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Abstract

The response of the global virus genomics community to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic
has been unprecedented, with significant advances made towards the ‘real-time’ generation and sharing of SARS-CoV-2 genomic data.
The rapid growth in virus genome data production has necessitated the development of new analytical methods that can deal with
orders of magnitude of more genomes than previously available. Here, we present and describe Phylogenetic Assignment of Named
Global Outbreak Lineages (pangolin), a computational tool that has been developed to assign the most likely lineage to a given SARS-
CoV-2 genome sequence according to the Pango dynamic lineage nomenclature scheme. To date, nearly two million virus genomes
have been submitted to the web-application implementation of pangolin, which has facilitated the SARS-CoV-2 genomic epidemiology
and provided researchers with access to actionable information about the pandemic’s transmission lineages.
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1. Introduction
The response of the global virus genomics community to the coro-
navirus disease 2019 (COVID-19) (severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2)) pandemic has been unprece-
dented, with a concerted and cooperative effort toward the
generation and timely sharing of large numbers of SARS-CoV-2
genomes. At the time of writing, more than 1.8 million SARS-
CoV-2 genomes have been submitted to GISAID from over 180
different countries, and this number continues to grow (Fig. 1A).
The rapid sharing of high volumes of virus genomes has given
public health bodies potential access to actionable data as the
pandemic has unfolded. This contrasts with the generation and
application of virus genomes during some previous global health
public emergencies, such as the West African Ebola virus epi-
demic and Zika virus in the Americas, during which sequenc-
ing was more retrospective and undertaken on a smaller scale

(Rota et al. 2003; Dudas et al. 2017; Faria et al. 2017; Worobey, Cox,
and Gill 2019). The rapid generation and sharing of thousands of
SARS-CoV-2 genomes, sampled longitudinally as virus transmis-
sion, has unfolded worldwide and has created an urgent need for
accessible tools and systems for managing and interpreting this
vast data resource.

In April 2020, Rambaut et al. (2020) proposed and devel-

oped a dynamic nomenclature system to name and track global

transmission lineages of SARS-CoV-2. This is called the Pango

nomenclature (Rambaut et al. 2021) and complements two other

SARS-CoV-2 nomenclature systems (NextStrain and GISAID) that

focus on broader phylogenetic ‘clades’, and which incorporate cri-

teria for minimum prevalence and persistence. The Pango lineage

nomenclature system is hierarchical and fine scaled and designed

to capture the leading edge of pandemic transmission. Each Pango

lineage aims to define an epidemiologically relevant phylogenetic
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Figure 1. (A) Time series of the number of countries that have reported SARS-CoV-2 genome sequences (shaded area) and a curve showing trends in
the geographic variation of reporting, quantified as the Shannon diversity (H) of sequence sampling location labels (curved). (B) The accumulation of
SARS-CoV-2 genetic diversity over time, measured as the mean genetic distance of sampled sequences from the reference sequence (accession:
EPI_ISL_406801). Shaded regions indicate one standard deviation from the mean. (C) Number of designated Pango lineages over the course of the
pandemic. As more countries have contributed sequences, and as genetic diversity has accumulated throughout, the Pango nomenclature has
continued to define distinct lineages that represent the emerging edge of the pandemic. SARS-CoV-2 genome sequences and metadata described were
sourced from GISAID on 31 May 2021.

Figure 2. Workflow describing the process of Pango lineage designation
and assignment of lineages to SARS-CoV-2 genome sequences using
pangolin. An estimated global SARS-CoV-2 phylogeny is periodically
manually curated to ‘designate’ lineages and sequences (left). A list of
sequences and the lineages to which they have been designated (the
‘sequence designation list’) is maintained by the Pango team at https://
github.com/cov-lineages/pango-designation (last accessed: 29 June
2021). These designations and the associated genome sequences from
GISAID are used as input for the pangoLEARN training pipeline (https://
github.com/cov-lineages/pangoLEARN; last accessed: 29 June 2021)
(centre). Once this is completed a new pangoLEARN data release is
tagged (centre). This creates the machine learning model that pangolin
uses to assign genomes (right). Users can then submit a SARS-CoV-2
genome query sequence and pangolin will assign the most likely lineage
based on the currently established lineage designations. *In addition to
assignment using the pangoLEARN model, certain lineages of interest
are assigned by checking for specific defining SNPs with some built-in
flexibility (e.g. B.1.1.7 is assigned by checking for the presence of at least
5 of the 17 defining SNPs that fall on the basal branch of the lineage).
These additional ad hoc rules may be subject to revision or removal to
maintain performance of the pangolin system.

cluster, for instance an introduction into a distinct geographic
area with evidence of onward transmission (Rambaut et al. 2020).
Pango lineages are particularly suited to outbreak investigations at
national or regional scales. At the time of writing, there are 1,293
Pango lineages, compared to 12 and 9 clades for the NextStrain
and GISAID nomenclatures, respectively.

However, the identification and assignment of SARS-CoV-2
phylogenetic lineages is not a trivial problem, due to the huge size
and rapid growth of the virus’ global genome data set. The high

intensity of genomic sampling of SARS-CoV-2, and the relatively
low evolutionary rate of the virus compared to some other RNA
viruses (phylogeny branches accrue approximately one nucleotide
substitution every 2weeks on average; Duchêne et al. 2020), mean
that the fine-scaled lineages of the Pango nomenclature system
may differ at very few nucleotide positions. This relatively low
level of genetic diversity leaves SARS-CoV-2 classification sensi-
tive to data issues such as missing data, laboratory artefacts,
and homoplasy (instances where the same mutation has arisen
multiple times across a phylogeny). Some estimates of homo-
plasy rates for SARS-CoV-2 are as high as 30per cent of variable
sites (De Maio et al. 2020), and sequencing amplicon dropouts
can account for the loss of sequence information from some
genomic regions. Consequently, it is not possible to define high-
resolution Pango lineages using only the presence or absence of
nucleotide changes at a subset of variable sites. Only by using
full genome alignments can we estimate themost likely placement
of a new genome sequence within the global SARS-CoV-2 phy-
logeny and thereby assign a lineage name to a sequence. However,
even with perfect data, estimating a phylogenetic tree containing
>500,000 virus genome sequences is a considerable computational
challenge, and efforts have been made to provide ‘best-practice’
solutions for estimating the global SARS-CoV-2 phylogeny (Jackson
and Colquhoun 2020; Lanfear 2020).

To overcome these challenges, we developed a computational
tool, named Phylogenetic Assignment of Named Global Outbreak
Lineages (pangolin), to enable access to actionable information
from SARS-CoV-2 genomic data. We have continued to adapt
this system as the pandemic progressed to account for the rising
number of SARS-CoV-2 genome sequences from a growing list of
countries (Fig. 1A), the accumulation of genetic diversity among
sequences (Fig. 1B), and the growing number of designated Pango
lineages (Fig. 1C).

Figure 2 describes the relationship between the Pango nomen-
clature system, the implementation of that nomenclature in the
form of Pango lineage designations, and the software tool pan-
golin that can be used to assign the most likely lineage to a
given sequence. Using the nomenclature system and rules set
out in Rambaut et al. (2020) and maintained by the Pango Net-
work (http://pango.network), lineages are regularly designated
by manually curating the global SARS-CoV-2 phylogeny. The
Pango Network maintains these designations, publishes an up-to-
date record of designated sequences (the ‘sequence designation

https://github.com/cov-lineages/pango-designation
https://github.com/cov-lineages/pango-designation
https://github.com/cov-lineages/pangoLEARN
https://github.com/cov-lineages/pangoLEARN
http://pango.network
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Figure 3. Pangolin web application interface. (A) The image shows the landing page of the pangolin web application where users can either select or
drag and drop a local file into the web browser. (B) The results page showing a processed file, the sequence name for each sequence and the assigned
lineage. Links to the UK and global microreact.org builds, as well as the cov-lineages.org web pages for each lineage are represented by the three icons
on the right.

list’ at https://github.com/cov-lineages/pango-designation; last
accessed: 29 June 2021), and responds to lineage requests via
the GitHub repository (https://github.com/cov-lineages/pango-
designation; last accessed: 29 June 2021). When a novel lineage
is designated, the sequence designation list is tagged on GitHub
with a description of the changes. This list is then used, together
with sequence data from GISAID, to train a machine learning
model that can be used to assign lineages (Fig. 2). This model,
called pangoLEARN, is distributed as a dependency to pangolin
(https://github.com/cov-lineages/pangoLEARN; last accessed: 29

June 2021). For the end user, pangolin can be run as a command
line tool or by using the pangolin web application that imple-
ments a simple ‘drag-and-drop’ interface (https://pangolin.cog-
uk.io; last accessed: 29 June 2021), seen in Fig. 3.

Here, we formally describe pangolin, a computational tool to
assign the most likely Pango lineage to one or more SARS-CoV-2
query genomes. Using pangolin, researchers across the globe have
been able to retrieve lineage information; as of 27 May 2021, more
than 1.8 million genome sequences have been assigned to lin-
eages using the pangolin web application. This has helped public

https://github.com/cov-lineages/pango-designation
https://github.com/cov-lineages/pango-designation
https://github.com/cov-lineages/pango-designation
https://github.com/cov-lineages/pangoLEARN
https://pangolin.cog-uk.io
https://pangolin.cog-uk.io
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health networks and researchers worldwide by extracting usable
and actionable information from the huge volume of available
SARS-CoV-2 genomes.

2. Methods
2.1 Global SARS-CoV-2 phylogeny estimation
Whole genome sequences were downloaded from GISAID (full
table of GISAID acknowledgements hosted here: https://cov-
lineages.org/gisaid_acknowledgements.html, last accessed: 29
June 2021). Using the tools available at grapevine (https://
github.com/COG-UK/grapevine), these sequences were mapped
against the canonical SARS-CoV-2 reference genome (Genbank ID:
NC_045512.2) using minimap2 v2.17 (Li 2018). Genome sequences
were trimmed to the region defined by positions 265–29,674, which
correspond to the untranslated regions (UTRs), and the missing
5′ and 3′ UTRs subsequently masked as N’s. Early data releases
were based on complete trees containing all sequences, con-
structed with IQ-TREE v1.6.2, using ultrafast bootstrapping (Minh
et al. 2020). However, as the number of sequences increased, an
‘allocate-and-graft’ method was adopted. This involved using the
previous list of designated sequences to provisionally allocate new
sequences to the most likely major viral lineage (A, B, B.1 and
B.1.1, and later B.1.1.7 and B.1.177). A separate alignment for each
of these major lineages was constructed and a tree for each was
estimated using FastTree (Price, Dehal, and Arkin 2010), with a
representative from the basal polytomy of that lineage as an out-
group. The lineage trees were then grafted together to construct
the global phylogeny. More recently, this potential circularity dur-
ing sequence designation has been avoided by inferring a large
maximumparsimony tree de novousing FastTree (Price, Dehal, and
Arkin 2010). At time of writing, we continue to estimate largemax-
imum parsimony trees as a guide and for specific lineage cases
build smaller maximum likelihood trees that include the diver-
sity of interest using IQ-TREE v2.0 (with -blmin 0.0000000001 -m
GTR+G -bb 1000 and all other parameters as default; Minh et al.
2020).

2.2 Manual lineage curation
Using the lineage designation criteria outlined in Rambaut
et al. (2020), lineages are curated by hand and annotated onto
the global phylogeny in the tree visualisation software, FigTree
(http://tree.bio.ed.ac.uk/software/figtree/, last accessed: 29 June
2021). As illustrated in Fig. 4, sequences that are 95per cent com-
plete (i.e. <5per cent of nucleotide sites in coding regions are
ambiguous) on GISAID are considered for lineage designation. As
such, not all SARS-CoV-2 genomes on GISAID will get a lineage
designation, but pangolin can be used to estimate the most likely
lineage of those sequences.

2.3 pangoLEARN
The pangoLEARN model is a machine learning model that uses
the sequence designation list and SARS-CoV-2 whole genome
sequences as input for training. It is built using sci-kit learn
(Pedregosa et al. 2011) and can account for the complete genetic
diversity of a lineage. While the underlying data being modelled
are hierarchical (i.e. phylogenetic), it was not immediately clear to
us that the model needed to represent hierarchy in order to pro-
vide accurate classifications. We therefore trialled three types of
models: logistic regressions, decision trees, and random forests,
using the sci-kit learn implementations (Pedregosa et al. 2011).

The decision tree and the random forest models were devel-
oped in tandem. A decision tree represents a classification task in

Figure 4. Distribution of genome completeness as a percentage of
informative coding region sites for all SARS-CoV-2 sequences on GISAID.
1,382,550 sequences were assessed for ambiguity in coding regions,
including both whole genome sequences with high ambiguity content
and short fragments that have been uploaded to GISAID. 1,284,427
sequences had <5per cent ambiguous sites across the virus coding
region (i.e. were at least 95per cent complete). Sequences that have
designated a lineage are indicated (n=438,440). This 95per cent
completeness threshold was enacted as of Pango designation version 1.2
(GISAID data sourced on 7 May 2021).

a way similar to a flow chart. Each node in the tree represents a
decision made based on a value, splitting the problem space into
finer and finer pieces until a classification is reached. A random
forest is an ensemble of decision trees, each built using a sub-
set of the training samples. Classifications are made when each
individual tree ‘votes’ on the final decision. Both of these mod-
els inherently represent hierarchy. When trained, their structures
ought to approximate the structure underlying the training data.

The trained model provides rapid lineage assignments from
within pangolin when queried. On a single thread, pangoLEARN
can assign 1,000 genome sequences in ∼25 seconds. For all pan-
goLEARN models, the model was trained using sequences and
their designated lineages (outlined above). To account for ambi-
guities in the data and the limitations of heuristic tree search
algorithms used, any identical sequences with conflicting manual
assignments were removed from the data set prior to training.

When training the models, each sequence was represented
as a vector of one-hot encoded nucleotides. Invariant—and thus
uninformative—sites in the alignment were discarded. To han-
dle ambiguity due to sequencing errors, unknown nucleotides
were imputed with the reference nucleotide from this location.
Tagged versions of the trained pangoLEARN model and header
files are hosted on https://github.com/cov-lineages/pangoLEARN
alongside associated metadata and lineage curation notes (last
accessed: 29 June 2021).

2.4 Lineage assignment using pangolin
Pangolin is a python-based assignment pipeline built using Snake-
make (Koster et al. 2012). An input fasta file, containing one
or more query sequences, is processed if it fulfils the mini-
mum length (default 10,000 bases) and a maximum percent-
age of N bases in the genome sequence (default 50per cent)
criteria. Each individual query sequence is mapped against an
anonymised lineage A genome fromWuhan usingminimap2 v2.17
(Li 2018). Genome sequences are trimmed to only the coding
region (positions 265–29,674) and the missing 5′ and 3′ regions
subsequently masked as N’s. These aligned genomes are then
assigned the most likely genome using the pangoLEARN model.
In a few instances, specific lineages of interest, such as lin-
eage B.1.1.7 and B.1.351, are also assigned using a set of heuris-
tic rules that explicitly check for the presence of certain Sin-
gle Nucleotide Polymorphisms (SNPs), allowing for a controlled
level of ambiguity at crucial sites. In its output report, pangolin

https://cov-lineages.org/gisaid_acknowledgements.html
https://cov-lineages.org/gisaid_acknowledgements.html
https://github.com/COG-UK/grapevine
https://github.com/COG-UK/grapevine
http://tree.bio.ed.ac.uk/software/figtree/
https://github.com/cov-lineages/pangoLEARN
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Figure 5. Performance of different pangoLEARN models. (A) Number of genomes submitted to GISAID by the date of model training, and thus number
of genomes included in a given model training. (B) Training time (hours) for each model type (logistic regression, random forest, decision tree), tested
on SARS-CoV-2 genome data releases from April to October 2020. All models except the multinomial logistic regression scale acceptably with
increasing sequence and lineage counts. (C) The average lineage recall rate for each model for each data release. All models performed well, with the
random forests each slightly beating the decision trees. (D) The average F1 scores for each of the models for each of the data releases. These scores
were closely correlated with the recall rate.

documents the version of pangoLEARNmodel and Pango designa-
tions used to assign lineages.

2.5 Limit testing of pangolin
We evaluated pangolin’s ability to assign lineages in cases of
excess diversity, varying levels of ambiguity and in the face of
novel recombinants. We selected the most complete SARS-CoV-
2 genome for each designated lineage as a representative set
(n=1,253 from Pango designation v1.1.23). For each representa-
tive genome, we simulated diversity from a given genome ranging
from 100per cent to 90per cent divergence at 0.2 per cent inter-
vals, producing genomes from 100per cent to 90per cent identity
of the representative. For each divergence interval, we randomly

selected a given number of sites and replaced the nucleotide
at that position with a random base distinct from the original
base (i.e. 1 per cent divergence equates to 299 sites replaced). We
repeated this entire process 10 times, generating 625,000 simu-
lated genomes in total, and assigned lineages to these genomes
using pangolin v2.3.2 (pangoLEARN release 10 May 2021).

To test pangolin’s behaviour in response to increasing ambi-
guity, we took the most complete sequence for every lineage
as a representative (n=1,253) and randomly replaced a given
percentage of sites (in the range of 1–100per cent) with N. All
simulated sequences with >25per cent N content failed to map
against the reference, so results are shown only for simulated
genomes within the range 1–25per cent (Fig. 7A). This approach
tests how pangolin responds to increasing amounts of random



6 Virus Evolution

A.

B.

Figure 6. Performance of pangolin for genomes with increasing numbers of simulated additional mutations. (A) Boxplot showing the spread of the
majority of data, separated by whether the lineage was correctly assigned, assigned an ancestral lineage of the designated lineage, assigned a
descendant lineage, or incorrectly assigned. The whiskers define the 5th and 95th percentile range. (B) Proportion of genomes assigned correctly,
incorrectly or to an ancestral or descendant (child) lineage, normalised for a given percentage identity.

missing data. However, in practice, ambiguous ormissing sites are
often clustered together as amplicon dropouts. Therefore, we sub-
sequently simulated a sliding window of triple amplicon dropouts
for each representative genome corresponding to the amplicons
formed in the ARTIC primer scheme v3 (https://github.com/artic-
network/artic-ncov2019; last accessed: 29 June 2021) and ran pan-
golin v2.3.2 (pangoLEARN release 10 May 2021) on the simulated
genomes (n=1,253 X 98 amplicons).

In order to assess howpangolin assigns novel recombinants, we
randomly chose 62,650 distinct lineage pairs from a set contain-
ing a single representative genome per lineage (n=1,253). From
these pairs, we simulated recombination between the pair for
positions at 10per cent intervals across the genome (i.e. positions
2,990, 5,980, 8,970, etc.; Fig. 8A). Each pair was included as the
3′ and 5′ lineage to ensure that the simulations were symmet-
rical. We then ran a naive pangoLEARN model (i.e. not trained
on the recombinant sequences) on these simulated recombinants
(pangolin v2.3.2, pangoLEARN release 10 May 2021).

3. Results and discussion
A comparison of the performance and training time of the three
model types used in the various pangoLEARN releases between
July and October 2020 is shown in Fig. 5. The statistics shown
are based on 10-fold cross-validation. The first model to be used
was multinomial logistic regression, which provides no repre-
sentation of phylogenetic hierarchy. Each possible classification
was associated with a collection of SNPs, and these associations
alone were used to assign each query sequence a lineage. This
relatively simple model offered acceptable accuracy, practically
matching the performance of amaximum likelihood phylogenetic
inference approach, whilst providing classifications in seconds

instead of minutes. An additional benefit of this model was the
intuitive interpretability of the regression coefficients, as each
represented how strongly associated each individual SNP was
with a particular lineage assignment. However, training time for
this approach depends on not only the number of parameters,
but also on the number of classes and samples. Consequently,
training time for this model quickly became unsustainable
(Fig. 5B).

To better represent the hierarchical nature of the data, we
next trailed the decision tree and random forest models. Fig. 5
demonstrates the performances of these twomodel types. For our
data sets and problem, the decision tree and the random forest
approaches performed similarly. We ultimately adopted the deci-
sion tree model because the decisions it makes are more easily
interpreted, whereas it is often very difficult to interpret the deci-
sions made within random forests. Because each constituent of a
random forest is built using only a subset of the model’s features,
each constituent tree is unlikely to resemble the structure of the
underlying data. The output of each of these trees is useful only
when used together with the rest of the ensemble. In contrast, the
decision tree model meaningfully represents the tree structure in
a way that can be easily validated. Additionally, we harnessed the
tendency of decision trees to overfit in order to make the model
more likely to correctly classify smaller lineages whilst another
model might overwhelmingly prefer to suggest a larger lineage. If
the methods were applied to a virus withmore genetic diversity or
a different mode of evolution, the relative performances of these
methods, and thus our choice of model, may be different. The
modularity of our system (Fig. 2) provides a useful level of flexibil-
ity: for each lineage release, each model can be re-evaluated and
the currently best-performing model can be substituted into the
framework.

https://github.com/artic-network/artic-ncov2019
https://github.com/artic-network/artic-ncov2019
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Figure 7. Performance of pangolin in response to missing data. (A)
pangolin assignment accuracy over a gradient of percentage
ambiguities. Correct assignments decline with increasing numbers of
ambiguous sites, and this initially leads to a greater proportion of
genomes assigned to the parent lineage. At greater percentage of
ambiguities, minimap2 fails to effectively map against the reference
genome and beyond 24per cent ambiguity all genomes fail to map. (B)
Overlapping amplicons generated from the ARTIC ncov2019 primer
scheme v3 (98 amplicons across two pools). (C) Pangolin assignments
over a sliding window of triple amplicon dropouts coloured by correct
lineage assignment, ancestor lineage assigned or incorrect assignment.
SARS-CoV-2 genome schema with genome positions and largest genes
(ORF1ab, S, M and N) labelled.

As with many tools for genomic epidemiology developed in
response to the COVID-19 pandemic, it has been challenging to
maintain sufficiently fast computation times in the context of
data sets that have grown exponentially in size. Our experience
to date suggests that many kinds of ‘flat’ models (those in which
the hierarchical structure of the underlying data is ignored) may
well be intractable given the hundreds of lineages, thousands of
parameters, and hundreds of thousands of genomes available for
analysis.

3.1 Limit testing of pangolin
In order to test how pangolin performs as sequences become
increasingly different from the training data, we simulated a dis-
tribution of genomes that were up to 10per cent divergent at the
nucleotide level from a representative of each lineage present in
the training dataset (n=625,000 simulated genomes from 1,253
lineage representatives). At 100per cent identity, pangolin cor-
rectly assigns 94per cent of lineages (Fig. 6). Of all simulated
genomes, 179,628 genomes were assigned the same lineage as
the designation of the genome they had been simulated from
(‘correct’ lineage assignment). Of genomes that were not assigned
the same lineage as source genome lineage designation, 154,176
genomes were assigned the parent lineage, 3,791 were assigned a
descendant ‘child’ lineage of the designated lineage, and 301,435
genomes were assigned an incorrect lineage. Fig. 6A shows that
95per cent of correct assignments occur when simulated diver-
gence is 98.8 per cent identity ormore (i.e. <1.2 per cent divergence
from the lineage reference) or 358 nucleotide substitutions across
the virus genome. Fig. 6B shows there to be a drop off in accu-
racy when the pangoLEARNmodel encounters sequences that are
very different from what it has been trained on. We are aware of
this decline and to compensate for it and minimise its effects we
regularly and frequently train new pangoLEARN models with the
latest list of designated sequences.

A.

B
C

D

Figure 8. The behaviour of pangolin in response to simulated
recombinant genomes. (A) Genome graph of SARS-CoV-2. The position of
percentage cut-off sites is shown along the top of the graph and
nucleotide base position along the bottom. (B) Schema describing the
structure of simulated recombinants. Each recombinant is a
combination of two distinct lineages in varying proportions. The three
example recombinants show a 20per cent 5′ lineage (80per cent 3′

lineage) recombinant, a 50:50 recombinant and an 80per cent 5′ lineage
(20per cent 3′ lineage) recombinant. (C) A density curve over the
SARS-CoV-2 genome highlighting the relative importance of particular
sites within the decision tree. The density is calculated based on the
number of rules in the decision tree that include a given site in the
genome. (D) The horizontal axis indicates the percentage of the 5′

lineage present in a given recombinant genome. Each bar represents
125,300 simulated recombinants. Stacked colours indicate the count of
the recombinants that had either the 5′ lineage assigned, the 3′ lineage
assigned, an ancestral lineage assigned, or an incorrect assignment (i.e.
a sibling or unrelated lineage).

We simulated random ambiguities across SARS-CoV-2 cod-
ing regions for a set of representative genomes for all lineages
(n=1,253). Fig. 7A shows pangolin performs well and is robust to
some missing data. As the percentage of ambiguity increases, the
number of correct assignments declines; however, the proportion
of genomes assigned to parent lineages then increases (this is the
designed behaviour of our method). We observe a small increase
in incorrect assignments; however, beyond 24per cent ambiguity,
minimap2 fails tomap and therefore a lineage cannot be assigned.

These simulations generate N’s randomly across the coding
regions of the virus genome. In practice, we often see clus-
ters of ambiguities that reflect low-coverage regions or amplicon
dropouts in the data, inflating the overall ambiguity percent-
age, but still allowing minimap2 to successfully map the rest of
the genome. We tested this case with a sliding window of triple
amplicon dropouts across the genome (Fig. 7B shows amplicons
corresponding to the ARTIC ncov2019 primer scheme v3 and their
genomic location). A total of 126,553 simulated genomes were
assigned using pangolin (Fig. 7C). Overall, pangolin is robust to
amplicon dropouts; however, there are some key regions that,
when missing, lead to a greater proportion of misassignments
(either of an ancestral lineage or an incongruous lineage).

Lastly, we tested pangolin’s behaviour in response to novel
recombinant genomes made up of two distinct lineages (Fig. 8).
We randomly chose 62,650 distinct lineage pairs from a set of
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representative genomes (n=1,253) and recombined them in vary-
ing proportions at 10per cent intervals across the length of the
genome (Fig. 8A, B). Each lineage of the pair was recombined as
the 5′ lineage and the 3′ lineage to ensure recombination simula-
tions were symmetrical. We ran 1,378,300 tests of pangoLEARN to
assess how it responds to novel recombinants. Intuitively, recom-
binants highly skewed towards one lineage over the other are
more likely to get assigned the dominant lineage (e.g. the 10per
cent 5′ recombinant; Fig. 8D). As the proportion of the 5′ lin-
eage increases, the 5′ lineage is more often assigned and the
proportion of genomes assigned to an ancestral lineage of the two
lineages increases. There is a skew towards assigning the lineage
with its 3′ end represented, which suggests that there may be
features at the 3′ end of the genome that may be more informa-
tive for lineage assignment. Similar to Fig. 7C, certain key sites
at the 3′ end of the genome appear to be important for accu-
rate assignments. We investigated this using the decision tree
rules output by the pangoLEARN model (https://github.com/cov-
lineages/pangoLEARN; last accessed: 29 June 2021) and Fig. 8C
shows a density curve reflecting the number of rules within the
decision tree model that a given site in the SARS-CoV-2 genome
is included in. The large spike towards the 3′ end of the genome
equates to position 28,882 in the reference genome and is one of
the three defining SNPs of the B.1.1 lineage. At present, pangolin
cannot detect novel recombinants and can only assign based on
previously designated lineages.

3.2 Limitations
The approach to lineage assignment currently implemented in
pangolin provides a responsive, scalable tool. We continue to
reflect the latest diversity of SARS-CoV-2 by retraining the pan-
goLEARN model each week, and this model can assign lineages
to the entire GISAID database in a matter of hours. However, our
approach has a number of limitations. Unlike phylogenetic assign-
ment, the machine learning approach implemented in pangolin
does not natively handle ambiguous data. To allow for nucleotide
ambiguities, using an early lineage A reference sequence (acces-
sion: EPI_ISL_406801), we impute reference nucleotide states at
sites with missing or ambiguous data. However, the reference
nucleotide is not equivalent to an N and the consequences of this
approach may be to provide more rootward (basal) lineage assign-
ments for sequences with low coverage. As the Pango nomencla-
ture system is hierarchical, a more rootward assignment can be
interpreted as a lower resolution (high taxonomic level) classifica-
tion rather than an incorrect one (i.e. the sequence could belong
to the assigned lineage or any of its descendant lineages). As is
common practice in machine learning applications, we treat our
training data and query data in the same way. To limit how this
imputationmay affect the training and therefore themodel, we do
not allow highly ambiguous sequences in the training set (cut-off
of 5 per cent ambiguity).

Another consideration of our approach is that, except for par-
ticular lineages of concern, the assignments are largely unsuper-
vised. Decisions are being made internally by the trained model
and accurate assignment for a given lineage may rely on one or
two key SNPS. This can lead to misassignments when incomplete
data are queried with pangolin. For example, a sequence that
might rightly belong in lineage B.1.177 but which has Ns in lieu
of one or two important SNPs would be in fact assigned to a more
basal lineage in the tree, such as B.1. We also commonly observe
homoplasies in SARS-CoV-2 genome sequence data, which in
combination with other mutations may inform assignment deci-
sions for multiple lineages. Theoretically, if some key sites are

missing, there may be identical sequences informing multiple
lineages once their unknown values are imputed. To avoid such
conflicts in the training data, we have implemented a 5per cent
ambiguity cut-off for the training set (as of Pango designation
version 1.2) and any conflicting sequences are identified in a pre-
screening process before training, and sequences belonging to a
minority lineage are removed.

A further limitation of our approach is that the quality of the
machine learning assignments decline as genetic distance from
the training set increases, as described in Fig. 6. This means that
the pangoLEARN model depends on regular updates to the list
of Pango designated sequences as input. Pango designation has
recently become amore formalised process, with the formation of
the Pango Network (https://www.pango.network/; last accessed:
29 June 2021), a team of experts and volunteers from around
the world who will work to maintain these lineage designations
alongside crowdsourced input through GitHub requests.

3.3 Future directions
The pangolin tool is being developed as virus transmission and
diversification is ongoing and in the context of rapidly growing
numbers of SARS-CoV-2 genome sequences. We are exploring
and triallingmore sophisticatedmachine learningmodels, includ-
ing a hierarchical logistic regression model. The current pangolin
model can accept all designated sequences for training, which
now comprises >400,000 genome sequences. In the future, it may
be necessary to downsample this input. Indeed, as some lineages
become unobserved, inactive, and eventually extinct in the global
SARS-CoV-2 data set, they can be removed from the training set.
Similarly, using a single large global phylogeny may not continue
to be practical beyond a million sequences and we may need
to consider only more recently sampled genomes, with deeper
nodes in the global phylogeny being represented by fewer samples.
This approachmay have implications for countries not generating
or sharing sequence data promptly or if SARS-CoV-2 diversity in
some areas of the world has been poorly characterised or unsam-
pled. In this case, we will be able to retrain our models rapidly and
incorporate new virus genetic diversity that may come to light in
the future. With the current global push towards real-time data
generation and sharing and the growing global genomics capacity,
these approaches for exceptionally large data sets will be needed.

Although pangolin is a SARS-CoV-2 lineage assignment tool,
the framework it implements could be adapted easily for use
in future outbreaks involving another virus. A similar selection
process among machine learning models would likely be needed
as each virus evolves differently and presents unique analytical
challenges. However, the modular toolkit and suite of machine
learningmodels that we have developed and implemented in pan-
golin will enable it to become a generalised pathogen typing tool.
Indeed, for other more established viruses with greater diversity,
we predict the pangoLEARN approach would effectively assign
virus subtypes.

Since its initial release, pangolin has provided researchers with
the ability to easily compare SARS-CoV-2 sequences and gain
information to inform public health decision-making. Using the
associated pangolin web-application and command line tools,
phylogenetic information from SARS-CoV-2 genomics is readily
accessible. Remarkably, almost 2 million unique sequences have
been assigned by the pangolin web-application alone to date. By
making the code and the lineage assignments openly available,
we invite the broader community to contribute to the growing,
dynamic list of SARS-CoV-2 lineages.

https://github.com/cov-lineages/pangoLEARN
https://github.com/cov-lineages/pangoLEARN
https://www.pango.network/
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Data availability
pangolin is hosted publically onGitHub and available under aGNU
General Public License v3.0. The pangolin web application is avail-
able at https://pangolin.cog-uk.io/ (last accessed: 29 June 2021).
Daily updated information about all Pango lineages and links to
all resources are hosted at https://cov-lineages.org/.
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