g, 4°C, 45 min). 0.5 ml Strep-Tactin XT superflow high

capacity was added to the lysate and incubated for 30 min at 4°C.

Resin was collected in 20-ml column (2 ml bed volume) and was

washed 50 ml lysis buffer. Protein was eluted with 10 CV (0.5 ml

each fraction) lysis buffer + 30 mM biotin. Fractions were pooled

and applied to 1 ml HiTrap Q HP column (GE Healthcare) equili-

brated in 25 mM Hepes-KOH pH 7.2, 150 mM KCl, 5% glycerol,

0.5 mM TCEP, 0.01% NP-40-S. TIMELESS-TIPIN was eluted with a

20 CV gradient from 150 to 1,000 mM KCl. Peak fractions were

pooled, concentrated to ~500 ll in an Amicon Ultra-15 30 kDa

MWCO concentrator and applied to a Superdex 200 Increase 10/300

gel filtration column (GE Healthcare) equilibrated in 25 mM Tris–

HCl pH 7.2, 5% glycerol, 0.01% NP-40-S, 1 mM DTT, 150 mM

NaCl. Peak fractions were pooled, frozen in liquid nitrogen and

stored at �80°C.

AND-1 purification

Cell pellet obtained from 1 l of insect culture was resuspended in lysis

buffer (25 mM Tris–HCl pH 7.2, 10% glycerol, 0.005% Tween-20,

0.5 mM TCEP, 300 mM NaCl) + protease inhibitors (cOmplete,

EDTA-free, one tablet per 50 ml buffer). Cells were lysed by Dounce

homogenisation, and insoluble material was removed by centrifuga-

tion (235,000 g, 4°C, 45 min). Flag M2 affinity gel (1 ml) was added

to the lysate and incubated for 2 h at 4°C. Resin was collected in 20-

mL column (2 ml bed volume) and was washed with 30 ml lysis

buffer. Resin was further washed with 10 CV lysis buffer + 5 mM Mg

(OAc)2 + 0.5 mM ATP, followed by 10 CV wash without ATP and Mg

(OAc)2. AND-1 was eluted in 1 CV lysis buffer + 0.4 mg/ml 3× FLAG

peptide and 2 CV buffer + 0.2 mg/ml 3× FLAG peptide. Eluates were

pooled and applied to 1 mL MonoQ column equilibrated in 25 mM

Tris–HCl pH 7.2, 10% glycerol, 0.005% Tween-20, 0.5 mM TCEP,

150 mM NaCl). AND-1 was eluted with a 20 CV gradient from 150 to

1,000 mM NaCl. Peak fractions were pooled, concentrated to ~500 ll
in an Amicon Ultra-15 30 kDa MWCO concentrator and applied to a

Superdex 200 Increase 10/300 gel filtration column equilibrated in

5 mM Tris–HCl pH 7.2, 10% glycerol, 0.005% Tween-20, 0.5 mM
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TCEP, 150 mM NaCl. Peak fractions were pooled, frozen in liquid

nitrogen and stored at �80°C.

Pol e purification

Cell pellet obtained from 2 l of insect cell culture was resuspended

in lysis buffer (45 mM Hepes-KOH pH 7.6, 100 mM NaCl, 10% glyc-

erol, 0.5 mM TCEP, 0.02% NP-40-S) + protease inhibitors

(cOmplete, EDTA-free, one tablet per 50 ml buffer). Cells were lysed

by dounce homogenisation, and insoluble material was removed by

centrifugation (235,000 g, 4°C, 45 min). CaCl2 was added (2 mM)

to the supernatant together with 2 ml Calmodulin Affinity Resin and

incubated for 90 min at 4°C. Unbound protein was applied to 1 ml

HiTrap Heparin column (GE Healthcare) equilibrated in 45 mM

Hepes-KOH pH 7.6, 100 mM NaCl, 10% glycerol, 0.5 mM TCEP,

0.02% NP-40-S. The protein was eluted with a 30CV gradient from

100 to 1,000 mM NaCl. Peak fractions were pooled and incubated

with 1 ml Calmodulin Affinity Resin + 2 mM CaCl2 for 1 h. After

incubation, resin was collected and washed with 50 ml lysis

buffer + 2 mM CaCl2 and bound proteins were eluted with 10 CV

(1 ml each fraction) lysis buffer + 2 mM EDTA + 2 mM EGTA.

Fractions were pooled and applied to MonoQ PC 1.6/5 (GE Health-

care) column equilibrated in lysis buffer. The protein was eluted

with a 30CV gradient from 100 to 600 mM NaCl. Peak fractions

were pooled and dialysed overnight against 1 l dialysis buffer

(25 mM HEPES-KOH pH 7.6, 10% glycerol, 1 mM DTT, 0.005%

Tween, 10% glycerol, 300 mM KOAc). Protein was concentrated

with Amicon Ultra-15 30 kDa MWCO concentrator, frozen in liquid

nitrogen and kept at �80°C.

RFC purification

Cell pellet obtained from 2 l of insect cell culture was resuspended

in lysis buffer (25 mM Hepes-KOH pH 7.6, 300 mM NaCl, 10%

glycerol, 0.5 mM TCEP, 0.02% NP-40-S) + protease inhibitors

(cOmplete, EDTA-free, one tablet per 50 ml buffer). Cells were

lysed by dounce homogenisation, and insoluble material was

removed by centrifugation (235,000 g, 4°C, 45 min). 1 ml Strep-

Tactin XT superflow high capacity resin was added to the lysate

and incubated for 30 min at 4°C. Resin was collected in 20-ml

column (2 ml bed volume) and was washed with 100 ml lysis

buffer. Protein was eluted with 10 CV (1 ml each fraction) lysis

buffer + 30 mM biotin. Fractions were pooled and applied to 1 ml

HiTrap Heparin column (GE Healthcare) equilibrated in 25 mM

Hepes-KOH pH 7.6, 100 mM NaCl, 10% glycerol, 0.5 mM TCEP,

0.01% NP-40-S. The protein was eluted with a 30 CV gradient

from 100 to 1,000 mM NaCl. Peak fractions were pooled and the

conductivity of the sample was adjusted to a buffer containing

25 mM Hepes-KOH pH 7.6, 100 mM NaCl, 10% glycerol, 0.5 mM

TCEP, 0.01% NP-40-S. The sample was applied to 1 ml MonoQ

column equilibrated in 25 mM Hepes-KOH pH 7.6, 100 mM NaCl,

10% glycerol, 0.5 mM TCEP, 0.01% NP-40-S. Protein was eluted

with a 20 CV gradient from 150 to 1,000 mM NaCl. Peak fractions

were pooled and dialysed overnight against 1 l dialysis buffer

(25 mM HEPES-KOH pH 7.6, 10% glycerol, 1 mM DTT, 0.005%

Tween, 10% glycerol, 300 mM KOAc). Protein was concentrated

with Amicon Ultra-15 30 kDa MWCO concentrator, frozen in liquid

nitrogen and kept at �80°C.

PCNA purification

Bl21 (DE3) Rosetta, transformed with pET28a PCNA (1 l culture),

were grown at 37°C in LB + 50 lg/ml kanamycin + 10 lg/ml chlo-

ramphenicol to an OD600 of 0.6. Expression was induced by addition

of 0.8 mM IPTG, and the culture was grown further for 3 h. Cells

were harvested and the pellet was resuspended in 50 mM Tris–HCl

pH 7.2, 10% w/v sucrose + protease inhibitors (cOmplete, EDTA-

free, one tablet per 50 ml buffer). Cells were lysed via sonication

(30%, 5s on/5s off, total 2 min), and insoluble material was

removed by centrifugation (235,000 g, 4°C, 20 min). Ammonium

sulphate was added slowly to 150 mM, and then, polymin P was

added to 0.4%. The sample was stirred for 10 min at 4°C and insol-

uble material was removed by centrifugation (27,000 g 4°C,

10 min). 0.23 g/ml solid ammonium sulphate was added slowly to

the supernatant; the sample was stirred for 10 min and centrifuged

(48,000 g, 4°C, 10 min). The pellet was resuspended in 3 ml 25 mM

Tris–HCl pH 7.2, 10% glycerol, 1 mM EDTA and 100 mM NaCl and

the sample dialysed against the same buffer for 2 h. The conductivity

was adjusted to a buffer containing 25 mM Tris�HCl pH 7.2, 10%

glycerol, 1 mM EDTA and 150 mM NaCl. The sample was applied to

a 1 ml HiTrap SP FF and a 1 ml HiTrap heparin column assembled in

tandem. The unbound sample was collected and applied to a 1 ml

DEAE column equilibrated in 25 mM Tris–HCl pH 7.2, 10% glycerol,

1 mM EDTA and 150 mM NaCl. Protein was eluted with a 30 CV

gradient from 150 to 600 mM NaCl. Fractions were pooled, diluted

twofold in 25 mM Tris–HCl pH 7.2, 10% glycerol, 1 mM EDTA and

150 mM NaCl and applied to a 1 ml MonoQ column equilibrated in

the same dilution buffer. Protein was eluted with a 30 CV gradient

from 150 to 600 mM NaCl. Peak fractions were pooled, concentrated

to ~400 ll and applied to Superdex 200 increase 10/300 column (GE

Healthcare) equilibrated in 25 mM Tris–HCl pH 7.2, 10% glycerol,

1 mM EDTA and 150 mM NaCl. Fractions were pooled; protein was

concentrated with Amicon Ultra-15 30 kDa MWCO concentrator,

frozen in liquid nitrogen and kept at �80°C.

RPA purification

Bl21 (DE3) Rosetta, transformed with pET28a RPA (1 l culture),

were grown at 37°C in LB + 50 lg/ml kanamycin + 10 lg/ml chlo-

ramphenicol to an OD600 of 0.6. Expression was induced by addition

of 0.3 mM IPTG, and the culture was grown further for 3 h. Cells

were harvested, and the pellet was resuspended in 50 mM Tris–HCl

pH 7.5, 10% glycerol, 100 mM KCl, 1 mM EDTA, 1 mM DTT,

0.01% NP-40-S + protease inhibitors (cOmplete, EDTA-free, one

tablet per 50 ml buffer). Triton X-100 was added to 0.1% and stirred

for 5 min at 4°C. Cells were lysed via sonication (30%, 5s on/5s off,

total 2 min), and insoluble material was removed by centrifugation

(235,000 g, 4°C, 45 min). The supernatant was applied to a 5 ml

HiTrap Blue column equilibrated in 50 mM Tris–HCl pH 7.5, 10%

glycerol, 100 mM KCl, 1 mM EDTA, 1 mM DTT, 0.01% NP-40-S.

The column was washed first with 40 ml equilibration buffer and

further washed with 40 ml 20 mM Tris–HCl pH 7.5, 10% glycerol,

0.8 M NaCl, 1 mM EDTA, 1 mM DTT, 0.01% NP-40-S. Protein was

eluted in a buffer containing 40% ethylene glycol, 2.5 M NaCl, 10%

glycerol, 20 mM Tris–HCl pH 7.5, 1 mM EDTA, 1 mM DTT, 0.01%

NP-40-S. Peak fractions containing RPA were pooled and dialysed

against 2 l dialysis buffer (20 mM Tris–HCl pH 7.5, 10% glycerol,
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50 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.01% NP-40-S) for 90 min.

Protein was applied to a 2 ml Bio-Gel HT hydroxyapatite column

(Bio-Rad), and the flow through was re-applied once. The column

was first washed with 6 ml 50 mM Tris–HCl pH 7.5, 10% glycerol,

100 mM KCl, 1 mM EDTA, 1 mM DTT, 0.01% NP-40-S; then,

protein was eluted with 6 ml 50 mM Tris–HCl pH 7.5, 10% glycerol,

100 mM KCl, 1 mM EDTA, 1 mM DTT, 0.01% NP-40-S, 80 mM

potassium phosphate. Peak fractions were pooled and diluted in

20 mM Tris–HCl pH 7.5, 10% glycerol, 0.1 M KCl, 1 mM EDTA,

0.01% NP-40-S, 0.5 mM TCEP to reduce the conductivity of the

sample. The sample was then applied to 1 ml MonoQ (GE Health-

care) equilibrated in 20 mM Tris–HCl pH 7.5, 10% glycerol, 0.1 M

KCl, 1 mM EDTA, 0.01% NP-40-S, 0.5 mM TCEP. Protein was

eluted with a 15 CV gradient from 100-550 mM KCl. Fractions

enriched for RPA were pooled and dialysed against 2 l dialysis

buffer (25 mM HEPES-KOH pH 7.6, 150 mM KOAc, 0.5 mM TCEP,

10% glycerol, 0.02% NP-40-S) for 4 h. The protein was frozen in

liquid nitrogen and kept at �80°C.

DNA fork preparation

Stock solutions of both leading- and lagging-strand oligos (Inte-

grated DNA Technologies) were prepared, both at 53 lM in 25 mM

HEPES-NaOH, pH 7.5, 150 mM NaOAc, 0.5 mM TCEP, 2 mM Mg

(OAc)2. The sequence of the lead strand fork was:

50-(Cy3)TAGAGTAGGAAGTGA(Biotinylated-dT)GGTAAGTGATTAG
AGAATTGGAGAGTGTG(T)34 T∗T∗T∗T∗T∗T, where * denotes a

phosphorothioate backbone linkage. The sequence of the lagging-

strand fork was:

50-GGCAGGCAGGCAGGCACACACTCTCCAATTCTCTAATCACTTAC
CA(Biotinylated-dT)CACTTCCTACTCTA.

Both leading and lagging oligos were mixed at an equimolar ratio

and annealed to form a fork structure via gradual cooling from 80°C

to room temperature.

Preparation of fork DNA for helicase assay

To anneal fork DNA, equal molars of fork-leading and fork-lagging

oligos were mixed. The mixture was heated to 75°C and cooled to

room temperature gradually. Oligo stocks were prepared in 25 mM

HEPES-NaOH, pH 7.5, 150 mM NaOAc, 0.5 mM TCEP, 2 mM Mg

(OAc)2. Oligo sequences were modified from the fork substrates

used in previous work (Georgescu et al, 2017; Kose et al, 2020).

Fork leading was 50- (Cy3)TAGAGTAGGAAGTGA(Bio-dT)GGTAAG
TGATTAGAGAATTGGAGAGTGTG (T)34 T∗T∗T∗T∗T∗T, where
∗denotes phosphorothioate backbone linkages. Fork-lagging was 50-
(Cy5)GGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCA

ACACACTCTCCAATTCTCTAATCACTTACCATCACTTCCTACTCTA.

The sequence of trap oligo used in the assay to prevent re-annealing

of the unwound DNA was 50-GGCAGGCAGGCAGGCACACACTC
TCCAATTCTCTAATCACTTACCA(Bio-dT) CACTTCCTACTCTA.

Helicase assay

To load CMG onto the substrate without unwinding, 50 nM CMG

was incubated with 2 nM fork DNA in a buffer containing 25 mM

HEPES-KOH (pH 7.6), 100 mM potassium glutamate, 50 mM

magnesium acetate, 0.005% (v/v) Tween-20, 1 mM TCEP, 200 µg/

ml BSA, 0.1 mM AMP-PNP for 5 min at 37°C. 5 mM ATP (or equal

volume of water in -ATP reaction) and 80 nM trap oligo were added

to initiate the reactions. The reactions were stopped after 15-min

incubation at 37°C with a buffer containing 0.1% SDS, 10 mM

EDTA, 5% glycerol, 10 U/ml Proteinase K and bromophenol blue.

The reactions were run on 10% TBE PAGEr Gold Precast Gels (Lon-

za) at 170 V for 70 min. The gel was imaged on Typhoon laser

imager (GE Healthcare).

Primer extension assay

Primed template was prepared by annealing 500 nM oligonucleotide

(sequence: 50-GAATAATGGAAGGGTTAGAACCTACCAT) to 50 nM

M13mp18 ssDNA (New England Biolabs) in 10 mM Tris–HCl pH

7.6, 100 mM NaCl and 5 mM EDTA. The mixture was heated to

75°C and gradually cooled to room temperature. Unannealed

oligonucleotide was removed using S400 column (GE Healthcare).

The primer extension reaction was performed at 37°C in a buffer

containing 25 mM HEPES-KOH (pH 7.6), 100 mM potassium gluta-

mate, 0.01% NP-40-S, 1 mM DTT, 10 mM Mg(OAc)2, 0.1 mg/ml

BSA, 3 mM ATP, 400 lM CTP, GTP, UTP, 30 lM dATP, dCTP,

dGTP, dTTP, 33 nM a-[32P]-dCTP. 1 nM primed templated was pre-

incubated with 250 nM RPA for 5 min. 20 nM PCNA and 4 nM RFC

were added, and the reaction was initiated by the addition of 20 nM

Pol ε. Aliquots were removed at the indicated time points and

stopped with 50 mM EDTA. Unincorporated nucleotide was

removed with illusta MicroSpin G-50 columns (GE Healthcare), and

samples were run on 0.6% alkaline agarose gel at 23 V for 16 h.

The gel was fixed with cold 5% trichloroacetic acid and dried onto

Whatman paper. The gel was exposed on BAS-IP MS Storage Phos-

phor Screen (GE Healthcare), and screen was developed on a

Typhoon laser imager (GE Healthcare).

Glycerol gradient preparation

Buffer A (40 mM HEPES-NaOH, pH 7.5, 150 mM NaOAc, 0.5 mM

TCEP, 500 lM AMP-PNP, 3 mM Mg(OAc)2 and 10% v/v glycerol)

was layered on top of an equal volume of Buffer B (Buffer A + 30%

v/v glycerol) in a 2.2 ml TLS-55 tube (Beranek Laborgerate) to

prepare un-crosslinked samples. For the generation of crosslinked

samples, fresh Buffer B was supplemented with 0.16% glutaralde-

hyde (Sigma) and 2 mM bis(sulfosuccinimidyl)suberate (BS3, Ther-

moFisher). Gradients were prepared using a gradient-making station

(Biocomp Instruments, Ltd.) and cooled for 30 min at 4°C.

Replisome assembly for cryo-EM

The reconstitution reaction was set up to yield a final volume of

550 ll, containing 100 nM CMG with a 1.5-fold molar excess of other

components in reconstitution buffer (25 mM HEPES-NaOH pH 7.6,

150 mM NaOAc, 0.5 mM TCEP, 500 µM AMP-PNP, 10 mM Mg

(OAc)2). Firstly, CMG was incubated with the fork DNA for 30 min

on ice. Next, the additional proteins were added in the following

order: AND-1, TIMELESS/TIPIN, Pol ε and CLASPIN, and the volume

adjusted to 550 ll. CLASPIN was omitted at this stage for the minus-

CLASPIN sample. The reaction was incubated for 30 min on ice prior

to being loaded onto a gradient. 183 ll of the reconstitution reaction

was loaded onto each gradient: one lacking crosslinker and two
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containing crosslinker. Samples were separated by centrifugation

(Beckman TLS-55 rotor, 200,000 g, 4°C, 2 h) and 100 ll fractions

collected manually. Silver-stained SDS–PAGE of samples +/� cross-

linker was used to identify fractions containing the complete core

replisome. The selected fractions from the crosslinked gradients were

pooled and buffer exchanged into cryo-EM buffer (reconstitution

buffer lacking glycerol + 100 lM AMP-PNP and 0.005% v/v Tween-

20 (Sigma, Cat#P8341)) through six rounds of concentration via

centrifugation (21,000 g, 4°C, 1 min/round) and re-dilution in a

0.5 ml 30K MWCO centrifugal filter (Amicon). Finally, the sample

was concentrated to ~30 ll and used for cryo-EM grid preparation.

Cryo-EM grid preparation

Quantifoil R2/2, Cu-400 mesh cryo-EM grids pre-coated with an

ultra-thin (3–5 nm) amorphous carbon (produced in-house and by

electron microscopy sciences) were glow discharged for 5 s at a

plasma current of 15 mA (PELCO easiGlow). 3 ll of sample was

applied and incubated for 45 s at 4°C before manually blotting with

filter paper for 8 s and plunge-freezing in liquid ethane.

Data collection

Complete replisome
Three datasets were collected on the same FEI Titan Krios microscope

(LMB Krios1), operating at 300 keV with the specimen at cryogenic

temperatures (approximately �180°C), with images recorded at a

defocus of between �1.5 and �3.5 lm. A total of 4,923 movies were

acquired across two collections using the K2 Summit direct electron

detector (Gatan) in electron counting mode with a GIF Quantum

energy filter slit width of 20 eV, using a calibrated pixel size of

1.145 �A/pixel. These data were collected using the EPU software

package (ThermoFisher) and the dose fractionated into 40 frames per

movie, with an exposure time of 10 s to achieve a total dose of 39.8

e-/�A2. An additional 2,400 movies were acquired using the Falcon III

direct electron detector (ThermoFisher) in electron counting mode

using a calibrated pixel size of 1.07 �A/pixel. 75 movie frames were

recorded over 60 s to give a total dose of 37.5 e�/�A2.

Minus CLASPIN replisome
2998 movies were collected on a Titan Krios microscope (LMB

Krios2), operated as described for the complete core replisome

sample. Images were acquired at a defocus of between �1.5 and

�3.5 lm using the K2 Summit direct electron detector (Gatan) in

electron counting mode with a GIF Quantum energy filter slit width

of 20 eV, using a calibrated pixel size of 1.1 �A/pixel. The total dose

was fractionated into 40 frames, with an exposure time of 10 s to

achieve a total dose of 39.2 e�/�A2.

Data processing

Complete core replisome
Image processing was carried out using RELION 3.1 (Zivanov et al,

2018) unless otherwise stated. All refinements were performed using

independent data half-sets (gold standard refinement), and resolu-

tions were determined based on the Fourier shell correlation

(FSC = 0.143) criterion. The gain-corrected movies were aligned

using 5 × 5 patches in MotionCor2 (Zheng et al, 2017) with dose

weighting. CTF estimation was carried out using CTFFIND-4.1

(Rohou & Grigorieff, 2015). After manual inspection of the aligned

micrographs for the complete replisome datasets, 331 micrographs

were discarded due to the presence of crystalline ice. No micrographs

were discarded from the minus CLASPIN dataset. Gautomatch

(https://www2.mrc-lmb.cam.ac.uk/research/locally-developed-

software/zhang-software/#gauto) was used to pick particles from the

complete replisome micrographs. Initially, a subset of 500 micro-

graphs were picked using 2D references generated from the previ-

ously published yeast replisome structure (Bareti�c et al, 2020). 20,214

particles were picked from this subset and submitted for two rounds

of 2D classification. Five 2D classes were then selected from the

results of this processing that contained high-resolution features and

represented diverse molecular views of the particle. These 2D classes

were subsequently used as the templates to pick the entire complete

replisome and minus CLASPIN datasets.

For the complete replisome data, a total of 490,110 particles

were picked using Gautomatch. These particles were extracted and

down-sampled by a factor of four into a box of 100 pixels and

submitted for one round of 2D classification. 360,349 particles

were selected following 2D classification and submitted for 3D

classification into four classes using a regularisation parameter of

4 and a 3D reference derived from the previously published struc-

ture of the yeast replisome. A single class was selected from the

results of this 3D classification, comprising 280,190 particles, and

the particles re-extracted and down-sampled by a factor of 2 into a

box of 200 pixels. These particle images were then submitted for

three further rounds of 3D classification, with classes being taken

forward if they contained all replisome components and displayed

structural features, e.g. helical density. Using these criteria,

138,400 particles were selected to be un-binned into a box of 380

pixel diameter (435.5 �A) and submitted for 3D auto-refinement.

The results of the refinement were post-processed, generating a

reconstruction at a resolution of 3.8 �A. The data were then

polished (Zivanov et al, 2019) and the CTF parameters refined,

before being re-submitted for 3D auto-refinement and post-

processing, generating a reconstruction at 3.4 �A resolution. Using

3D classification without alignment, a subset of 110,266 particles

was identified that displayed high-resolution features. This subset

was refined to 3.2 �A resolution and sharpened using a B-factor of

�35 �A2. This map was used to build atomic models for CMG,

TIMELESS, TIPIN and DNA. Multi-body refinement (Nakane et al,

2018) was performed by generating soft masks, generated in UCSF

Chimera (Pettersen et al, 2004), around the MCM2-7 N- and C-

tiers, TIMELESS-TIPIN and DNA, AND-1 and a complex of CDC45/

GINS and Pol ε, the results of which were used to build the model

of the Pol ε non-cat module. An additional multi-body refinement

was carried out using masks covering a complex of CDC45/GINS

and AND-1, and the remainder of the map which significantly

improved the density of AND-1, permitting model building.

In order to recover density for the catalytic domain of Pol ε, the

entire dataset was re-picked using the Laplacian-of-Gaussian

autopicking feature within Relion-3.1. 560,443 particles that were

auto-picked were extracted and binned by a factor of four, into a

box of 100 pixels. These particle images were classified using one

round of 2D classification, resulting in 388,320 particles that were

further classified in 3D. Following four rounds of 3D classification

to remove low-resolution classes and those lacking replisome
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components, 100,988 particles from two 3D classes were selected

for refinement. The selected particle images were re-extracted and

binned by a factor of two, to boost the signal-to-noise of regions of

weak density, into a box of 160 pixels. The data were submitted for

3D-auto-refinement which, following post-processing, generated a

reconstruction at 4.9 �A resolution. A soft mask was generated in

UCSF Chimera covering the Pol ε non-catalytic module, and signal

subtraction was carried out to remove any signal outside of the

mask boundary. The data were recentred on the mask and then

submitted for 3D classification without alignment using a 3D refer-

ence of the complete core human replisome, recentred on the Pol ε

non-catalytic module. Of the ten classes generated, the best three,

displaying secondary structure features were selected as representa-

tive of classes incorporating high-quality Pol ε particles. The 87,877

signal-subtracted particle images from the selected 3D classes were

reverted to their original non-signal-subtracted parent images, re-

extracted into a larger box of 550 pixels (629.75 �A) and re-

submitted for 3D auto-refinement and post-processing, generating a

reconstruction at 6.8 �A resolution. In order to identify density for

the Pol ε catalytic domain, three soft masks were generated which

represented putative regions of catalytic domain density: one cover-

ing the disordered density between AND-1 and the Pol-ε non-cat

module which appears during consensus refinement, a second mask

representing the linear configuration of Pol ε identified in yeast

(Yuan et al, 2020b) (EMD-21707) and a third close to the MCM2-7

C-tier. These three masks were aligned on, and were merged with,

the original mask covering the human Pol ε non-catalytic module.

Signal subtraction and 3D classification were then carried out as

previously described in this section. Of the 15 classes generated,

two contained additional density in the linear configuration. The

6,303 particles presented by these selected classes were reverted to

their original.star file and refined and post-processed to a resolution

of 10 �A. The resulting map was used to dock in the structure of the

complete yeast Pol ε holoenzyme.

cryoSPARC processing
Human replisome dataset #1, in the presence of CLASPIN, was

additionally processed using cryoSPARC-3 (Punjani et al, 2017).

3422 previously motion-corrected micrographs were imported into

the cryoSPARC pipeline and their CTF parameters estimated using

the Patch CTF estimation, 5 × 5. The Blob-Gaussian picking

feature identified 602,412 particles. Following particle screening,

503,188 particle images were extracted and down-sampled 4×.

These images were classified in 2D and classes were selected that

best resembled previous 2D classes obtained using Relion-3.1. This

resulted in 288,073 particles being submitted for two rounds of 3D

classification via heterogeneous refinement, using four copies of

an identical 3D ab initio model as a reference. Classes were

selected based upon the presence of high-resolution features and

whether they contained the full complement of replisome proteins.

The resulting 158,465 particles were refined to 3.3 �A resolution

using homogenous refinement.

Minus CLASPIN replisome
For the minus-CLASPIN replisome data, a total of 482,101 particles

were picked by Gautomatch, using 2D references generated from the

complete replisome dataset. These particles were extracted and

down-sampled by a factor of four into a box of 100 pixels and

submitted for two rounds of 3D classification into four classes using

a regularisation parameter of 4 and a 3D reference derived from the

complete replisome data. Two classes were selected from the results

of this 3D classification, comprising 107,833 particles based upon

their protein composition and the presence of high-resolution

features. These selected particles were re-extracted, un-binned, into

a box for 400 pixels (440 �A) and submitted for 3D auto-refinement.

The results of the refinement were post-processed, generating a

reconstruction at a resolution of 3.8 �A. The data were then polished

and the CTF parameters refined, before re-refinement and post-

processing which generated a reconstruction at a resolution of 3.4 �A.

Model building and refinement

In order to begin building a model for the complete core human

replisome, previously published atomic models for various repli-

some components were rigid-body-docked into the consensus

refinement map at 3.2 �A resolution. Models for the MCM2-7 N-tier

and both CDC45 and GINS came from the previous cryo-EM struc-

ture of hsCMG (PDB: 6XTX) (Rzechorzek et al, 2020). As the C-tier

configuration of the structure of hsCMG differed to that of the

human replisome structure presented here, the C-tier region of each

MCM2-7 subunit (PDB: 6XTX) was docked individually into the

density and both the linkers between the N- and C-tier domains and

the AMP-PNP ligands removed. The crystal structure of the N-

terminal domain of TIMELESS (PDB: 5MQI) (Holzer et al, 2017) was

docked into the map and this ensemble was used as the starting

point for model building. First models were refined against the map

density in real-space using Phenix real-space-refine (Afonine et al,

2018) in the absence of secondary structure restraints. The models

were then manually refined in Coot (Emsley et al, 2010) using the

local refinement and regularisation tools incorporating stereochemi-

cal restraints. Where the density was of sufficient quality, we were

able to expand the coverage of the starting models by building into

the density de novo using Coot.

For TIMELESS, we were able to build the previously absent

MCM-plugin (residues 239–332) and extend the C-terminal region of

the protein (residues 464–803) containing both DNA-binding motifs

and the TIPIN interaction domain. TIMELESS residues 527–684 were

not visualised in this study. A homology model was generated for

TIPIN (residues 68–132) using I-TASSER (Yang et al, 2015), based

on the structure of Csm3 and rigid body-docked into the density.

The N- and C-terminal regions were expanded to cover residues 62–

147 manually in Coot.

For the MCM2-7 subunits, the MCM6 N-terminus is extended

(residues 1–14) and interacts extensively with the core of TIMELESS.

An additional 11 residues of the N-terminal extension of MCM4 is

visualised (residues 146–157) interacting with the wedge feature of

the TIMELESS MCM-plugin. The first 14 residues of MCM3 in the

published human hsCMG model (PDB: 6XTX) (Rzechorzek et al,

2020) are re-assigned to MCM3 residues 524–533. In MCM7, an addi-

tional, flexibly linked helix (residues 100–114) is identified. The N-

terminal hairpin of MCM7 (residues 283–290) was built as a short

helix. The N/C-tier flexible linkers were re-built for each subunit. The

MCM2-7 C-tier was re-built to accommodate an alternative DNA-

binding mode, with the PS1 loops, helix H2 and H2I loops extensively

remodelled. A homology model was generated for the winged-helix

(WH) of MCM4 (residues 798–857) which was rigid body docked into
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the lower resolution density sat within the C-tier pore and subjected

to real-space-refinement in Phenix. The placement of this domain

was guided by the reasonable resolution density for the first helix of

the MCM4 WH domain. AMP-PNP/Mg2+ was built in well resolved

density at the MCM2/6, 2/5 and 3/5 interfaces with side chains visi-

ble for WalkerA, WalkerB, Arg-finger and Sensor2 motifs. Eleven

nucleotides of ssDNA within the C-tier were built de novo whereas

the duplex portion of the DNA was rigid body docked as an idealised

B-form duplex. Sequence register was assigned based on the

sequence of our fork DNA assuming no unwinding occurred. DNA at

the fork junction was refined manually in Coot and the first nucleo-

tides following strand separation built manually.

The crystal structure of the AND-1 SepB domain (PDB: 5OGS)

(Kilkenny et al, 2017) was docked into the AND-1 trimer density

within the multi-body refinement map containing CDC45/GINS and

AND-1. The position of residues at the interface between AND-1 and

CDC45/GINS was adjusted manually in Coot and the fit to density

optimised using Phenix real-space-refine.

A homology model for the non-catalytic module of Pol ε (POLE1

residues 1,371–2,280 and POLE2 residues 1–527) was generated using

I-TASSER and rigid body docked into the multi-body refinement map

containing CDC45/GINS and Pol ε. Two of the top threading

templates were a crystal structure of human POLE2 in complex with

a C-terminal region of POLE1 (PDB: 5VBN) (Baranovskiy et al, 2017)

and an NMR structure of the N-terminal helical domain of POLE2

(PDB: 2V6Z) (Nuutinen et al, 2008). Despite the existence of the

NMR structure covering this region, residues 1–85 of POLE2, compris-

ing the N-terminal helical domain and flexible linker, were manually

built manually using Coot due to the high quality of the data. The fit-

to-density of the resulting homology model was optimised using

ISOLDE and residues at the interfaces with CMG were manually opti-

mised in Coot followed by real-space-refinement in Phenix. The

resulting model displayed high levels of structural homology with

previously published structures: RMSD of 1.21 �A for 5VBN (Bara-

novskiy et al, 2017) and 1.23 �A for 2V6Z (Nuutinen et al, 2008).

AlphaFold (Jumper et al, 2021; Tunyasuvunakool et al, 2021)

was used to identify candidate regions of CLASPIN to dock into

CLASPIN-dependent densities 1–3. CLASPIN-dependent density 1

consists of two a-helical segments of density, connected by a linker.

The shorter of the two a-helices comprises approximately 5 amino

acids and contains density for three large, bulky residues. The

longer of the two helices comprises approximately 15 residues. To

estimate the length of the linker region between the two helices, a

13-residue poly-alanine model was manually built into the density.

Manual inspection of the AlphaFold predicted model for H. sapiens

CLASPIN identified only one region of sequence, residues 277–318,

which satisfied these structural requirements. Rigid-body docking of

the AlphaFold model for CLASPIN residues 277–318 into CLASPIN-

dependent density 1 resulted in an excellent fit-to-density, with clear

side-chain density correctly positioned for CLASPIN H315, F317,

F318. The model fit-to-density was improved manually using COOT

and automatically using both ISOLDE and PHENIX real-space-

refinement. The resulting model displayed clear side-chain density

for residues in the linker region between the two helices, particu-

larly P305, Y306, H307 and P309. It also correctly oriented the larger

of the two a-helices, residues 284–299, displaying clear side-chain

density for R298 which interacts with Y474 of TIMELESS. In addi-

tion to the excellent fit-to-density, the interactions predicted by the

model for CLASPIN make energetically favourable and chemically

feasible interactions. CLASPIN residues F317 and F318 extend into a

conserved hydrophobic pocket in TIMELESS, L304 and L302 contact

another hydrophobic patch on TIMELESS and polar residues in the

longer of the two a-helices form charged interactions at a third site

on TIMELESS. Finally, the equivalent region of Mrc1, the S. cere-

visiae ortholog of CLASPIN, can be docked into previously unmod-

elled density present in the analogous position to site 1 in a yeast

replisome reconstruction (EMD-10227) (Bareti�c et al, 2020), with

clear side-chain density present for Mrc1 residues F325, F326, F331

and F335.

CLASPIN-dependent density 2 consists of a single a-helix
approximately 12–15 residues in length. This helical segment

docks onto a highly hydrophobic pocket on the C-tier of MCM6.

Inspection of the density indicates the presence of three large

bulky residues within the helix. There is only one candidate helix

present in the AlphaFold predicted model that satisfies these

requirements, spanning residues 526–539. Rigid-body docking of

this helix into CLASPIN-dependent density 2 following by fit opti-

misation using COOT, ISOLDE and PHENIX resulted in an excel-

lent fit-to-density. There is clear side-chain density for residues

H538, W536, F535, K532, R534 and L531. Furthermore, this helix

positions F535 and L531 into the hydrophobic pocket on MCM6

while K532 and R534 project away from the replisome, satisfying

the chemical requirements of the interface.

CLASPIN-dependent density 3 consists of a single a-helix approxi-

mately 26-residues in length. The AlphaFold predicted model for

H. sapiens CLASPIN reveals only three candidate helices of sufficient

length the occupy this density. Each of the three candidate helices

was rigid-body-docked into the density and the fit optimised using

COOT, ISOLDE and PHENIX. The fit to density for the helix compris-

ing CLASPIN residues 592–625 was excellent and far superior to the

other two candidate helices: residues 1,091–1,121 and residues

1,205–1,221. There is clear side-chain density for residues K593,

Q595, V596, K598, K600, Q602 and M605. There is also clear density

for CLASPIN residues L594, L597 and L601 which contact a

hydrophobic patch on MCM2. The model for CLASPIN site 3 also

predicts many residues forming chemically favourable interactions

with both TIMELESS, MCM2 and MCM6. Furthermore, the other two

candidate helices are in the C-terminal region of CLASPIN, which is

not predicted to interact with this region of the replisome based upon

cross-linking mass spectrometry data of the budding yeast replisome

(Bareti�c et al, 2020). Finally, the relative positioning of the helices

occupying CLASPIN sites 2 and 3 is in agreement with the AlphaFold

model, with there being no intervening helices between them.

Minus CLASPIN replisome

For the minus CLASPIN replisome, the model for the complete repli-

some was rigid body docked into the density (minus the candidate

CLASPIN poly-alanine chain) and the fit optimised using Phenix

real-space-refine and manual editing in Coot.

Combine focussed maps

The complete replisome model, consensus refinement map at

3.2 �A and the two multi-body refinement maps used to build Pol ε

and AND-1 were submitted to the combine focussed maps feature
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of the Phenix software package. Combine-focussed-maps uses

map-to-model correlation to determine which are the highest reso-

lution regions of each map, and the relationships between the

models in the different maps. This information is then used to

superimpose the highest resolution regions of each map to gener-

ate a single composite map. This permitted the refinement of the

complete replisome model within a single map using real-space-

refinement in Phenix and ISOLDE, coupled to manual optimisation

in Coot.

Model to cryo-EM map validation

Fourier shell correlation (FSC) between the fully refined models +/�
CLASPIN and the respective unsharpened sums of their two half

maps was calculated using XMIPP (Sorzano et al, 2004).

Multiple sequence alignments

Amino acid sequences were retrieved from UniProt and protein

sequence alignments carried out using Clustal Omega (Sievers &

Higgins, 2014). Alignments were rendered using ESPript3.0 (http://

espript.ibcp.fr) (Robert & Gouet, 2014).

Structural analysis and visualisation

All figures of structures were generated in either Chimera or

ChimeraX. Calculations of buried surface area were performed using

PDBePISA (Krissinel & Henrick, 2007).

Data availability

Cryo-EM density maps of the human replisome used in model build-

ing have been deposited in the Electron Microscopy Data Bank

(EMDB), https://www.ebi.ac.uk/pdbe/emdb, under the following

accession numbers: EMD-13375 (full complex, consensus refine-

ment), EMD-13377 (multi-body refinement, Pol ε/CDC45/GINS),

EMD-13376 (multi-body refinement, AND-1/CDC45/GINS), EMD-

13384 (minus CLASPIN, consensus refinement). Atomic coordinates

have been deposited in the Protein Data Bank (PDB), http://www.

wwpdb.org, with the accession number PDB: 7PFO for the complete

core human replisome. The cryo-EM map with density that we attri-

bute to the lagging-strand template has been deposited in the EMDB

with accession number EMD-13457.

Expanded View for this article is available online.
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