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Abstract: Pulmonary arterial hypertension (PAH) is a progressive condition with an unmet need
for early diagnosis, better monitoring, and risk stratification. The receptor for advanced glycation
end products (RAGE) is activated in response to hypoxia and vascular injury, and is associated with
inflammation, cell proliferation and migration in PAH. For the adult cohort, we recruited 120 patients
with PAH, 83 with idiopathic PAH (IPAH) and 37 with connective tissue disease-associated PAH
(CTD-PAH), and 48 controls, and determined potential plasma biomarkers by enzyme-linked im-
munoassay. The established heart failure marker NTproBNP and IL-6 plasma levels were several-fold
higher in both adult IPAH and CTD-PAH patients versus controls. Plasma soluble RAGE (sRAGE)
was elevated in IPAH patients (3044 ± 215.2 pg/mL) and was even higher in CTD-PAH patients
(3332 ± 321.6 pg/mL) versus controls (1766 ± 121.9 pg/mL; p < 0.01). All three markers were
increased in WHO functional class II+III PAH versus controls (p < 0.001). Receiver-operating charac-
teristic analysis revealed that sRAGE has diagnostic accuracy comparable to prognostic NTproBNP,
and even outperforms NTproBNP in the distinction of PAH FC I from controls. Lung tissue RAGE
expression was increased in IPAH versus controls (mRNA) and was located predominantly in the
PA intima, media, and inflammatory cells in the perivascular space (immunohistochemistry). In the
pediatric cohort, plasma sRAGE concentrations were higher than in adults, but were similar in PH
(n = 10) and non-PH controls (n = 10). Taken together, in the largest adult sRAGE PAH study to date,
we identify plasma sRAGE as a sensitive and accurate PAH biomarker with better performance than
NTproBNP in the distinction of mild PAH from controls.

Keywords: soluble receptor for advanced glycation end products (sRAGE); pulmonary arterial
hypertension; biomarker; vascular injury; inflammation; proliferation; RV hypertrophy

1. Introduction

Pulmonary arterial hypertension (PAH) is a fatal disease, characterized by increased
pulmonary vascular resistance (PVR) due to endothelial dysfunction, pulmonary vascular
remodeling and vessel loss [1], leading to right ventricular dysfunction (RVD) [2]. Severe
PAH results not only in RV hypertrophy (RVH) but also RV dilatation, and ultimately, RV

Int. J. Mol. Sci. 2021, 22, 8591. https://doi.org/10.3390/ijms22168591 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3923-9492
https://orcid.org/0000-0002-1576-5714
https://orcid.org/0000-0001-7949-2973
https://orcid.org/0000-0003-0709-3935
https://doi.org/10.3390/ijms22168591
https://doi.org/10.3390/ijms22168591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168591
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168591?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 8591 2 of 19

failure [3,4]. The most common spontaneous or familial heterozygous loss-of-function
mutations in heritable PAH (HPAH) occur in the bone morphogenetic protein receptor 2
(BMPR2) gene [5]. BMPR2 mutations are found in 70–80% of families with PAH and
in 10–20% of idiopathic PAH patients [5]. Clinically, PAH manifests with non-specific
symptoms, such as dyspnea and fatigue, making early diagnosis and the initiation of
pharmacotherapy difficult, especially in children [6,7]. The late diagnosis, poor prognosis
and complex etiology and pathophysiology of PAH underline the unmet need for sensitive
biomarkers enabling early diagnosis, non-invasive monitoring, and risk stratification, in
order to recognize disease progression for early intervention [8]. Numerous biomarkers
of vascular injury and remodeling, myocardial damage, endothelial dysfunction and in-
flammation have been found to be associated with PAH [8–11]. So far, the N-terminal
prohormone of the brain natriuretic peptide (NTproBNP) is the only prognostic biomarker
included in international pulmonary hypertension (PH) treatment guidelines and risk
scores [12,13]. However, NTproBNP does not distinguish between different PH etiologies
and its levels are highly dependent on fluid intake and renal excretion [8]. The recep-
tor for advanced glycation end products (RAGE) is a member of the immunoglobulin
superfamily, and is a pattern recognition receptor (PRR) that binds damage- and stress-
associated molecular patterns (DAMPs, “danger signals”) [14] released in response to
hypoxia and vascular injury [15,16]. The binding of DAMPs to RAGE induces shedding of
the membrane-bound RAGE into the circulation [16]. Increased soluble RAGE (sRAGE)
concentrations indicate the overstimulation of RAGE by DAMPs, thereby reflecting the
degree of ongoing inflammation and vascular damage [16,17]. Several animal and in vitro
studies have identified RAGE to be associated with cellular key events in PAH develop-
ment, i.e., inflammation, cell proliferation and migration [18–21]. Small exploratory clinical
studies (n < 30 patients) found circulating sRAGE levels to be increased in idiopathic PAH
(IPAH) vs. controls [19,22,23].

To the best of our knowledge, sRAGE concentrations circulating in the bloodstream
have not yet been studied either in connective tissue disease-associated PAH (CTD-PAH)
or in pediatric PH patients. Here, we report on the largest sRAGE biomarker study of
human PAH (n = 120). We identify sRAGE as a sensitive biomarker in adult PAH that
has comparable diagnostic accuracy to the established heart failure biomarker NTproBNP
and shows even better performance in the distinction between mild PAH and controls. In
contrast, plasma sRAGE was not specifically elevated in pediatric PH.

2. Results
2.1. Demographic Characteristics of the Adult and Pediatric PAH Cohorts

We enrolled 120 adult patients (111 females, 9 males) with PAH and 48 healthy age-
matched controls (29 females, 19 males) at the research conferences of the Pulmonary
Hypertension Association (PHA) in California (2010), Florida (2012, 2018) and Texas
(2016). Among the adult PAH patients, 83 had idiopathic pulmonary arterial hypertension
(IPAH) (74 females, 9 males) and 37 connective tissue disease-associated PAH (CTD-PAH)
(37 females, 0 males). The demographic characteristics of the adult female PAH patients
and healthy age- and gender-matched controls under study can be found in Table 1. All
characteristics of the male IPAH patients (n = 9) and male control subjects (n = 19), who
were analyzed as small subcohorts separately, are presented in Supplementary Table S1.
EDTA whole-blood samples were collected via peripheral venipuncture. For the pediatric
cohort, we enrolled 10 children with PH (age range 3.9–18.5 years) and 10 non-PH, non-
healthy control patients (9 with left ventricular outflow tract obstruction (LVOTO) and one
with s/p reconstruction of a double aortic arch; age range 2.0–17.3 years) from October 2013
to August 2020. The children enrolled had moderate PH, with WHO functional class 2–3
and intermediate (n = 9) or lower risk (n = 1; Table S2) according to the European Pediatric
Pulmonary Vascular Disease Network (EPPVDN) risk score [13]. All 20 children underwent
right and left heart catheterization. Detailed information on the pediatric PH-patients and
non-PH controls can be found in Supplementary Table S2.
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Table 1. Characteristics of PAH patients and healthy controls.

CON
(n = 29)

PAH Total
(n = 111)

IPAH
(n = 74)

CTD-PAH
(n = 37)

Demographics
Age—years 44.8 (21–76) 48.7 (20–80) 47.6 (20–79) 50.0 (26–80)
Male sex—n 0 0 0 0
Height—m 1.64 ± 0.01 1.63 ± 0.01 1.63 ± 0.01 1.63 ± 0.01
Weight—kg 74.7 ± 3.6 71.9 ± 1.5 71.0 ± 2.0 73.8 ± 2.2

BMI—kg/m2 27.8 ± 1.4 27.0 ± 0.5 26.7 ± 0.7 27.7 ± 0.8
Functional Status
WHO FC I—n (%) - 21 (19%) 20 (27%) 1 (3%)
WHO FC II—n (%) - 67 (60%) 40 (54%) 27 (73%)
WHO FC III—n (%) - 23 (21%) 14 (19%) 9 (24%)

Biomarker
NTproBNP—ng/L 78.0 ± 11.5 321.0 ± 37.2 316.8 ± 45.7 329.3 ± 65.0

Race/ethnicity
White 21 80 56 24
Black 3 7 2 5
Asian 1 6 3 3

Hispanic 3 8 6 2
other 1 10 7 3

Values are presented as the number of subjects or as mean ± SEM. Abbreviations: BMI, body mass index;
CTD-PAH, PAH associated with connective tissue disease; IPAH, idiopathic pulmonary arterial hypertension;
NTproBNP, N-terminal prohormone of brain natriuretic peptide; WHO FC, World Health Organization Func-
tional Class.

2.2. NTproBNP, IL-6 and sRAGE Plasma Levels Are Elevated in Adult IPAH and CTD-PAH
Patients versus Healthy Control Subjects

In order to investigate whether NTproBNP, interleukin-6 (IL-6), and sRAGE plasma
concentrations are elevated in adult patients with PAH versus healthy controls, we per-
formed immunoassays on the plasma of IPAH patients, CTD-PAH patients and healthy
controls. We focused on female patients in this study, but the biochemical results in
the few male patients enrolled are presented in Supplementary Figure S1. NTproBNP
levels were markedly higher in both IPAH (316.8 ± 45.7 ng/L) and CTD-PAH patients
(329.3 ± 65.0 ng/L) vs. controls (78.0 ± 11.5 ng/L; p < 0.001; Figure 1A,B). IL-6 concentra-
tions were increased in patients with IPAH vs. controls (4.6 ± 0.5 ng/L vs. 2.8 ± 0.3 ng/L;
p < 0.01) and CTD-PAH versus controls (4.5 ± 0.5 ng/L vs. 2.8 ± 0.3 ng/L; p < 0.05;
Figure 1C,D). The plasma concentrations of sRAGE were elevated in IPAH patients
(3044± 215.2 pg/mL; p < 0.01) and even higher in CTD-PAH patients (3332± 321.6 pg/mL;
p < 0.001) as compared to controls (1766 ± 121.9 pg/mL; Figure 1E,F).

In the small cohort of male patients, we found elevated NTproBNP levels in IPAH
patients (n = 9) vs. controls (n = 19; 284.3 ± 96.2 ng/L vs. 63.1 ± 26.3 ng/L; p < 0.01)
while the elevation of IL-6 and sRAGE plasma concentrations in male IPAH patients versus
male controls did not reach statistical significance (Figure S1A–F). Patients treated with
prostacyclin or prostacyclin analogs (PCA) for more advanced PAH had 5-fold higher
NTproBNP plasma concentrations (389.6 ± 62.0 ng/L vs. 78.0 ± 11.5 ng/L; p < 0.0001;
Figure S2) and 2-fold higher sRAGE plasma levels versus controls (3481 ± 291.3 pg/mL vs.
1766 ± 121.9 pg/mL; p < 0.0001; Figure S2).

Subsequently, we evaluated whether plasma concentrations of NTproBNP, IL-6, and
sRAGE increase with PAH severity, as defined by the World Health Organization (WHO)
functional class system (FC I, n = 21; FC II+III, n = 90). NTproBNP, IL-6, and sRAGE plasma
levels were significantly increased in FC II+III versus controls (p < 0.001 and p < 0.0001;
Figure 2A–F). In addition, PAH FC II+III had higher IL-6 plasma concentrations than PAH
FC I (p < 0.05; Figure 2C,D). We found a significant difference between PAH FC I and
healthy controls for plasma sRAGE (2929 ± 421.8 vs. 1766 ± 121.9; p < 0.05) but neither for
NTproBNP nor for IL-6 (Figure 2E,F). It is of note that circulating sRAGE concentrations in
adult patients and control subjects are not age-dependent (Figure S3).
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versus controls (CON, n = 29). (C,D) IL-6 plasma concentrations of IPAH (n = 66) and CTD-PAH (n = 35) patients 

versus controls (n = 27). (E,F) sRAGE plasma concentrations of IPAH (n = 74) and CTD-PAH (n = 37) patients versus 

controls (n = 29). The scatter plots on the left show the mean ± SEM, the box and whisker plots on the right show the 

median with interquartile range ± 10-90 percentile. Statistical test: Kruskal–Wallis test, corrected for multiple testing by 

Dunn’s test. * p < 0.05, ** p < 0.01, *** p < 0.001. Abbreviations: IL-6, Interleukin-6; NTproBNP, N-terminal pro-brain 

natriuretic peptide; sRAGE, soluble receptor for advanced glycation end products. 

Subsequently, we evaluated whether plasma concentrations of NTproBNP, IL-6, and 

sRAGE increase with PAH severity, as defined by the World Health Organization (WHO) 

0

2000

4000

6000

8000

10,000

s
R

A
G

E
(p

g
/m

l)

CON IPAH CTD-PAH

sRAGE

**
***

0

10

20

30
IL

-6
(n

g
/l
)

CON IPAH CTD-PAH

IL-6

**
*

0

10

20

30

IL
-6

(n
g

/l
)

CON IPAH CTD-PAH

IL-6

**
*

0

500

1000

1500

2000

N
T

p
ro

B
N

P
(n

g
/l
)

CON IPAH CTD-PAH

NTproBNP

***
***

0

500

1000

1500

2000

N
T

p
ro

B
N

P
(n

g
/l
)

CON IPAH CTD-PAH

NTproBNP

***
***

A B

C D

E

0

2000

4000

6000

8000

10,000

s
R

A
G

E
(p

g
/m

l)

CON IPAH CTD-PAH

sRAGE

**
***

F

Figure 1. NTproBNP, IL-6 and sRAGE plasma concentrations are elevated in patients with pulmonary arterial hypertension
versus controls. (A,B) NTproBNP plasma concentrations of patients with idiopathic pulmonary arterial hypertension
(IPAH, n = 74) and connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH, n = 37) versus controls
(CON, n = 29). (C,D) IL-6 plasma concentrations of IPAH (n = 66) and CTD-PAH (n = 35) patients versus controls (n = 27).
(E,F) sRAGE plasma concentrations of IPAH (n = 74) and CTD-PAH (n = 37) patients versus controls (n = 29). The scatter
plots on the left show the mean ± SEM, the box and whisker plots on the right show the median with interquartile
range ± 10–90 percentile. Statistical test: Kruskal–Wallis test, corrected for multiple testing by Dunn’s test. * p < 0.05,
** p < 0.01, *** p < 0.001. Abbreviations: IL-6, Interleukin-6; NTproBNP, N-terminal pro-brain natriuretic peptide; sRAGE,
soluble receptor for advanced glycation end products.
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Figure 2. NTproBNP, IL-6 and sRAGE plasma concentrations in patients with idiopathic pulmonary arterial hypertension
(IPAH) and connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) increase with pulmonary
hypertension severity. The World Health Organization (WHO) functional class (FC) system is used as a surrogate for disease
severity. Functional classes I-III include both IPAH and CTD-PAH patients. (A,B) Plasma levels of NTproBNP in controls
(n = 29), patients with FC I (n = 21) and FC II and III (n = 90). (C,D) Plasma levels of IL-6 in controls (n = 27), patients with
FC I (n = 18) and FC II and III (n = 83). (E,F) Plasma levels of sRAGE in controls (n = 29), patients with FC I (n = 21) and FC
II and III (n = 90). The scatter plots on the left show the mean ± SEM, the box and whisker plots on the right show the
median with interquartile range ± 10-90 percentile. Statistical test: Kruskal–Wallis test, corrected for multiple testing by
Dunn’s test. * p < 0.05, *** p < 0.001. **** p < 0.0001. Abbreviations: IL-6, Interleukin-6; NTproBNP, N-terminal pro-brain
natriuretic peptide; sRAGE, soluble receptor for advanced glycation end products.
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2.3. Receiver-Operating Characteristic (ROC) Analysis: Plasma sRAGE Has Diagnostic Accuracy
Comparable to the Established Biomarker NTproBNP

To identify whether circulating sRAGE can serve as a biomarker in PAH, and to
assess the diagnostic accuracy of sRAGE to classify subjects into different groups (PAH
vs. CON, CTD-PAH vs. control, IPAH vs. control, FC I vs. control, FC II+III vs. control),
we performed a receiver-operating characteristic (ROC) analysis (Figure 3). We compared
the ROC for sRAGE with the ROC for the established heart failure biomarker NTproBNP
and show the superimposed ROC curves for these two biomarkers in Figure 3. The fitted
ROC area (AUC) in the PAH (IPAH + CTD-PAH) vs. control comparison was similar,
at 0.767 for NTproBNP and 0.738 for sRAGE (Figure 3A). In the separate CTD-PAH vs.
control and IPAH vs. control comparison, the fitted ROC area was only minimally higher
for NTproBNP as compared to sRAGE (0.803 vs. 0.789 and 0.749 vs. 0.713; Figure 3B,C).
In contrast, sRAGE outperformed NTproBNP in the PAH FC I (mild PAH) vs. healthy
control comparison as the area under the ROC curve was 0.701 for sRAGE, compared to
0.677 for NTproBNP (Figure 3D). The fitted ROC area was slightly higher for NTproBNP
in the PAH FC II+III vs. healthy control comparison, as compared to sRAGE (0.788 for
NTproBNP vs. 0.747 for sRAGE; Figure 3E). Additionally, we performed a correlation
analysis between plasma soluble RAGE and NTproBNP for all subjects, and found only a
moderate correlation between these two biomarkers (rho = 0.4465, p < 0.0001; Figure S4).

2.4. RAGE mRNA and Protein Expression Is Increased in Lung Tissue from End-Stage IPAH
Patients versus Donor Controls

Whole human lung tissues were obtained from 7 adult patients who underwent
bilateral lung transplantation (LuTx) for end-stage PAH. Control lung tissues were obtained
from 9 LuTx donors (downsizing lungs or unused donor lungs). Information on the LuTx
subjects can be found in Table 2.

Table 2. Human lung tissues from adult end-stage PAH patients and controls.

Group Gender Age (Years) Diagnosis

IPAH female 41 IPAH
IPAH female 31 IPAH
IPAH female 29 IPAH
IPAH female 42 IPAH
IPAH female 36 IPAH
IPAH female 53 IPAH
IPAH female 25 IPAH

Control female N/A Downsizing lung
Control male N/A Unused donor lung
Control female N/A Unused donor lung
Control male N/A Unused donor lung
Control male N/A Downsizing lung
Control N/A N/A Unused donor lung
Control N/A N/A Unused donor lung
Control male N/A Unused donor lung
Control N/A N/A Downsizing Lung

Whole human lung tissues from patients who underwent bilateral lung transplantation for end-stage PAH and
human lung tissues from donor lungs (downsizing lung or unused donor lung). Random peripheral lung tissue
that was not close to the hilus, the main branch pulmonary arteries, and main bronchi was obtained from each
lung. Abbreviations: IPAH, idiopathic pulmonary arterial hypertension; PAH, pulmonary arterial hypertension.

To investigate the expression of RAGE in human lung tissues from PAH patients
versus controls, RNA was extracted from human whole lung tissues, reverse transcribed
into cDNA, and a real-time quantitative PCR was performed. The relative RAGE (AGER)
mRNA expression was 2.1-fold higher in the whole lung tissues of end-stage IPAH patients
(n = 7) versus controls (LuTx donors; n = 9; p < 0.05; Figure 4A). RAGE protein expression
was elevated in the whole human lung tissues from end-stage IPAH patients (n = 5) vs.
controls (n = 4), but this difference did not reach statistical significance (Figure 4B, Figure S5).
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Figure 3. Plasma sRAGE has diagnostic accuracy in adult PAH comparable to the gold standard NTproBNP. Comparisons
of various PAH groups vs. control (A–C) and functional classes vs. control (D,E) illustrate that sRAGE has compara-
ble diagnostic accuracy to NTproBNP and even outperforms NTproBNP in the FC I vs. control comparison (D), i.e.,
AUCsRAGE > AUCNTproBNP. Abbreviations: AUC, area under the ROC curve; NTproBNP, N-terminal pro-brain natriuretic
peptide; ROC, receiver operating characteristic; sRAGE, soluble receptor for advanced glycation end products.
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Figure 4. RAGE mRNA and protein expression, and immunohistochemistry in human lung tissues from end-stage IPAH
patients versus controls. (A) The relative RAGE mRNA expression (AGER) normalized to GAPDH was significantly
increased in end-stage IPAH patients (n = 7) vs. controls (CON; n = 9). (B) RAGE protein expression was elevated in whole
human lung tissues of end-stage IPAH patients (n = 5) vs. controls (n = 4) measured by Western blot, but this difference
did not reach statistical significance. Exposure time: 3.0 s. Values are presented as mean ± SEM. Statistical test: unpaired
t-test with Welch’s correction, Mann–Whitney U. * p < 0.05. (C) Pulmonary artery of a female lung transplant donor lung
(H&E staining; scale bar, 100 µm). (D) Obliterated pulmonary artery of an end-stage 42-year-old female IPAH patient (H&E
staining; scale bar, 100 µm). (E) RAGE staining in a lung transplant donor lung of a female donor (scale bar, 100 µm). (F) The
representative image of RAGE staining in a 42-year-old female IPAH patient shows the boosted RAGE expression in the
intima and media (endothelial cells, smooth muscle cells, fibroblasts) of an obliterated distal pulmonary artery (concentric
hypertrophic lesion). Heightened RAGE expression is also evident in perivascular cells in the outer adventitia, likely
representing infiltrating proinflammatory cells, such as macrophages and lymphocytes (scale bar, 100 µm).
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2.5. Immunohistochemistry RAGE Signal Is Augmented in the Pulmonary Vasculature of Adult
IPAH Patients vs. Controls

The representative image of RAGE staining shows the boosted expression of RAGE
in the intima, media and adventitia of obliterated distal pulmonary arteries (concentric
hypertrophic lesion) and in perivascular cells in the outer adventitia of an end-stage IPAH
patient (Figure 4F). The RAGE-protein-expressing (RAGE+) intravascular cells are probably
mainly smooth muscle cells and fibroblasts, but also endothelial cells. The perivascular
cells likely represent proinflammatory cells that are not only located in the interalveolar
septa but are also infiltrating the adventitia of the concentric hypertrophic lesion.

2.6. Compartment-Specific Plasma Concentrations of NTproBNP, IL-6, and sRAGE in Children
with PH versus Non-PH Controls in the Systemic and Pulmonary Circulation

In order to test whether NTproBNP, IL-6, and sRAGE levels are elevated in children
with PH, immunoassays were performed in pediatric PH patients (n = 10) and non-PH
controls (n = 10). To identify differences in circulating sRAGE levels across the hyperten-
sive lung, sRAGE levels were determined in the superior vena cava (SVC), pulmonary
artery (PA), and ascending aorta (AAO). The mild elevation of NTproBNP plasma levels
in PH patients versus non-PH controls (SVC: 168.8 ± 50.8 ng/L vs. 79.6 ± 12.4 ng/L;
PA: 172.7 ± 53.7 ng/L vs. 81.7 ± 12.9 ng/L; AAO: 170.3 ± 51.3 ng/L vs. 75.8 ± 14.5 ng/L)
did not reach statistical significance (Figure 5A). We found a positive correlation of NT-
proBNP plasma concentrations (SVC) with a surrogate of disease severity, i.e., the ratio
of mean pulmonary to systemic arterial pressure (mPAP/mSAP; rho = 0.57, p = 0.0085;
Figure 5A), measured simultaneously with the blood draw. Except for four subjects, all
IL-6 measurements in children were below the clinically reported detection range (PH
vs. non-PH control: 2.5 ± 0.3 vs. 2.3 ± 0.2; data not shown). There was no statistically
significant difference in the plasma compartment-specific concentrations of sRAGE in the
SVC, PA, or AAO between PH-patients and non-PH controls (SVC: 5976 ± 1588 pg/mL
vs. 4807 ± 653 pg/mL; Figure 5B). It is notable that sRAGE plasma levels in pediatric
PH patients had a large variance (Figure 5B). We did not find a significant correlation of
plasma sRAGE concentrations with mPAP/mSAP in children (Figure 5B). We also did not
identify significantly different levels of sRAGE across the pulmonary circulation (AAO vs.
PA) and the transpulmonary log2 fold changes of sRAGE did not correlate with the mean
transpulmonary pressure gradient (mTPG; Figure 5C). The overall sRAGE levels were
higher in children than in adults, both in non-PH controls and in children with moderate
PH. To further analyze the role of aging in the context of sRAGE and PAH, we analyzed
plasma sRAGE with respect to age in children, and found that circulating sRAGE levels
tend to decrease with age (Supplementary Figure S6).

2.7. RAGE mRNA Expression in Explanted Lungs from Children with PAH and HPAH
(Heterozygous BMPR2 Mutation)

Whole human lung tissues were obtained from 10 children who underwent bilateral
LuTx for end-stage PAH (Table S3). Quantitative analysis of RAGE (AGER) mRNA in
children’s whole human lung tissues that were transplanted for either idiopathic PAH
or pulmonary veno-occlusive disease (PVOD), vs. children with heritable PAH (HPAH,
BMPR2 +/−mutation), revealed that the presence of a heterozygous BMPR2 gene mutation
(HPAH, n = 4) did not influence the relative RAGE mRNA expression in HPAH-lungs vs.
lungs from children that were transplanted for IPAH or PVOD/PAH (IPAH+PVOD n = 6;
Figure 6A).
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Figure 5. Compartment-specific blood plasma concentrations of NTproBNP and sRAGE in children with PH vs. non-PH
controls in the systemic and pulmonary circulation. (A,B) NTproBNP and sRAGE plasma concentrations in the SVC,
PA and AAO of pediatric patients with pulmonary hypertension (PH; n = 10) versus non-PH controls (CON; n = 10)
and correlations with mPAP/mSAP. For measurement of sRAGE, samples were diluted 1:4, followed by enzyme-linked
immunoassay (ELISA). (C) There were no different levels of sRAGE across the pulmonary circulation (AAO vs. PA) and
the transpulmonary log2 fold changes of sRAGE do not correlate with mTPG. Data are shown as mean ± SEM. Statistical
test: Mann–Whitney U test. Abbreviations: AAO, ascending aorta; CON, control; HPAH; heritable pulmonary arterial
hypertension; IPAH, idiopathic pulmonary arterial hypertension; mPAP, mean pulmonary artery pressure; mSAP, mean
systemic arterial pressure; mTPG, mean transpulmonary pressure gradient; PA, pulmonary artery; SVC, superior vena cava.

2.8. Strong Immunohistochemistry Signal for RAGE in the Intima and Media of Pulmonary
Vessels of Children with PAH/PVOD or Heritable PAH (BMPR2 +/−Mutation) Undergoing
Lung Transplantation

Although we did not find any differences in RAGE (AGER) transcripts between
heritable and non-heritable pediatric PAH, we did find heightened RAGE expression in
vascular and inflammatory cells in the intima, media and adventitia of obliterated pul-
monary arteries of both children with IPAH and PVOD and those with HPAH-BMPR2 +/−
(Figure 6B–E).
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Figure 6. RAGE mRNA expression and immunohistochemistry in children with end-stage PAH and HPAH (heterozygous
BMPR2 mutation). (A) The relative RAGE mRNA expression in children transplanted for idiopathic PAH or pulmonary
veno-occlusive disease (IPAH + PVOD = PAH, n = 6) vs. children with heritable PAH (HPAH, BMPR2 +/− mutation, n = 4)
shows that a heterozygous BMPR2 mutation does not influence the relative RAGE mRNA expression in whole lung tissues
from patients undergoing lung transplantation. Values are presented as mean ± SEM. Statistical test: Mann–Whitney U.
(B,C) H&E images of distal pulmonary arteries of an 11-year-old patient with PVOD (B) and a 5-year-old patient with
BMPR2 +/−mutation (HPAH; C; scale bar, 100 µm). (D,E). The corresponding images of RAGE staining show increased
RAGE expression in vascular and inflammatory cells in the intima, media and adventitia of pulmonary arteries in both
the 11-year-old patient with PVOD (D) and the 5-year-old patient with BMPR2 +/− mutation (E; scale bar, 100 µm).
Abbreviations: BMPR2, bone morphogenetic protein receptor 2; PAH, pulmonary arterial hypertension.
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3. Discussion

An ideal biomarker is not only disease-specific, correlating with disease severity,
progression and responsiveness to treatment, but is also non-invasive, reliable, valid and
applicable in clinical practice [8]. Given the complex etiology and pathophysiology of pul-
monary hypertension, a single biomarker (e.g., NTproBNP) can hardly be sufficient to fully
reflect the patients’ stages of their disease, disease etiology, clinical prognoses, and risks
of death. Recently, a multiple biomarker approach for PAH has been suggested [8,11,24],
indicating that novel biomarkers besides NTproBNP need to be studied and validated in
sufficiently sized cohorts.

Here, we report on the largest sRAGE biomarker study in human PAH (n = 120).
Plasma sRAGE, determined by enzyme-linked immunoassay, was 1.7-fold elevated in
female IPAH patients versus controls. This study is the first that examines sRAGE plasma
concentrations in adult patients with CTD-PAH, the second most common subtype in adult
PAH [25,26]. We demonstrate 1.9-fold higher sRAGE levels in CTD-PAH compared to
controls. sRAGE plasma concentrations in both adult IPAH and CTD-PAH correlated with
the WHO functional class as a surrogate for disease severity. By applying ROC analysis for
sRAGE versus the established heart failure biomarker NTproBNP, we show that sRAGE has
comparable diagnostic accuracy and even better performance in the distinction between
mild PAH (FC I) and healthy controls. These results point to the potential of sRAGE to
serve as a useful biomarker in adult PAH, in addition to NTproBNP. In contrast, plasma
sRAGE concentrations were similar between PH and non-PH, non-healthy controls, in a
small number of children undergoing cardiac catheterization.

The hallmarks of PAH are inflammation, proliferation, migration, and subsequent
vascular remodeling, as well as right ventricular hypertrophy and dilation due to increasing
pressure afterload [1–4]. In all these pathobiological processes of pulmonary vascular
disease (PVD), RAGE has been shown to be implicated, by means of preclinical studies and
human tissue analysis [18–21]. As briefly stated above, RAGE binds damage- and stress-
associated molecular patterns (DAMPs, “danger signals”) such as advanced glycation
end products (AGEs), high-mobility group box 1 (HMGB1) and S100 proteins [14,16].
Previously, we discovered a hypoxia-driven, likely DAMP-induced miR-146b-TRAF6-
IL-6/CCL2 (MCP-1) axis in the heart [27], by simulating PH-/RVH-associated coronary
hypoxia in a murine alveolar hypoxia model. In the lung tissues of IPAH patients, resistin,
the human homolog of RELMα (syn. HIMF, FIZZ1), is upregulated in macrophage-like
inflammatory cells, in response to hypoxic damage and inflammation [21]. As a key DAMP,
HMGB1 is released from endothelial cells (displaying dysfunction or apoptosis induced by
HIMF) and thus promotes pulmonary artery smooth muscle cell (PASMC) proliferation in
a RAGE-dependent manner [15]. RAGE exists as a membrane-bound full-length RAGE
(FL-RAGE) and as soluble RAGE that is either produced by alternative splicing (esRAGE)
or by shedding of the membrane-bound form, the so-called cleaved RAGE (cRAGE),
which is the most common soluble form [17]. Increased soluble RAGE concentrations—as
demonstrated here in adult IPAH and CTD-PAH patients’ blood plasma—are likely the
result of RAGE shedding into the circulation following the overstimulation of RAGE by
DAMPs [16,17]. Therefore, the increased circulating sRAGE concentrations in both IPAH
and CTD-PAH patients as demonstrated in our current study are likely strongly associated
with ongoing inflammation and vascular injury in adult PVD [16,17]. In a small clinical
study on circulating sRAGE in both PAH (n = 14) and chronic thromboembolic pulmonary
hypertension (CTEPH; n = 13), sRAGE plasma concentrations were increased compared
to controls (p < 0.001), and sRAGE levels decreased after balloon pulmonary angioplasty
in CTEPH patients (p < 0.001) [22]. In adult IPAH patients (n = 23), serum sRAGE levels
were elevated and positively correlated with the mean pulmonary arterial pressure (mPAP)
(r2 = 0.4542, p = 0.0004) [19], underlining the alterations and possible clinical importance of
sRAGE in human PAH.

Besides circulating sRAGE, we demonstrate 2.1-fold higher RAGE mRNA expression
and 1.9-fold higher protein expression in whole lung tissues from end-stage IPAH patients,
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when compared to control lungs. The magnitude of pulmonary sRAGE overexpression in
our PAH study is consistent with a proteomic analysis of lung tissue homogenates from
PAH patients (2.1-fold higher expression compared to controls) [28]. In addition, we located
the RAGE protein expression signal predominantly in the intima and media of pulmonary
arteries (SMC, myofibroblasts) and in inflammatory cells (lymphocytes, macrophages) in
the adventitia and perivascular interstitial space. These results are consistent with the
previously reported immunofluorescence findings that RAGE is expressed in PASMCs
isolated from PAH patients’ lungs but is not expressed in PASMCs from patients without
PAH [29].

In 2008, the nuclear hormone receptor and transcription factor, peroxisome proliferator-
activated receptor gamma (PPARγ), was discovered as an anti-proliferative therapeutic
target [30,31] that is activated by BMP2/BMPR2-signals in human PASMCs [31]. Subse-
quently, we identified PPARγ as the missing link between BMP2 and TGFβ1 pathways
and unraveled a novel non-canonical TGFβ1-Stat3-FoxO1 axis in human PASMCs [32,33].
We could then demonstrate that the PPARγ agonist pioglitazone reverses PAH and pre-
vents RV failure in SU5416/hypoxia (SuHx)-exposed rats [34]. Others showed that RAGE
activation, triggered by S100A4, decreased BMPR2-PPARγ signaling in PASMCs from
PAH patients through the activation of STAT3, and thus induced PASMC proliferation
and resistance to apoptosis [18,35]. Moreover, the RAGE blockade in human PASMC
suppressed the expression of pro-fibrotic extracellular matrix (ECM) proteins (collagen
1, tenascin-C, fibronectin) via the downregulation of TGFβ1 [19]. In both monocrotaline
(MCT)-injected and SU5416/hypoxia-exposed rats, RAGE inhibition decreased PASMC pro-
liferation and pulmonary artery medial thickness, as well as the mean pulmonary arterial
pressure (mPAP) and RV hypertrophy [18]. A model of interdependent S100A4/Mts1-
RAGE and BMP2/BMPR2 signaling has been proposed for human PASMC migration [36].
Exaggerated RAGE signaling leads to ERK phosphorylation and the induction of matrix
metalloproteinase-2 (MMP2), and presumably the pathological migration of PASMCs in
PVD [36]. Together with inositol monophosphatase 1 (IMPA1) as an interacting partner,
RAGE appears to be actively involved in the vascular injury, cell proliferation and glycolytic
shift that are characteristic of PAH [20]. Since the reported reduction of RV mass with
RAGE-inhibition was also associated with decreased RV pressure afterload [18], it is unclear
whether the RAGE-blockade can have a direct effect on RV mass, volume, and function.

The reason for the similar sRAGE plasma concentrations in pediatric PH patients
versus non-PH controls in our study may be multifactorial—from the small number of
children enrolled, the non-healthy controls used as comparators, to further factors influ-
encing the levels of circulating sRAGE, such as age, nutrition, medication, years since
diagnosis/disease state, and the degree of inflammation. Moreover, the children had IL-6
levels below the clinically reported detection range. Given that RAGE is implicated in
many proinflammatory signaling pathways [21], the degree of inflammation, as judged
by circulating proinflammatory markers, appears to be less pronounced in children with
mild to moderate PAH than in adults with IPAH or CTD-PAH. Overall, plasma sRAGE
levels were higher in children than in adults, both in children with left ventricular outflow
tract obstruction (LVOTO; non-PH controls) and in children with moderate PH. There are
multiple possible explanations for this difference. In adults, EDTA blood was collected
via peripheral venipuncture, whereas EDTA blood in children was collected during car-
diac catheterization in the SVC, PA and AAO. Given that RAGE is highly expressed in
the lungs [37], the reason for the higher sRAGE levels in children might possibly be the
anatomically closer blood draw next to the lungs (pulmonary artery, aorta). However, the
fact that the pediatric SVC sRAGE levels were also more than 2-fold higher in children
than the peripherally venous sRAGE in adults argues against this speculation. Importantly,
in the adult cohort, healthy adults served as control. In the pediatric cohort, however,
patients with repaired/residual congenital heart disease (LVOTO or s/p double aortic arch)
served as non-PH controls. Although we did show that aging in adults did not influence
the sRAGE plasma levels, it is possible that sRAGE concentrations are generally higher in
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children compared to adults, indicating that sRAGE is developmentally regulated. Others
found that sRAGE levels, measured in the bronchoalveolar lavage fluid (BALF) of children
but not in plasma, were inversely correlated to age [38]. We also found a trend toward
lower sRAGE plasma levels regarding aging in children, getting closer to the sRAGE levels
measured in adults.

Our study has several limitations, most of which are inherent to biomarker studies in
a rare disease, including the lack of invasive hemodynamics in adult PAH patients (n = 120)
and the small number of PH patients in the pediatric cohort (n = 10). In addition, the
lack of lung tissues and invasive hemodynamics from healthy children make it difficult
to compare the sRAGE plasma and tissue expression levels of pediatric PH patients with
controls. Larger prospective studies are needed to investigate the role of circulating sRAGE
and cardiopulmonary RAGE expression and signaling in children.

Taken together, we report the largest sRAGE biomarker study in human adult PAH
(n = 120), and the first determination of plasma sRAGE in CTD-PAH. We identify sRAGE
as a sensitive biomarker in adult PAH, with comparable diagnostic accuracy to the estab-
lished heart failure biomarker NTproBNP, and even better performance in the distinction
between mild PAH and controls. Therefore, we suggest circulating sRAGE as an additional
biomarker for use in clinical practice to diagnose and monitor adult PAH for response to
therapy, disease progression, and early intervention.

4. Materials and Methods
4.1. Clinical Study Design

Adult PAH cohort: controls and PAH disease groups were well matched in terms of
age, gender and BMI. The BMI varied only mildly, between 26.7 (IPAH), 27.7 (CTD-PAH)
and 27.8 (controls; Table 1). A BMI > 25 in the United States classifies both the controls
and PAH patients on average to be overweight (BMI 25.0–29.9). First-degree relatives
and adult patients with sleep apnea, liver disease, chronic obstructive pulmonary disease
(COPD), pulmonary fibrosis and congenital heart disease were excluded. We excluded
one female patient due to the contradictory result of an NTproBNP level of 2565 ng/L
and subjective WHO Functional Class I. A questionnaire concerning demographics and
medications was completed by each subject. The WHO FC classification was a patient
self-assessment during the patient interview at the PHA research conferences.

Pediatric cohort: during cardiac catheterization, EDTA blood was collected near-
simultaneously at three anatomic blood draw sites, together with pressure recordings and
blood gas analysis (SpO2): superior vena cava (SVC), pulmonary artery (PA) and ascending
aorta (AAO), as previously described [39,40]. Patients (PH, non-PH controls) with any
intra- or extracardiac shunt were excluded. Written informed consent was obtained from
the legal caregivers of each study subject. Pulmonary hypertension was defined according
to the recent World Symposium on Pulmonary Hypertension (WSPH) in Nice (2018):
mPAP > 20 mmHg [41,42].

4.2. Biomarker Assays

After the blood draw, EDTA whole blood samples were immediately processed for
plasma by centrifugation at 1300× g for 10 min at room temperature. Plasma was then
aliquoted and stored at −80 ◦C until use. N-terminal pro B-type natriuretic peptide
(NTproBNP) and Interleukin-6 (IL-6) levels were measured using the Cobas e 801 im-
munoassay analyzer (Roche Diagnostics, Mannheim, Germany, NTproBNP: #07027664190;
IL-6: #07027532190) that is in routine clinical use. The soluble receptor for advanced gly-
cation end products (sRAGE) levels were determined in adult subjects (no dilution) and
pediatric subjects (1:4 dilution) using the Human RAGE Immunoassay (ELISA) (#DRG00,
R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s instructions. Stan-
dard curves were determined using the nonlinear least squares regression analysis (the
nls function) in R and the sample concentration values were calculated based on the corre-
sponding standard curves. In the adult cohort, 19 measurements were above the detection
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range of the standard curve, so concentrations were determined by nonlinear least squares
regression analysis. A detailed description of methods is provided as Supplementary
Material online.

4.3. RNA Extraction and Quantitative Real-Time PCR

Around 50–75 mg of whole human lung tissues were pre-treated with RNAlater-
ICE Solution (Invitrogen, Life Technologies, Carlsbad, CA, USA, AM7030) and processed
with a Polytron tissue homogenizer. RNA was then extracted according to the TRIzol
protocol (TRIzol, Life Technologies, Carlsbad, CA, USA). Using the Nanodrop 2000c
(Thermo Scientific), RNA concentrations were determined spectrophotometrically, and all
samples underwent RNA quality control (RIN > 6). To generate the first-strand cDNA, the
SuperScript III First-Strand Synthesis SuperMix for qRT-PCR was used according to the
manufacturer’s instructions (Invitrogen by Life Technologies, Carlsbad, CA, USA, #11752).
The quantitative PCR was run in triplicates using the TaqMan Universal Master Mix II
(Applied Biosystems, Thermo Scientific, Vilnius, Lithuania, #4440040). TaqMan primers
for AGER (Life Technologies, Carlsbad, CA, USA, Cat#Hs00542584_g1) and GAPDH
(housekeeper; Life Technologies, Carlsbad, CA, USA, Cat#Hs02758991_g1) were used.

4.4. Protein Extraction and Western Blot

100–150 mg of whole human lung tissue was added to lysis buffer (Complete Lysis-M,
EDTA-free, Roche Diagnostics, Mannheim, Germany, #04719964001), supplemented with
anti-phosphatase and anti-protease inhibitors (PhosphoSTOP EASYpack, Roche Diagnos-
tics, Mannheim, Germany, #04906845001). The tissues were homogenized in lysis buffer
and hemolysis tubes were spun down for 3 min at 4000× g rpm (4 ◦C). The lysate was
collected in 1.5 mL tubes and then centrifuged at 12,000× g for 10 min. The supernatant was
stored at −80 ◦C until use. Protein concentrations were determined using the Pierce BCA
Protein Assay Kit (Thermo Scientific, Rockford, IL, USA, #23225). For analysis, 40 µg of
proteins were loaded into each lane of a NuPAGE 4–12% Bis-Tris Gel (Invitrogen by Thermo
Fisher Scientific, Life Technologies Corporation, Carlsbad, CA, USA, #NP0335BOX). Gel
electrophoresis was performed under reducing conditions. The membrane was blocked
for one hour at room temperature with 5% non-fat milk in TBS containing 0.1% Tween,
followed by incubating with 2 µg/mL of mouse anti-human RAGE monoclonal antibody
(R&D Systems, Minneapolis, MN, USA, Cat #MAB1145) at 4 ◦C overnight in 5% non-fat
milk in TBS-Tween. The next day, the membrane was washed with TBS-Tween and incu-
bated with secondary HRP-linked anti-mouse antibody (Cell Signaling, Danvers, MA, USA,
#7076, dilution 1:1000) at room temperature for one hour. SuperSignal West Pico PLUS
Chemiluminescent Substrate (Thermo Scientific, Rockford, IL, USA, #34577) was used to
visualize the binding of the secondary HRP-antibody. The blot was then stripped with
Restore PLUS Western Blot Stripping Buffer (Thermo Scientific, Rockford, IL, USA, #46430),
washed with TBS-T and incubated with GAPDH as a loading control (Santa Cruz Biotech-
nology, Dallas, TX, USA, sc-25778, dilution 1:1000) at 4 ◦C overnight. The next day, the
membrane was washed with TBS-Tween and incubated with secondary HRP-linked anti-
rabbit antibody (Cell Signaling, Danvers, MA, USA, #7074, dilution 1:1000). The Western
blots were analyzed with ImageJ (Fiji), and the optical density values were normalized
to GAPDH.

4.5. Immunohistochemistry

For immunohistochemistry, human lung sections were obtained from IPAH patients,
HPAH patients and controls (LuTx donor lungs). The lung sections were deparaffinized
and rehydrated. Antigen retrieval was performed by boiling the slides in antigen retrieval
buffer (ab93678, abcam) at 96 ◦C in a water bath for 20 min. Peroxidase was blocked by
incubating the slides with 3% hydrogen peroxide in H2O for 20 min. The slides were then
washed with PBS containing 0.05% Tween 20 (PBS-T) and blocked for one hour with PBS-T
containing 5% Normal Donkey Serum. Tissues were incubated with primary antibody
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against RAGE (Santa Cruz Biotechnology, Dallas, TX, USA, sc-365154) diluted in PBS-T
containing 5% Normal Donkey Serum (dilution 1:50) at 4 ◦C overnight. The next day, the
slides were washed with PBS-T (0.05% Tween) and incubated with secondary antibody
(Santa Cruz Biotechnology, Dallas, TX, USA, sc-516102) diluted in PBS-T containing 5%
Normal Donkey Serum (dilution 1:50) for one hour at room temperature. The slides were
again washed with PBS-T (0.05% Tween) and 3′,3′-diaminobenzidine (DAB) was used as
HRP-sensitive substrate solution. The lung sections were counterstained with hematoxylin
and were finally dehydrated before mounting with DPX.

4.6. Statistical Analysis

The statistical analysis was performed in the GraphPad Prism software (Version 6.0)
and in R. For transpulmonary gradient analysis, we used the mixed-effects models with
log2 of fold change (FC) between two catheterization sites (AAO vs. PA) as the dependent
variable, the groups (PAH or Control) as an independent variable, and each patient as a ran-
dom effect (log2(FC)~Group, random = ~1|Patient). Given a relatively small sample size,
we set the parameter sigma to 10, to remove the most improbable values. The generated
models were evaluated using the Anova function from the car R package, and the p-values
generated by the Wald chi-square test (using the car R package). Normal distribution was
tested with D’Agostino and Pearson omnibus, Shapiro–Wilk, and Kolmogorov–Smirnov
normality tests. For two-group comparisons, we used a two-tailed Welch’s t-test if the data
passed all three normality tests, or the Mann–Whitney U test otherwise. The three-group
comparisons were performed with the Kruskal–Wallis test, corrected for multiple testing
by Dunn’s test. Data are presented as the mean ± standard error of the mean (SEM) or as
the median with interquartile range (IQR). p < 0.05 was considered significant. Receiver
operating characteristic (ROC) graphs were created using the plotROC R package. The
corresponding area under the curve (AUC) was calculated using the pROC R package. For
correlation analysis, the normal distribution of the two variables was tested by performing
the Shapiro–Wilk test, using the mshapiro.test function from the mvnormtest R library. De-
pending on the outcome of this normality test, either the Pearson or Spearman correlation
test was performed.
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Abbreviations

6MWD six-minute walk distance
AAO ascending aorta
AUC area under the ROC curve
BMI body mass index
BMPR2 bone morphogenetic protein receptor 2
CI cardiac index
CON control
CTD-PAH connective tissue disease-associated pulmonary arterial hypertension
CTEPH chronic thromboembolic pulmonary hypertension
DAMP damage-associated molecular pattern
EPPVDN European Pediatric Pulmonary Vascular Disease Network
FC functional class
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
HMGB1 high-mobility group box 1
HPAH heritable pulmonary arterial hypertension
IL-6 interleukin-6
IMPA1 inositol monophosphatase 1
IPAH idiopathic pulmonary arterial hypertension
LV left ventricle
LuTx lung transplantation
LVOTO left ventricular outflow tract obstruction
mPAP mean pulmonary arterial pressure
mSAP mean systemic arterial pressure
mTPG mean transpulmonary pressure gradient
NTproBNP N-terminal pro-brain natriuretic peptide
PA pulmonary artery
PAH pulmonary arterial hypertension
PASMC pulmonary artery smooth muscle cells
PCH pulmonary capillary hemangiomatosis
PH pulmonary hypertension
PHA Pulmonary Hypertension Association
PPARγ peroxisome proliferator-activated receptor gamma
PRR pattern recognition receptor
PVD pulmonary vascular disease
PVOD pulmonary veno-occlusive disease
PVR pulmonary vascular resistance
ROC receiver operating characteristic
RV right ventricle
RVH right ventricular hypertrophy
RVD right ventricular dysfunction
SMC smooth muscle cells
sRAGE soluble receptor for advanced glycation end products
SVC superior vena cava
WHO FC World Health Organization functional class
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