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Abstract. We prove the quantum Zeno effect in open quantum systems
whose evolution, governed by quantum dynamical semigroups, is repeat-
edly and frequently interrupted by the action of a quantum operation. For
the case of a quantum dynamical semigroup with a bounded generator,
our analysis leads to a refinement of existing results and extends them
to a larger class of quantum operations. We also prove the existence of a
novel strong quantum Zeno limit for quantum operations for which a cer-
tain spectral gap assumption, which all previous results relied on, is lifted.
The quantum operations are instead required to satisfy a weaker prop-
erty of strong power-convergence. In addition, we establish, for the first
time, the existence of a quantum Zeno limit for open quantum systems in
the case of unbounded generators. We also provide a variety of physically
interesting examples of quantum operations to which our results apply.

Contents

1. Introduction 3796
1.1. Quantum Zeno Effect in Open Quantum Systems 3798

2. Mathematical Preliminaries 3801
2.1. Dynamical Semigroups 3802
2.2. Spectral Projections 3803

3. Main Results 3805
3.1. Case I: Uniformly Continuous Contraction Semigroup 3805
3.2. Case II: Strongly Continuous Semigroups 3808

4. Proof of Proposition 3.1 3814
5. Proof of Theorem 1 3816
6. Proof of Theorem 3 3821
7. Proof of Theorem 2 3826
8. Methods to Prove Strong Power-Convergence in Trace Norm 3830

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-021-01075-8&domain=pdf
http://orcid.org/0000-0002-6703-9511


3796 S. Becker et al. Ann. Henri Poincaré
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1. Introduction

The quantum Zeno effect describes the phenomenon that frequently measur-
ing a quantum system slows down its time evolution and eventually freezes
it completely. The effect has been named after the Greek philosopher Zeno
who introduced an argument for the paradox that a flying arrow which is con-
tinuously observed cannot move and therefore never reaches its target. The
quantum Zeno effect and versions of it were theoretically already studied in
[2,6,26,45] and experimental verification of the phenomenon was achieved in
[23,32].

Besides its striking implications for fundamental physics, the quantum
Zeno effect has many practical applications, for example, in control of de-
coherence [20,31], quantum error correction [15,50], and state preparation
[47,48,56].

Let us first consider the quantum Zeno effect for closed quantum sys-
tems. We associate to a closed quantum system a separable, possibly infinite-
dimensional, complex Hilbert space, H, and the time evolution of the system
is governed by Schrödinger’s equation, which under suitable choice of units
(� = 1) can be written as {

i∂tψ(t) = Hψ(t)

ψ(0) = ψ0.

Here H denotes the Hamiltonian governing the dynamics of the system, and
is a self-adjoint operator on H. The solution of Schrödinger’s equation is given
by ψ(t) = e−itHψ0, with

(
e−itH

)
t∈R

being the unitary group generated by H.
In the simplest setup, the quantum Zeno effect for closed quantum sys-

tems can be formalized in the following way: The system starts in a pure
state corresponding to some ψ0 ∈ H at time zero. For t > 0 being the total
time of the experiment and n ∈ N, the system evolves for a time t/n un-
der Schrödinger’s evolution and is then subjected to a binary von Neumann
(i.e., projective) measurement corresponding to the projections {|ψ0〉〈ψ0|,1−
|ψ0〉〈ψ0|}. This process is repeated n times. The quantum Zeno effect predicts
that the probability, pn, of always finding the system in the initial state ψ0

(and thus with measurement outcome |ψ0〉〈ψ0|), converges to 1 in the limit
n → ∞, i.e., for ψ0 in the form domain of H [21],

pn =
∥∥∥(

|ψ0〉〈ψ0|e−itH/n
)n

ψ0

∥∥∥2

=
∣∣〈ψ0, e

−itH/nψ0〉
∣∣2n −−−−→

n→∞ 1.
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Hence, even though ψ0 might not be an invariant state under Schrödinger’s
evolution, measuring the system frequently enough will freeze the system in
the state ψ0 in the limit of asymptotically many measurements.

More generally, one can consider projective measurements {P,1 − P}
(where P is a general projection operator) and mixed initial states. Given an
initial state ρ0, the probability of always obtaining the measurement outcome
corresponding to P when measuring the system repeatedly in time intervals of
size t/n is given by

pn = tr
(
(Pe−itH/n)nρ0(eitH/nP )n

)
. (1.1)

In this setup, the quantum Zeno effect manifests itself in the convergence of
this probability (which we call the survival probability) to the expectation value
of P in the initial state ρ0 , i.e., limn→∞ pn = tr(Pρ0).

Apart from the convergence of the survival probability, pn, one might also
be interested in the effective dynamics emerging from the process of repeatedly
measuring the evolving system. Under the assumption that the quantum Zeno
effect occurs and the initial state satisfies tr(Pρ0) = 1, the only non-trivial
part of the effective time evolution takes place in the invariant subspace of the
projection P , which is referred to as the quantum Zeno subspace. In the fol-
lowing, we refer to P as the quantum Zeno projection. Formally, it is expected
that the effective dynamics within this subspace (in the limit of asymptotically
many periodic measurements) which is called the quantum Zeno dynamics, is
given by

(Pe−itH/n)n −−−−→
n→∞ e−itPHP P. (1.2)

Here, for H being an unbounded operator, the expression PHP can only be
understood in the formal sense and one needs to find a rigorous definition of
the right self-adjoint operator which is the generator of the effective unitary
time evolution. It is important to note that by unitarity of the effective time
evolution in the quantum Zeno subspace one can infer the quantum Zeno effect
from the quantum Zeno dynamics, i.e.,

lim
n→∞ pn = tr

(
e−itPHP Pρ0PeitPHP

)
= tr(Pρ0).

While the quantum Zeno effect has been thoroughly studied for closed
quantum systems (i.e., on Hilbert spaces), for both bounded and unbounded
Hamiltonians (see [18,19] or [21] and references therein for a review), the
results on semigroups on Banach spaces, which is the right setup for open
quantum systems, have been mostly restricted to semigroups generated by
bounded operators [29,43,44,46]. In this paper, we extend the study of the
quantum Zeno effect to open quantum systems whose dynamics is generated
by unbounded operators. We also make a more refined analysis for the case of
bounded generators, thus improving on existing results.

It is possible to divide the existing approaches to study the quantum
Zeno effect into two categories. On the one hand, there exist ergodic methods to
prove the existence of Zeno limits [4,5], which are mostly restricted to bounded
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generators and provide, under mild assumptions, usually non-quantitative con-
vergence results. On the other hand, there are spectral methods [29,43,44,46],
that usually apply in a more restrictive setting, that provide quantitative con-
vergence results. In this paper, we mostly focus on the latter in order to use
quantitative bounds for bounded generators to obtain some first results for
unbounded generators of open quantum systems.

1.1. Quantum Zeno Effect in Open Quantum Systems

As mentioned above, in this work, we extend and analyze the quantum Zeno
effect and its associated dynamics for open quantum systems. As in this case
the physical system has unavoidable interactions with its environment, for ex-
ample, a thermal bath in which it is placed, the time evolution of the system
is no longer governed by a unitary group on its Hilbert space, H. If the cou-
pling between the system and its environment is weak, the time evolution can
be approximately described by a dynamical semigroup of completely positive,
trace-preserving maps on the Banach space, T (H), of trace-class operators
which we denote by

(
etL)

t≥0
, with L being the generator; a general discussion

of dynamical semigroups can be found in Sect. 2.1. As in the case of closed sys-
tems, we refer to the effective dynamics arising from the process of frequently
performing projective measurements on the open system, while letting it evolve
under the dynamics given by the semigroup

(
etL)

t≥0
, as the quantum Zeno

dynamics.
For a general Banach space, X, Matolcsi and Shvidkoy proved in 2003 [44]

that for L being a bounded linear operator and P being a bounded projection
on X,

(PetL/n)n −−−−→
n→∞ etPLP P. (1.3)

Their motivation for analyzing this limit was to investigate general features
of dynamical semigroups, especially as (1.3) can be viewed as a degenerated
version of the Lie–Trotter product formula limn→∞

(
etA/netB/n

)n
= et(A+B).

For an open quantum system governed by a quantum dynamical semi-
group

(
etL)

t≥0
, with bounded generator L, the limit in (1.3) yields the desired

quantum Zeno dynamics. However, unlike the case of unitary dynamics of
closed quantum systems, the effective dynamics given by etPLP is in general
not trace-preserving. Hence, we cannot infer the quantum Zeno effect (i.e., con-
vergence of the survival probabilities), as for closed systems, from the quantum
Zeno dynamics itself. This can be seen from the so-called GKLS form [28,40]
for bounded generators L of completely positive trace-preserving semigroups,
according to which, for any ρ ∈ T (H),

L(ρ) = Kρ + ρK∗ +
∑

l

LlρL∗
l , (1.4)

under the constraint K∗ + K +
∑

l

L∗
l Ll = 0. (1.5)
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The identity (1.5) ensures that for any t ≥ 0, etL is trace-preserving. Here, the
index l might range over an infinite set and the sums in the above equations
converge in suitable operator topologies (see [10] for details).

Consider now a specific form of the quantum Zeno projection operator
P on T (H), which is given by P (ρ) = πρπ for some projector π on H. Using
(1.4) we can find a similar expression for the effective generator, PLP , of
the quantum Zeno dynamics, which acts on any state ρ in the quantum Zeno
subspace PT (H) as follows:

PLP (ρ) = πKπρ + ρ(πKπ)∗ +
∑

l

(πLlπ)ρ(πLlπ)∗

= P (K)ρ + ρP (K)∗ +
∑

l

P (Ll)ρP (Ll)∗. (1.6)

By comparing (1.4) with (1.6), we see that the operators K and Ll in the former
are replaced by P (K) and P (Ll) in the latter, and hence P (K) and P (Ll) can
be viewed as the corresponding operators in the GKLS form of the generator,
PLP , of the effective dynamics. However, making these replacements on the
left hand side of (1.5) yields an expression which is negative semidefinite.
In fact, one can convince oneself that this resulting expression might not be
equal to zero by considering the following example: H = C2, L0 = |0〉〈0|,
L1 = |0〉〈1| (with {|0〉, |1〉} being an orthonormal basis of C2), K = −1/2 and
π = |1〉〈1|. Thus we infer that the effective dynamics generated by PLP is not
trace-preserving. Instead, PLP is the generator of a completely positive, trace
non-increasing semigroup on PT (H).

This example shows that for open quantum systems the survival proba-
bilities will not be frozen as for closed systems, i.e., we might have

lim
n→∞ pn = lim

n→∞ tr
( (

PetL/n
)n

(ρ)
)

< tr(P (ρ)).

However, in the limit of the number measurements (n) tending to infinity, the
only non-trivial contribution to the survival probability arises if all successive
measurement outcomes are identical—either all of them corresponding to P or
all of them corresponding to 1−P . In order to see this, consider for example the
probability of the first measurement yielding an outcome corresponding to P
and all subsequent ones corresponding to 1−P . Let us denote this probability
by p′

n. We see that

p′
n = tr

( (
(1 − P )etL/n

)n−1

PetL/n(ρ)
)

= O(1/n),

where we have used that for L bounded etL/n = 1+O(1/n) and (1−P )P = 0.
For open quantum systems, one can perform not only projective mea-

surements but also generalized measurements. These can be described by a
collection {Mj}j of quantum operations, i.e., completely positive, trace non-
increasing maps on T (H), with the subscripts j labelling the outcomes, such
that their sum is trace-preserving. Here, the probability of measuring an out-
come j given a state ρ is given by qj = tr (Mj(ρ)) and the corresponding
post-measurement state is given by Mj(ρ)/qj for non-zero qj .
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For open quantum systems, a more general framework for studying the
quantum Zeno effect is one in which the projective measurements are replaced
by repeated actions of a fixed quantum operation M . The latter acts between
individual time intervals of length t/n over which the system evolves under
the action of a generator L of a dynamical semigroup. This is given by the
quantum Zeno product (

MetL/n
)n

. (1.7)

In the sequel, we refer to the asymptotic behavior of the quantum Zeno prod-
uct as n → ∞ as the quantum Zeno limit.1 Recently, Möbus and Wolf [46] have
studied the quantum Zeno effect in this framework, thus extending the general
semigroup results of [29,43,44]. They proved convergence of the quantum Zeno
product

(
MetL/n

)n
to an effective quantum Zeno dynamics in infinite dimen-

sions in the case in which M satisfies a certain spectral gap assumption and
L is bounded. We discuss their result in more detail in Sect. 3. Independently,
Burgath et al. proved convergence of the quantum Zeno product for general
quantum operations M in finite dimensions [3].

In this article, instead of focussing on the space T (H) of trace-class op-
erators (as in [46]), we consider the general case of arbitrary Banach spaces
X. Denoting the set of bounded linear operators on X by B(X), we assume
that M ∈ B(X) is a contraction, i.e., its operator norm satisfies the bound
||M || ≤ 1, and that

(
etL)

t≥0
generates a contraction semigroup on X which is

only assumed to be strongly continuous (see Sect. 2.1 for details on dynamical
semigroups).

New contributions of this article: In this article, we extend the analysis of the
quantum Zeno effect for open quantum systems in [46] in multiple ways: We
provide a quantitative version of the quantum Zeno limit derived in [46] and
identify a more general condition on the spectrum of the quantum operation
M which is both necessary and sufficient for the Zeno product to be norm
convergent to an effective Zeno dynamics. This is given in Proposition 3.1. In
particular, our condition shows that apart from a spectral gap condition, there
must be no (quasi)-nilpotent contribution to the eigenspaces of the quantum
operation M on the unit circle. Such an assumption was missing in [46]. Cur-
rently, it is not known whether such an assumption always holds for general
quantum channels acting on infinite-dimensional quantum systems, as is the
case for finite-dimensional quantum systems [55], or whether it has to be addi-
tionally imposed. In our framework, for general Banach spaces and contraction
maps M , we show that this condition cannot be omitted.

In addition, we derive, for the first time in the context of open quantum
systems, a quantum Zeno limit for unbounded generators by combining the
quantitative result for bounded generators with bounded Yosida approxima-
tions of the unbounded generator. One might argue that the assumptions of
the relevant theorem (Theorem 3) are quite restrictive and deriving a quantum
Zeno limit for unbounded generators without such assumptions is desirable.

1Henceforth, we often suppress the word ’quantum’ for simplicity.
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However, we show in Example 6 that such a Zeno limit does not exist in gen-
eral and identifying sharp conditions under which it holds seems like a rather
non-trivial task.

The most significant contribution of our work is that we can go beyond
the ubiquitous spectral gap assumption for M and show that there still exists
a strong quantum Zeno limit if the spectral gap assumption in [46] is omitted
and replaced by a strong power-convergence property of M . This relies on a
perturbation series approach towards the quantum Zeno effect. We complete
our new approach by identifying a variety of sufficient conditions and physical
examples of quantum channels M that satisfy the strong power-convergence
property.

Finally, we illustrate our findings by studying various concrete examples
of quantum channels.
Outline of the article: This article is organized in the following way:

• In Sect. 2, we review facts about dynamical semigroups on Banach spaces
and spectral projections.

• In Sect. 3, we present our main results, given by Theorem 1, Theorem 2
and Theorem 3.

• In Sect. 4, we review some basic facts about operator ergodic theory
which we employ in our proofs, and state the proof of Proposition 3.1.

• In Sect. 5, we prove Theorem 1, namely the convergence of the quantum
Zeno product

(
MetL/n

)n
for bounded generators.

• In Sect. 6, we prove Theorem 3, namely, the convergence of the quantum
Zeno product

(
MetL/n

)n
for unbounded generators.

• In Sect. 7, we prove Theorem 2 which states that the spectral gap condi-
tion on M can be replaced by a strong power-convergence property, for
a strong quantum Zeno limit to hold.

• In Sect. 8, we discuss two ergodic methods to prove strong power-
convergence to an invariant state for quantum dynamical semigroups.
This provides a plethora of further examples for Theorem 2.

• Finally, we state some open problems in Sect. 9.

2. Mathematical Preliminaries

Notation Let X denote a Banach space, and B(X) be the set of bounded linear
operators on it. In particular, let 1 ∈ B(X) denote the identity operator acting
on X. For a bounded linear operator T ∈ B(X), we write ker(T ) to denote the
nullspace and ran(T ) to denote the range or image. We call T a contraction if
‖T‖ ≤ 1, where ‖ · ‖ denotes the operator norm on B(X).

A complex number λ ∈ C is said to be in the resolvent set, ρ(T ), if
(λ1 − T ) ∈ B(X) is a bijection. For λ ∈ ρ(T ), the operator Rλ(T ) := (λ −
T )−1 ∈ B(X) is called the resolvent and is well-defined. Here and henceforth,
(λ − T ) denotes (λ1 − T ). The spectrum of T , denoted as Spec(T ) is the
complement of the resolvent set. The spectral radius of T is the radius of the
smallest disc centered at the origin which contains Spec(T ): r(T ) := sup{|λ| :
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λ ∈ Spec(T )}. In addition, Gelfand’s formula holds

r(T ) = lim
n→∞ ||Tn||1/n. (2.1)

The spectrum Spec(T ) of an operator T ∈ B(X) can be decomposed into three
disjoint parts:

(i) Point spectrum:

Specp(T ) := {λ ∈ C : Tx = λx for some 0 
= x ∈ X} .

Each λ in Specp(T ) is said to be an eigenvalue of T and each 0 
= x ∈ X with
Tx = λx is called eigenvector corresponding to λ.

(ii) Continuous spectrum: The continuous spectrum consists of all λ /∈
Specp(T ) such that λ − T is not surjective and ran(λ − T ) is dense in X.

(iii) Residual spectrum: If λ 
∈ Specp(T ) and ran(λ − T ) is not dense,
then λ is said to be in the residual spectrum of T .

In the context of the quantum Zeno effect, the most relevant Banach
space is that of trace-class operators T (H) on some separable Hilbert space
H. Density operators (or quantum states) ρ ∈ T (H) are positive trace-class
operators of unit trace. An operator T ∈ B(T (H)) is completely positive if

(T ⊗ 1d) (ρ) ≥ 0, ∀d ∈ N, ρ ∈ T (H) ⊗ Cd×d, with ρ ≥ 0,

where we have denoted the identity map on the d-dimensional complex square
matrices Cd×d by 1d. Moreover, T ∈ B(T (H)) is trace-preserving if for all x ∈
T (H) we have tr(T (x)) = tr(x) and trace non-increasing if tr(T (x)) ≤ tr(x)
for all x ≥ 0. We call a linear, completely positive operator T ∈ B(T (H)) a
quantum operation if it is trace non-increasing, and a quantum channel if it is
trace-preserving. Note that every quantum operation is a contraction. Further,
we denote by HS(H) the Hilbert space of Hilbert–Schmidt operators acting on
H.

2.1. Dynamical Semigroups

In the following, we recall some general concepts from semigroup theory (see
[16] for more details). Let X be a Banach space: we say (T (t))t≥0 ⊂ B(X) is
a one-parameter semigroup if
(1) T (t)T (s) = T (t + s), for all t, s ≥ 0,
(2) T (0) = 1.

The one-parameter semigroup is said to be uniformly- or norm continuous if
limt↓0 ‖T (t) − 1‖ = 0. On the other hand, a semigroup is strongly continuous
if for all x ∈ X we find limt↓0 ‖(T (t) − 1)x‖ = 0. For any such semigroup, we
can define the densely-defined and closed generator L by

Lx = lim
t↓0

T (t) − 1

t
x (2.2)

for all x in the domain D(L) ⊆ X, which is the set of x for which the strong
limit on the right-hand side of (2.2) exists. The generator is bounded if and
only if the semigroup is uniformly continuous, in which case T (t) = etL. For
contraction semigroups, i.e., semigroups satisfying ‖T (t)‖ ≤ 1 for all t ≥ 0, we
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can recover the semigroup from its generator as follows. The spectrum of L is
contained in the left half plane of C and in addition the resolvents satisfy the
bound [16, Theo 3.5]

‖λ (λ − L)−1 ‖ ≤ 1 for all λ > 0. (2.3)

Hence, for each s ∈ (0,∞), we can define the sth Yosida approximant of the
generator by

Ls = sL (s − L)−1
, (2.4)

which are bounded operators satisfying ‖Ls‖ ≤ s and in addition

Lsx −−−→
s→∞ Lx for all x ∈ D(L).

From the Yosida approximants, the semigroup can be recovered as the strong
limit

lim
s→∞ etLsx = T (t)x =: etLx ∀x ∈ B(X).

As mentioned earlier in this article, we mainly consider the Banach space
X to be the space of trace-class operators T (H) on some separable Hilbert
space H, and each T (t) for t ≥ 0 to be a quantum channel. In this case, we
call (T (t))t≥0 a quantum dynamical semigroup.

2.2. Spectral Projections

Consider an operator M ∈ B(X) whose spectrum has a finite number of iso-
lated points, λj , of magnitude |λj | = 1, with j ∈ {1, 2, . . . , J} for some J ∈ N.
Using the holomorphic functional calculus, we can define the spectral projec-
tions corresponding to λj by

Pj =
1

2πi

∮
Γj

(z − M)−1 dz, (2.5)

where Γj is any curve in C enclosing only λj but no other element of
Spec(M)\{λj}.

Note that in general Pj will not be the projector onto the eigenspace
ker(M − λj), since the quasi-nilpotent part

Nj := (λj − M) Pj =
1

2πi

∮
Γj

(λj − z) (z − M)−1 dz, (2.6)

is in general not equal to zero. In finite dimensions, Nj is precisely the nilpotent
part corresponding to the Jordan block of the eigenvalue λj . More precisely,
since in finite dimensions the spectrum Spec(M) is finite and therefore discrete,
we can write M in its Jordan normal decomposition as

M =
∑

λ∈Spec(M)

λPλ + Nλ.

Here Pλ and Nλ are the spectral projectors and nilpotent parts correspond-
ing to the eigenvalue λ ∈ Spec(M) defined analogously to (2.5) and (2.6).
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In addition, in finite dimensions, the spectral projectors and nilpotent parts
satisfy

PλPμ = δμλPμ, NλPλ = Nλ (2.7)

Ndλ

λ = 0, with dλ = tr(Pλ). (2.8)

Therefore, the question whether the nilpotent parts are zero or not is related
to the diagonalizability of M .

In infinite dimensions, Nj is in general only quasi-nilpotent, i.e., Spec(Nj)
= {0}. This can be seen by considering for any ε > 0 a closed curve Γj,ε with
distance at most ε from λj and not intersecting Spec(M). This yields for any
k ∈ N ∥∥Nk

j

∥∥ ≤ 1
2π

∮
Γj,ε

|λj − z|k
∥∥∥(z − M)−1

∥∥∥ dz ≤ Cεε
k,

where Cε > 0 is a constant dependent on ε but independent of k. Using the
fact that ε > 0 is arbitrary, we see that the spectral radius of Nj vanishes:

r(Nj) = lim
k→∞

‖Nk
j ‖1/k = 0,

and thus Spec(Nj) = {0}.
Under the assumption that the range of Pj is finite-dimensional, which

holds in particular if the underlying Banach space is finite dimensional, M
being a contraction implies Nj = 0 [55, Prop. 6.2]. In infinite dimensions, it is,
however, possible to find contraction operators M with only isolated spectral
points on the unit circle and non-trivial quasi-nilpotent part as shown in the
following example.

Example 1. Let V : L2[0, 1] → L2[0, 1] be the Volterra operator

(V f)(x) :=
∫ x

0

f(t) dt with adjoint (V ∗f)(x) =
∫ 1

x

f(t) dt.

It is well known that this operator has empty point spectrum Specp(V ) = ∅
and Spec(V ) = {0}. This implies that M := (I+V )−1 exists and has spectrum
Spec(M) = {1} and Specp(M) = ∅ such that ‖M‖ ≥ 1. On the other hand,

‖M−1f‖2 = 〈f + V f, f + V f〉 = ‖f‖2 + 2Re〈V f, f〉 + ‖V f‖2 ≥ ‖f‖2.

Here, we used the fact that 2Re〈V f, f〉 = 〈f, V + V ∗f〉 ≥ 0. To see this note
that Q := V + V ∗ is a projection and therefore Q ≥ 0 which follows from

Q2f = Q(V f + V ∗f) = Q

∫ 1

0

f(t) dt =
∫ 1

0

f(t) dt = Qf.

Hence, ‖M‖ = 1 due to ‖M‖ = supf 	=0
‖Mf‖
‖f‖ = supf 	=0

‖f‖
‖M−1f‖ ≤ supf 	=0

‖f‖
‖f‖ =

1. Now, for P being the spectral projector (defined through (2.5)) correspond-
ing to the spectral point 1, this operator M cannot satisfy MP = PM = P.
To see this, note that since 1 is the only point in the spectrum of M , we have
that P is equal to the identity of L2[0, 1], and therefore

MP = M 
= P = 1.
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Hence, the quasi-nilpotent operator (2.6) corresponding to the isolated spectral
point 1, i.e., N = (1 − M)P , is not equal to zero.

3. Main Results

In this section, we state our main results on the quantum Zeno effect and the
resulting quantum Zeno dynamics.

3.1. Case I: Uniformly Continuous Contraction Semigroup

We start with the case in which the dynamics of the system is governed by a
uniformly continuous contraction semigroup, and hence by a bounded gener-
ator. In the following, X denotes a Banach space and M ∈ B(X) denotes a
contraction. Moreover, in Theorem 1 (given below), we consider contractions
M which satisfy the following condition:

Assumption 1. (Spectral gap assumption on M) M has a finite number J ∈ N
of points of modulus one in its spectrum such that the rest of the spectrum is
contained in a disk of radius 0 < δ < 1, i.e.,

Spec(M) ⊂ Bδ ∪ {λj}J
j=1 with |λj | = 1, (3.1)

where Bδ := {z ∈ C; |z| ≤ δ}. An illustration of this spectral gap assumption
is given in Fig. 1.

Our first main result is Theorem 1 stated below, which pertains to an open
system whose evolution, governed by a contraction semigroup, is interrupted
repeatedly and periodically by the action of a quantum operation M which
satisfies the following assumptions:

(1) the spectral gap assumption (Assumption 1), and
(2) all the corresponding quasi-nilpotent parts are equal to zero.

We establish a quantitative bound on the convergence rate of the Zeno product
to the corresponding quantum Zeno dynamics.

Before stating the theorem, we would first like to discuss the assump-
tions above. In the setting of Theorem 1, in order to study the quantum Zeno
effect one needs to prove convergence (in operator norm) of the Zeno product
(MetL/n)n to the operator corresponding to the effective evolution within the
quantum Zeno subspace. As a first step, one needs to find the condition on
the spectrum of M which would ensure such a convergence even in the trivial
case in which L = 0. This condition is precisely the spectral gap assumption
(Assumption 1) of M , along with the assumption that all the corresponding
quasi-nilpotent parts are equal to zero. This is rigorously stated in Proposi-
tion 3.1 (see in particular point (3)).

Theorem 1. Let L ∈ B(X) be a generator of a contraction semigroup and let
M ∈ B(X) be a contraction which satisfies the spectral gap assumption (3.1)
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Figure 1. Illustration of the spectral gap assumption on M .
The grey colored region as well as the dots on the unit circle
form Spec(M)

with all corresponding quasi-nilpotent operators (2.6) being zero. Then, for
projections Pj (defined through (2.5)) and any n ∈ N, 0 < δ < δ̃ < 1∥∥∥∥∥∥

(
MetL/n

)n

−
J∑

j=1

etPjLPj λn
j Pj

∥∥∥∥∥∥ ≤ C

(
‖L‖
n2/3

+
‖L‖2

n
+ δ̃n+1

)
, (3.2)

with C > 0 being a constant independent of L and n.

Theorem 1 is a quantitative version of a result by Möbus and Wolf [46,
Theorem 1]. In [46] the role of quasi-nilpotent operators was not discussed and
this extra assumption on M for which the quasi-nilpotent parts vanishes, is
missing. However, Example 1 shows that, unlike in finite dimensions, in infinite
dimensions this assumption is not satisfied in general and Proposition 3.1 shows
that it is necessary for the uniform convergence of the quantum Zeno limit.
Furthermore, Theorem 1 extends existing results to more general operators
M . This includes the quantum harmonic oscillator in Example 3.

Remark 1. Theorem 1 states that frequent application of the quantum oper-
ation M restricts the evolution of the system to the quantum Zeno subspace⊕J

j=1 ran(Pj) with the effective (i.e., quantum Zeno) dynamics on each of the
individual subspaces ran(Pj) given by etPjLPj . We also note that the inequality
(3.2) can be alternatively stated as follows:
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∥∥∥(
MetL/n

)n

− et
∑J

j=1 PjLPj Mn
∥∥∥ ≤ C

(
‖L‖
3
√

n2
+

‖L‖2

n
+ δ̃n+1

)
= O(n−2/3‖L‖2),

(3.3)

which closely resembles the form of the result in [3] (compare Theorem 1
and Corollary 1 therein). This can be seen in the following way: Firstly, we
note that a quantum operation M which satisfies the spectral gap assumption
(3.8), and whose quasi-nilpotent operators are equal to zero, can be written as
M =

∑J
j=1 λjPj + S, where S corresponds to the part of the spectrum with

magnitude strictly smaller than 1, i.e.,

S =
1

2πi

∮
γ

z (z − M)−1 dz,

where γ is a closed curve which encloses all parts of Spec(M) other than the
isolated points λj (for j = 1, 2, . . . , J) on the unit circle. Using PjPk = PjS =
SPj = 0 for all j 
= k, we get Mn =

∑J
j=1 λn

j Pj + Sn and ‖Sn‖ ≤ Cδ̃n+1.
Hence,

et
∑J

j=1 PjLPj Mn =
J∑

k=1

et
∑J

j=1 PjLPj λn
kPk + O(δ̃n+1)

=
J∑

k=1

J∏
j=1

etPjLPj λn
kPk + O(δ̃n+1)

=
J∑

k=1

etPkLPk λn
kPk + O(δ̃n+1).

In the second line, we have used the fact that the operators PjLPj for j ∈
{1, 2, . . . , J} commute with each other. In the third line, we have used the
fact that for each fixed k in the sum and j 
= k, the only term in the series
expansion of the exponential etPjLPj which makes a non-trivial contribution
to the sum is the zeroth-order term.

Our next result, given by Theorem 2, shows convergence of the Zeno
product under weaker assumptions than the ones used in Theorem 1. It es-
tablishes a novel strong quantum Zeno limit for quantum operations which do
not satisfy the spectral gap assumption (Assumption 1) but instead satisfy a
weaker property of strong power-convergence (see (3.4) below). More precisely,
we prove strong convergence of the Zeno product for contractions M which are
strongly power-convergent to the projection onto the corresponding invariant
subspace. To our knowledge this is first result on the quantum Zeno effect for
general quantum operations which does not rely on a spectral gap assumption,
and it applies to the (bosonic quantum-limited) attenuator channel, discussed
in Example 4, which is an important example of a quantum channel arising in
quantum optics.
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Theorem 2. Let L ∈ B(X) and M ∈ B(X) be a contraction which satisfies for
all x ∈ X

lim
n→∞ Mnx = Px (3.4)

for some operator P ∈ B(X). Then

lim
n→∞

(
MetL/n

)n

x = etPLP Px (3.5)

for all x ∈ X.

Note that (3.4) implies that the operator P is the projection onto the
invariant subspace of M .

Remark 2. For the special case that X is the space of trace-class operators
over some Hilbert space, it is known [1] that ‖Mnx − Px‖1 −−−−→

n→∞ 0 if and

only if ‖Mnx‖1 → ‖Px‖1 and Mnx is weakly convergent to Px. Therefore,
often (e.g., when M is a quantum channel) it is enough to just assume a weak
power-convergence in the above theorem.

3.2. Case II: Strongly Continuous Semigroups

Our third result stated in Theorem 3 pertains to open systems whose evolu-
tion is governed by a strongly continuous quantum dynamical semigroup (and
hence by an unbounded generator). Once again the evolution is interrupted by
repeated and periodic actions of a quantum operation M satisfying assump-
tions (1) and (2) stated in Sect. 3.1. In this case, we obtain a bound on the
speed of convergence to the quantum Zeno dynamics in the strong topology.

Theorem 3. Let L with domain D(L) be a generator of a strongly continuous
contraction semigroup

(
etL)

t≥0
and M ∈ B(X) be a contraction satisfying the

spectral gap assumption (3.1) with all corresponding quasi-nilpotent operators
(defined through (2.6)) being zero. Moreover, assume that ML,LM , are both
densely defined and bounded. Then for all x ∈ D(L), n ∈ N, and 0 < δ < δ̃ < 1∥∥∥∥∥∥

⎛
⎝(

MetL/n
)n

−
J∑

j=1

etPjLPj λn
j Pj

⎞
⎠ x

∥∥∥∥∥∥ ≤ C

( (
1
3
√

n
+ δ̃n+1

)
‖x‖ +

‖Lx‖
3
√

n4

)

= O(‖x‖D(L)n
−1/3),

(3.6)
where ‖ · ‖D(L) denotes the graph norm, i.e., ‖x‖D(L) = ‖x‖ + ‖Lx‖. Conse-
quently, we have for all x ∈ X∥∥∥∥∥∥

⎛
⎝(

MetL/n
)n

−
J∑

j=1

etPjLPj λn
j Pj

⎞
⎠ x

∥∥∥∥∥∥ −−−−→
n→∞ 0. (3.7)

It is important to determine the rate, topology and set of states for which
the quantum Zeno product (MetL/n)n converges to the quantum Zeno dy-
namics. We recall that we refer to the asymptotic of (Met/nL)n in a certain
topology, as the quantum Zeno limit. In the setting of Theorem 1, the limit is
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in the uniform topology, whereas in the setting of Theorems 2 and 3, the limit
is in the strong topology.

As mentioned earlier, Proposition 3.1, given below, shows the requirement
of the spectral gap condition (Assumption 1) on the quantum operation M ,
to obtain a quantum Zeno limit in operator norm. In the trivial case in which
there is no additional quantum dynamics, i.e., L = 0, the quantum Zeno
product reduces simply to

(
MetL/n

)n
= Mn.

Proposition 3.1. Let M ∈ B(X) be a contraction, J ∈ N, {λj}J
j=1 ⊂ C with

|λj | = 1 and λj 
= λl for j 
= l. Then the following are equivalent:

(1) limn→∞ ‖Mn −
∑J

j=1 λn
j Kj‖ = 0, for some 0 
= Kj ∈ B(X).

(2) ‖Mn −
∑J

j=1 λn
j Kj‖ ≤ Cδ̃n+1 for some 0 
= Kj ∈ B(X), 0 ≤ δ̃ < 1 and

C > 0.
(3) For some 0 ≤ δ < 1, the contraction M satisfies the spectral gap condition

given by

{λj}j=1,...,J ⊂ Spec(M) ⊂ Bδ ∪ {λj}J
j=1, (3.8)

where Bδ := {z ∈ C; |z| ≤ δ}, and its quasi-nilpotent parts Nj (defined
through (2.6)) are equal to zero for all j = 1, · · · , J .

If either of the above condition holds, then the spectral projectors Pj (defined
through (2.5)) are well-defined, we have Kj = Pj and each Pj is the projector
onto the eigenspace corresponding to the eigenvalue λj.

In particular, from Proposition 3.1, we can immediately infer the follow-
ing corollary, which shows the equivalence of the uniform convergence of the
powers Mn to a spectral gap condition on M .

Corollary 3.2. Let M ∈ B(X) be a contraction. Then the following are equiv-
alent:

(1) (Mn)n∈N converges uniformly.
(2) (Mn)n∈N converges uniformly with exponential convergence rate.
(3) For some 0 ≤ δ < 1, the contraction M satisfies the spectral gap condition

given by

Spec(M) ⊂ Bδ ∪ {1}, (3.9)

where Bδ := {z ∈ C; |z| ≤ δ}, and in the case 1 ∈ Spec(M) that the
corresponding quasi-nilpotent part is equal to zero.

We now give two examples of quantum channels M which satisfy the
condition (3) in Proposition 3.1 and hence the assumption in Theorem 1.

Example 2. (Generalized depolarizing channel) Consider for X = T (H), σ ∈
T (H) and p ∈ [0, 1) the contraction M being the generalized depolarizing
channel Φp, which acts on any state ρ ∈ T (H) as follows:

Φp(ρ) = (1 − p)ρ + p tr(ρ)σ.
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We can directly construct the resolvent for any complex number λ /∈ {1−p, 1}
by

(λ − Φp)
−1 (ρ) =

ρ + p
λ−1 tr(ρ)σ

λ + p − 1
, (3.10)

for any ρ ∈ T (H), which shows that Spec(Φp) ⊂ {(1 − p), 1}. Moreover, using
the explicit form of the resolvent (given in (3.10)), we can directly compute
the projector P corresponding to the spectral point 1 (cf (2.5)):

P (ρ) =
1

2πi

∮
Γ

(z − Φp)
−1 (ρ)dz =

1
2πi

∮
Γ

ρ + p
z−1 tr(ρ)σ

z + p − 1
dz

=
1

2πi

∮
Γ

p

(z − 1)(z + p − 1)
dz tr(ρ)σ = tr(ρ)σ,

where Γ encloses the spectral point 1 but not 1 − p. Note that the spec-
tral projection P coincides with the projection onto the invariant subspace
F = span{σ}. Hence, we have explicitly shown that the quasi-nilpotent part
of the generalized depolarizing channel is zero and hence assumption (3) in
Proposition 3.1 and the assumption of Theorem 1 holds. Moreover, as P 
= 1,
we have also shown the equality Spec(Φp) = {(1 − p), 1}.

Example 3. (Schrödinger evolution of the harmonic oscillator) We consider the
Hamiltonian of a one-dimensional quantum harmonic oscillator H = −Δ +
ω2x2, see [54, Sect. 8.3] for details, defining a strongly continuous group
(U(t))t∈R on L2(R), where U(t) = e−itH . Let En := ω (n + 1/2) denote the
energy eigenvalues and let {|n〉}n∈N denote the energy eigenbasis of H. Then
U(t) =

∑∞
n=0 e−itEn |n〉〈n|, where the series converges strongly in L2(R). Con-

sider corresponding quantum channel ΦU(t) on T (L2(R)) given by conjugating
with U(t), i.e.,

ΦU(t)(ρ) = U(t)ρU(t)∗ =
∞∑

n,m=0

e−it(En−Em)〈n|ρ|m〉|n〉〈m|

=
∞∑

n,m=0

e−itω(n−m)〈n|ρ|m〉|n〉〈m|,

where the convergence of the series is in trace norm. We now see that for all
λ /∈ {e−itωk}k∈Z we can explicitly write down the resolvent of ΦU(t) at λ,
which is (

λ − ΦU(t)

)−1 (ρ) =
∞∑

n,m=0

〈n|ρ|m〉|n〉〈m|
λ − e−itω(n−m)

and hence Spec(ΦU(t)) ⊂ {e−itωk}k∈Z.
Now consider a fixed time t satisfying tω = 2π/k for some k ∈ N and

define the contraction M := ΦU(t). In that case, we see that Spec(ΦU(t))
consists at most of k points, which are hence all isolated and therefore ΦU(t)

satisfies (3.8). For any j = 0, · · · , k let Γj be a closed curve surrounding
the spectral point λj = e− 2πij

k and separating this point from the rest of
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Spec(ΦU(t)). We can then compute the spectral projector corresponding to λj

which is

Pj(ρ) =
1

2πi

∮
Γj

(
z − ΦU(t)

)−1 (ρ)dz =
∞∑

n,m=0

1
2πi

∮
Γj

〈n|ρ|m〉|n〉〈m|
z − e− 2πi(n−m)

k

dz

=
∞∑

n,m=0
n−m=jmod k

〈n|ρ|m〉|n〉〈m|.

Hence, as for all ρ ∈ T (L2(R)) the image of the spectral projector Pj(ρ), if
nonzero, is an eigenvector corresponding to the eigenvalue λj = e− 2πij

k of ΦU(t).
Thus, all quasi-nilpotent parts are equal to zero, which shows that M = ΦU(t)

fulfills condition (3) in Proposition 3.1.
Considering points in time t which do not satisfy tω = 2π/k for any

k ∈ N, it is easy to see that the spectrum of ΦU(t) is equal to the unit circle
in the complex plane. Hence, in this case, M = ΦU(t) does not satisfy the
condition (3) in Proposition 3.1.

In the following example, we see that the (bosonic quantum-limited) at-
tenuator channel does not satisfy the spectral gap assumption used in Theo-
rem 1. However, it is still strongly power-convergent to its invariant subspace,
i.e., it satisfies the condition (3.4). Hence, Theorem 2 applies for the choice of
M being the attenuator channel.

Example 4. (Attenuator Channel) Let Φatt
t be the attenuator channel with

attenuation parameter η(t) = e−t, which can be thought of as a model of
the dynamics of an harmonic oscilator interacting with an electromagnetic
field (see [51, Chapter 3.5.3] and [12] for more information). The action of the
attenuator channel on an arbitrary state ρ is given by

Φatt
t (ρ) =

∞∑
l=0

(1 − e−t)l

l!
e−tN/2alρ(a∗)le−tN/2 =

∞∑
l=0

Kl(t)ρK∗
l (t),

with

Kl(t) =
(1 − e−t)

l!
e−tN/2al =

∞∑
m=0

√(
m + l

m

)
(1 − e−t)l/2e−tm/2|m〉〈m + l|

(cf. [12, Lemma II.12]). From the above, one can see that the attenuator chan-
nel has a unique invariant state given by |0〉〈0| and converges strongly to the
projector of this invariant state in the limit t → ∞, i.e., for all states ρ

lim
t→∞ Φatt

t (ρ) = tr(ρ)|0〉〈0| = P (ρ), (3.11)

where we defined the projector P (·) = tr(·)|0〉〈0|. Consider the quantum op-
eration

M = Φatt
t0 ,
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where t0 > 0 is any fixed time. Using the fact that (Φatt
t )t≥0 is a semigroup,

(3.11) immediately gives that M is strongly power-convergent, i.e.,

lim
n→∞ Mn(ρ) = P (ρ).

However, M is not uniformly power-convergent. This can be seen by using the
fact that for coherent states,

|α〉 = e−|α|2/2
∞∑

m=0

αm

m!
|m〉,

the attenuator channel acts as

Φatt
t (|α〉〈α|) = |e−t/2α〉〈e−t/2α|.

Hence, for all n ∈ N

‖Mn − P‖ = sup
‖x‖1=1

‖Mn(x) − P (x)‖1 ≥ sup
|α〉〈α|

‖Mn(|α〉〈α|) − P (|α〉〈α|)‖1

= sup
|α〉〈α|

∥∥∥|e−nt0/2α〉〈e−nt0/2α| − |0〉〈0|
∥∥∥

1
= 2.

Hence, we see that M violates the assumptions in Corollary 3.2 and Theorem 1,
i.e., either 1 is not an isolated point in the spectrum of M or its associated
quasi-nilpotent part is not equal to zero.

In Sect. 8, we show strong power-convergence for a variety of other quan-
tum channels, which provides more examples to which our Theorem 2 can be
applied. These include quantum channels related to the quantum Ornstein–
Uhlenbeck semigroup (Example 7), the Jaynes–Cummings model (Example 8)
and photon absorption and emission processes (Example 9 and 10). To prove
that these examples of quantum channels satisfy the strong power-convergence
property required in Theorem 2, we use an embedding technique into the
Hilbert space of Hilbert–Schmidt operators, developed in [8], and the results
on ergodic theory of quantum Markov semigroups in [13,25].

For the following example, we investigated numerically the speed of con-
vergence towards the Zeno subspace and compared it to our analytical bound
(3.2).

Example 5. We consider for M the generalized depolarizing channel, intro-
duced in Example 2, with

σ =
1
3

(|0〉〈0| + |1〉〈1| + |2〉〈2|) +
1
10

(|0〉〈1| + |1〉〈0|) ,

The dynamics is given by U(t)ρU(t)† = e−iHtρeiHt where H = −Δ + x2 is
the Hamiltonian of the harmonic oscillator. For an initial state ρ = |0〉〈0|, an-
alyzing the quantum Zeno limit reduces to studying the norm

∥∥∥(
MetL/n

)n
(ρ)

−σ‖1 . The analytical error (∝ n−3/2) and numerical error (∝ n−1) are both
illustrated in Fig. 2.
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Figure 2. We compare the numerically computed error in
the quantum Zeno limit and find a speed of convergence ∝
n−1. This is to be compared with the analytically obtained
decay rate ∝ n−2/3 predicted by (3.2)

The following example shows that the boundedness assumption in The-
orem 3 is strictly necessary in the sense that it does not hold for general M
and L. Our counterexample uses high energy. Moreover, in this example, both
the pointwise quantum Zeno limit as well as the quantum Zeno dynamics do
not exist.

Example 6. Consider the state

|ϕ〉 =
∞∑

n=1

2−n/2|2n〉

and P = |ϕ〉〈ϕ| be the projection onto that state. Let L := iN with N being
the number operator. Then |ϕ〉 is not in the domain of N , as the truncated
sequence N |ϕ〉 =

∑k
n=1 2n/2|2n〉 does not converge in the Hilbert space. Then

the kth Yosida approximant Lk acts on the state |ϕ〉 as follows:

Lk|ϕ〉 ≡ kL (k − L)−1 |ϕ〉 =
∞∑

n=1

i2n/2k(k − i2n)−1|2n〉.

This implies that

PLkP = |ϕ〉〈ϕ|
∞∑

n=1

ik

k − i2n

and hence

etPLkP = et
∑∞

n=1
ik

k−i2n P.
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Thus, if x ∈ span(ϕ)⊥ it follows that

etPLkP x = 0 ∀k, (3.12)

whereas for x /∈ span(ϕ)⊥, the limit as k tends to infinity, of the left hand side
of the above equation, does not exist. This shows the nonexistence of the limit
of the Yosida approximation of the Zeno dynamics etPLkP .

Turning now to the Zeno product, we start by observing that,

〈ϕ|et/nL|ϕ〉 =
∞∑

k=1

2−keit2k/n

so that (
Pet/nL

)n

|ϕ〉 = |ϕ〉
( ∞∑

k=1

2−keit2k/n

)n

.

An elementary calculation (that we leave to the reader) shows that the limit
of the Zeno product

(
Pet/nL)n

as n tends to infinity also does not exist.

4. Proof of Proposition 3.1

We start this section by first introducing certain elements of ergodic theory
which we employ as ingredients of the proof. The invariant subspace of a
contraction M ∈ B(X) shall be denoted by F :=

{
x ∈ X

∣∣∣Mx = x
}

. Consider
for n ∈ N the average operator

An :=
1
n

n−1∑
k=0

Mk. (4.1)

The mean ergodic subspace of M , which is the subspace of X on which (4.1)
has a strong limit, shall be denoted by

Xme =
{

x ∈ X
∣∣∣ lim

n→∞ Anx exists
}

.

Yosida’s Mean Ergodic Theorem (cf. [38, Chapter 2] or [57, Chapter VIII.
3.]) gives the following complete characterization of the mean ergodic subspace,

Xme = F ⊕ ran (1 − M),

and in addition states that for all x ∈ Xme the average operator converges to
some operator P̃

lim
n→∞ Anx = P̃ x with P̃ 2 = P̃ , (4.2)

defined on the subspace Xme. Here P̃ is the projection onto the invariant
subspace F , i.e., ran(P̃ ) = F , ker(P̃ ) = (1 − M)X and P̃M = MP̃ = P̃ . We
call the operator M mean ergodic, if X = Xme.

With these preliminaries in hand, we are now ready to state the proof of
Proposiion 3.1:
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Proof of Prop. 3.1. The direction (2) =⇒ (1) is trivial. We continue by show-
ing the implication (3) =⇒ (2). As the quasi-nilpotent parts are all equal to
zero, we can pick Kj = Pj , with spectral projector Pj as defined in (2.5), and
get for 0 ≤ δ < δ̃ < 1 the estimate for the expression in (2):∥∥∥∥∥∥Mn −

J∑
j=1

λn
j Pj

∥∥∥∥∥∥ =

∥∥∥∥∥ 1
2πi

∮
∂Bδ̃

zn (z − M)−1 dz

∥∥∥∥∥ ≤ Cδ̃n+1,

where we used the fact that ‖ (z − M)−1 ‖ is uniformly bounded for z ∈ ∂Bδ̃.
We complete the proof by showing (1) =⇒ (3). Define for each λj the

rotated operator Mj = λjM . By (1) there exists for all ε > 0 a n′ ∈ N such
that for all k ≥ n′ ∥∥∥∥∥Mk

j −
J∑

l=1

(λjλl)kKl

∥∥∥∥∥ ≤ ε.

Moreover, using now that limn→∞ 1
n

∑n′−1
k=0 Mk

j = 0 and limn→∞ 1
n

∑n
k=n′

(λjλl)k = δjl, with δjl dentoting the Kronecker delta, we see that for all n
large enough∥∥∥∥∥ 1

n

n∑
k=0

Mk
j − Kj

∥∥∥∥∥ ≤

∥∥∥∥∥∥
1
n

n′−1∑
k=0

Mk
j

∥∥∥∥∥∥ +

∥∥∥∥∥ 1
n

n∑
k=n′

(
Mk

j −
J∑

l=1

(λjλl)kKl

)∥∥∥∥∥
+

∥∥∥∥∥ 1
n

n∑
k=n′

J∑
l=1

(λjλl)kKl − Kj

∥∥∥∥∥ ≤ 3ε.

As ε > 0 was arbitrary, this shows that the corresponding average operator

An(Mj) :=
1
n

n−1∑
k=0

Mk
j , (4.3)

converges for n → ∞ in operator norm to Kj and hence Mj is uniformly mean
ergodic.

Hence, Yosida’s mean ergodic theorem implies that Kj = P̃j , with P̃j

being the projector onto the invariant subspace of Mj . Now using [42, The-
orem 1] and the arguments therein we see that the restriction Mj |ran(1−P̃j)

does not contain 1 in its spectrum. Since Spec(Mj) = Spec
(
Mj |ran(1−P̃j)

)
∪

Spec
(
Mj |ran(P̃j)

)
and Spec

(
Mj |ran(P̃j)

)
⊂ {1}, we see 1 /∈ Spec(Mj) \ {1} ⊂

Spec
(
Mj |ran(1−P̃ )

)
, which shows that 1 is an isolated point in Spec(Mj). By

rotating Mj back to M , we see that each λj is an isolated point in Spec(M).
Moreover, again using [42, Theorem 1], we see that all poles of the resolvent are
of first order at each of the isolated spectral points λj , i.e., (z−λj)‖ (z − M)−1 ‖
is bounded in z. Now consider for an arbitrary ε > 0 a closed curve Γj,ε ⊂ C

with distance at most ε to λj and not intersecting Spec(M). Then we can
bound
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‖Nj‖ ≤ 1
2π

∮
Γj,ε

|λj − z|
∥∥∥(z − M)−1

∥∥∥ dz ≤ C ε

for some C > 0 independent of ε. Since ε > 0 is arbitrary, we see that all
quasi-nilpotent operators Nj = 0, and hence, the spectral projectors (2.5) are
equal to the projections onto the corresponding eigenspaces Pj = P̃j = Kj .

In order to conclude the spectral gap condition (3.8) and hence complete
the proof, it suffices to show that apart from the λj there are no other points
lying in the intersection of Spec(M) and the unit circle in the complex plane.
To show this, let γ be a closed curve in the complex plane enclosing Spec(M)\
{λj}J

j=1 and separating it from {λj}J
j=1. Then,

Q =
1

2πi

∮
γ

(z − M)−1 dz

is the spectral projector corresponding to Spec(M) \ {λj}J
j=1. From [34, The-

orem 6.17, Chapter III §6.4.] it follows that Spec(MQ) = Spec(M) \ {λj}J
j=1.

Moreover, since P̃jQ = PjQ = 0 for all j, we can conclude from (1) that
limn→∞ ‖(MQ)n‖ = 0. By the spectral mapping theorem applied to polyno-
mials (see, e.g., [57, Corollary 1, Chapter VIII 7]), we have

Spec((MQ)n) = (Spec(MQ))n = (Spec(M) \ {λj}J
j=1)

n

for each n ∈ N. Hence, we see that there is no point in Spec(M) \ {λj}J
j=1 on

the unit circle, which gives the spectral gap condition (3.8) and completes the
proof. �

5. Proof of Theorem 1

In this section, we give the proof of Theorem 1 which is inspired by and gen-
eralizes the proof of [46, Theorem 1]. As in the previous section, we consider
closed curves Γj enclosing the isolated spectral points λj of the quantum op-
eration M on the unit circle and separating them from Spec(M)\{λj}. We
choose the Γj in such a way that their distance from λj is small, say at most
1/2. Moreover, for 0 < δ < δ̃ < 1, we consider a closed curve γ ⊂ Bδ̃ that sat-
isfies γ∩Bδ = ∅. For convenience we denote by Ω the open set which lies in the
interior of all of the curves Γj and γ. For an illustration of this construction,
see Fig. 3.

Remark 3. In the sequel, C denotes a generic positive constant independent
of L and n ∈ N which might change from line to line.

By uniform continuity of the semigroup (etL)t≥0 and the upper semicon-
tinuity of the spectrum of MetL [34, Chapter IV §3.4], we know that the curves
Γj and γ separate parts of the spectrum of MetL for t > 0 small enough. We
will prove this explicitly and establish a uniform bound on the resolvent of
MetL outside the interior of the curves denoted by Ω. This uniform bound
will be useful in proving a quantitative bound on the convergence rate (3.2).
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Figure 3. Spec(M) with curves Γj and γ. The spectrum of
M consists of the dark region in the middle with maximal
distance from the origin equal to δ and the dots on the unit
circle. The violet region in the interior of all curves is equal
to the open set Ω

Lemma 5.1. For t ∈ [0, ε], L ∈ B(X), and 1 ≤ Kε := sups∈[0,ε] ‖esL‖, we
choose ε > 0 such that

0 < ε < max

{
Kε‖L‖ sup

z∈B3/2\Ω

‖(z − M)−1‖, ‖L‖
}−1

, (5.1)

we have z ∈ ρ(MetL) for every z ∈ B3/2 \ Ω. Moreover, there is C > 0 such
that

sup
(t,z)∈[0,ε]×(B3/2\Ω)

∥∥∥(
z − MetL)−1

∥∥∥ ≤ C. (5.2)

Proof. For t ∈ [0, ε] with ε as in (5.1) and z ∈ B3/2 \ Ω we have∥∥∥(
z − MetL)

−
(
z − M

)∥∥∥ =
∥∥M − MetL∥∥ ≤

∥∥1 − etL∥∥
≤ Kε‖L‖t ≤ q

∥∥(z − M)−1
∥∥−1

,

for some 0 < q < 1. Hence, z ∈ ρ(MetL), and in particular∥∥∥(
z − MetL)−1

∥∥∥ ≤ (1 − q)−1
∥∥(z − M)−1

∥∥ ≤ (1 − q)−1 sup
z∈Γ

∥∥(z − M)−1
∥∥ ≤ C,

which shows that the resolvent is uniformly bounded on [0, ε] × B3/2 \ Ω. �



3818 S. Becker et al. Ann. Henri Poincaré

Analogously as in (2.5), we can now define for small t > 0, as in Lemma 5.1,
the spectral projectors of MetL corresponding to the part of the spectrum sep-
arated by the curve Γj , which is

Pj(t) =
1

2πi

∮
Γj

(
z − MetL)−1

dz. (5.3)

Using these projectors, we show that the main contribution to the quantum
Zeno product comes from the peripheral part of the spectrum, since the contri-
bution from the rest vanishes exponentially. This is the content of the following
lemma which is a slight generalization of Lemma 1 of [46].

Lemma 5.2. Under the assumptions of Theorem 1, we have∥∥∥∥∥∥
(
MeL/n

)n

−
J∑

j=1

(
Pj(n−1)MeL/n Pj(n−1)

)n

∥∥∥∥∥∥ ≤ C δ̃n+1

for all n ∈ N such that ε := n−1 satisfies (5.1) and 0 < δ < δ̃ < 1.

Proof. Using the holomorphic functional calculus applied to the operator
MeL/n, we see

J∑
j=1

(
Pj(n−1)MeL/n Pj(n−1)

)n

=
J∑

j=1

1
2πi

∮
Γj

zn
(
z − MeL/n

)−1

dz.

This implies that∥∥∥∥∥∥
(
MeL/n

)n

−
J∑

j=1

(
Pj(n−1)MeL/n Pj(n−1)

)n

∥∥∥∥∥∥
=

∥∥∥∥ 1
2πi

∮
γ

zn
(
z − MeL/n

)−1

dz

∥∥∥∥ ≤ sup
(t,z)∈[0,1/n]×γ

∥∥∥∥(
z − MeL/n

)−1
∥∥∥∥ δ̃n+1

≤ sup
(t,z)∈[0,1/n]×(B3/2\Ω)

∥∥∥∥(
z − MeL/n

)−1
∥∥∥∥ δ̃n+1 ≤ C δ̃n+1.

Here we have used the fact that γ has distance at most δ̃ from the origin, the
uniform resolvent bound (5.2), and the fact that the curve γ is contained in
B3/2 \ Ω. �

In order to control the remainder term
J∑

j=1

(
Pj(n−1)MeL/n Pj(n−1)

)n

, (5.4)

we study the derivative of Pj(t) at zero which we construct in the following
lemma.

Lemma 5.3. For each j = 1, . . . , J we can define the derivative in norm topol-
ogy at t = 0 of the family of projectors Pj(t) (defined through (5.3)) as

P ′
j = − 1

2πi

∮
Γj

(
z − M

)−1

ML
(
z − M

)−1

dz,
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satisfying ‖P ′
j‖ ≤ C‖L‖. Then for t ∈ [0, ε] with ε as in (5.1) and some

universal C > 0, the following bound holds:∥∥Pj(t) − Pj − tP ′
j

∥∥ ≤ C t2‖L‖2. (5.5)

Proof. We start by recalling that for A,B ∈ B(X) and for z ∈ ρ(A)∩ρ(B) the
difference of the resolvents is given by the second resolvent formula:

(z − A)−1 − (z − B)−1 = (z − A)−1 (B − A) (z − B)−1
. (5.6)

Using the above, we can write
Pj(t) − Pj

t
=

1
2πit

∮
Γj

(
z − MetL

)−1

−
(
z − M

)−1

dz

=
1

2πi

∮
Γj

(
z − MetL

)−1 M

t

(
1 − etL

)(
z − M

)−1

dz

−−−→
t→0

− 1
2πi

∮
Γj

(
z − M

)−1

ML
(
z − M

)−1

dz.

To justify the limit in the last line, we have used the dominated convergence
theorem together with the uniform resolvent bound (5.2), and continuity of
the operator inverse. To bound the norm of P ′

j , we see that

‖P ′
j‖ =

∥∥∥∥∥ −1
2πi

∮
Γj

(
z − M

)−1

ML
(
z − M

)−1

dz

∥∥∥∥∥
≤ C sup

z∈Γj

∥∥∥ (z − M)−1
∥∥∥2

‖M‖‖L‖ = C‖L‖.

To prove (5.5) we write using the resolvent formula (5.6), and the bound (5.2)∥∥Pj(t) − Pj − tP ′
j

∥∥
=

∥∥∥∥∥ 1

2πi

∮
Γj

(
z − MetL

)−1
M

(
1 − etL

)(
z − M

)−1
+

(
z − M

)−1
M tL

(
z − M

)−1
dz

∥∥∥∥∥
≤

∥∥∥∥∥ 1

2πi

∮
Γj

(
z − M

)−1
M

(
1 + tL − etL

)(
z − M

)−1
dz

∥∥∥∥∥
+

∥∥∥∥∥ 1

2πi

∮
Γj

(
z − MetL

)−1
M

(
1 − etL

)(
z − M

)−1
M

(
1 − etL

)(
z − M

)−1
dz

∥∥∥∥∥
≤ C

(∥∥∥1 + tL − etL
∥∥∥ +

∥∥∥1 − etL
∥∥∥2

)
≤ Ct2‖L‖2.

�
In order to prove convergence of the remainder term (5.4) to the quantum

Zeno dynamics given by the second term on the left hand side of (3.2), we will
employ the following strengthened version of Chernoff’s

√
n-Lemma [7] which

was proven in [58].

Lemma 5.4. Let Y be a Banach space and K ∈ B(Y ) a contraction. Then(
et(K−1)

)
t≥0

is a norm continuous contraction semigroup and∥∥∥(
Kn − en(K−1)

)
x
∥∥∥ ≤ 2 3

√
n ‖(K − 1) x‖
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for all x ∈ Y and n ∈ N.

Now we have all the tools needed to conclude the proof of Theorem 1.
To show the quantitative bound (3.2), we will use triangle inequality together
with Lemma 5.2 and, for the remainder term, the following Lemma 5.5. Note
that for proving Theorem 1 and in particular (3.2) therein, we can without loss
of generality assume that n ∈ N is large enough such that ε := n−1 satisfies
(5.1), since otherwise we can pick C > 0 such that (3.2) is trivially satisfied.

Lemma 5.5. Under the assumptions of Theorem 1, we have∥∥∥∥∥∥
J∑

j=1

(
Pj(n−1)MeL/n Pj(n−1)

)n

−
J∑

j=1

ePjLPj λn
j Pj

∥∥∥∥∥∥ ≤ C

(
‖L‖
3
√

n2
+

‖L‖2

n

)
.

(5.7)

for n ∈ N such that ε := n−1 satisfies (5.1).

Proof. We begin the proof by defining for each j = 1, . . . , J the contraction

Kj,n := λjPj(n−1)MeL/n Pj(n−1). (5.8)

We can split the left hand side of (5.7) as∥∥∥∥∥∥
J∑

j=1

(
Pj(n−1)MeL/n Pj(n−1)

)n

−
J∑

j=1

ePjLPj λn
j Pj

∥∥∥∥∥∥
≤

J∑
j=1

∥∥∥(
Pj(n−1)MeL/n Pj(n−1)

)n

− λn
j en(Kj,n−Pj(n

−1)) Pj(n−1)
∥∥∥

+

∥∥∥∥∥∥
J∑

j=1

λn
j en(Kj,n−Pj(n

−1)) Pj(n−1) −
J∑

j=1

ePjLPj λn
j Pj

∥∥∥∥∥∥
≤

J∑
j=1

( ∥∥∥(
Pj(n−1)MeL/n Pj(n−1)

)n

− λn
j en(Kj,n−Pj(n

−1)) Pj(n−1)
∥∥∥

+
∥∥∥λn

j en(Kj,n−Pj(n
−1)) Pj(n−1) − λn

j ePjLPj Pj

∥∥∥
)

, (5.9)

and bound for all j the first and second terms in the sum on the right hand
side of (5.9) individually.

For the first summand, we use the refined version of Chernoff’s Lemma
(Lemma 5.4) on Banach spaces Y := Pj(n−1)X with induced operator norm
denoted by ‖ · ‖Y (note that Pj(n−1) corresponds to the identity on Y ). From
this we obtain∥∥∥(

Pj(n−1)MeL/n Pj(n−1)
)n

− λn
j en(Kj,n−Pj(n

−1)) Pj(n−1)
∥∥∥

=
∥∥Kn

j,n − en(Kj,n−Pj(n
−1))∥∥

Y

≤ 2 3
√

n
∥∥Kj,n − Pj(n−1)

∥∥
Y

.

(5.10)
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By using the series expression of the exponential, we see that

n
(
Kj,n − Pj(n−1)

)
= nλj

(
Pj(n−1)MPj(n−1) − λjPj(n−1)

)
+ λjPj(n−1)MLPj(n−1) + Ej,n,

(5.11)

with Ej,n being a bounded operator with ‖Ej,n‖ ≤ C ‖L‖2

n containing all terms
of order two or higher in the expansion. To bound the first term on the right-
hand side of (5.11), we use Lemma 5.3 and write∥∥∥∥n

(
Pj(n−1)M Pj(n−1) − λjPj(n−1)

)∥∥∥∥
≤

∥∥∥∥n (PjMPj − λjPj) + P ′
jMPj + PjMP ′

j − λjP
′
j

∥∥∥∥ + C
‖L‖2

n
= C

‖L‖2

n
.

(5.12)
Here we have used the fact that the first term on the second line is equal to
zero. In order to see this, note that PjM = MPj = λjP , since Pj is the spectral
projector of M corresponding to the spectral point λj , and the corresponding
quasi-nilpotent part is zero, i.e., Pj is the projection on the corresponding
eigenspace. Moreover, we used the product rule P ′

j = PjP
′
j + P ′

jPj , which
holds since all the Pj(t) are projectors.

Combining (5.12) with (5.11), yields the following bound for (5.10):∥∥∥(
Pj(n−1)MeL/nPj(n−1)

)n

− λn
j en(Kj,n−Pj(n

−1))
∥∥∥ ≤ C

‖L‖
3
√

n2
.

From the above, and Lemma 5.3, we also know that

∥∥n
(
Kj,n − Pj(n−1)

)
− PjLPj

∥∥ ≤ C
‖L‖2

n
.

Therefore, noting that both
(
etPjLPj

)
t≥0

and
(
et n(Kj,n−1)

)
t≥0

are contraction
semigroups, we can use the bound in the proof of [16, Corrollary 1.11, Chapter
III] to infer that ∥∥∥en(Kj,n−Pj(n

−1)) − ePjLPj

∥∥∥ ≤ C
‖L‖2

n
.

This concludes the proof. �

6. Proof of Theorem 3

In this section, we consider L to be an unbounded generator of some con-
traction semigroup (T (t))t≥0 on a Banach space X, which is hence no longer
uniformly continuous but only strongly continuous. Moreover, as in Sect. 5,
we again assume the contraction M to fulfill the spectral gap assumption (3.1)
with corresponding quasi-nilpotent operators of the spectral points on the unit
circle being equal to zero.

Under the boundedness assumption in Theorem 3 we will prove conver-
gence of the corresponding quantum Zeno product

(
MetL/n

)n
. In order to do
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that, we will approximate the unbounded generator L by its kth Yosida ap-
proximant Lk (2.4) and use the quantitative convergence rate of Theorem 1
for the quantum Zeno product corresponding to Lk.

In order to prove Theorem 3, we need some quantitative bound on the
Yosida-approximation given by the following lemma. Here and henceforth, we
again use the convention of Remark 3.

Lemma 6.1. Let L, with domain D(L), be the generator of a strongly contin-
uous contraction semigroup on some Banach space X, and let B a bounded
operator such that BL and LB are bounded and densely defined. Moreover, let
Lk be the kth Yosida approximant of L defined in (2.4). Then

‖BLB − BLkB‖ ≤ C

k
(6.1)

and

‖(BL − BLk) x‖ ≤ C

k
‖Lx‖ for all x ∈ D(L). (6.2)

Proof. As L generates a contraction semigroup, we have [16, Theorem 3.5,
Chapter II] ∥∥∥(k − L)−1

∥∥∥ ≤ 1
k

, for all k ∈ N.

We start by proving the uniform bound (6.1) by first observing that

BLkB = BkL (k − L)−1
B = BL (k − L)−1 LB + BLB.

Here, we identified all bounded operators with their unique bounded exten-
sions, i.e., T ≡ T |D(T ) for T bounded on D(T ). Using∥∥∥BL (k − L)−1 LB

∥∥∥ ≤ ‖BL‖
∥∥∥(k − L)−1

∥∥∥ ‖LB‖ ≤ C/k,

this shows (6.1). To see (6.2), we use the fact that

BLk = BkL (k − L)−1 = BL (k − L)−1 L + BL,

which gives for any x ∈ D(L)∥∥∥BL (k − L)−1 Lx
∥∥∥ ≤

∥∥BL
∥∥∥∥∥(k − L)−1

∥∥∥∥∥Lx
∥∥ ≤ C

k
‖Lx‖.

�

Using Lemma 6.1, we can prove a similar result for the corresponding
semigroups.

Lemma 6.2. Let (T (t))t≥0 be a strongly continuous contraction semigroup on
a Banach space X with generator L, and let B be a bounded operator such
that BL and LB are bounded and densely defined. Moreover, let Lk denote
the kth Yosida approximant of L and (Tk(t))t≥0, with Tk(t) := etLk , be the
corresponding contraction semigroup.∥∥∥BT (t)B − BTk(t)B

∥∥∥ ≤ tC

k
, (6.3)
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and for all x ∈ D(L) ∥∥∥ (BT (t) − BTk(t)) x
∥∥∥ ≤ tC

k
‖Lx‖. (6.4)

Proof. Since for all k, l ∈ N and t, s ≥ 0 the operators Tk(t) and Tl(s) com-
mute, it follows that [T (t), T (s)] = 0. Hence, Tk(t) leaves D(L) invariant and
commutes with L as well. Therefore, for x ∈ D(L), we obtain

(BT (t) − BTk(t)) x = B

∫ t

0

d
ds

T (s)Tk(t − s)xds

=
∫ t

0

B (L − Lk) T (s)Tk(t − s)xds.

Now using (6.2) and the fact that T (t) and Tk(t − s) are contractions, we
obtain (6.4)

‖(BT (t) − BTk(t)) x‖ ≤ C

k

∫ t

0

‖LT (s)Tk(t − s)x‖ ds ≤ C

k

∫ t

0

‖Lx‖ ds =
Ct

k
‖Lx‖.

If we now apply this result to x ∈ D(LB), i.e., Bx ∈ D(L), we obtain∥∥∥ (BT (t)B − BTk(t)B) x
∥∥∥ ≤ tC

k
‖LBx‖ ≤ tC

k
‖x‖,

since LB is bounded. As D(LB) is dense, the uniform bound (6.3)
follows. �

Now we have everything needed to prove Theorem 3. Our strategy is
to split the Zeno limit into three parts. In the first part, we approximate
the Zeno product containing the unbounded generator with a Zeno product
involving its Yosida approximation. Then, we use the quantitative Zeno limit
for bounded generators Theorem 1 and apply it to the Zeno product of the
Yosida approximations. Finally, we estimate the effective dynamics of the full
model by its bounded approximation.

Proof of Theorem 3. We first observe that if ML and LM are densely defined
and bounded. This also applies to PjL,LPj , for all j = 1, . . . , J by using the
fact that Pj = λ−1

j MPj = MPjλ
−1
j , since the quasi-nilpotent parts vanish.

Let x ∈ D(L). Then we get by using the triangle inequality∥∥∥∥∥∥
⎛
⎝(

MeL/n
)n −

J∑
j=1

ePjLPj λn
j Pj

⎞
⎠ x

∥∥∥∥∥∥
≤

∥∥∥((
MeL/n

)n −
(
MeLk/n

)n)
x
∥∥∥ +

∥∥∥∥∥∥
⎛
⎝(

MeLk/n
)n −

J∑
j=1

ePjLkPj λn
j Pj

⎞
⎠ x

∥∥∥∥∥∥
+

∥∥∥∥∥∥
J∑

j=1

(
ePjLkPj − ePjLPj

)
λn

j Pjx

∥∥∥∥∥∥ .

(6.5)
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To bound the last term, we see that for all j ∈ {1, · · · , J}

ePjLkPj − ePjLPj =
∫ 1

0

d

ds

(
esPjLkPj e(1−s)PjLPj

)
ds

=
∫ 1

0

esPjLkPj
(
PjLkPj − PjLPj

)
e(1−s)PjLPj ds,

and hence, using (6.1) with B = Pj , we obtain
∥∥ePjLkPj − ePjLPj

∥∥ ≤ C/k.
Now we consider the first term on the right-hand side of (6.5). Using the fact
that both M and the evolution are contractions, we first notice that∥∥∥((

MeL/n
)n

−
(
MeLk/n

)n)
x
∥∥∥ ≤

∥∥∥∥(
MeL/n − MeLk/n

) (
MeL/n

)n−1

x

∥∥∥∥
+

∥∥∥∥(
MeL/n

)n−1

−
(
MeLk/n

)n−1

x

∥∥∥∥
≤

n−1∑
j=0

∥∥∥∥(
MeL/n − MeLk/n

) (
MeL/n

)j

x

∥∥∥∥ .

For each term with j ≥ 0 in the summation above, we use the uniform bound
(6.3) with B = M to get∥∥∥∥(

MeL/n − MeLk/n
) (

MeL/n
)j

x

∥∥∥∥ ≤ C

nk
‖x‖.

For the term with j = 0, we use (6.4) and get∥∥∥(
MeL/n − MeLk/n

)
x
∥∥∥ ≤ C

nk
‖Lx‖.

Putting these together, we obtain

∥∥∥((
MeL/n

)n −
(
MeLk/n

)n)
x
∥∥∥ ≤ C

nk

⎛
⎝‖Lx‖ +

n−1∑
j=1

‖x‖
⎞
⎠ ≤ C

k

(
‖x‖ +

‖Lx‖
n

)
.

Now using Theorem 1 with L = Lk for the middle term in (6.5), and the fact
that ‖Lk‖ ≤ k, we see that for all n ∈ N we have∥∥∥∥∥∥
⎛
⎝(

MeL/n
)n −

J∑
j=1

ePjLPj λn
j Pj

⎞
⎠ x

∥∥∥∥∥∥ ≤ C

( (
1

k
+

k
3
√

n2
+

k2

n
+ δ̃n+1

)
‖x‖ +

‖Lx‖
nk

)
,

for some C > 0 and any 0 < δ < δ̃ < 1. Choosing the optimal k = 3
√

n yields
the bound∥∥∥∥∥∥

⎛
⎝(

MeL/n
)n

−
J∑

j=1

ePjLPj λn
j Pj

⎞
⎠ x

∥∥∥∥∥∥ ≤ C

( (
1
3
√

n
+ δ̃n+1

)
‖x‖ +

‖Lx‖
3
√

n4

)
,

which proves (3.6). As
(
MeL/n

)n
is a uniformly bounded sequence (in fact

even a sequence of contractions) and D(L) dense, this gives the strong limit
stated in (3.7). �
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It is desirable to find a generalization of Theorem 3 replacing the bound-
edness of LM, ML by a weaker assumption that takes the energy of states
after applying the Zeno product into account. Large energies of states, as in
Example 6, lead to the non-existence of the Zeno limit. A natural replacement
of this uniform boundedness assumption would be a pointwise boundedness as-
sumption depending on the corresponding element x ∈ X on which the Zeno
product is evaluated. However, in this setting, it is not clear what the right
candidate for the effective Zeno dynamics is since the operators PjLPj are, in
general, not generators of a strongly continuous contraction semigroups.

Using similar techniques as in the proof of Theorem 3, we show that
the Zeno product tends to an approximate Zeno dynamics, given in terms of
the Yosida approximants of the full generator L. This is the statement of the
following corollary, which incorporates the pointwise boundedness assumption
(6.6). In particular, this condition holds for any α ∈ (0, 2] and x ∈ D(Lα)
with Cx := 1 if ‖LαMx‖ ≤ ‖Lαx‖ (cf. [30] for an overview of the theory of
fractional powers of operators).

Corollary 6.3. Let L, with domain D(L), be a generator of a strongly continu-
ous contraction semigroup

(
etL)

t≥0
and M ∈ B(X) be a contraction satisfying

the spectral gap assumption (3.1) with all corresponding quasi-nilpotent oper-
ators (2.6) being equal to zero. Moreover, let α ∈ (0, 2] and x ∈ D(Lα) such
that

sup
n∈N,

j∈N, j≤n

‖Lα
(
MeL/n

)j

x‖ ≤ Cx, (6.6)

for some finite Cx > 0 dependent only on x. Then

∥∥∥∥∥∥
⎛
⎝(

MetL/n
)n −

J∑
j=1

etPjLkPj λn
j Pj

⎞
⎠ x

∥∥∥∥∥∥ ≤ Cx

(
n1−α/2

kα/2
+

k
3
√

n2
+

k2

n
+ δ̃n+1

)
,

(6.7)

with 0 < δ < δ̃ < 1. In particular, for α ∈ (4/3, 2] and x ∈ D(Lα) satisfying
(6.6), we get the optimal asymptotic behavior

∥∥∥∥∥∥
⎛
⎝(

MetL/n
)n

−
J∑

j=1

etPjL
nβ Pj λn

j Pj

⎞
⎠ x

∥∥∥∥∥∥ ≤ Cxn−γ , (6.8)

with β = 4−α
4+α and γ = 3α−4

4+α > 0 and n large enough.
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Proof. As before, we will absorb in the factor t in the generator L. Firstly,
using the triangle inequality, we split the left-hand side of (6.7) as∥∥∥∥∥∥

⎛
⎝(

MeL/n
)n −

J∑
j=1

ePjLkPj λn
j Pj

⎞
⎠ x

∥∥∥∥∥∥ ≤
∥∥∥((

MeL/n
)n −

(
MeLk/n

)n)
x
∥∥∥

+

∥∥∥∥∥∥
⎛
⎝(

MeLk/n
)n −

J∑
j=1

ePjLkPj λn
j Pj

⎞
⎠ x

∥∥∥∥∥∥ .

(6.9)

For the first term in (6.9), we proceed as in the proof of Theorem 3 to obtain

∥∥∥((
MeL/n

)n

−
(
MeLk/n

)n)
x
∥∥∥ ≤

n−1∑
j=0

∥∥∥∥(
MeL/n − MeLk/n

) (
MeL/n

)j

x

∥∥∥∥ .

Using [27, Corollary 1.4] this gives

∥∥∥((
MeL/n

)n

−
(
MeLk/n

)n)
x
∥∥∥ ≤ C

(nk)α/2

n−1∑
j=0

∥∥∥∥Lα
(
MeL/n

)j

x

∥∥∥∥ . (6.10)

Using now (6.6), we see that∥∥∥((
MeL/n

)n

−
(
MeLk/n

)n)
x
∥∥∥ ≤ Cxn1−α/2

kα/2
.

Using now for the second term in (6.9) the bound in Theorem 1 with bounded
generator being the Yosida approximant Lk and noting that ‖Lk‖ ≤ k,
yields (6.7). �

7. Proof of Theorem 2

In order to prove Theorem 2, we first introduce for all n ∈ N , k ∈ [n] :=
{1, . . . , n}, and N := (N1, · · · , Nk+1) ∈ Nk+1 the following simplexes

In,k(N) :=

{
i ∈ Nk

∣∣∣il ≥ Nl ∀l ∈ [k],
k∑

l=1

il ≤ n − Nk+1

}
(7.1)

and analyze the asymptotic behavior of the cardinalities of these sets, illus-
trated in Fig. 4, as n → ∞, in the following lemma.

Lemma 7.1. For all k ∈ N and N ∈ Nk+1, we have

lim
n→∞

|In,k(N)|
nk

=
1
k!

. (7.2)

Proof. First we note that

|In,k(N)|
nk

=
1
nk

n∑
i1=N1

n−i1∑
i2=N2

· · ·
n−∑k−2

l=1 il∑
ik−1=Nk−1

n−∑k−1
l=1 il−Nk+1∑

ik=1

1.



Vol. 22 (2021) Quantum Zeno Effect in Open Quantum Systems 3827

Figure 4. Sets In,k(N), defined in (7.1) take the form of
discrete simplexes

If we denote by

Δk =

{
(t1, . . . , tk) ∈ R

k
∣∣ k∑

i=1

ti = 1 and ti ≥ 0 for all i

}

the k-simplex, then we obtain as a limiting expression, for the limit n → ∞,
the volume of the k-simplex

lim
n→∞

|In,k(N)|
nk

=
∫ 1

0

∫ 1−t1

0

∫ 1−t1−t2

0

· · ·
∫ 1−∑k−1

l=1 tl

0

1 dtkdtk−1 · · · dt1

=
∫

Δk

1 dt =
1
k!

.

�

For n ∈ N and k ∈ N, we denote the discrete simplex by

Δk
disc(n) =

{
(i1, . . . , ik) ∈ N

k
∣∣ k∑

l=1

il ≤ n

}
= In,k(1, · · · , 1, 0).

We prove Theorem 2 by using a perturbation series approach. Here we split
the Zeno product into a sum consisting of terms corresponding to different
powers of 1/n. In order to show convergence towards the Zeno dynamics, we
need a convergence result for each of these summands which is given by the
following lemma.
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Lemma 7.2. Let (Ln)n∈N ⊂ B(X) such that

lim
n→∞ Ln = L (7.3)

in operator norm for some L ∈ B(X). Then for all k ∈ N

lim
n→∞

1
nk

∑
i∈Δk

disc(n)

Mn+1−∑k
l=1 ilLnM ikLn · · · M i2LnM i1−1x =

(PLP )k

k!
x

(7.4)

Proof. Let ε > 0. From the existence of the strong limit liml→∞ M lx = Px,
we know that there exists a N1 ∈ N such that for all i1 ≥ N1 we have∥∥M i1−1x − Px

∥∥ ≤ ε. Using the fact that by definition P is necessarily a pro-
jection, we can pick, by the same argument, for each l ∈ [k] a Nl(ε) ∈ N such
that for all il ≥ Nl(ε)∥∥∥(

M ilLP
(
PLP

)l−2 − P
(
PLP

)l−1
)
x
∥∥∥ =

∥∥∥(
M il − P

)
L

(
PLP

)l−2
x
∥∥∥ ≤ ε.

(7.5)

In addition, there exists a Nk+1 ∈ N such that for n large enough satisfying
n + 1 −

∑k
l=1 il ≥ Nk+1, i.e.,

∑k
l=1 il ≤ n − Nk+1, we have that∥∥∥(

Mn+1−∑k
l=1 ilL

(
PLP

)k−2 −
(
PLP

)k−1
)
x
∥∥∥ ≤ ε. (7.6)

Moreover, as Ln −−−−→
n→∞ L in operator norm, we can pick NL ∈ N such that

for all n ≥ NL we have ‖Ln − L‖ ≤ ε and hence for each l ∈ [k − 1],∥∥∥Ln (PLP )l−1 − L (PLP )l−1
∥∥∥ ≤ ε‖PLP‖l−1. (7.7)

Now, combining the above inequalities and using ‖M‖ ≤ 1, supn ‖Ln‖ ≤ C
for some finite C > 0, and the triangle inequality we get for all (i1, · · · , ik) ∈
In,k(N), n ≥ NL, and N = (N1, · · · , Nk+1) the following:∥∥∥(

Mn+1−∑k
l=1 ilΠ2

m=k(LnM im)LnM i1−1 −
(
PLP

)k
)
x
∥∥∥

≤
∥∥∥(

Mn+1−∑k
l=1 ilΠ2

m=k(LnM im)Ln(M i1−1 − P )
)
x
∥∥∥

+
∥∥∥(

Mn+1−∑k
l=1 ilΠ2

m=k(LnM im)LnP −
(
PLP

)k
)
x
∥∥∥

≤ Ckε +
∥∥∥(

Mn+1−∑k
l=1 ilΠ2

m=k(LnM im)LnP −
(
PLP

)k
)
x
∥∥∥

(7.8)

Estimating the second term in the last line by using the triangle inequality
and the uniform bound on operators Ln yields∥∥∥(

Mn+1−∑k
l=1 ilΠ2

m=k(LnM im)LnP −
(
PLP

)k
)
x
∥∥∥

≤
∥∥∥(

Mn+1−∑k
l=1 ilΠ2

m=k(LnM im)(Ln − L)
)
Px

∥∥∥
+

∥∥∥(
Mn+1−∑k

l=1 ilΠ2
m=k(LnM im)LP −

(
PLP

)k
)
x
∥∥∥

≤ Ck−1‖Px‖ε +
∥∥∥(

Mn+1−∑k
l=1 ilΠ2

m=k(LnM im)LP −
(
PLP

)k
)
x
∥∥∥

(7.9)
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By iterating these estimates, we obtain∥∥∥(
Mn+1−∑k

l=1 ilΠ2
m=k(LnM im)LnM i1−1 −

(
PLP

)k
)
x
∥∥∥

≤ ε

k∑
l=1

(
Cl + Cl−1‖(PLP )k−lx‖

)
.

(7.10)

Denoting the n-independent constant on the right-hand side of (7.10) as

γ(k, P,L, x) =
k∑

l=1

(
Cl + Cl−1‖(PLP )k−lx‖

)
,

we obtain, for all n ≥ NL,
∥∥∥∥∥∥
( 1

nk

∑
i∈Δk

disc(n)

Mn+1−∑k
l=1 ilΠ2

m=k(LnM im)LnM i1−1 − (PLP )k

k!

)
x

∥∥∥∥∥∥
=

∥∥∥∥∥∥
( 1

nk

∑
i∈In,k(1,··· ,1,0)

Mn+1−∑k
l=1 ilΠ2

m=k(LnM im)LnM i1−1 − (PLP )k

k!

)
x

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
1

nk

∑
i∈In,k(N)

(
Mn+1−∑k

l=1 ilΠ2
m=k(LnM im)LnM i1−1 − (PLP )k

)
x

∥∥∥∥∥∥
+

∣∣∣∣ |In,k(N)|
nk

− 1

k!

∣∣∣∣ ‖(PLP )kx‖ +
|In,k(1, · · · , 1, 0)| − |In,k(N)|

nk
Ck‖x‖

≤ |In,k(N)|
nk

γ(k, P, L, x)ε + o(1).

Using the fact that ε > 0 was arbitrary, and Lemma 7.1, yields (7.4) and hence
finishes the proof. �

We can now give the proof of Theorem 2:

Proof of Theorem 2. As before, we can omit the time factor t by absorbing it
into the generator L. First we note that for all n ∈ N we can write

eL/n = 1 +
Ln

n
,

for some sequence (Ln)n∈N ⊂ B(X) which satisfies in operator norm

lim
n→∞ Ln = L. (7.11)

Hence for x ∈ X,(
MeL/n

)n

x =
(

M

(
1 +

Ln

n

))n

x = Mnx

+
n∑

k=1

1
nk

∑
i∈Δk

disc(n)

Mn+1−∑k
l=1 ilLnM ikLn · · · M i2LnM i1−1x.
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For each k ∈ [n], defining

yn,k :=
1
nk

∑
i∈Δk

disc(n)

Mn+1−∑k
l=1 ilLnM ikLn · · · M i2LnM i1−1x,

we see by Lemma 7.2 that

lim
n→∞ yn,k =

(PLP )k

k!
x.

Moreover, by using the facts that ‖M‖ ≤ 1 and supn∈N ‖Ln‖ ≤ C for some
finite C > 0, together with the argument in the proof of Lemma 7.1, we see
that

‖yn,k‖ ≤ |In,k(1, · · · , 1, 0)|
nk

Ck‖x‖ ≤ 2
Ck

k!
.

Hence, by the dominated convergence theorem, we obtain

lim
n→∞

(
MeL/n

)n
x = lim

n→∞

(
Mnx +

n∑
k=1

yn,k

)
= Px +

∞∑
k=1

(PLP )k

k!
x = ePLP Px,

which finishes the proof. �

8. Methods to Prove Strong Power-Convergence in Trace Norm

In this section, we study two different conditions on quantum channels M
which obey the power-convergence assumption (3.4) in Theorem 2. We com-
plete this theoretical study by proving that this strong power-convergence
property is satisfied by a variety of physically relevant examples of quantum
channels M .

For a quantum Markov semigroup (QMS) (T (t))t≥0 acting on bounded
linear operators (Heisenberg picture), we want to study when the channel
M := T∗(t0) of the associated predual semigroup (T∗(t))t≥0, acting on density
operators (Schrödinger picture), evaluated at a fixed time t0 > 0 is strongly
power-convergent.

Since the large n limit of Mn(ρ) for a density operator ρ is equivalent to
the study of the large t limit of T∗(t)(ρ), we study two methods that imply
strong pointwise convergence of the predual semigroup to an invariant state.

The first approach in Sect. 8.1 embeds the QMS into the space of Hilbert–
Schmidt operators and uses Hilbert space techniques to analyze the ergodic
properties of the semigroup. We then show in Lemma 8.1 how this study on
Hilbert–Schmidt operators can be extended to trace-class operators.

The second approach in Sect. 8.2 relies on ergodic methods for von Neu-
mann algebras and establishes that, under conditions on the commutant of
Lindblad operators and the Hamiltonian, the predual semigroup is strongly
ergodic.
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8.1. Embedding into Hilbert–Schmidt Operators

The first method we will discuss relies on the approach developed in [8]. Here
we use an embedding into the Hilbert space of Hilbert–Schmidt operators and
then infer from convergence results in that Hilbert space, convergence results
for trace-class operators.

We say that a state ρ is faithful if tr(ρx) = 0 for x ≥ 0 implies x = 0.
Let ρ be a faithful state then we can define the embedding

iρ : B(H) → HS(H), iρ(x) := ρ
1
4 xρ

1
4 .

For any operator T : B(H) → B(H) satisfying the Schwartz property, i.e.

T (x∗)T (x) ≤ T (x∗x), ∀x ∈ B(H), (8.1)

and

tr (ρT (x)) ≤ tr (ρx) , ∀x ∈ B(H), (8.2)

we can define an operator THS on the dense subspace iρ(B(H)) ⊂ HS(H) by

THS ◦ iρ = iρ ◦ T (8.3)

and then uniquely extend it to a contraction THS : HS(H) → HS(H) (cf. [8,
Proposition 2.1, Proposition 2.2]). Consequently, for (T (t))t≥0 being a semi-
group of completely positive operators on B(H) with invariant state ρ, i.e.,
tr (ρT (t)(x)) = tr (ρx) for all x ∈ B(H), we can define the contraction semi-
group

(
THS(t)

)
t≥0

on HS(H) by (8.3). Moreover,
(
THS(t)

)
t≥0

is strongly con-
tinuous if (T (t))t≥0 is weak∗ continuous [8, Theorem 2.3].

Note also that this approach is equivalent to extending the semigroup
onto the weighted L2(ρ) space [33,37,49] given by the completion of B(H) in
the norm ‖iρ(·)‖2 .

The following lemma shows that we can conclude convergence to the
invariant subspace of the semigroup (T (t))t≥0 on the bounded operators from
the corresponding semigroup

(
THS(t)

)
t≥0

on HS(H). Here, we denote weak
and weak∗ limits by w − lim and w∗ − lim respectively (see [52] for more
details).

Lemma 8.1. Let (T (t))t≥0 be a semigroup of completely positive contractions
on B(H) with faithful invariant state ρ. Denote by

(
THS(t)

)
t≥0

the correspond-
ing contraction semigroup on HS(H) uniquely defined by

THS(t) ◦ iρ = iρ ◦ T (t).

If for all x ∈ HS(H)

w − lim
t→∞ THS(t)(x) = tr (

√
ρ σ)

√
ρ

in HS(H) then for all x ∈ B(H)

w∗ − lim
t→∞ T (t)(x) = tr (ρx)1, (8.4)
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in B(H). Consequently, if moreover for each t ≥ 0 the operator T (t) is unital
(i.e., T (t)(1) = 1) and weak∗ continuous, we have that the predual semigroup
(T∗(t))t≥0 on T (H) converges strongly, i.e.,

lim
t→∞ T∗(t)(x) = tr(x)ρ (8.5)

for all x ∈ T (H).

Proof. Define the bounded projection PHS on HS(H) by PHS(σ) = tr(
√

ρσ)
√

ρ
for any σ ∈ HS(H) and moreover the bounded projection P on B(H) by
P (x) = tr(ρx)1 for any x ∈ B(H). Note that we have

iρ ◦ P = PHS ◦ iρ. (8.6)

Let y be a finite rank operator on H such that the vectors {en}m
n=1, {fn}m

n=1 ⊂
H in its singular value decomposition

y =
m∑

n=1

μn|en〉〈fn| (8.7)

are in the dense domain of ρ−1/4 denoted by D(ρ−1/4), i.e.,

{en}m
n=1, {fn}m

n=1 ⊂ D(ρ−1/4). (8.8)

This shows that ỹ = ρ−1/4yρ−1/4 is well-defined and has finite rank. Hence,
we see that for each x ∈ B(H)

tr
(
y T (t)(x)

)
= tr

(
ỹ iρ

(
T (t)(x)

))
= tr

(
ỹ THS(t)

(
iρ(x)

))
−−−→
t→∞ tr

(
ỹ PHS

(
iρ(x)

))
= tr

(
ỹ iρ

(
P (x)

))
= tr

(
y P (x)

)
.

as THS(t)(iρ(x)) is weakly convergent to PHS(iρ(x)). As the set of all finite
rank operators y satisfying (8.7) and (8.8) is dense in the trace-class operators
T (H), (T (t))t≥0 is a semigroup of contractions and P a bounded operator on
B(H), this already shows (8.4).

Noting now that the operator on T (H) defined by P∗(x) := tr(x)ρ is
the predual of P , (8.4) directly gives the weak convergence of the predual
semigroup, i.e.,

w − lim
t→∞ T∗(t)(x) = P∗(x) = tr(x)ρ

for all x ∈ T (H). Moreover, let now x ∈ T (H) be positive semidefinite, i.e.,
x ≥ 0. As for each t ≥ 0 the operators T∗(t) and P∗ are completely positive
and trace-preserving this gives

‖T∗(t)(x)‖1 = tr
(
T∗(t)(x)

)
= tr

(
x
)

= tr
(
P∗(x)

)
= ‖P∗(x)‖1.

Hence, by [1], we can conclude that for all positive semidefinite x ∈ T (H)

lim
t→∞ T∗(t)(x) = P∗(x)

in trace-norm. As every trace-class operator can be written as a linear com-
bination of four positive semidefinite trace-class operators, this shows (8.5).
�
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We will use the construction above to show strong power-convergence for
quantum channels M . The main idea here is to start with the dual channel
in the Heisenberg picture and transform it into a contraction on the space of
Hilbert–Schmidt operators using the embedding iρ. On the latter space one
can then show uniform convergence towards the invariant subspace if a certain
spectral gap condition is satisfied.

Example 7. (Quantum Ornstein–Uhlenbeck semigroup, [11]) The quantum
Ornstein–Uhlenbeck semigroup (qOU) in the Heisenberg picture, i.e., on B(H),
is generated by

Lx = −μ2

2
(a∗ax + xa∗a − 2a∗xa) − ν2

2
(aa∗x + xaa∗ − 2axa∗) (8.9)

and will be denoted by (T (t))t≥0 . Here 0 < λ < μ and a∗ and a are the
creation and annihilation operators satisfying the canonical commutation re-
lations [a, a∗] = 1. The qOU semigroup arises in quantum optics models of
masers and lasers, and in weak-coupling models of open quantum systems.
The faithful invariant state of the qOU semigroup is given by

ρ = (1 − ν)
∑
n≥0

νn|n〉〈n|

where ν = λ2

μ2 and {|n〉}n≥0 denotes the eigenbasis of the number operator
N = a∗a.

Let
(
THS(t)

)
t≥0

be the corresponding contraction semigroup on the
Hilbert–Schmidt operators defined by

THS(t) ◦ iρ = iρ ◦ T (t).

The generator of THS(t) denoted by LHS is self-adjoint, has compact resolvent,
and can be explicitly diagonalized as

LHS = −
(

μ2 − λ2

2

) ∑
n≥0

nPEn

where PEn
is the orthogonal projection onto

En := span{ρ1/4pn(Qz)ρ1/4 : |z| = 1}

with Qz = 2−1/2 (z̄a + za∗), polynomials pn given by

pn(t) =
∑
2r≤n

(
− μ2 + λ2

4(μ2 − λ2)

)r
n!

r!(n − 2r)!
tn−2r,

and eigenvalues
(
−n

(
μ2−λ2

2

))
n≥0

.

By the spectral mapping theorem, we have

Spec
(
THS(t)

)
= Spec

(
eLHSt

)
= exp

(
−nt

(
μ2 − λ2

2

))
n≥0

.
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Using Corollary 3.2 and the fact that THS(t) is self-adjoint and hence the
corresponding quasi-nilpotent operator (2.6) at the isolated spectral point 1 is
zero, this implies that

lim
t→∞ THS(t) = PE0

uniformly in HS(H), with PE0 being explicitly given by PE0(x) = tr
(√

ρx
)√

ρ.
Hence, using Lemma 8.1 we see that for the qOU semigroup in the Heisenberg
picture we get

w∗ − lim
t→∞ T (t)(x) = tr (ρx)1

for all x ∈ B(H), and strong convergence of the corresponding qOU semigroup
in the Schrödinger picture given by the predual T∗(t)

lim
t→∞ T∗(t)(x) = tr (x) ρ.

Hence, for any fixed t0 > 0 the quantum channel M := T∗(t0) ∈ B (T (H)) is
strongly power-convergent and hence satisfies the condition (3.4) in Theorem 2.

8.2. Strongly Ergodic Quantum Markov Semigroups

In this section, we discuss the ergodic approach of [13,25] to identify strongly
ergodic predual QMS.

Consider the minimal Quantum Markov semigroup (T (t))t≥0 (see [13]
for definitions) acting on the space of bounded linear operators B(H), whose
Lindblad operators (Ll) are closed and have domains D(Ll) ⊂ D(G), where G
is a generator of some C0-semigroup such that

• For all u, v ∈ D(G)

〈Gv, u〉 + 〈v,Gu〉 +
∑
l≥1

〈Llv, Llu〉 = 0.

• There exists a dense linear subspace D of H such that D ⊂ D(G) ∩
D(G∗) ∩ D(Ll) ∩ D(L∗

l ) such that
– The operator H = (G − G∗)/2 is essentially self-adjoint and the

unitary group (eitH)t∈R satisfies eitH(D) ⊂ D(G) for all times t ∈ R.
– The operator G0 defined on u ∈ D by G0 = (G+G∗)/2 is essentially

self-adjoint and D(G) ⊂ D(G0) ⊂ D(Ll) for all l ≥ 1.

We define the fixed-point algebra of bounded linear operators left invari-
ant by the QMS

F(T ) := {X ∈ B(H) : T (t)(X) = X for all t ≥ 0}

and the decoherence-free subalgebra

N (T ) := {X ∈ B(H) : T (t)(X∗X) = T (t)(X∗)T (t)(X)&

T (t)(XX∗) = T (t)(X)T (t)(X∗)}.
(8.10)

Let ρ be a faithful normal invariant state of the predual semigroup
(T∗(t))t≥0. If the fixed-point algebra and decoherence-free algebra coincide,
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i.e., F(T ) = N (T ), then the predual semigroup satisfies by a theorem due
Frigerio and Verri, [25], that

lim
t→∞ T∗(t)(σ) = ρ for all states σ. (8.11)

A useful commutator condition to verify F(T ) = N (T ) for practical
examples of Quantum Markov semigroups has been identified in [13, Theo
3.3].

In fact, the above criterion can be applied to identify the following physi-
cally relevant strongly convergent quantum dynamical semigroups (QDS) [22,
4.5,4.6], by which we mean the predual semigroup (Schrödinger picture) asso-
ciated to the minimal QMS.

Example 8. (Jaynes–Cummings model) The quantum Markov semigroup for
the Jaynes–Cummings model is defined using Lindblad operators L1 = μa, L2 =
λa∗, L3 = R cos(φ

√
aa∗), and L4 = Ra∗ sin(φ

√
a∗a)√

a∗a
with parameters ϕ,R ≥ 0

and λ < μ.
The semigroup then has a stationary state given by

ρ∞ :=
∞∑

n=0

πn|en〉〈en|

where

πn = c
n∏

k=1

λ2k + R2 sin2(φ
√

k)
μ2k

,

with normalization constant c > 0.

Example 9. (Emission–Absorption process) The emission–absorption model is
defined using Lindblad operators L1 = νa∗a, L2 = μa and Hamiltonian H =
ξ(a + a∗) where μ, ν > 0 and ξ ∈ R. It follows from [22, Corrollary 6.3] that
this QDS is strongly convergent to a unique invariant state.

Example 10. (Two-photon absorption and emission process, [9,24]) The two
photon absorption process is the simultaneous absorption of two photons by
molecules or atoms. In the Heisenberg picture, the coupling of the one-mode
electromagnetic field with a bosonic gaussian positive temperature reservoir of
two-photon absorbing atoms is described by the following generator in terms
of operators b := a2, where a is the usual annihilation operator

Lx = iκ[b∗b, x] − μ2

2
(b∗bx + xb∗b − 2b∗xb) − λ2

2
(bb∗x + xb∗b − 2bxb∗)

(8.12)

with μ2 = eβω/(eβω − 1) and λ2 = 1/(eβω − 1) are the absorption and emis-
sion rates with characteristic frequency ω and inverse temperature β. Writing
(T (t))t≥0 for the semigroup on B(H) and (T∗(t))t≥0 for the corresponding pre-
dual semigroup in the Schrödinger picture, it was shown in [24, Proposition
7.1] that

lim
t→∞ T∗(t)(x) = tr (Πex) ρe + tr (Πρo

x) ρo. (8.13)
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Here ρe = (1−ν2)
∑

k≥0 ν2k|2k〉〈2k| and ρ0 = (1−ν2)
∑

k≥0 ν2k|2k+1〉〈2k+1|
with ν = λ/μ form a basis of the invariant subspace of T∗(t) and Πe and Πo

denote the projections onto their support. Hence, for any fixed time t0 > 0 the
quantum channel M := T∗(t0) ∈ B(T (H)) is strongly power-convergent and
hence satisfies the assumption (3.4) in Theorem 2.

The quadratic open quantum harmonic oscillator is another example of
a quantum dynamical semigroup that converges strongly to an invariant state
[14].

9. Open Problems

In the following, we list various questions that have only been partly addressed
in this article or would require tools beyond the scope of this article:

1. For our quantitative estimates in this article, we only consider quantum
channels M with finite point spectrum on the unit circle. It would be de-
sirable to develop tools which would also allow the study of a quantitative
quantum Zeno effect for more general channels.

2. In finite dimensions, it is well-known that quantum channels can only
have discrete spectrum on the unit circle with vanishing nilpotent parts.
It would be interesting to see whether this property also holds for quan-
tum channels acting on infinite-dimensional spaces or whether there exist
examples which violate this property.

3. While our results are the first to provide quantitative convergence rates
for infinite-dimensional quantum channels, it would be natural to inves-
tigate whether these convergence rates are optimal.

4. It would also be interesting to see whether Theorem 2 could be extended
to the case of unbounded generators.

5. We saw that the generator studied in Example 7 is a self-adjoint operator
on the Hilbert space of Hilbert–Schmidt operators. In particular, for such
generators, we have the following convergence result [44, Corr. 1]:

Proposition 9.1. Let (−A) be the generator of a holomorphic strongly contin-
uous semigroup on a Hilbert space H, where

‖e−zA‖ ≤ 1 for all z ∈ {ξ ∈ C \ {0}; | arg(ξ)| < τ}, τ ∈ (0, π/2].

Let P be an orthogonal projection, then there exists a continuous degenerate
semigroup (S(t))t≥0, i.e., S(0) is a bounded projection such that S(t) is strongly
continuous on S(0)H,

S(t)x = lim
n→∞(e−tA/nP )nx for all x ∈ H.

This result overcomes the issue of explicitly identifying the generator of
the quantum Zeno dynamic. It would be interesting to see if a similar result also
holds on spaces of trace-class operators for quantum dynamical semigroups.
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[11] Cipriani, F., Fagnola, F., Lindsay, J.M.: Spectral Analysis and Feller Property for
Quantum Ornstein–Uhlenbeck Semigroups. Communications in Mathematical
Physics volume 210, pp. 5–105 (2000)

[12] De Palma, G., Trevisan, D., Giovannetti, V.: Passive states optimize the output
of bosonic gaussian quantum channels. IEEE Trans. Inf. Theory, Volume: 62,
Issue: 5 (2016)

[13] Dhari, A., Fagnola, F., Rebolledo, R.: The decoherence-free subalgebra of a
quantum Markov semigroup with unbounded generator. Infinite Dimens. Anal.
Quantum Probab. Related Top. 13(3), 413–433 (2010)

[14] Dhari, A., Fagnola, F., Yoo, H.: Quadratic open quantum harmonic oscillator.
Lett. Math. Phys. 110, 1759–1782 (2020)

[15] Erez, N., Aharonov, Y., Reznik, B., Vaidman, L.: Correcting quantum errors
with the Zeno effect. Phys. Rev. A 69, 062315 (2004)

[16] Engel, K,-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equa-
tions. Springer. Graduate Texts in Mathematics (2000)

[17] Exner, P.: Unstable system dynamics: do we understand it fully? Rep. Math.
Phys. 59(3), 351–363 (2007)

[18] Exner, P., Ichinose, T.: A product formula related to quantum zeno dynamics.
Ann. Henri Poincaré 6, 195–215 (2005)
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