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Rare variant contribution to human disease 
in 281,104 UK Biobank exomes

Quanli Wang1,20, Ryan S. Dhindsa1,20, Keren Carss2,20, Andrew R. Harper2, Abhishek Nag2, 
Ioanna Tachmazidou2, Dimitrios Vitsios2, Sri V. V. Deevi2, Alex Mackay3, Daniel Muthas3, 
Michael Hühn3, Susan Monkley3, Henric Olsson3, AstraZeneca Genomics Initiative*, 
Sebastian Wasilewski2, Katherine R. Smith2, Ruth March4, Adam Platt5, Carolina Haefliger2 & 
Slavé Petrovski2,6,7 ✉

Genome-wide association studies have uncovered thousands of common variants 
associated with human disease, but the contribution of rare variants to common 
disease remains relatively unexplored. The UK Biobank contains detailed phenotypic 
data linked to medical records for approximately 500,000 participants, offering an 
unprecedented opportunity to evaluate the effect of rare variation on a broad 
collection of traits1,2. Here we study the relationships between rare protein-coding 
variants and 17,361 binary and 1,419 quantitative phenotypes using exome sequencing 
data from 269,171 UK Biobank participants of European ancestry. Gene-based 
collapsing analyses revealed 1,703 statistically significant gene–phenotype 
associations for binary traits, with a median odds ratio of 12.4. Furthermore, 83% of 
these associations were undetectable via single-variant association tests, 
emphasizing the power of gene-based collapsing analysis in the setting of high allelic 
heterogeneity. Gene–phenotype associations were also significantly enriched for 
loss-of-function-mediated traits and approved drug targets. Finally, we performed 
ancestry-specific and pan-ancestry collapsing analyses using exome sequencing data 
from 11,933 UK Biobank participants of African, East Asian or South Asian ancestry. 
Our results highlight a significant contribution of rare variants to common disease. 
Summary statistics are publicly available through an interactive portal  
(http://azphewas.com/).

The identification of genetic variants that contribute to human dis-
ease has facilitated the development of highly efficacious and safe 
therapeutic agents3–5. Drug candidates targeting genes with evidence 
of human disease causality are in fact substantially more likely to be 
approved6,7. Exome sequencing has revolutionized our understanding 
of rare diseases, uncovering causal rare variants for hundreds of these 
disorders. However, most efforts for complex human diseases and 
traits have relied on genome-wide association studies (GWAS), which 
focus on common variants. Compared with rare variants, common 
variants tend to confer smaller effect sizes and can be difficult to map 
to causal genes8.

The UK Biobank (UKB) offers an unprecedented opportunity to assess 
the contribution of both common and rare genetic variation to thou-
sands of human traits and diseases1,2,9–13. Testing for the association 
between rare variants and phenotypes is typically performed at the 
variant or gene level. Gene-level association tests include collapsing 
analyses and burden tests, among others14–17. Collapsing analyses are 
particularly well suited to detect genetic risk for phenotypes driven 

by an allelic series16–23 and can provide a clear link between the causal 
gene and phenotype. Applications of these methods to the first 50,000 
UKB exome sequences have indicated an important role of rare vari-
ation in complex disease but have also highlighted a need for larger 
sample sizes10,11.

In this study, we performed a phenome-wide association study 
(PheWAS) using exome sequence data from 269,171 UKB participants of 
European ancestry to evaluate the association between protein-coding 
variants and 17,361 binary and 1,419 quantitative phenotypes. We first 
report the diversity of phenotypes and sequence variation present in 
this cohort. We then performed variant-level and gene-level associa-
tion tests to identify risk factors across the allele frequency spectrum. 
Finally, we performed additional collapsing analyses in 11,933 indi-
viduals of African, East Asian or South Asian genetic ancestry. Using 
these results, we implemented a pan-ancestry analysis of 281,104 UKB 
participants. Altogether, this study comprehensively examines the con-
tribution of rare protein-coding variation to the genetic architecture 
of complex human diseases and quantitative traits.
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Cohort characteristics
We processed 998 TB of raw exome sequence data from 302,355 UKB 
participants through a cloud-based bioinformatics pipeline (Methods).  
Through stringent quality control, we removed samples with low 
sequencing quality and from closely related individuals (Methods). 
To harmonize variable categorization modes, scaling, and follow-up 
responses inherent to the phenotype data, we developed PEACOK,  
a modification of the PHESANT package24 (Methods).

We considered 17,361 binary traits and 1,419 quantitative traits, which 
we categorized into 22 ICD-10-based chapters (Extended Data Fig. 1a, b,  
Supplementary Table 1). We also computed the union of cases across 
similar phenotypes, resulting in 4,911 union phenotypes (Methods; 
Supplementary Table 1). The median number of European cases per 
binary union phenotype was 191 and the median number of individuals 
tested for quantitative traits was 13,782 (Extended Data Fig. 1c, d). The 
median number of binary union traits was 25 (Extended Data Fig. 1e).

Approximately 95% of the sequenced UKB participants are of Euro-
pean ancestry (Extended Data Fig. 1f). This affects health-care equity, 
as the resolution to evaluate variants across the allele frequency 
spectrum is proportional to the number of sequenced individuals in 
a population. For example, individuals from non-European ancestries 
showed a substantially higher number of rare (minor allele frequency 
(MAF) < 0.005%), non-synonymous variants in Online Mendelian 
Inheritance in Man (OMIM) disease-associated genes (Extended Data 
Fig. 1g). This demonstrates a reduced resolution to accurately estimate 
lower variant frequencies in non-European populations, as previously 
observed25.

Identifying protein-truncating variants
Protein-truncating variants (PTVs), which often inactivate proteins, 
provide direct insight into human biology and disease mechanisms26,27. 
Identifying PTVs that are protective against disease can also offer direct 
human validation of potential therapeutic targets5,28. Among 287,917 
participants of any ancestry, we observed that 96% of 18,762 studied 
genes had at least one heterozygous PTV carrier, 46% had at least one 
compound heterozygous or homozygous/hemizygous PTV carrier, and 
20% had at least one homozygous/hemizygous PTV carrier (Fig. 1a). 
Only 884 genes (4.7%) had PTVs with a MAF > 0.5% (Fig. 1a), illustrat-
ing the power of exome sequencing to detect this important form of 
variation. Although some have been implicated in human diseases, 
most common PTVs occur in genes that are less relevant to disease, 
such as olfactory receptor genes29. Focusing on rarer PTVs (MAF < 1%), 
we observed that 95% of genes had at least one heterozygous PTV car-
rier, 42% had at least one compound heterozygous or homozygous/
hemizygous PTV carrier, and only 15% had at least one homozygous/
hemizygous PTV carrier (Extended Data Fig. 2a).

Variant-level associations
Exome sequencing enables association tests between phenotypes 
and protein-coding variants across the allele frequency spectrum. 
We performed a variant-level exome-wide association study (ExWAS) 
to test for associations between all 18,780 phenotypes and 2,108,983 
variants observed in at least six participants of European ancestry (that 
is, MAF > 0.001%). We used three genetic models (Methods), equating 
to 118.8 billion tests. We used a two-sided Fisher’s exact test for binary 
traits and linear regression for quantitative traits. Using a P value thresh-
old of P ≤ 2 × 10−9 (Methods) and excluding the MHC region (chromo-
some 6: 25–35 Mb), we identified 5,193 significant genotype–phenotype 
associations for binary traits and 41,754 associations for quantitative 
traits (Supplementary Table 2, 3).

Many of the significant ExWAS signals arose from rare variants 
(MAF < 0.5%) (Fig. 1b). The rarest significant variant was a frameshift 

variant in haemoglobin subunit-β (HBB) associated with thalassaemia 
(cohort MAF of 0.0013%) (Supplementary Table 3). In the dominant 
model, rare variants accounted for 26% of statistically significant asso-
ciations. Furthermore, 21% (227 of 1,088) of binary trait associations 
and 12% (1,330 of 10,770) of quantitative trait associations identified 
using the recessive model were not detected using the dominant 
model. Associations with more common variants have previously  
been published9,12.

The effect sizes of significant rare variant associations were substan-
tially higher than those of common variants (Wilcoxon P = 1.1 × 10−57) 
(Fig. 1c). While some significant variants are probably in linkage with 
nearby causal variants, associated PTVs and missense variants often 
represent the causal variant themselves26. Notably, associations for 13% 
(3 of 24) and 29% (96 of 326) of the significant PTVs and missense vari-
ants, respectively, have not been reported in FinnGen release 5, OMIM, 
ClinVar or the GWAS catalogue30–32 (Fig. 1d, Supplementary Table 4, 5).

We explored how often significant variant-level associations between 
different variants in the same gene have opposing directions of effect 
on a phenotype. Among quantitative trait associations with at least five 
significant non-synonymous variants (MAF < 0.1%) in a particular gene, 
at least 80% of variants had the same direction of effect (Extended Data 
Fig. 2b). This is in contrast to disease-associated non-coding variants, 
which can variably affect the direction of gene expression33.
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Fig. 1 | Summary of variant-level exome-wide association study results.  
a, The number of genes ( y axis) with at least the number of PTV carriers (x axis) 
in 287,917 UKB participants of any ancestry. The dashed line corresponds to the 
minimum number of carriers typically required to detect individual PTVs with a 
MAF > 0.5%, that is, 2,873 carriers. Colours represent heterozygous (het.), 
putative compound heterozygous (comp. het.) and homozygous/hemizygous 
carriers (recessive). b, The MAF distribution of 632 genome-wide significant 
ExWAS variants associated with binary traits. The inset plot represents the 
same data limited to variants with MAF < 0.5%. c, The distribution of effect sizes 
for 509 common versus 123 rare (MAF < 0.5%) significant ExWAS variants. The 
plots in b and c include variants with the largest effect sizes achieved per gene. 
d, Percentage of ExWAS study-wide significant PTVs (n = 24) and missense 
variants (n = 326) that reflect known or novel gene–phenotype relationships. 
Variants capturing known gene–phenotype relationships were partitioned 
into those validated in (1) at least one but not all, or (2) all four publicly available 
databases: FinnGen release r5, OMIM, the GWAS Catalog (including GWAS 
Catalog variants within a 50-kb flanking sequence either side of the index 
variant), and the ClinVar pathogenic/likely pathogenic variant collection.
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We compared the results of our Fisher’s exact tests to regression-based 
frameworks. While an exact test is robust for rarer variants, regression 
methods can incorporate covariates to help to mitigate confounders 
and are recommended when careful control for confounding cannot 
be ensured. We performed single-variant association tests across all 
autosomal variants for 324 Chapter IX binary phenotypes (diseases 
of the circulatory system; Supplementary Table 29) using SAIGE SPA12 
and REGENIE 2.0.2 (ref. 34), including sex, age, sequencing batch and 
ten principal components as covariates (Supplementary Methods). 
Fisher’s exact Phred scores (−10 × log10(P values)) were strongly cor-
related with those from SAIGE SPA (Pearson’s r = 0.95) and REGENIE 
2.0.2 (Pearson’s r = 0.94). Fisher’s exact P value statistics were also more 
conservative for lower frequency variants (MAF ≤ 1%) (Supplementary 
Table 6). Correlation was higher for signals with a P < 1 × 10−8 in either 
Fisher’s exact test or SAIGE SPA (Pearson’s r = 0.99) and Fisher’s exact 
test or REGENIE 2.0.2 (Pearson’s r = 0.99) (Supplementary Figs. 1, 2, 
Supplementary Table 6). The median lambda inflation factor λGC for the 
Fisher’s exact test was 1.0006 (range: 0.9675–1.0698) compared with a 
median λGC of 0.9953 (range: 0.9372–1.0940) for SAIGE SPA and a median 
λGC of 1.0001 (range: 0.9439–1.0602) for REGENIE 2.0.2 (Supplementary 

Table 7). Finally, we found that the Fisher’s exact test was the most com-
putationally efficient of the three methods (Supplementary Table 6). 
In this setting, the Fisher’s exact test offered a statistically robust and 
efficient alternative to regression-based approaches, but required care-
ful quality control, case–control harmonization and ancestry pruning 
before association testing.

Rare variant collapsing analyses
We also performed gene-level association tests using collapsing analy-
ses. In this approach, the proportion of cases with a qualifying variant 
was compared with the proportion of controls with a qualifying variant 
in each gene16–22. We used 12 different sets of qualifying variant filters 
(models) to test the association between 18,762 genes and 18,780 phe-
notypes (Methods; Extended Data Table 1), equating to 4.2 billion tests. 
The models included ten dominant models, one recessive model and 
one synonymous variant model that served as an empirical negative 
control (Methods).

Defining a significance threshold posed a challenge due to strong 
correlation between the 12 models and among the assessed phenotypes. 
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Fig. 2 | Summary of gene-level collapsing analysis results.  
a, Gene–phenotype associations for binary traits. For gene–phenotype 
associations that appear in multiple collapsing models, we display only 
the association with the strongest effect size. The dashed line represents the 
genome-wide significant P value threshold (2 × 10−9). The y axis is capped at −
log10(P) = 50 and only associations with P < 10−5 were plotted (n = 94,208).  
b, Enrichment of FDA-approved drug targets6,46 among significant binary 
traits, quantitative traits, OMIM genes and GWAS signals. P values were 
generated via two-sided Fisher’s exact test (*P < 10−5, **P < 10−20, ***P < 10−70). 
Exact statistics: binary odds ratio (OR) = 7.38, 95% CI: 3.71–13.59, P = 1.5 × 10−7; 
quantitative OR = 3.71, 95% CI: 2.28–5.76, P = 4.5 × 10−7; OMIM OR = 5.95, 95% CI: 

4.90–7.23, P = 1.1 × 10−75; GWAS OR = 2.68, 95% CI: 2.12–3.32, P = 3.6 × 10−23). Error 
bars represent 95% CIs. Contingency tables were created using each of the 
binary (n = 195), quantitative (n = 395), OMIM (n = 3,875) and GWAS (n = 10,692) 
categories, alongside approved targets from Informa Pharmaprojects 
(n = 463). P values were generated via a two-tailed Fisher’s exact test. c, Effect 
sizes for select gene associations per disease area. Genes with the highest OR 
for a chapter or with OR > 100 are labelled. d, Illustration of large effect gene–
phenotype associations for select disease-related quantitative traits. FEV1/
FVC, forced expiratory volume in 1 s/forced vital capacity ratio; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein. Dashed line 
corresponds to a beta of 0.
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To avoid false claims, we defined two null distributions: an empirical 
null distribution using the synonymous collapsing model and an n-of-1 
permutation-based null distribution. These approaches independently 
converged on a study-wide significance threshold of P ≤ 2 × 10−9 (Meth-
ods).

We identified 936 significant gene–phenotype relationships for 
binary traits and 767 for quantitative traits (Fig. 2a, Extended Data 
Fig. 3, Supplementary Table 8). These associations were enriched for 
FDA-approved drugs (binary odds ratio (OR): 7.38 (95% CI: 3.71–13.59), 
P = 1.46 × 10−7; quantitative OR: 3.71 (95% CI: 2.23–5.74), P = 7.04 × 10−9) 
(Fig. 2b, Extended Data Fig. 4; Methods) and spanned most disease 
areas and disease-relevant biomarkers (Fig. 2c, d). Many signals were 
of large effect, with a median OR of 12.4 for binary traits and a median 
absolute beta of 0.35 for quantitative traits. We also detected several 
significant genes with putatively protective PTVs, including APOB and 
PCSK9 (Supplementary Table 9). The median genomic inflation factor 
(λ) was 1.002 for binary traits (range: 0.71–1.35) and 1.010 for quanti-
tative traits (range: 0.88–1.37) (Extended Data Fig. 5a). Only 0.76% of 
the associations from the 191,037 non-recessive collapsing analyses 
were outside the 0.9–1.1 λ range. Our tests were thus highly robust to 
systematic bias and other sources of inflation. Collectively, these find-
ings provide biological insight into common diseases and substrates 
for future therapeutic development opportunities.

Collapsing models focused on PTVs explained 80% of binary and 
55% of quantitative associations. Remaining signals emerged from 
models that included missense variants. While these results confirm 
the importance of PTVs, they also emphasize the role of other forms 
of variation in human disease. We found that using the missense toler-
ance ratio (MTR) to retain missense variants only in constrained genic 
sub-regions improved the signal-to-noise ratio. Specifically, 15% (133 of 
878) of significant relationships detected via the three MTR-informed 
models were not detected in analogous models that did not incorporate 
MTR35. Moreover, for phenotype associations where both MTR and 
non-MTR versions of a model achieved significance, effect sizes were 
significantly higher in the MTR-informed versions (Mann–Whitney test 
P = 0.006; Supplementary Fig. 3). Thus, MTR appears to effectively pri-
oritize putatively functional missense variation in collapsing analyses 
of complex disease.

Most binary phenotype associations were supported by OMIM or 
were annotated as pathogenic/likely pathogenic in ClinVar (88.6%), 
indicating that we robustly captured high-confidence signals (Supple-
mentary Table 10). However, we also identified rare variant associations 
with phenotypes beyond those reported in OMIM (Supplementary 
Table 10). For example, 12.1% of the European cohort carried at least 

one of the 373 distinct filaggrin (FLG) PTVs identified. These individu-
als had a significantly higher risk of well-known associations, includ-
ing dermatitis (P = 5.1 × 10−95; OR: 1.96 (95% CI: 1.84–2.08)) and asthma 
(P = 3.1 × 10−32; OR: 1.24 (95% CI: 1.19–1.28))36, but were also at risk of 
under-recognized associations, such as melanoma (P = 4.7 × 10−13; OR: 
1.21 (95% CI: 1.15–1.27))37 and basal cell carcinoma (P = 9.9 × 10−10; OR: 1.19 
(95% CI: 1.12–1.25))38. Concomitant increases in the levels of vitamin D 
(P = 2.3 × 10−131; β: 0.15 (95% CI: 0.14–0.16))39 suggest that the increased 
risk of skin cancer may be attributable to increased sensitivity to ultra-
violet B radiation. This interrogation offers one example of how this 
phenome-wide resource can uncover a wide spectrum of phenotypes 
associated with rare variation in any protein-coding gene.

Although our pipeline was tuned for detecting germline variants, we 
identified seven genes that were significantly associated with haema-
tological malignancies, driven by qualifying variants that appeared to 
be somatic (Supplementary Tables 11, 12, Supplementary Fig. 4). This 
supports the potential of blood-based sequencing to yield insight into 
blood cancer genomes via incidentally detected somatic variants40.

Compared with two smaller UKB PheWAS studies10,11, we observed a 
1.2-fold and 5.6-fold increase, respectively, in statistically significant 
gene–trait associations using the same first tranche of 50K UKB data, 
attributable to both the depth of outcomes studied and differences 
in methodologies (Extended Data Fig. 5b). Increasing the cohort size 
from 50,000 to the current full dataset led to an 18-fold increase in 
statistically significant gene–trait associations using our collapsing 
method (Extended Data Fig. 5c). Incorporating updated phenotypic 
data from the July 2020 release resulted in a 24-fold increase in signifi-
cant associations compared with the 50K data (Extended Data Fig. 5c).

Among significant collapsing analysis signals, only 17% (125 of 724) 
of binary associations and 58% (446 of 767) of quantitative associations 
were detectable via ExWAS (Supplementary Table 13A). Conversely, 
most rare PTV ExWAS associations were detected via collapsing analy-
ses, although the rates were lower for rare missense variants (Supple-
mentary Table 13B). Thus, collapsing analyses can identify rare variant 
associations that are currently undetectable via single-variant-based 
approaches (Supplementary Table 14).

Pan-ancestry collapsing analysis
The inclusion of individuals from non-European ancestries in genetic 
analyses is crucial for health-care equity and genetic discovery41. 
Therefore, we performed additional collapsing analyses for each major 
non-European ancestral group (that is, South Asian (n = 5,714), African 
(n = 4,744) and East Asian (n = 1,475)). We limited each PheWAS to binary 
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Fig. 3 | Pan-ancestry collapsing analysis. a, b, The change in Phred scores 
between the pan-ancestry and European-only analyses for 46,769 
binary associations (a) and 39,541 quantitative associations (b) stratified by 
chapter. For gene–phenotype associations that appear in multiple collapsing 
models, we display only those with the lowest P value. The green dots indicate 

associations that were not significant in the European analysis but were 
significant in the combined analysis. The orange dots represent associations 
that were originally significant in the European-only analysis but became not 
significant in the combined analysis. In both figures, the y axis is capped at 
ΔPhred = 40 (equivalent to a P value change of 0.0001).
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traits with at least five cases in the population and quantitative traits 
with at least five qualifying variants carriers (Supplementary Table 1).

The only study-wide significant (P ≤ 2 × 10−9) binary trait association 
among the non-European populations was between PTVs in HBB and 
thalassaemia in individuals of South Asian ancestry (P = 2.7 × 10−46; 
OR = 176.4 (95% CI: 84.1–369.7)) (Supplementary Table 15). We next 
applied the Cochran–Mantel–Haenszel test to combine the results 
of the binary trait collapsing analysis across all four studied ances-
tral groups, including the European population (Methods). This 
pan-ancestry PheWAS identified 26 unique study-wide significant 
gene–phenotype associations that were not significant in the Euro-
pean analyses (Fig. 3a, Extended Data Fig. 6a, Supplementary Table 16). 
Conversely, 20 gene–phenotype associations that were significant 
in the European analyses did not reach the study-wide significance 
threshold in the pan-ancestry analysis.

We analysed 1,419 quantitative traits in a linear regression model 
including individuals of all major ancestral groups, including Europeans 
(Supplementary Table 1). This model included categorical ancestral 
groups, the top five ancestry principal components, age and sex as 
covariates (Methods). We identified 59 significant gene–quantitative 
trait associations that were originally not significant in the European 
analyses (Fig. 3b, Extended Data Fig. 6b). These included associations 
between rare variants in OCA2 and a younger age of wearing glasses 
(P = 4.7 × 10−10; β: −0.45 (95% CI: −0.60 to −0.31)), ASGR1 and reduced 
low-density lipoprotein cholesterol (P = 1.7 × 10−9; β: −0.26 (95% CI: 
−0.34 to −0.17)), and others (Supplementary Table 17). In addition, 
46 unique associations between genes and quantitative traits, origi-
nally significant in the European analyses, were not significant in the 
combined analysis.

Discussion
We performed a PheWAS using exome sequences of 269,171 UKB par-
ticipants of European ancestry combined with records of 18,780 phe-
notypes, followed by a pan-ancestry analysis that incorporated an 
additional 11,933 UKB participants of African, East Asian and South 
Asian ancestries. In total, we identified 46,837 variant-level and 1,703 
gene-level statistically significant relationships. Many associations 
were previously known, but others were either new or associated with 
phenotype expansions. We also found that these associations were 
significantly enriched for targets of US Food and Drug Administration 
(FDA)-approved drugs, reinforcing the importance of human genetics 
in target identification. When followed up with functional investigation 
to understand biological mechanisms, these results can help to improve 
the efficiency of pharmaceutical pipelines, contribute towards safety 
assessments and reveal repositioning opportunities7,42.

Our variant-level association tests detected rare variant associa-
tions that are not frequent enough to be captured by microarray-based 
studies (that is, as rare as MAF = 0.0012%). Our gene-level collapsing 
analyses evaluated the aggregate effect of private-to-rare functional 
variants, 83% of which were not detected in single-variant tests for 
binary traits. Among gene-level signals for which an individual variant 
also achieved significance, we found examples where both common 
and rare risk variants in these genes contributed to disease burden. 
This is consistent with previous work demonstrating that common and 
rare PTVs in FLG have similar effect sizes for the risk of early asthma43.

We used a Fisher’s exact test framework for our variant-level and 
gene-level analyses based on previous success with this approach16–23. 
Limitations of the Fisher’s test compared with regression-based 
approaches12,34,44,45 include an inability to adjust for covariates. On a 
subset of traits selected for comparisons, we observed that the Phred 
scores for significant variants from the Fisher’s exact test, SAIGE SPA 
and REGENIE 2.0.2 were nearly perfectly correlated (Pearson’s r = 0.99). 
The Fisher’s exact test generated more conservative statistics for rare 
variants and was associated with increased computational efficiency. 

Use of the Fisher’s exact test requires extremely careful quality control, 
case–control harmonization and ancestry pruning. In the absence 
of these measures, it is crucial to correct for such confounders via a 
regression-based approach. Future work should focus on in-depth 
benchmarking for these different methods. Regardless of the approach 
used, it is essential to define an appropriate study-wide significance 
threshold, which we addressed using n-of-1 permutation and an empiri-
cal null distribution using a synonymous negative control model.

The predominant representation of European ancestry in human 
genomics has negative ethical and clinical consequences25,41. Smaller 
sample sizes limited our ability to detect many associations among 
individual non-European populations. Performing a combined 
pan-ancestry PheWAS bolstered the association signal for several binary 
and quantitative traits. Altogether, these results emphasize the need 
to establish more diverse biobanks.

The UKB has set an excellent standard for linking genomic and phe-
notypic data and its dynamic nature will facilitate new opportunities 
for genetic discovery. In future studies, phenotypes may be refined 
through combining binary, phenotypic and temporal data. The results 
of this PheWAS are publicly available (http://azphewas.com/), which 
we anticipate will help to elucidate disease mechanisms, identify phe-
notypic expansions and enable the development of human genetically 
validated drugs.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods

UKB resource
The UKB is a prospective study of approximately 500,000 participants 
40–69 years of age at recruitment. Participants were recruited in the 
UK between 2006 and 2010 and are continuously followed47. The aver-
age age at recruitment for sequenced individuals was 56.5 years and 
54% of the sequenced cohort comprises those of female sex. Partici-
pant data include health records that are periodically updated by the 
UKB, self-reported survey information, linkage to death and cancer 
registries, collection of urine and blood biomarkers, imaging data, 
accelerometer data and various other phenotypic end points1. All study 
participants provided informed consent.

Phenotypes
We studied two main phenotypic categories: binary and quanti-
tative traits taken from the February 2020 data release that was 
accessed on 27 March 2020 as part of UKB application 26041. To 
parse the UKB phenotypic data, we developed a modified version of 
the PHESANT package, which can be located at https://github.com/
astrazeneca-cgr-publications/PEACOK. The adopted parameters are 
available in Supplementary Methods and have been previously intro-
duced in PHESANT (https://github.com/MRCIEU/PHESANT)24.

The PEACOK R package implementation focuses on separating 
phenotype matrix generation from statistical association tests. It also 
allows statistical tests to be performed separately on different comput-
ing environments, such as on a high-performance computing cluster 
or an AWS Batch environment. This package introduces additional 
functionalities, including the ability to generate phenotypes for every 
node from a tree-like UKB data code (for example, an ICD-10 code) and 
to run logistic regression on a binary phenotype with covariates. Vari-
ous downstream analysis and summarization were performed using R 
v3.4.3 https://cran.r-project.org. R libraries data.table (v1.12.8; https://
CRAN.R-project.org/package=data.table), MASS (7.3-51.6; https://
www.stats.ox.ac.uk/pub/MASS4/), tidyr (1.1.0; https://CRAN.R-project.
org/package=tidyr) and dplyr (1.0.0; https://CRAN.R-project.org/
package=dplyr) were also used.

In total, 44 UKB paths were represented for the binary traits and 
49 for the quantitative traits. For UKB tree fields, such as the ICD-10 
hospital admissions (field 41202), we studied each leaf individually 
and studied each subsequent higher-level groupings up to the ICD-10 
root chapter as separate phenotypic entities. Furthermore, for the 
tree-related fields (fields: 20001, 20002, 40001, 40002, 40006 and 
41202), we restricted controls to participants who did not have a posi-
tive diagnosis for any phenotype contained within the corresponding 
chapter to reduce potential contamination due to genetically related 
diagnoses. A minimum of 30 cases were required for a binary trait to 
be studied.

In addition to studying UKB algorithmically defined outcomes, we 
constructed a union phenotype for each ICD-10 phenotype. These 
union phenotypes are denoted by a ‘Union’ prefix and the applied map-
pings are available in Supplementary Table 1.

In total, we studied 17,361 binary and 1,419 quantitative phenotypes. 
For all binary phenotypes, we matched controls by sex when the per-
centage of female cases was significantly different (Fisher’s exact 
two-sided P < 0.05) from the percentage of available female controls. 
This included sex-specific traits in which, by design, all controls would 
be same sex as cases. As a result, 10,531 (60.7%) of the binary phenotypes 
required down sampling of controls to match the case female percent-
age (Supplementary Table 1). Finally, to allow for more compartmental-
ized ICD-10 chapter-based analyses, all 18,780 binary and quantitative 
trait phenotypes were mapped to a single ICD-10 chapter including 
manual mapping for the non-ICD-10 phenotypes. Chapter mappings 
are provided in Supplementary Table 1. It is acknowledged that chap-
ter mapping may have the greatest utility for diagnostic, rather than 

procedural, ICD-10 codes. For procedural codes, genetic associations 
could be incorrectly interpreted if chapter mappings are relied on. For 
example, surgical procedures commonly performed for patients with 
cancer are categorized within the dermatology chapter. Genetic asso-
ciations reported for these procedures would be categorized within 
the dermatology chapter, but the underlying disease process is instead 
most probably reflective of an oncological aetiology.

We subsequently re-analysed the 300Kv1 cohort using the updated 
Hospital Episode Statistic (HES) and death registry data as released ad 
hoc by the UKB on July 2020. Among Data-Field 41270 of primary and 
secondary inpatient diagnoses that contribute to the Union pheno-
types, we found on average a 38.1% increase in the number of cases when 
comparing the April 2017 refresh to the July 2020 refresh. Throughout 
this article, we adopt the July 2020 refresh data as the default analysis 
dataset and refer to this update as the ‘300Kv2’ dataset. The effect on 
case numbers before and after updating to this release are documented 
in Supplementary Table 1.

Sequencing
Whole-exome sequencing data for UKB participants were generated 
at the Regeneron Genetics Center (RGC) as part of a pre-competitive 
data generation collaboration between AbbVie, Alnylam Pharmaceu-
ticals, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer, Regeneron 
and Takeda with the UKB2. Genomic DNA underwent paired-end 75-bp 
whole-exome sequencing at Regeneron Pharmaceuticals using the 
IDT xGen v1 capture kit on the NovaSeq6000 platform. Conversion of 
sequencing data in BCL format to FASTQ format and the assignments 
of paired-end sequence reads to samples were based on 10-base bar-
codes, using bcl2fastq v2.19.0. Exome sequences from 302,355 UKB 
participants were made available to the Exome Sequencing consortium 
in December 2019. Initial quality control was performed by Regeneron 
and included sex discordance, contamination, unresolved duplicate 
sequences and discordance with microarray genotyping data checks11.

AstraZeneca Centre for Genomics Research (CGR) 
bioinformatics pipeline
The 302,355 UKB exome sequences were processed at AstraZeneca 
from their unaligned FASTQ state. A custom-built Amazon Web Services 
(AWS) cloud compute platform running Illumina DRAGEN Bio-IT Plat-
form Germline Pipeline v3.0.7 was used to align the reads to the GRCh38 
genome reference and perform single-nucleotide variant (SNV) and 
insertion and deletion (indel) calling. SNVs and indels were annotated 
using SnpEFF v4.348 against Ensembl Build 38.9249. We further annotated 
all variants with their genome Aggregation Database (gnomAD) MAFs 
(gnomAD v2.1.1 mapped to GRCh38)27. We also annotated missense 
variants with MTR and REVEL scores35,50.

Additional quality control
To complement the quality control performed by Regeneron Pharma-
ceuticals, we passed the 302,355 sequences through our internal bio-
informatics pipeline. In addition to what had already been flagged for 
quality control, we excluded from our analyses 106 (0.035%) sequences 
that achieved a VerifyBAMID freemix (contamination) level of more 
than 4%51, and an additional five sequences (0.002%) where less than 
94.5% of the consensus coding sequence (CCDS release 22) achieved 
a minimum of tenfold read depth52.

To mitigate a possible increase of variance estimates due to relat-
edness, we sought to remove related individuals from our analyses. 
Using exome sequence-derived genotypes for 43,889 biallelic autoso-
mal SNVs located in coding regions as input to the kinship algorithm 
included in KING v2.2.353, we generated pairwise kinship coefficients 
for all remaining samples.

We used the ukb_gen_samples_to_remove() function from the R pack-
age ukbtools v0.11.354 to choose a subset of individuals within which 
no pair had a kinship coefficient exceeding 0.0884, equivalent of up 

https://github.com/astrazeneca-cgr-publications/PEACOK
https://github.com/astrazeneca-cgr-publications/PEACOK
https://github.com/MRCIEU/PHESANT
https://cran.r-project.org
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://www.stats.ox.ac.uk/pub/MASS4/
https://www.stats.ox.ac.uk/pub/MASS4/
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr


Article
to third-degree relatives. For each related pair, this function removes 
whichever member has the highest number or relatives above the pro-
vided threshold, resulting in a maximal set. Through this process, an 
additional 14,326 (4.74%) sequences were removed from downstream 
analyses.

After the above quality control steps, there remained 287,917 (95.2%) 
predominantly unrelated sequences of any genetic ancestry that were 
available for analyses presented in this work.

Genetic ancestry
For most of the case–control cohort analyses, we restricted the sta-
tistical tests to include a homogeneous European genetic ancestry 
test cohort. We predicted genetic ancestries from the exome data 
using peddy v0.4.2 with the ancestry labelled 1,000 Genomes Pro-
ject as reference. 55. Of the 287,917 UKB sequences, 18,212 (6.3%) had 
a Pr(European) ancestry prediction of less than 0.99. Focusing on the 
remaining 269,706 UKB participants, we further restricted the Euro-
pean ancestry cohort to those within ±4 s.d. across the top four principal 
component means. This resulted in the exclusion of an additional 535 
(0.2%) outlier participants. In total, there were 269,171 predominantly 
unrelated participants of European ancestry who were included in our 
European case–control analyses. We also used peddy-derived ancestry 
predictions to perform case–control PheWAS within non-European 
populations where there were at least 1,000 exome-sequenced indi-
viduals available (see the section ‘Collapsing analyses’). Through this 
step, we identified and used 4,744 (Pr(African) > 0.95), 1,475 (Pr(East 
Asian) > 0.95) and 5,714 (Pr(South Asian) > 0.95) UKB participants for 
ancestry-independent collapsing analyses.

ExWAS analyses
The contribution of rare variants to common disease has, until recently, 
only been assessed for a subset of complex traits. The gnomAD, which 
includes exome and genome sequencing data of 141,456 individuals, 
constitutes the largest publicly available next-generation sequencing 
resource to date27. While this resource has undeniably transformed 
our ability to interpret rare variants and discover disease-associated 
genes, it is unsuited to the systematic assessment of the contribution 
of rare variation to human disease as it lacks linked phenotypic data.

We tested the 2,108,983 variants identified in at least six individuals 
from the 269,171 predominantly unrelated European ancestry UKB 
exomes. Variants were required to pass the following quality control 
criteria: minimum coverage 10X; percent of alternate reads in het-
erozygous variants ≥ 0.2; binomial test of alternate allele proportion 
departure from 50% in heterozygous state P > 1 × 10−6; genotype qual-
ity score (GQ) ≥ 20; Fisher’s strand bias score (FS) ≤ 200 (indels) ≤ 60 
(SNVs); mapping quality score (MQ) ≥ 40; quality score (QUAL) ≥ 30; 
read position rank sum score (RPRS) ≥ −2; mapping quality rank sum 
score (MQRS) ≥ −8; DRAGEN variant status = PASS; variant site is not 
missing (that is, less than 10X coverage) in 10% or more of sequences; 
the variant did not fail any of the aforementioned quality control in 5% 
or more of sequences; the variant site achieved tenfold coverage in 30% 
or more of gnomAD exomes, and if the variant was observed in gnomAD 
exomes, 50% or more of the time those variant calls passed the gnomAD 
quality control filters (gnomAD exome AC/AC_raw ≥ 50%).

Variant-level P values were generated adopting a Fisher’s exact 
two-sided test. Three distinct genetic models were studied for binary 
traits: allelic (A versus B allele), dominant (AA + AB versus BB) and reces-
sive (AA versus AB + BB), where A denotes the alternative allele and 
B denotes the reference allele. For quantitative traits, we adopted a 
linear regression (correcting for age, sex and age × sex) and replaced 
the allelic model with a genotypic (AA versus AB versus BB) test. For 
ExWAS analysis, we used a significance cut-off of P ≤ 2 × 10−9. To support 
the use of this threshold in this study, we performed an n-of-1 permu-
tation on the binary and quantitative trait dominant model ExWAS. 
Only 18 of 38.7 billion permuted tests had P ≤ 2 × 10−9, and 58 of 38.7 

billion permuted tests had P values less than a more liberal cut-off of 
1 × 10−8 (Supplementary Tables 18, 19). At this conservative P ≤ 2 × 10−9 
threshold, the expected number of ExWAS PheWAS false positives is 
18 out of the 46,947 observed significant associations.

Collapsing analyses
To perform collapsing analyses, we aggregate variants within each 
gene that fit a given set of criteria, identified as qualifying variants17. 
Overall, we performed 11 non-synonymous collapsing analyses, includ-
ing 10 dominant and one recessive model, plus an additional synony-
mous variant model as an empirical negative control. In each model, 
for each gene, the proportion of cases was compared to the propor-
tion of controls among individuals carrying one or more qualifying 
variants in that gene. The exception is the recessive model, where a 
participant must have two qualifying alleles, either in homozygous 
or potential compound heterozygous form. Hemizygous genotypes 
for the X chromosome were also qualified for the recessive model. 
The qualifying variant criteria for each collapsing analysis model are 
in Extended Data Table 1. These models were designed to collectively 
capture a wide range of genetic architectures. They vary in terms of 
allele frequency (from private up to a maximum of 5%), predicted con-
sequence (for example, PTV or missense), and REVEL and MTR scores. 
On the basis of SnpEff annotations, we defined synonymous variants 
as those annotated as ‘synonymous_variant’. We defined PTVs as vari-
ants annotated as exon_loss_variant, frameshift_variant, start_lost, 
stop_gained, stop_lost, splice_acceptor_variant, splice_donor_vari-
ant, gene_fusion, bidirectional_gene_fusion, rare_amino_acid_variant, 
and transcript_ablation. We defined missense as: missense_variant_
splice_region_variant, and missense_variant. Non-synonymous variants 
included: exon_loss_variant, frameshift_variant, start_lost, stop_gained, 
stop_lost, splice_acceptor_variant, splice_donor_variant, gene_fusion, 
bidirectional_gene_fusion, rare_amino_acid_variant, transcript_abla-
tion, conservative_inframe_deletion, conservative_inframe_insertion, 
disruptive_inframe_insertion, disruptive_inframe_deletion, missense_
variant_splice_region_variant, missense_variant, and protein_alter-
ing_variant.

Collapsing analysis P values were generated by using a Fisher’s exact 
two-sided test. For quantitative traits, we used a linear regression, cor-
recting for age, sex and age × sex.

For all models (Extended Data Table 1), we applied the following 
quality control filters: minimum coverage 10X; annotation in CCDS 
transcripts (release 22; approximately 34 Mb); at most 80% alternate 
reads in homozygous genotypes; percent of alternate reads in heterozy-
gous variants ≥ 0.25 and ≤ 0.8; binomial test of alternate allele propor-
tion departure from 50% in heterozygous state P > 1 × 10−6; GQ ≥ 20; 
FS ≤ 200 (indels) ≤ 60 (SNVs); MQ ≥ 40; QUAL ≥ 30; read position rank 
sum score ≥ −2; MQRS ≥ −8; DRAGEN variant status = PASS; the variant 
site achieved tenfold coverage in ≥ 25% of gnomAD exomes, and if the 
variant was observed in gnomAD exomes, the variant achieved exome 
z-score ≥ −2.0 and exome MQ ≥ 30.

To quantify how well a protein-coding gene is represented across all 
individuals by the exome sequence data, we estimated informativeness 
statistics for each studied gene on the basis of sequencing coverage 
across the available exomes (Supplementary Methods, Supplementary 
Table 24). Moreover, we created dummy phenotypes to correspond 
to each of the four exome sequence delivery batches to identify and 
exclude from analyses genes and variants that reflected sequencing 
batch effects; we provide these as a cautionary list resource for other 
UKB exome researchers (Supplementary Methods, Supplementary 
Tables 25–27).

For the pan-ancestry analysis, a Cochran–Mantel–Haenszel test was 
performed to generate a combined 2 × 2 × N stratified P value, with N 
representing up to all four genetic ancestry groups. This was performed 
for 4,836 binary phenotypes where one of the three non-European 
ancestries had five or more cases and for all quantitative traits. For the 



quantitative traits, we used a linear regression model that included the 
following covariates: categorical ancestry (European, African, East 
Asian or South Asian), the top five ancestry principal components, 
age and sex.

Compute processing times
Our end-to-end (CRAM → FASTQ → BAM → VCF) processing of the 
302,355 UKB exomes was achieved at an average rate of 1,600 exomes 
per hour, consuming a total of 52,000 hours of CPU time running on 
Linux servers with FPGA acceleration.

Regarding our collapsing PheWAS analyses, construction of the full 
set of genotype and phenotype matrices took 13,000 and 30 CPU hours 
to compile, respectively. The preprocessing steps such as rebalancing 
sex-specific case–control ratios are incorporated in the phenotype 
matrix construction time. Subsequently, the approximately 4.5 bil-
lion collapsing analysis statistical tests were calculated in 19,000 CPU 
hours. In wall-clock hours, this took 30 h to generate all the collapsing 
and phenotype matrices. Once the intermediate files were ready, the 
roughly 4.5 billion collapsing statistical tests took 8 h to complete.

Regarding our variant-level ExWAS, upon construction of our variant 
matrices, which took 2,500 CPU hours to compile, all 108 billion statis-
tical tests were calculated in 855,000 CPU hours. In wall-clock hours, 
this took 37 h to generate the variant matrices. Once these intermediate 
files were ready, the approximately 108 billion ExWAS statistical tests 
took 27 h for binary traits and 11 h for quantitative traits.

Defining the study-wide significant cut-offs for collapsing 
analyses
Bonferroni correction for multiple testing was inappropriate to use 
in this study given the high degree of correlation among the studied 
phenotypes and the level of similarity among the multiple collapsing 
models. Thus, we took two approaches to define more appropriate 
study-wide significance thresholds for the gene-based collapsing 
PheWAS.

We used a synonymous collapsing analysis model as an empirical 
negative control. Here it is expected that synonymous variants will gen-
erally not significantly contribute to disease risk and could thus act as a 
useful empirical negative control for study-wide P value thresholding. 
Across the 17,361 studied binary phenotypes and 18,762 studied genes, 
we observed a distribution of 325,727,082 Fisher’s exact test statistics 
corresponding to the synonymous collapsing model. At the tail of 
this distribution for binary traits, we identified two genuine relation-
ships: IGLL5 synonymous variants enriched among ‘Union#C911#C91.1 
chronic lymphocytic leukaemia’ (P = 2.5 × 10−11) and its parent node 
‘Union#C91#C91 lymphoid leukaemia’ (P = 1.2 × 10−10). Following this, we 
observed a tail of P values beginning from P = 2.2 × 10−8 (Supplementary 
Table 20). Similarly, for the 1,419 quantitative phenotypes, we observed 
a distribution of 26,623,278 Fisher’s exact test statistics corresponding 
to the synonymous collapsing model. At the tail of this distribution, we 
identified two genuine relationships: MACROD1 synonymous variants 
correlating with decreased levels of ‘Urate’ (P = 2.8 × 10−30)56 and ALPL 
synonymous variants correlating with decreased levels of ‘alkaline 
phosphatase’ (P = 9.3 × 10−9)57. Following this, we saw a tail of P values 
beginning from P = 5.2 × 10−8 (Supplementary Table 20).

With this magnitude of test statistics generated in the PheWAS scale, 
another proposal for P value thresholding involves n-of-1 permutation58. 
In applying this approach, we shuffled the case–control (or quantita-
tive measurement) labels once for every phenotype while maintaining 
the participant-genotype structure and across all 11 non-synonymous 
collapsing models for binary traits (3,582,997,902 tests) and quantita-
tive traits (292,856,058 tests). Reviewing the tails of these two P value 
distributions, the lowest permutation-based P value achieved was 1.9 
× 10−9 (binary tests) and 3.2 × 10−9 (quantitative tests).

Given the scale and correlations among this dataset, we found that 
both of these approaches provide suitable alternatives to the Bonferroni 

P value threshold, which in this case would be P < 1.2 × 10−11. Prioritizing 
the results of the permutation-based approach because it captures 
the data structure across all our models, we define a conservative 
study-wide significance cut-off of P ≤ 2 × 10−9 for the non-synonymous 
collapsing analysis results presented in this paper (Supplementary 
Tables 20, 21). Under this conservative threshold, no positive associa-
tions are expected under the null for collapsing analyses.

Finally, for each of the 225,360 exome-wide collapsing analyses com-
prising the collapsing PheWAS (12 models × (17,361 + 1,419) studied 
phenotypes), we calculated the lambda genomic inflation factor (λ) 
after excluding genes achieving exome-wide significance P < 2.6 × 10−6 
for that phenotype (Supplementary Tables 22, 23).

Collapsing analysis enrichment for approved drug targets
We tested for the enrichment of drug targets among collapsing analysis 
associations using five publicly available lists: a custom list (n = 387; https:// 
raw.githubusercontent.com/ericminikel/drug_target_lof/master/data/ 
drugbank/drug_gene_match.tsv) that was originally derived from  
DrugBank59, and another four lists6 that were originally derived from 
the Informa Pharmaprojects database46. These four lists included drug 
targets from their latest stages of clinical trials, labelled as ‘Approved’ 
(n = 2,620), ‘Phase I Clinical Trial’ (n = 3,365), ‘Phase II Clinical Trial’ 
(n = 5,479) and ‘Phase III Clinical Trial’ (n = 1,233).

For each gene tested in the collapsing analysis, we only retained the 
most significantly associated phenotype. Distinct gene–phenotype 
relationships from the collapsing analysis were partitioned into three 
categories (significant: P < 2 × 10−9 (binary n = 82, quantitative n = 269); 
suggestive: 2 × 10−9 < P < 1 × 10−7 (binary n = 113, quantitative n = 126); or 
non-significant: P > 1 × 10−7 (binary n = 18,551, quantitative n = 18,351)). 
The relationship between drug target status and gene–phenotype 
significance was assessed using Fisher’s exact test for each gene list. 
Specifically, for each of the five lists, we created a contingency table 
that included the number of significant collapsing analysis genes that 
intersected with the list and the number of genes that did not intersect 
with the list out of the list of genes tested in the PheWAS (n = 18,762). 
This was performed for both binary and quantitative traits. We also 
performed enrichment testing for OMIM32 genes and GWAS Catalog31 
significant hits (both last accessed on 14 July 2020). We included the 
most significant associations per gene for the GWAS analysis.

Ethics reporting
The protocols for UKB are overseen by The UK Biobank Ethics Advisory 
Committee (EAC); for more information see https://www.ukbiobank.
ac.uk/ethics/ and https://www.ukbiobank.ac.uk/wp-content/
uploads/2011/05/EGF20082.pdf.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Association statistics generated in this study are publicly available 
through our AstraZeneca Centre for Genomics Research (CGR) PheWAS 
Portal (http://azphewas.com/). All whole-exome sequencing data 
described in this paper are publicly available to registered research-
ers through the UKB data access protocol. Exomes can be found in the 
UKB showcase portal: https://biobank.ndph.ox.ac.uk/showcase/label.
cgi?id=170. Additional information about registration for access to 
the data is available at http://www.ukbiobank.ac.uk/register-apply/. 
Data for this study were obtained under Resource Application Number 
26041.
  A custom list of drug targets from DrugBank is available: https:// 
raw.githubusercontent.com/ericminikel/drug_target_lof/master/data/ 
drugbank/drug_gene_match.tsv. A Pharmaprojects-based list of 
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drug targets is available: https://raw.githubusercontent.com/
AbbVie-ComputationalGenomics/genetic-evidence-approval/master/
data/target_indication.tsv.
  We used data from the OMIM (https://www.omim.org)32, MTR (http://
mtr-viewer.mdhs.unimelb.edu.au)35, REVEL50, gnomAD (https://gno-
mad.broadinstitute.org)27, EBI GWAS Catalog (https://www.ebi.ac.uk/
gwas)31, ClinVar (https://www.ncbi.nlm.nih.gov/clinvar)30 and FinnGen 
release r5 (https://www.finngen.fi/en).

Code availability
PheWAS and ExWAS association tests were performed using a cus-
tom framework, PEACOK (PEACOK 1.0.7), which is an extension and 
enhancement of PHESANT. PEACOK 1.0.7 is available on GitHub: https://
github.com/astrazeneca-cgr-publications/PEACOK/.
 
47.	 Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide 

range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
48.	 Cingolani, P. et al. A program for annotating and predicting the effects of single 

nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster 
strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

49.	 Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021).
50.	 Ioannidis, N. M. et al. REVEL: an Ensemble method for predicting the pathogenicity of rare 

missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).
51.	 Jun, G. et al. Detecting and estimating contamination of human DNA samples in 

sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012).
52.	 Pujar, S. et al. Consensus coding sequence (CCDS) database: a standardized set of 

human and mouse protein-coding regions supported by expert curation. Nucleic Acids 
Res. 46, D221–D228 (2018).

53.	 Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. 
Bioinformatics 26, 2867–2873 (2010).

54.	 Hanscombe, K. B., Coleman, J. R. I., Traylor, M. & Lewis, C. M. ukbtools: An R package to 
manage and query UK Biobank data. PLoS ONE 14, e0214311 (2019).

55.	 Pedersen, B. S. & Quinlan, A. R. Who’s who? Detecting and resolving sample anomalies in 
human DNA sequencing studies with Peddy. Am. J. Hum. Genet. 100, 406–413 (2017).

56.	 Tin, A. et al. Target genes, variants, tissues and transcriptional pathways influencing 
human serum urate levels. Nat. Genet. 51, 1459–1474 (2019).

57.	 Olafsson, S. et al. Common and rare sequence variants influencing tumor biomarkers in 
blood. Cancer Epidemiol. Biomarkers Prev. 29, 225–235 (2020).

58.	 Annis, A. et al. Determining genome-wide significance thresholds in biobanks with 
thousands of phenotypes: a case study using the Michigan Genomics Initiative. 
Presented at Annual Meeting of The American Society of Human Genetics 2019 (2019).

59.	 Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. 
Nucleic Acids Res. 46, D1074–D1082 (2018).

Acknowledgements We thank the participants and investigators in the UKB study who made this 
work possible (Resource Application Number 26041); the UKB Exome Sequencing Consortium 
(UKB-ESC) members AbbVie, Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol-Myers 
Squibb, Pfizer, Regeneron and Takeda for funding the generation of the data and Regeneron 
Genetics Center for completing the sequencing and initial quality control of the exome 
sequencing data; the AstraZeneca Centre for Genomics Research Analytics and Informatics 
team for processing and analysis of sequencing data; and M. Hurles and D. Balding for feedback 
on this manuscript. We acknowledge the participants and investigators of the FinnGen study.

Author contributions Q.W., R.S.D. and S.P. designed the study. Q.W., R.S.D., K.C., A.R.H., A.N., 
I.T., D.V., M.H., S.M., K.R.S. and S.P. performed analyses and statistical interpretation. Q.W., 
S.V.V.D. and S.W. did the bioinformatics processing. I.T. performed benchmarking with support 
from Q.W. Q.W., K.C., K.R.S. and S.W. scoped and lead the PheWAS portal development. R.M., 
A.P., C.H. and S.P. contributed to the organization of the project. Q.W., R.S.D., K.C., A.R.H., A.N., 
I.T. and S.P. wrote the manuscript. Q.W., R.S.D., K.C., A.R.H., A.N., I.T., D.V., S.V.V.D., A.M., D.M., 
M.H., S.M., H.O., S.W., K.R.S., R.M., A.P., C.H. and S.P. reviewed the manuscript.

Competing interests Q.W., R.S.D., K.C., A.R.H., A.N., I.T., D.V., S.V.V.D., A.M., D.M., M.H., S.M., 
H.O., S.W., K.R.S., R.M., A.P., C.H. and S.P are current employees and/or stockholders of 
AstraZeneca.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-021-03855-y.
Correspondence and requests for materials should be addressed to Slavé Petrovski.
Peer review information Nature thanks Beryl Cummings, Dean Sheppard, David van Heel and 
the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer 
reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://raw.githubusercontent.com/AbbVie-ComputationalGenomics/genetic-evidence-approval/master/data/target_indication.tsv
https://raw.githubusercontent.com/AbbVie-ComputationalGenomics/genetic-evidence-approval/master/data/target_indication.tsv
https://raw.githubusercontent.com/AbbVie-ComputationalGenomics/genetic-evidence-approval/master/data/target_indication.tsv
https://www.omim.org
http://mtr-viewer.mdhs.unimelb.edu.au
http://mtr-viewer.mdhs.unimelb.edu.au
https://gnomad.broadinstitute.org
https://gnomad.broadinstitute.org
https://www.ebi.ac.uk/gwas
https://www.ebi.ac.uk/gwas
https://www.ncbi.nlm.nih.gov/clinvar
https://www.finngen.fi/en
https://github.com/astrazeneca-cgr-publications/PEACOK/
https://github.com/astrazeneca-cgr-publications/PEACOK/
https://doi.org/10.1038/s41586-021-03855-y
http://www.nature.com/reprints


Extended Data Fig. 1 | Phenotypic and demographic diversity of the 
sequenced UK Biobank cohort. a, The percentage of binary union traits 
assessed in the cohort per disease chapter. b, The percentage of quantitative 
traits assessed in the cohort per chapter. c, The median number of cases of 
European ancestry per binary union phenotype stratified by chapter with 
interquartile range depicted. The median number of European cases per binary 
union phenotype was 191 (interquartile range: 72-773). d, The median number 
of participants of European ancestry tested for quantitative traits stratified by 
chapter with interquartile ranges depicted. The median number of individuals 

tested for quantitative traits was 13,782 (interquartile range: 13,780-17,795).  
e, Histogram depicting the number of binary union phenotypes per patient. 
The x-axis was capped at 200 for visual clarity. The median number of binary 
union traits per European participant was 25 (interquartile range: 12-45) of a 
possible 4,911. f, The distribution of represented genetic ancestries in the 
sequenced cohort. EUR = European, SAS = South Asian, AFR = African, 
EAS = East Asian, AMR = American. g, The distribution of the number of rare 
(MAF <0.005%) qualifying variants (QVs) in OMIM-derived Mendelian disease 
genes per ancestral group. Error bars in (c, d) represent the interquartile range.
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Extended Data Fig. 2 | Rare PTVs and direction of variant effects. a, The 
number of genes ( y-axis) with at least N rare (MAF >0.01) protein-truncating 
variant (PTV) carriers (x-axis) in the cohort. Colours correspond to 
heterozygous (Het), putative compound heterozygous plus homozygous/
hemizygous carriers (comp. het), and exclusively homozygous/hemizygous 

carriers (recessive). b, Distribution of the directions of effect for rare (MAF 
<0.1%) non-synonymous variant associations with quantitative phenotypes. 
Only phenotypes with at least five significant non-synonymous variant 
associations (P ≤ 2 × 10−9) in a given gene were considered.



Extended Data Fig. 3 | Quantitative trait collapsing analysis. Plot depicting 
significant gene-phenotype associations for quantitative traits. For gene–
phenotype associations that appear in multiple collapsing models, we display 

only the association with the strongest effect size. The dashed line represents 
the genome-wide significant p-value threshold (2 × 10−9). The plot is capped at 
-log10(P) = 50 and only associations with P < 10-5 are included (n = 22,549).
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Extended Data Fig. 4 | Drug target enrichments. Forest plots demonstrating 
enrichment of drug targets curated in DrugBank and the Informa 
Pharmaprojects databases among significant (Tier 1) and nearly significant 
(Tier 2) binary trait associations, quantitative trait associations, OMIM genes, 
and GWAS signals. P-values were calculated via Fisher’s exact test (two-sided). 
Error bars represent 95% confidence intervals of the Odds Ratio. The total 

numbers of genes per category are as follows: DrugBank-derived (n = 386); 
Approved from Informa Pharmaprojects (n = 463); Phase III from Informa 
Pharmaprojects (n = 474); Phase II from Informa Pharmaprojects (n = 1006); 
Phase I from Informa Pharmaprojects (n = 921); Collapsing – Binary (Tier 1 
n = 82; Tier 2 n = 113); Collapsing - Quantitative (Tier 1 n = 269; Tier 2 n = 126); 
OMIM (n = 3875); GWAS (Tier 1 n = 8975; Tier 2 n = 1717).



Extended Data Fig. 5 | Collapsing analysis comparisons. a, Distribution of 
lambda (inflation factor) values across all collapsing models for binary and 
quantitative traits. b, Venn diagram for gene-trait associations identified by 
three studies using the first tranche of 50K UKB. There are 81 distinct 
significant gene-trait associations (P < 3.4x10−10) found among phenotypes 
that were studied by the three efforts (Supplementary Table 28). c, Percentage 

of suggestive binary gene-phenotype associations that became significant 
(sig) (P < 2x10−9), non-significant (non-sig) (P > 1x10−7) or remained suggestive 
(sugg) (2x10−9 < P < 1x10−7) with each successive UKB tranche release for binary 
traits (supplementary methods). 300Kv1 includes phenotypic data released up 
to April 2017, and 300Kv2 includes additional phenotypic data for the same set 
of samples released up to July 2020.
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Extended Data Fig. 6 | Pan-ancestry delta Phred distributions.  
a, b, Distribution of the change between Phred ((-10*log10[p-values]) scores 
from the pan-ancestry collapsing analysis and the European-only collapsing 

analysis for binary traits (a) and quantitative traits (b). The x-axis in both figures 
are capped at -50 and +50.



Extended Data Table 1 | Collapsing analysis models

“*” reflects the gnomAD global_raw MAF unless otherwise specified. “^” reflects the maximum proportion of UKB exome sequences permitted to either have ≤ 10-fold coverage at variant site or 
carry a low-confidence variant that did not meet one of the quality-control thresholds applied to collapsing analyses (see Methods).
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