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Abstract

One of the first practical applications of quantum computers is expected to be molecular
modelling. Performing this task would profoundly affect areas such as chemistry, materials
science and drug synthesis. Modelling of molecules, which are classically intractable, can be
achieved with just over 30 qubits, whereas state of the art quantum computers already have
more than 50 qubits. The Variational Quantum Eigensolver (VQE) algorithm and VQE based
protocols, are promising candidates to enable this task on emerging Noisy Intermediate-Scale
Quantum (NISQ) computers. These protocols require short quantum circuits and short
coherence times, and are particularly resilient to quantum errors. Nevertheless, there is still a
significant gap between the accuracy and the coherence times of current NISQ computers, and
the hardware requirements of VQE protocols to simulate practically interesting molecules.
In this thesis, I present my contribution to narrowing this gap by developing VQE protocols
for molecular modelling that are less demanding on quantum hardware.

The VQE relies on the Rayleigh-Ritz variational principle to estimate the eigenvalues of
a Hamiltonian operator, by minimizing its expectation value with respect to a trial quantum
state, prepared by an ansatz. A major challenge for the practical realisation of VQE protocols
on NISQ computers is to construct an ansatz that: (1) can accurately approximate the
eigenstates of the Hamiltonian; (2) is easy to optimize; and (3) can be implemented by a
shallow circuit, within the capabilities of a NISQ computer. The most widely used, unitary
coupled cluster (UCC), type of ansätze mathematically correspond to a product of unitary
evolutions of fermionic excitation operators. Owing to their fermionic structure, UCC
ansätze preserve the symmetries of electronic wavefunctions, and thus are accurate and easy
to optimize. Nevertheless, UCC ansätze are implemented by high depth circuits, which
severely limit the size of the molecules that can be reliably simulated on NISQ computers.
In this thesis, I begin by constructing efficient quantum circuits to perform evolutions of
fermionic excitation operators. The circuits are optimized in the number of two-qubit
entangling gates, which are the current bottleneck of NISQ computers. Compared to the
standard circuits used to implement evolutions of fermionic excitation operators, the circuits
derived in this thesis reduce the number of two-qubit entangling gates by more than 70% on
average. As an intermediate result, I also derive efficient circuits to perform evolutions of
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qubit excitation operators (excitation operators that account for qubit, rather than fermionic
commutation relations).

Even with the fermionic-excitation-evolution circuits derived here, UCC ansätze still
require very long circuits, with a particularly large number of two-qubit entangling gates.
In this thesis, I consider the use of alternative VQE ansätze, based on evolutions of qubit
excitation operators. Due to not accounting for fermionic anticommutation, evolutions of
qubit excitation operators can be performed by circuits that require asymptotically fewer
two-qubit entangling gates. Furthermore, qubit excitation operators preserve many of the
physical properties of fermionic excitation operators. Performing a number of classical
numerical VQE simulations for small molecules, I show that qubit-excitation-based ansätze
can approximate molecular electronic wavefunctions almost as accurately as fermionic-
excitation-based ansätze. Hence, I argue that evolutions of qubit excitation operators are
more suitable to construct molecular ansätze than evolutions of fermionic excitation operators,
especially in the era of NISQ computers.

Motivated by the advantage of qubit-excitation-based ansätze, I introduce the qubit-
excitation-based adaptive variational quantum eigensolver (QEB-ADAPT-VQE). The QEB-
ADAPT-VQE belongs to a family of ADAPT-VQE protocols for molecular modelling that
grow a problem-tailored ansatz by iteratively appending unitary operators sampled from a
predefined finite-size pool of operators. The operator at each iteration is sampled based on
an ansatz-growing strategy, which aims to achieve the lowest estimate for the Hamiltonian
expectation value at each iteration. In this way, ADAPT-VQE protocols construct shallow-
circuit, few-parameter ansätze tailored specifically to the molecular systems of interest. In
the case of the QEB-ADAPT-VQE, the operator pool is defined by a set of evolutions of
single and double qubit excitation operators. I benchmark the performance of the QEB-
ADAPT-VQE, by performing classical numerical simulations. I demonstrate that it can
construct ansätze that are several orders of magnitude more accurate, and require significantly
shallower circuits, than standard UCC ansätze. I also compare the QEB-ADAPT-VQE
against the original fermionic-ADAPT-VQE, which utilizes a pool of fermionic excitation
evolutions, and the qubit-ADAPT-VQE, which utilizes a pool of Pauli-string evolutions. I
demonstrate that, in terms of circuit efficiency and convergence speed, the QEB-ADAPT-
VQE systematically outperforms the qubit-ADAPT-VQE, which to my knowledge was
the previous most circuit-efficient, scalable VQE protocol for molecular modeling. The
QEB-ADAPT-VQE protocol, therefore represents a significant improvement in the field of
VQE protocols for molecular modelling and brings us closer to achieving practical quantum
advantage.
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Lastly, I outline a modified version of the QEB-ADAPT-VQE, the excited-QEB-ADAPT-
VQE, designed to estimate energies of excited molecular states. The excited-QEB-ADAPT-
VQE is more robust to initial simulation conditions, at the expense of increased computational
complexity.
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Chapter 1

Introduction and Theoretical
Background

1.1 Motivation

I would like to begin by motivating this thesis with respect to the current state of quantum
computation. In the beginning of the last century a series of crises in physics arose due
to classical physics failing to predict phenomena like the black body radiation [1], and the
photoelectric effect [2]. These crises provoked the gradual development of the theory of
quantum mechanics, in the 1920s, by Schrödinger, Bohr, Heisenberg, Born, Einstein and
others. Quantum mechanics has been hugely successful in explaining and predicting a variety
of physical phenomena, ranging from the nuclear processes inside stars to superconductivity
[3] and photoluminescence [4].

Quantum mechanics predicts the outcomes of quantum experiments in a probabilistic
form. The outcome probabilities can be accurately calculated within the framework of the
‘postulates of quantum mechanics’1. There are multiple formulations of these postulates; in
this thesis I refer to the following formulation:

1. The state of a quantum mechanical system is represented by a complex vector (statevec-
tor) |ψ⟩ in the Hilbert space2 of the system. The statevector must also be normalizable
such that ⟨ψ|ψ⟩= 1.

1The origin of the postulates is a subject of the field of ‘Interpretations of Quantum Mechanics’. Adopting a
particular interpretation [5–8] is not required for the studies presented in the thesis.

2The Hilbert space, named after David Hilbert, is a complex vector space with an inner product ⟨ f ,g⟩, such
that | f |= ⟨ f , f ⟩ 1

2 .



2 Introduction and Theoretical Background

2. To each observable property of the quantum system, there is a corresponding Hermitian
operator O on the Hilbert space.

3. The outcome of a measurement of an observable, with corresponding Hermitian
operator O, is one of the eigenvalues, {ok}, of O. The immediate repetition of the
measurement, yields the same measurement outcome.

4. The probability to obtain ok in the measurement above, for a system in state |ψ⟩, is
Pk = |⟨ok|ψ⟩|2. Hence, the expectation value of the observable is ⟨ψ|O|ψ⟩.

5. The evolution of |ψ⟩ is described by the time-dependent Schrödinger equation ih̄ ∂

∂ t |ψ⟩=
H|ψ⟩, where H is the Hamiltonian operator of the system. For a closed system the
evolution is a unitary process.

6. The state of a composite quantum system is a vector in the tensor product of the Hilbert
spaces of the constituent systems.

Despite being mathematically prosaic, the postulates of quantum mechanics lead to
interesting non-classical principles. Here I will remark on two of these principles that are
central to quantum computation. First, since the Schrödinger equation is linear, any linear
combination of its solutions is also a solution. This implies that states of quantum systems,
much like waves in classical physics, can be added (or ‘superposed’) together, leading to the
fundamental quantum mechanical principle known as ‘quantum superposition’. Second, the
principle of quantum superposition together with postulate 6 imply that a composite quantum
system can exist in a superposition of product states of its constituent systems. This leads
to the quantum principle of ‘entanglement’, where the states of two or more systems can
be ‘entangled’, so that the states cannot be described independently and a measurement of
any of the systems would infer information about the measurement probabilities of the other
system(s).

Beginning in the 1980s, with Paul Benioff’s proposition of a quantum mechanical Turing
machine [9, 10], a number of physicists and computer scientists, suggested that the principles
of superposition and entanglement can be used to realize ‘quantum computing’ that can be
superior to classical computing in performing certain tasks. One of the main mechanisms
to achieve quantum advantage lies in utilizing a superposition state to encode and thus
simultaneously process multiple inputs to a computational problem. In this way, for certain
computational tasks, a quantum speed-up is achieved in comparison to processing the inputs
classically in a sequential manner. In 1982 Richard Feynman suggested an application for
quantum computaters to simulate quantum systems more efficiently than classical computers
[11]. In the following decade a number of quantum algorithms, for various computational
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problems were developed, which demonstrated reduced asymptotic complexities as compared
to their classical counterparts. Some of the best known examples are the Deutch-Jozsa
algorithm to determine if a function is balanced or constant in a constant number of steps
[12], Grover’s algorithm to find a unique input to a black-box-function in quadratically fewer
steps than a classical computer [13], and Shor’s algorithm to factor integers [14] in almost
exponentially fewer steps than the best known classical algorithm.

In order to implement quantum algorithms, physicists will have to construct a quantum
computer, a quantum device that could store, evolve unitarily in a controlled manner and
measure a quantum state. The state of a quantum computer is represented by a finite register
of n quantum bits, called qubits that, unlike classical bits, can exist in any superposition state
of |0⟩ and |1⟩. In the prevailing quantum-circuit model of a quantum computer the qubit-
register state is evolved by circuits of quantum gates, where each quantum gate corresponds
to a unitary operation on the Hilbert space of the qubits. At the end, the outcome is obtained
by individually measuring each qubit in the {|0⟩, |1⟩} basis.

Despite the success of developing quantum algorithms, the process of constructing
large and accurate quantum computers has been slow and full of technical obstacles owing
to quantum errors and scalability problems. A major challenge is to isolate the quantum
computer state from uncontrolled interactions with the environment. Such interactions destroy
entanglement and superposition in a quantum computer over time, causing the quantum
state to ‘decohere’, thus limiting the maximum run-time for tasks that can be performed
reliably. Imperfect qubit control is another source of quantum errors, which even if not of
decohering nature can still corrupt the outcome and limit significantly the capabilities of
quantum computers. Error correction protocols allow quantum errors to be corrected faster
than they are introduced, under the condition that the error rate is below a certain threshold
[15–18]. However, such protocols require large numbers of qubits and will likely be difficult
to implement for practically useful applications in the near future.

Nevertheless, there has been significant progress during the last decade, in constructing
ever larger and more accurate quantum computers. Existing prototypes, constructed by
IBM [19], and Google [20], can control more than 50 qubits and perform qubit operations
with error rates on the order of 10−2. In 2018 Preskill termed such quantum computers,
characterized by 50-100 qubits and imperfect qubit control, as Noisy Intermediate-Scale
Quantum (NISQ) computers [21]. In 2019 Google demonstrated [20] that their quantum
computer can perform a task that, albeit not practically useful, is difficult for a classical



4 Introduction and Theoretical Background

computer 3. It is believed that in the foreseeable future emerging NISQ computers will also
be able to perform useful classically intractable tasks.

A tasty fruit for NISQ computers is to perform molecular modelling4, as modelling
of classically intractable molecules can be done with just over 30 qubits [23]. Modelling
molecules may help to explain and predict bio-chemical reactions [24], and help design new
compounds for applications in the chemical and the drug industries [25, 26]. A promising
algorithm to perform this task on NISQ computers is the Variational Quantum Eigensolver.
The VQE is a hybrid quantum-classical algorithm that utilizes the Rayleigh Ritz variational
principle to determine the lowest eigenvalue of a Hamiltonian operator, by optimizing a trial
state, generated by an ansatz5. In particular the VQE can be used to solve the electronic
structure problem [23, 27], and find the energies of the ground and low excited states of a
molecule. By utilizing both a quantum and a classical computer, the VQE is less quantum-
hardware intensive at the expense of requiring more quantum measurements and classical
post-processing as compared to purely quantum algorithms for eigenvalue determination, e.g.
the Quantum Phase Estimation (QPE) algorithm [28]. Moreover, due to its variational nature,
the VQE is also particularly resilient to quantum errors [23].

The major component of the VQE is the ansatz, used to approximate the molecular
electronic wavefunction. The ansatz mathematically corresponds to a parametrized unitary
operator, and is implemented by an ansatz circuit. A central challenge for the successful
implementation of the VQE algorithm on NISQ computers is to construct an ansatz that: (1)
has the variational flexibility required to approximate the ground state wavefunction with
sufficient accuracy;(2) can be efficiently optimized6; and (3) can be performed by a shallow
quantum circuit, which does not exceed the capabilities of the quantum computer.

The last few years have seen significant efforts towards the development of protocols
for molecular modelling based on the VQE, with the goal of constructing better ansätze.
Despite these efforts and the success of the VQE protocols in modelling small molecules on
real quantum computers [29–31], there is still a large gap between the capabilities of state
of the art NISQ computers and the hardware requirements of VQE protocols for modelling
larger molecules of practical interest. In this thesis, I pursue the goal of narrowing this gap

3Shortly after Ref. [20] was published, the researchers at IBM showed that the task performed by Google’s
quantum computer can be simulated on a classical supercomputer in just a few days [22].

4Molecular modelling encompasses all methods, theoretical and computational, used to model the behaviour
of molecules.

5In the context of computational chemistry an ansatz is a parameterized unitary operator that acts on an
initial reference state to generate a trial state.

6The classical optimization of an ansatz is efficient if it is done in a number of steps that scales polynomially
with the number of qubits.
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by improving existing techniques for molecular VQE ansatz construction, and developing
new VQE protocols for molecular modelling.

1.2 Quantum computing

1.2.1 Universal quantum computers

The goal of quantum computing is to use the principles of quantum superposition and
entanglement to perform computation superior to classical computing. Mathematically
quantum computing corresponds to unitarily transforming a statevector, representing a
quantum state, from an initial to a final point in a Hilbert space, followed by a projection
(measurement) onto orthonormal basis of statevectors. Hence, a quantum computer is a
quantum hardware device that can store, evolve unitarily, and measure a quantum state.

Analogously to a classical computer, the state of a quantum computer is represented
by a register of n qubits7. However, unlike a classical bit, the state of a qubit can be any
superposition of |0⟩ and |1⟩, which is represented by a statevector in a 2-dimensional Hilbert
space. Hence, the state of an n-qubit register can be represented by a statevector in an
2n-dimensional Hilbert space. A universal, programmable quantum computer should be able
to perform or to approximate to an arbitrary accuracy, any unitary operation on the Hilbert
space of its qubit register. There are a number of quantum computer models, distinguished
by the manner in which a general unitary operation is performed.

Throughout this thesis I will consider the quantum-circuit model of a quantum computer,
since the majority of quantum computer prototypes, including NISQ computers, are based
on it. A quantum-circuit computer performs a general unitary operation, on the state of its
qubit register, as a circuit (sequence) of quantum gates, where each gate corresponds to an
elementary unitary operation, which can be directly performed by the quantum computer
hardware. In Sec. 1.2.3 the operation of the quantum-circuit model of a quantum computer
is described, and examples of common quantum gates are presented.

Another promising model of a universal quantum computer is the measurement-based8

quantum computer (MBQC) [35, 36]. The MBQC uses two registers of target and auxiliary
qubits. Computation starts by preparing the two qubit registers in a entangled state, e.g.
a cluster state [35] or a graph state [37]. Then, the state of the target qubits is evolved
by performing adaptively single qubit measurements on the auxiliary register. Although
the operations of MBQCs and quantum-circuit computers are conceptually different, both

7There are proposals, particularly in the field of quantum cryptography, to use d-dimensional quantum
systems, called ‘qudits’, instead of qubits [32–34].

8Also known as ‘One-way’ or ‘Cluster-state’ quantum computer.
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quantum computer models can be realized by the same quantum hardware systems. MBQCs
are suitable for systems where measurements are more easily performed than controlled
unitary evolutions.

Other models of, not necessarily universal, quantum computers are adiabatic quantum
computers, where computation is decomposed into a continuous transformation of an ini-
tial Hamiltonian to a final Hamiltonian [38], and topological quantum computers, where
computation is based on braiding anyon quasiparticles on a 2-dimensional lattice [39].

1.2.2 Linear-algebraic representation of qubit states and operations

Before I proceed with a description of the quantum-circuit model of a quantum computer, let
me describe the adopted linear-algebraic representation of qubit states and qubit operations.

Density matrices

A general quantum state ψ is described by a density matrix ρψ . A density matrix is a
Hermitian matrix that corresponds to a classical distribution of pure quantum states |φi⟩

ρψ = ∑ pi|φi⟩⟨φi| ≡

p1 0 . . .

0 p2 . . .
... . . .

 , (1.1)

where {pi} are (real positive) probabilities that sum to 1, and {|φi⟩} is a complete basis of
pure quantum states. If pk = 1 and pi ̸=k = 0, then ρψ = |φk⟩⟨φk| and ψ is the pure quantum
state |φk⟩. A pure quantum state can be represented by a statevector in the Hilbert space of
the corresponding quantum system.

Density matrices and statevectors are different formalisms used to describe quantum states.
Using density matrices to represent qubit states is useful when studying quantum decoherence
processes, which involve non-unitary evolutions. Studying decoherence processes, though, is
not central to this thesis. Therefore, unless otherwise stated, the qubit states considered in
this thesis will be assumed to be pure, and will be represented by statevectors in the Hilbert
spaces of the corresponding qubit registers.

Single-qubit states and the Bloch sphere

The qubit is 2-level quantum system, defined by states |0⟩ and |1⟩. A general (pure) qubit
state is represented by a statevector in a 2 dimensional Hilbert space, which can be described
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by a point on the surface of the Bloch sphere9 as shown in Fig. 1.1. Hence, any single-qubit
operation (a unitary operation on the state of one qubit) can be represented as a combination
of two rotations around the x, y or z axes of the Bloch sphere. For example a general
single-qubit state can be obtained as

|q⟩= Rz(θ2)Ry(θ1)|0⟩= cos
θ1

2
|0⟩+ sin

θ1

2
eiθ2|1⟩, (1.2)

where Ry(θ1) and Rz(θ1) are single-qubit rotations around the y and z axes of the Bloch
sphere, respectively.

Fig. 1.1 The Bloch sphere geometrically represents the state of a qubit. The θ1 and θ2 angles
define a one-to-one correspondence between a point of the surface on the Bloch sphere and a
general pure qubit state |q⟩= cos θ1

2 |0⟩+ sin θ1
2 eiθ2 |1⟩.

Multi-qubit states

Using the Bloch sphere to visualize single-qubit states is convenient, however, it is not
applicable to multi-qubit states. An n-qubit state is represented by a statevector in an 2n-
dimensional Hilbert space. Qubit statevectors are usually expressed in the computational
basis. For a single qubit the computational basis states are |0⟩ and |1⟩, and the corresponding

9A mixed qubit state would lie within the sphere.
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statevectors are

|0⟩ ≡

(
1
0

)
and |1⟩ ≡

(
0
1

)
. (1.3)

For n qubits, the computational basis is the tensor product of the bases of all n qubits, such
that the n-qubits basis state with binary value i corresponds to the statevector in the Hilbert
space with (i+1)th non-zero component; e.g.

|00..⟩ ≡


1
0
0
0
...

 , |10..⟩ ≡


0
1
0
0
...

 , . . . |1..11⟩ ≡


0
0
0
...
1

 (1.4)

Qubit operations

An n-qubit operation can be represented by a 2n×2n matrix acting on an n-qubits statevector.
For example the two single-qubit rotations in Eq. 1.2 can be expressed by the unitary matrices

Ry(θ) =

[
cos θ1

2 −sin θ1
2

sin θ1
2 cos θ1

2

]
and Rz(θ2) =

[
1 0
0 eiθ2

]
. (1.5)

Hence, the general single qubit state in Eq. 1.2 can be expressed as

|q⟩=

[
1 0
0 eiθ2

][
cos θ1

2 −sin θ1
2

sin θ1
2 cos θ1

2

](
1
0

)
=

(
cos θ1

2
eiθ2 sin θ1

2

)
(1.6)

I will frequently use matrix representations to describe and visualize the actions of various
quantum circuits and quantum gates.

1.2.3 Quantum-circuit model of a quantum computer

Universal quantum gate sets

The quantum-circuit model of a quantum computer is an analogue to the classical digital
computer, where computation is performed by circuits of logic gates, with the difference
that classical logic gates can be irreversible, whereas quantum gates are reversible unitary
operations. Similarly to the case of classical computers, constructing a quantum computer
that can directly implement any multi-qubit quantum gate operation is impossible.
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Therefore, a universal quantum computer requires a finite set of basic quantum gates that
can be combined to express or to approximate with an arbitrary accuracy any possible unitary
operation on the Hilbert space of the qubit register. Such sets are referred to as universal
quantum-gate sets. DiVizenzo showed [40, 41] that 1-qubit and 2-qubit quantum gates
are sufficient to form a universal quantum-gate set10. An example of a minimal universal
quantum-gate set is {Had,Rz(

π

8 ),CNOT} [43], where Had is the Hadamard gate, Rz(
π

8 )

is 1-qubit rotation by π

8 around the z-axis of the Bloch sphere, and CNOT is a 2-qubit
controlled-NOT operation (see Sec. 1.2.3). In general, universal quantum-gate sets consist of
one entangling 2-qubit gate, and a set of (at least two) 1-qubit gates that can approximate any
single-qubit gate.

Basic quantum gates

Here I summarize some of the basic 1-qubit and 2-qubit quantum gates that are commonly
considered as fundamental building blocks of a quantum circuit. A list of the 1-qubit quantum
gates is given in Table 1.2, and a list of the 2-qubit gates in Table 1.4.

Quantum gate Symbol Matrix

Pauli-X (X) X

[
0 1
1 0

]

Pauli-X (
√

X) √
X

[
1+i

2
1−i

2
1−i

2
1+i

2

]

Pauli-Y (Y ) Y

[
0 −i
i 0

]

Pauli-Z (Z) Z

[
1 0
0 −1

]

Hadamard (Had) Had
1√
2

[
1 1
1 −1

]

10In fact DiVizenzo showed that 2-qubit quantum gates, based on the exchange interaction, alone are sufficient
for universal quantum computing, if logical qubits are encoded in the state of 3 physical qubits [42].
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x-Pauli rotation by θ
(
Rx(θ)

)
Rx(θ)

[
cos θ

2 −isin θ

2
−isin θ

2 cos θ

2

]

y-Pauli rotation by θ
(
Ry(θ)

)
Ry(θ)

[
cos θ

2 −sin θ

2
sin θ

2 cos θ

2

]

z-Pauli rotation by θ
(
Rz(θ)

)
Rz(θ)

[
1 0
0 eiθ

]

Table 1.2 List of basic single-qubit quantum gates

Quantum gate Symbol Matrix

SWAPi j
α

|qi⟩ ×

|q j⟩ ×


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



cross-resonance (RZXi j)
|qi⟩ X

|q j⟩ Z

1√
2


1 0 −i 0
0 1 0 i
−i 0 1 0
0 i 0 1



controlled-NOT (CNOTi j)
|qi⟩ •

|q j⟩


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


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controlled-Phase (CPi j)
|qi⟩ •

|q j⟩ •


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



Table 1.4 List of basic 2-qubit quantum gates. The subscripts i, j define the qubits on which
the quantum gate acts. For the CP and the CNOT the first subscript, i, defines the control
qubit and the second, j, the target.

It should be noted that most existing quantum computers do not directly perform all of the
quantum gates listed here. As remarked in Sec. 1.2.3, a much smaller set of quantum gates
is sufficient for universal quantum computing. For example, the only parameter-controlled
quantum gate that some quantum computers perform is the Rz(θ), whereas Rx(θ) and Ry(θ)

are obtained as combinations of H, X
1
2 and Rz(θ). For example

HadRz(θ)Had =
1√
2

[
1 1
1 −1

][
1 0
0 eiθ

]
1√
2

[
1 1
1 −1

]
= ei θ

2

[
cos θ

2 −isin θ

2
−isin θ

2 cos θ

2

]
= ei θ

2 Rx(θ).

(1.7)
Also most quantum computer interfaces feature the CNOT gate as a basic 2-qubit en-

tangling gate, because its controlled-NOT logic makes it convenient for designing quantum
circuits. However, in most cases the CNOT gate is synthesized as a combination of single-
qubit gates and another 2-qubit gate, which is native to the quantum computer hardware. For
example, the native 2-qubit gate in the IBM’s superconducting quantum computers is the
cross-resonance gate [44].

In this thesis, I assume the use of a quantum computer that can perform general single-
qubit quantum gates and CNOT gates, and will regard these gates as fundamental building
blocks of any quantum circuit.

Quantum circuits

Let me formally introduce what a quantum circuit is with the example circuit in Fig. 1.2.
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|00⟩ Had • •

|01⟩ •

Fig. 1.2 Example quantum circuit

Each horizontal wire, corresponds to the state of a qubit. Unless otherwise stated, the
qubits are assumed to be in state |0⟩ initially. Quantum circuits are read from left to right, and
the order of the quantum gates corresponds to the time order in which they are applied to the
qubits state. For example, the circuit in Fig. 1.2, represents the state of 2 qubits, transformed
by a Hadamard gate acting on qubit 0, followed by three CNOT s. The three CNOT s act to
swap the state of the qubits, hence they are equivalent to a SWAP gate. The circuit in Fig.
1.2 transforms the 2-qubit state as

Had0 : |00⟩ → 1√
2

(
|0⟩+ |1⟩

)
|0⟩

CNOT01 :→ 1√
2

(
|00⟩+ |11⟩

)
CNOT10 :→ |0⟩ 1√

2

(
|0⟩+ |1⟩

)
CNOT01 :→ |0⟩ 1√

2

(
|0⟩+ |1⟩

)
An important parameter that characterizes a quantum circuit is the circuit depth11. The

circuit depth is defined as the longest path, in terms of number of basic qubit gates, from an
input (preparation) to an output (measurement) moving forward (in time) only, along qubit
wires and multi-qubit gates. For example, the quantum circuit in Fig. 1.3 has a depth of
6, as the longest path from an input to an output goes through the 4 CNOT s, the Had gate
on qubit 0 and the Rz(θ) gate on qubit 2, but not through the Z gate on qubit 2. Assuming
that any basic quantum gate is performed at some integer time step, then the circuit depth
is the smallest number of time steps required to execute the circuit. Gates that do not act
on common qubits can be performed simultaneously, e.g. the Had gate on qubit 0 and the
Z gate on qubit 2 in Fig. 1.3, whilst gates that act on a common qubit must be performed
sequentially, e.g. the CNOT gates in Fig. 1.3.

11In literature the circuit depth is also referred to as the ‘circuit length’.
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|q0⟩ Had • •

|q1⟩ • •

|q2⟩ Z Rz(θ)

Fig. 1.3 Example quantum circuit 2

Composite and controlled quantum gates

As we proceed, composite and abstract multi-qubit quantum gates will be introduced. A
symbol to depict a U-quantum-gate, corresponding to a multi-qubit unitary operator U , acting
on the state of qubits i to j, is given in Fig. 1.4a. Also we can depict a controlled-U-quantum-
gate, controlled by the state of qubit i as in Fig. 1.4b. Table 1.5 presents the quantum circuit
symbols and the matrix representations of controlled single-qubit-rotation gates.

|qi⟩

U|qi+1⟩
...

|q j⟩

(a)

|qi⟩ •
|qi+1⟩

U...
|q j⟩

(b)

Fig. 1.4 a) Quantum gate corresponding to a general unitary operator U . b) Quantum gate
corresponding to a general unitary operator U controlled by the state of qubit i.
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Quantum gate Symbol Matrix

controlled-Rx(θ)
(
cRx(θ)i,{ j}

) |qi⟩ •

|q j⟩ Rx(θ)


1 0 0 0
0 cos θ

2 0 −isin θ

2
0 0 1 0
0 −isin θ

2 0 cos θ

2



controlled-Ry(θ)
(
cRy(θ)i,{ j}

) |qi⟩ •

|q j⟩ Ry(θ)


1 0 0 0
0 cos θ

2 0 −sin θ

2
0 0 1 0
0 sin θ

2 0 cos θ

2



controlled-Rz(θ)
(
cRz(θ)i,{ j}

) |qi⟩ •

|q j⟩ Rz(θ)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ


Table 1.5 Controlled single-qubit-rotation gates.

1.3 Physical realization of quantum computers

Understanding the computational capabilities and limitations of NISQ computers is central to
the development of algorithms for these devices. This section presents the guiding principles
in physically realizing a quantum computer, describes the effects of quantum errors on
the performance of quantum computers, and outlines the current most promising physical
systems used to construct NISQ computers, and their respective limitations.

1.3.1 Guiding principles in physically representing a qubit

The elementary unit of a quantum computer is the qubit, a 2-state quantum system. Examples
of 2-state quantum systems in nature are the spin-states of 1

2 -spin fermionic particles and the
polarization-states of photons. Such systems can directly represent a qubit, and indeed spin
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[45, 46] and photon-polarization [47, 48] qubits are frequently used in experimental devices
for quantum computing and quantum encryption [47, 49].

A physical system representing a qubit should be: (1) stable to external perturbations,
thus protecting the state of the qubit against quantum errors; and (2) controllable, so that the
qubit state can be prepared, evolved and measured in a desired way. Generally these two
requirements are opposing and can only be partially met. For example, a nuclear spin is a
good qubit [50, 51] owing to its weak coupling to the external environment; a nuclear spin in
a superposition state of being aligned and anti-aligned to a magnetic field can remain in this
state for days. However, also due to its weak coupling, a nuclear spin is difficult to measure
and to couple with other qubits.

Finding a delicate balance between qubit stability and qubit control is central to construct-
ing a good quantum computer. Sometimes this involves considering multi-level quantum
systems to represent qubits, e.g. electronic shell states [52], and superconducting Cooper
pair states [53].

1.3.2 Quantum errors

A key concept in understanding how good a physical system is to represent qubits and
construct a quantum computer, are quantum errors [17, 54]. A quantum error is considered
any process that corrupts the desired evolution of the quantum computer state [17]. Quantum
errors come in two types: (1) incoherent quantum errors, also termed as decoherence,
corresponding to uncontrolled non-unitary evolutions of the quantum computer state, due to
interactions with the environment; and (2) coherent errors, corresponding to uncontrolled
unitary evolutions of the quantum computer state.

Decoherence and qubit decoherence times

Mathematically decoherence is a process where a unitary interaction between a quantum
system S and the environment E results in a non-unitary evolution of S . This non-unitary
evolution transforms the state of S from a pure to a mixed state, thus destroying its quantum
coherence. This process can also be viewed as a leak of quantum information from S to E .

The most common reason for the decoherence of qubits are random fluctuations in the
environment, such as lattice vibrations [55], radiation and external electromagnetic fields
[56], that interact with the physical systems representing the qubits. Decoherence can also
arise due to imperfect qubit control by coupling together the qubit state and the apparatus
controlling it.
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The decoherence of a qubit is characterized by the relaxation time T1, and the dephasing
time T2, called together decoherence times. To define T1 and T2, I use the density matrix
formalism. The relaxation time, T1, is defined as the time scale, over which a qubit in an
initial pure state |1⟩, if not acted upon, decays to a mixed state of an equal classical mixture
of |1⟩ and |0⟩. The decay of the qubit state is given as

ρT1(t) =
1
2
(
1− e−

t
T1
)
|0⟩⟨0|+ 1

2
(
1+ e−

t
T1
)
|1⟩⟨1| ≡ 1

2

[
1− e−

t
T1 0

0 1+ e−
t

T1

]
(1.8)

Similarly, the dephasing time, T2, is defined as the time scale over which a qubit in the initial
pure state |+⟩ ≡ |0⟩+|1⟩√

2
, if not acted upon, decays to a mixed state of an equal classical

mixture of |+⟩ and |−⟩ ≡ |0⟩−|1⟩√
2

. The decay of the qubit state is given as

ρT2(t) =
1
2
(
1− e−

t
T2
)
|−⟩⟨−|+ 1

2
(
1+ e−

t
T2
)
|+⟩⟨+| ≡ 1

2

[
1 e−

t
T2

e−
t

T2 1

]
(1.9)

The relaxation and dephasing times are important parameters of the quantum computer
hardware, since they limit the maximum duration of a computational task that can be
performed reliably on a quantum computer. The values of T1 and T2 can be of the same order
for some systems, e.g. superconducting qubits [44], and differ by orders of magnitude for
other systems, e.g. spin-qubits [45].

Coherent quantum errors

Common sources of coherent quantum errors are random quantum fluctuations such as spin
flips in spin-based qubits [57, 57], or spontaneous emissions/absortions of photons in qubits
represented by multi-energy-level systems [58]. Imperfect qubit control can result in quantum
errors as well. For example, in superconducting qubits, performing a single-qubit gate means
driving the qubit with a pulse from an arbitrary waveform generator [59, 60]. The amplitude,
frequency, and duration of the pulse are real-valued parameters, thus are subject to some
amount of error.

Coherent quantum errors are not as dangerous as decoherence, since they do not destroy
the coherence of the qubit state. Coherent quantum errors can be mitigated by various error
mitigation methods [61].
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Quantum gate fidelity

As a result of both coherent and incoherent quantum errors the operation of a real quantum
gate deviates from its intended unitary operation U . Generally, the operation of an imperfect
noisy quantum gate is not necessarily unitary, and is described by a linear completely-positive
trace-preserving map Λ. By Kraus’ theorem [62], the action of a completely-positive map,
such as Λ, on a quantum state, represented by a density matrix ρ , can be expressed as

Λ(ρ) = ∑
k

Â†
kρÂk, (1.10)

where {Ak} are linear Kraus operators satisfying ∑k A†
kAk = I. The quality of such an

imperfect quantum gate can be quantified by its fidelity.
Fidelity is a measure of the "closeness" of two quantum states, represented by density

matrices ρ1 and ρ2, and is defined as

F (ρ1,ρ2) =
(

tr
√√

ρ1ρ2
√

ρ1

)2
. (1.11)

The value of the fidelity scales from 1, indicating that the states are the same, to 0 indicating
that the states are orthogonal. However, the fidelity concept can be extended to describe the
quality of a quantum gate as the closeness between U and Λ [63]:

F (U,Λ) =
1
2n

2n−1

∑
i=0

⟨φi|U†
Λ(|φi⟩⟨φi|)U |φi⟩, (1.12)

where {|φi⟩} is a set of basis states12, e.g. the computational basis states, and n is the number
of qubits.

1.3.3 Quantum-computer hardware parameters

The performance of a real quantum computer is determined by the set of hardware parameters
defined below:

1. Qubit decoherence times: the relaxation time T1, and the dephasing time T2, defined
in Sec. 1.3.2, limit the maximum duration of a computational task that can be performed
reliably.

12In practice we would measure the fidelity using just a small set of basis states, since using the full set of
basis states would be computationally intractable.
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2. Single- and 2-qubit quantum gate errors: a quantum gate error (infidelity) is defined
as one minus the quantum gate fidelity. Applying multiple imperfect gates results
in an error, which approximately grows exponentially with the circuit depth. Hence,
quantum gate errors limit the number of gates and the circuit depth.

3. Readout errors: the readout or the measurement error is the most error-prone process
for most quantum hardware systems (see Table 1.6). However, this error is usually
much smaller than the error accumulated by the multiple quantum gates in a quantum
circuit. Hence, the measurement error is rarely a limiting factor in quantum-circuit
computers.

4. Quantum gate times: a gate time is the time required to perform a quantum gate. Gate
times together with qubit decoherence times limit the maximum depth of a quantum
circuit. However, typically the limitation imposed by the quantum gate errors is more
severe (see Sec. 1.3.4).

5. Qubit connectivity: qubit connectivity is a measure of how well the qubits of a
quantum computer are connected to each other. Performing a 2-qubit gate between two
qubits that are not connected, requires additional SWAP gates to bring the states of the
qubits next to each other. This results in a larger quantum circuit. Qubit connectivity
is often intrinsically restricted by the physical system used to construct the quantum
computer. Qubit connectivity becomes increasingly important as the size (the number
of qubits) of the quantum computer increases.

1.3.4 Physical systems

This section summarizes the three most promising types of physical systems, used to represent
qubits and construct scalable quantum computers: superconducting qubits, trapped ion qubits
and spin qubits. The typical best values for the hardware parameters defined in the previous
section, for each of the three types of systems, are summarized in Table 1.6.

Apart from the systems described here, there are numerous other suggestions of physical
systems to perform quantum computing, e.g. neutral atoms in optical lattices [64], linear
optical systems [65, 66] and majorana quasiparticles [67]. However, the implementations of
these systems are either in the early experimental stage or still at the theoretical stage.

Superconducting qubits

Superconducting qubits [60, 71, 72, 68] are implemented on superconducting electronic cir-
cuits, based on the Josephson junction [73]. The basic charge carriers in the superconducting
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Qubit Dec. times Single-qubit 2-qubit Gate Readout Max num.
type T1 / T2 ,[s] gate error gate error time,[s] error of qubits

Supercond. 10−4 −10−5 10−3 −10−4 10−2 −10−3 10−7 −10−8 10−2 65

Trapped ion > 0.1 10−3 −10−4 10−2 −10−3 10−4 10−3 −10−4 53

Spin > 10−5 ∗ 10−3 10−1 −10−2 10−7 10−1 −10−2 ∼ 4
Table 1.6 Typical best values for quantum-computer hardware parameters. These values are
obtained from Refs. [44, 68] for superconducting qubits, Refs. [18, 69, 52] for ion trapped
qubits, and Refs. [45, 70] for spin qubits. * For some types of spin qubits T1 can be on the
order of minutes.

circuit are Cooper pairs, which can form a superconducting condensate at low temperatures.
At every point in the circuit the condensate wavefunction is well-defined by a complex
amplitude, and macroscopic quantum effects, such as discretization of magnetic flux, charge
and phase can be measured. Hence, qubits can be represented by the discrete quantum
states corresponding to different integer values of, for example, magnetic flux quanta and
number of Cooper pairs (charge) in the superconducting circuit. Single-qubit gates can be
implemented by microwave pulses tuned to the energy gaps between the energy levels of the
qubits [59, 74], and 2-qubit gates can be implemented by coupling qubits by intermediate
electrical coupling circuits [74].

Superconducting qubits are used to construct the current largest universal NISQ comput-
ers, e.g. the 53-qubit computer of Google, used in their quantum supremacy paper [20], a
62-qubit computer constructed by the researchers at the University of Science and Technology
of China [75], a 65-qubit computer claimed by IBM [19], and as well as the non-universal
D-Wave quantum annealers that operate with thousands of qubits [76]. Compared to other
qubit technologies superconducting qubits feature fast and accurate quantum gates (see Table
1.6), and are relatively easy to produce, making the scaling (increasing the number of qubits)
of superconducting quantum computers easier. However, superconducting qubits have short
decoherence times and suffer from limited quantum gate connectivity.

Trapped ion qubits

Trapped ion qubits [52, 77, 78, 69] are implemented on ions suspended in free space by
electromagnetic confinement. Qubits can be represented by the electronic states of each ion.
For example, a qubit can be represented by the hyperfine levels of an electronic ground state
(hyperfine qubit), or by the ground and first excited state (optical qubit). These qubits are
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very stable and have decoherence times on the order of thousands of years, for hyperfine
qubits, and seconds, for optical qubits [77]. Lasers can be used to induce coupling between
internal qubit states to perform single-qubit quantum gates, or induce coupling between
external motional states to entangle qubits and perform 2-qubit quantum gates such as the
CNOT [79].

Trapped ion qubits are intrinsically more stable (longer decoherence times) and allow for
a better qubit connectivity than superconducting qubits. Therefore, in the foreseeable future
trapped-ion-based quantum computers may surpass superconducting quantum computers.
Currently the largest trapped-ion-based quantum computers are a 53-qubit device presented
in Ref. [80], a 32-qubit device constructed by IonQ [81], and an 8-qubit device constructed
by Honeywell [82].

Spin qubits

Some of the earliest propositions to construct a quantum computer, were based on repre-
senting qubits as the spin states of 1

2-spin fermionic particles, such as electrons [83], holes
trapped in semiconductors [84], and atomic nuclei [50]. Single-qubit quantum gates on
spin-qubits can be performed by localized magnetic fields that can address the spin-states
of individual qubits, or by electric fields if the spin-qubits are subject to a magnetic field
gradient. Qubits can be coupled by applying a gate voltage to control the exchange coupling
between adjacent spins [46], thus performing a 2-qubit quantum gate corresponding to a
power of SWAP. Spin-qubits have been implemented in a variety of physical systems, such
as graphene [85], silicon [86, 70] and GaAs [45] quantum dots, and vacancies in a diamond
[87].

The advantages of spin-qubits are their relatively small size, on the scale of a few nanome-
ters, and their potential implementation in silicon based systems, which are compatible with
the electronics manufacturing industry. However, spin-qubits are still highly experimental.
Up to date, large spin-qubit-based quantum computers have not been constructed. Intel has
announced [88] plans to construct a large scale spin-qubit-based quantum computer.

1.3.5 NISQ computers

Current and near future NISQ computers will likely correspond to superconducting and ion
trapped quantum computers. For both types of systems, the qubit decoherence times and the
gate times permit quantum circuits of depths of thousands of quantum gates. However, these
numbers are greatly reduced by the quantum gate errors. The best current NISQ computers
can support quantum circuits of a depth of just tens of quantum gates, without loosing all
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useful coherence. Quantum gate errors are dominated by the 2-qubit gate errors that are
about an order of magnitude larger than the single-qubit errors (see Table. 1.6). For example,
one of the most accurate IBM devices, “ibmq-ourense”, accessible via IBM’s cloud [44],
has an average CNOT error (infidelity) of 7×10−3 and an average single-qubit gate error of
3×10−4. Therefore, the 2-qubit gates are expected to be the major bottleneck of current and
near future NISQ computers.

The goal of this thesis is to develop VQE protocols for molecular modelling, specifically
designed for implementation on current and near future NISQ computers. I will consider the
CNOT count and the CNOT depth 13 of the quantum circuit required to implement such a
protocol, as the primary cost metrics of the efficiency of the protocol.

1.4 Classical computational chemistry

Quantum mechanics underpins the laws of all chemistry. Therefore, it is natural to assume
that quantum mechanics can be used to simulate the behaviour of molecules and chemical
compounds. However, exact simulation of a chemical system is a classically intractable
problem as the size of the electronic wavefunction grows exponentially with the number of
particles. Hence, storing and processing the wavefunction on a classical computer would
require an exponentially large memory and an exponential number of steps, respectively. In
1982 Feynman [11] proposed a solution to this problem; using a quantum computer, which
can efficiently14 store and process a quantum multi-particle wavefunction.

This section begins by formulating the electronic structure problem, a central problem
in molecular modelling. Then, I present some standard classical computational methods to
solve the electronic structure problem, and discuss why these methods cannot be exact and
computationally tractable at the same time.

1.4.1 The electronic structure problem

The electronic structure problem is central in chemistry, and particularly in molecular
modelling. This problem corresponds to finding the electronic structures, the states of motion
of electrons, and associated energies, corresponding to the low-lying energy states of a
molecule. Mathematically, the electronic structure problem can be defined as finding the
low-lying eigenvalues and eigenvectors of a molecular Hamiltonian, Hm.

13The CNOT depth of a quantum circuit is defined as the longest path, in terms of CNOT gates, between the
input and the output of the circuit.

14By “efficient” I mean any algorithm that requires run time (number of steps) and memory that scale
polynomially with the size (number of particles) of the problem.
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The Hamiltonian, Hm, of a molecule with Nn nuclei and Ne electrons is

Hm =−∑
i

h̄2

2me
∇

2
i −∑

k
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2
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1
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4πε0

ZkZl

|R⃗k − R⃗l|
,

(1.13)
where r⃗i denotes the position of the ith electron and R⃗k, Mk and Zk denote the position, mass
and atomic number of the kth nucleus. The sums run over all electrons and nuclei. The first
two sums in the Hm expression correspond to the kinetic energies of the electrons and the
nuclei, respectively. The last three sums correspond to the electron-nuclear, electron-electron
and nuclear-nuclear Coulomb interactions, respectively.

Let us work in atomic units, where the unit of mass is the electron mass, me ≈ 9.109×
10−31kg, the unit of length is the Bohr length, a0 =

4π h̄2

mee2 ≈ 0.529×10−10m, and the unit of

energy is the Hartree energy, 1 Hartree = e2

4πa0
= 27.211eV. In atomic units the Hamiltonian

can be expressed as

Hm =−∑
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2 ∑

k ̸=l
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, (1.14)

where M′
k =

Mk
me

.
Nuclei are over 1000 times heavier than electrons, hence the Born-Oppenheimer approx-

imation can be applied, where the nuclei are treated as static classical point-like charges.
In this way the kinetic nuclear term in the expression for the molecular Hamiltonian in
Eq. 1.14 goes to zero, and the Coulomb nuclei-nuclei term is constant. Then, for a given
nuclear configuration (fixed values of {Rk}), we need to find the solutions (eigenstates) of
the electronic Hamiltonian

He =−∑
i

∇2
i

2
−∑

i,k

Zk

|R⃗k − r⃗i|
+

1
2 ∑

i ̸= j

1

|⃗r j − r⃗i|
, (1.15)

where we have omitted the constant nuclear-nuclear interaction terms. Throughout the rest
of the thesis, I will drop the subscript e and will denote He as H. Our goal will be to find the
eigenvalues {Ei} and eigenvectors |Ei⟩ corresponding to the ground state and lowest excited
states of H. We want to estimate the energies to within chemical accuracy of approximately
10−3 Hartree. Chemical accuracy is the typical error of thermochemical experiments. Also,
if the energies are known to this accuracy then at room temperature chemical reaction rates
can be calculated with a precision to within the correct order of magnitude, using Eyring’s
equation [24]

k ∝ e−∆E/kBT , (1.16)
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where k is the reaction rate, kB is the Boltzmann constant, T is the temperature and ∆E is the
energy barrier between reactant and product states.

1.4.2 First and second quantized, and grid-based and set-basis compu-
tational chemistry methods

Many-particle quantum problems can be described in either the first or the second quantization
formalism. Hence, we distinguish between first and second quantized methods to solve the
electronic structure problem. In first quantized methods variables such as particle position
and momentum are expressed by operators and quantized, and the exchange antisymmetry of
electrons is accounted for by the wavefunction. In second quantized methods fields rather
than variables are quantized, and the symmetry of the particles is accounted for by the
properties of the operators that are applied to the wavefunction.

In addition to first and second quantized methods, we also distinguish between grid-based
and basis-set methods. Grid-based methods directly store the electronic wavefunction by
evaluating it on a discretized spatial grid. Whereas, basis-set methods project the Hamiltonian
onto a basis of electronic orbital functions and the electron wavefunction is expressed as a
superposition of Slater determinants.

First quantized, grid-based methods

In first-quantized grid-based methods [89], the wavefunction is antisymmetrized to account
for the electronic exchange antisymmetry, and is considered in the position representation
|xxx⟩. An Ne electron wavefunction can be expressed as

|ψ⟩=
∫

xxx1..xxxNe

ψ(xxx1.. xxxNe)A
(
|xxx1.. xxxNe⟩

)
dxxx1..dxxxNe , (1.17)

where xxxi ≡ (⃗ri,σi)≡ (xi,yi,zi,σi) are the spatial and the spin coordinates of the ith electron,
A denotes the antisymmetrization operator, and ψ(xxx1.. xxxNe) = ⟨xxx1.. xxxNe |ψ⟩.

The system is simulated by evaluating |ψ⟩ on a discretized spatial grid. If each spatial
axis is disretized in Np points, the wavefunction can be expressed as

|ψ⟩= ∑
xxx1.. xxxNe

ψ(xxx1.. xxxNe)A
(
|xxx1.. xxxNe⟩), (1.18)

where |xxxi⟩= |xi⟩|yi⟩|zi⟩|σi⟩ with xi,yi,zi ∈ [0,1, . . .Np−1] and σi ∈ [0,1]. This wavefunction
is represented by 2NeN3Ne

p complex amplitudes, hence the memory required to store it on a
classical computer is exponential in the number of electrons Ne.
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Grid-based methods are useful when the Born-Oppenheimer approximation is not appro-
priate or when considering chemical dynamics [90, 91]. However, these methods quickly
become intractable for classical computers as the number of electrons increases.

First quantized, basis-set methods

In basis-set methods the Hamiltonian of the system, H, is projected onto Nso single-electron
basis wavefunctions {φk(xxxi)}, where xxxi is as usual the spatial-spin coordinate of the ith

electron. The basis wavefunctions {φk(xxxi)} usually approximate molecular (or atomic)
spin-orbitals. The choice of {φk(xxxi)} is discussed in Sec. 1.4.4.

Again, the exchange symmetry of the electrons should be accounted for by their wave-
function. Hence, a wavefunction of Ne electrons can be written as an antisymmetrized
product of Ne basis wavefunctions {φk0(xxxi), . . .φkNe−1(xxxi)}, which can be represented as a
Slater determinant:

Φk0,...kNe−1(xxx0,xxx1 . . .xxxNe−1) =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣
φk0(xxx0) φk1(xxx0) . . . φkNe−1(xxx0)

φk0(xxx1) φk1(xxx1) . . . φkNe−1(xxx1)
...

...
...

...
φi0(xxxNe−1) φk1(xxxNe−1) . . . φkNe−1(xxxNe−1)

∣∣∣∣∣∣∣∣∣∣
(1.19)

Exchanging the position of two electrons, corresponds to exchanging two rows of the Slater
determinant, which changes the signs of the wavefunction as required. Typically the number
of considered spin orbitals Nso is larger than the number of electrons Ne. Hence, a general Ne

electron wavefunction will be represented by a superposition of Slater determinants:

ψ(xxx0,xxx1 . . .xxxNe−1) =
Nso−1

∑
k0=0

Nso−1

∑
k1=k0+1

. . .
Nso−1

∑
kNe−1=iNe−2+1

ck0,...kNe−1Φk0,...kNe−1(xxx0,xxx1 . . .xxxNe−1)

(1.20)
The grid-based methods discussed in the section above store the electronic wavefunction

directly without assuming any prior knowledge about its form. In contrast, basis-set methods
exploit such knowledge by projecting the Hamiltonian on the spin orbitals {φk(xxxi)}, thus
reducing the resources needed to store the electronic wavefunction. A general electronic
wavefunction written in terms of Slater determinants can be represented by 2NeNe! complex
amplitudes. Accounting for electron conservation, this number can be reduced further. As we
will see next, the information encoded by a Slater determinant can be even further reduced
by second quantization, hence first-quantization basis-set methods are rarely used.
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Second quantization, grid-based methods

Second-quantized grid-based methods are rarely used in either classical or quantum compu-
tational chemistry. They are discussed in Ref. [92].

Second quantization, basis-set methods

Second-quantized basis-set methods follow straightforwardly from first-quantized basis-set
methods. Again the Hamiltonian is projected onto a basis of Nso molecular spin-orbital
wavefunctions {φk(xxxi)}. However, in second-quantization formalism the wavefunction does
not account for the fermionic anticommutation, so the Slater determinant in Eq. 1.19 can be
simply represented as the occupation number vector

| fff ⟩= | f0 f1 . . . fNso−1⟩ ≡ Φk0,...kNe
(xxx0,xxx1 . . .xxxNe−1), (1.21)

where fk = 1 if k ∈ {k0, . . .kNe−1}, indicating that spin orbital φk is occupied by an electron,
and fk = 0 otherwise. The space spanned by all 2Nso such vectors is known as the Fock space,
and the vectors {| fff ⟩} form an orthonormal basis for this space. Throughout this thesis, I
will use occupation number vectors predominantly to represent Slater determinants, so I will
refer to them as Slater determinants.

Electrons are excited (de-excited) into a spin orbital φi by the fermionic creation (an-
nihilation) operator a†

i (ai). I refer to a†
i and ai together as fermionic ladder operators. In

second quantization formalism the exchange symmetry of the electrons is accounted for by
the fermionic ladder operators a†

i and ai, therefore they obey the anticommutation relations

{ai,a
†
j}= aia

†
j +a†

jai = δi j and {a†
i ,a

†
j}= {ai,a j}= 0. (1.22)

The action of the fermionic ladder operators on the Slater determinants is

ai| f0 f1 . . . fi . . . fNso⟩= (−1)∑
i−1
r=0 frδ fi1| f0 f1 . . . fi ⊕1 . . . fNso⟩ and (1.23)

a†
i | f0 f1 . . . fi . . . fNso⟩= (−1)∑

i−1
r=0 frδ fi0| f0 f1 . . . fi ⊕1 . . . fNso⟩, (1.24)

where ⊕ denotes addition modulo 2. The phase term (−1)∑
i−1
r=0 fr accounts for the exchange

symmetry of the electrons.
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In second quantization the electronic Hamiltonian H in Eq. 1.15 is represented in terms
of fermionic ladder operators as

H = ∑
k,i

hkia
†
kai +

1
2 ∑

l,k, j,i
hlk jia

†
l a†

ka jai, (1.25)

where

hki =
∫

φ
∗
k (xxx)

(
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2
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Zr

|⃗r− R⃗p|

)
φi(xxx)dxxx and (1.26)

hkl ji =
∫

φ∗
l (xxx1)φ

∗
k (xxx2)φ j(xxx2)φi(xxx1)

|⃗r1 − r⃗2|
dxxx1dxxx2. (1.27)

The indices i, j,k, l run over all spin orbitals {φi}, the index p runs over all nuclei, xxx ≡ (⃗r,σ)

denotes spatial and spin coordinates, and Rp is the position of the pth nucleus. The first
integrals correspond to the electronic kinetic terms and the electron-nuclei Coulomb interac-
tion terms of the Hamiltonian, and the second integrals correspond to the electron-electron
Coulomb interaction terms. The number of fermionic operator terms in the Hamiltonian
expression scales as O(N4

so)

The Slater determinants | fff ⟩ form a complete orthonormal basis for the electronic Hamil-
tonian in Eq. 1.25. Therefore, the eigenstates of the electronic Hamiltonian can be expressed
as linear combinations of Slater determinants, as

|ψ⟩= ∑
f

c f | fff ⟩, (1.28)

where c f are real coefficients. If the molecular spin orbital wavefunctions {φi} form a com-
plete basis for the single-electron states of the molecular Hamiltonian, then these solutions
are exact. In Sec. 1.4.4 we will see how to choose a basis of spin orbital wavefunctions. If
|ψ⟩ includes all

(Nso
Ne

)
Slater determinants that correspond to a Ne-electron wavefunction, then

the wavefunction |ψ⟩ is called the full configuration interaction (FCI). However, the number
of all Slater determinants scales exponentially with Ne, making classical FCI calculations
intractable for large systems.

Second-quantized basis-set methods are the most widely used type of methods in classical
computational chemistry. Also they translate the most easily to quantum computational
chemistry. Throughout the rest of the thesis, we will be concerned with second-quantized
basis-set methods only.
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1.4.3 Classical computational chemistry methods

This section briefly describes three standard classical second-quantized basis-set methods
used to approximate the ground state wavefunction of an electronic Hamiltonian: the Hartree-
Fock (HF) method, the configuration interaction (CI) method and the coupled cluster (CC)
method. The purpose of this summary is to present the limitations of these classical methods
in balancing between computational cost and accuracy, and to serve as motivation for
developing quantum computational chemistry methods.

Hartree-Fock

The HF method [93, 94] is a variational method that represents the electronic wavefunction
as only a single Slater determinant. Typically, the method considers a number of Nso spin
orbitals, that is larger than the number of electrons Ne. Since, only one Slater determinant is
considered, Ne of the spin orbitals will be occupied and Nso −Ne will be unoccupied (also
referred to as virtual orbitals).

The HF method operates by minimizing the expectation value for the ground state energy.
This is done by varying the spatial parts of the Ne occupied spin-orbitals, subject to the
condition that they form an orthonormal basis [94]. Typically, the input to the HF method is
a set of single-electron atomic spin orbitals (orbitals localized around each atom), and the
output is a set of single-electron molecular orbitals [93].

The HF method works well for systems where the true electronic wavefunction is domi-
nated by a single Slater determinant. However, the HF method does not account for static
and dynamic correlations. Dynamic correlations arise from the Coulomb interaction term,
and result in small contributions from many Slater determinants that have occupied virtual
orbitals [95]. Static correlations occur in excited states, transition states and near the dis-
sociation limit [95, 96], and result in an electronic wavefunction where two or more Slater
determinants are dominant. The HF method performs poorly for strongly correlated systems.
Typically the Slater determinant generated by the HF method is used as an initial reference
state for more accurate methods.

Configuration interaction method

The configuration interaction (CI) method [93, 97] includes additional determinants to
account for the correlation effects of the electron wavefunction. The CI creates a correlated
wavefunction by considering excitations above a reference state, usually chosen to be the HF
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state. The correlated wavefunction is represented as

|ψCI⟩=
(
I +∑

ki
ck,ia

†
kai + ∑

l>k, j>i
clk jia

†
l a†

ka jai + . . .
)
|ψHF⟩, (1.29)

where c are parameters to be optimized. The CI method optimizes these parameters based
on the Rayleigh-Ritz variational principle, which states that the expectation value of a
Hamiltonian with respect to a parametrized wavefunction, is always greater or equal to the
lowest eigenvalue of the Hamiltonian.

If the CI includes all excited state determinants, then the optimized wavefunction is the
FCI wavefunction. However, this would result in exponentially large number of parameters
and wavefunction size, which would make the CI method classically intractable, except for
small molecules. Usually, the CI considers only single and double excitations (CISD), and
sometimes triple excitations (CISDT).

The CI method is effective at recovering dynamic correlation, but less effective at
recovering static correlation. The truncated CI method also is not size-extensive [96].

Coupled cluster method

Similarly to the CI method, the CC method also includes additional determinants as ex-
citations above a reference HF state. However, the trial wavefunction is represented as a
parametrized product instead:

|ψCC⟩= ∏
k,i

(
I + ckia

†
kai
)

∏
l>k, j>i

(
I + clk jiâ

†
l a†

ka jâi
)
. . . |ψHF⟩= e∑p Ξp |ψHF⟩ (1.30)

with

Ξ1 = ∑
k∈virt,i∈occ

θkia
†
kai,

Ξ2 = ∑
k,l∈virt, j,i∈occ

θlk jia
†
l a†

ka jai, (1.31)

...

where θ are variational parameters, occ (virt) denote occupied (virtual) spin-orbitals, and
Ξp denotes a sum of all fermionic excitation operators of order p. If all excitation operators
Ξp, for p ∈ [0, Nso

2 ] are considered, the FCI wavefunction is recovered. However, this would
result in an exponential number of parameters to be optimized. Therefore, usually only single
and double excitations are used, resulting in the CCSD method.
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Even with single and double excitations only, the CCSD wavefunction, in general, in-
cludes all determinants [23], and would require exponential memory size to be stored directly.
Therefore, the CC method does not store the wavefunction directly, but rather coupled non-
linear equations are derived, whose solutions approximate the electronic ground state wave-
function [93]. The time complexity of solving these equations scales as O(N2

e (Nso −Ne)
4),

and the required memory as O(N4
so).

The CC method converges faster than the CI method, and is also size-extensive. However,
the wavefunction constructed by the CC does not obey the Rayleigh-Ritz principle [93]. Also
the CC method does not perform well for strongly correlated systems [98]. Section 1.5.5
describes the unitary version of the CC method, the UCC, that solves the issues above, and
which can be efficiently implemented on a quantum computer.

1.4.4 Spin-orbital basis sets

Section 1.4.3 presented basis-set methods that project the electron Hamiltonian onto a basis
of spin-orbital wavefunctions {φi}, and represent the electron wavefunction as a linear
combination of Slater determinants of {φi}. This section summarizes some standard spin-
orbital basis sets.

The true spin-orbitals of a molecule can be obtained by numerically solving the Schrödinger
equation using grid-based methods. However, this is computationally intractable for large
molecules. Instead, a basis of spin-orbital wavefunctions can be obtained by considering
approximations of the spatial form of the atomic spin-orbitals of the individual nuclei.

Such standard approximations are the Slater-type orbitals (STOs) [93, 23]. The form of a
STO is

RSTO
nE

(r) ∝
(
ζ r
)nE−1e−ζ r, (1.32)

where nE is the energy level, and ζ is a fitting parameter. The STO functions do not display
oscillatory behaviour like the true atomic orbitals. Therefore, an atomic orbital can be better
approximated as a linear combination of several STOs, each with a different parameter ζ ,
thus increasing the radial flexibility of the approximate function. A representation where an
atomic orbital is represented by n STOs is referred to as an n−ζ representation. STOs display
many features of true atomic orbitals and can approximate them accurately. However, STOs
make the evaluation of the two-electron integrals in Eq. 1.27 computationally expensive.

To simplify the calculation of these integrals, Gaussian-type orbital (GTO) functions [99]
can be used instead. The spatial form of the GTOs is

RGTO
nE l (r) ∝

(√
αnE lr

)le−αnE lr2
, (1.33)
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where l is the angular momentum quantum number of the orbital and αnE l is a fitting
parameter. Owing to the exponential r2 dependence, GTOs are more localized than STOs,
and do not approximate the atomic orbitals as well as the STOs. Therefore, more GTOs are
required to describe an atomic orbital. However, this is compensated by the two-electron
integrals in Eq. 1.27 being more easily calculated.

Typically, STOs are approximated as linear combinations of GTOs, and the STOs are used
as a basis of atomic orbital wavefunctions. The number of basis wavefunctions determines
the accuracy, run-time and memory requirements of classical chemistry algorithms. In the
case of quantum chemistry algorithms, as we will see in Sec. 1.5.1, the number of basis
functions determines the number of required qubits. Below are presented several different
spin-orbital bases, depending on the number of STOs and GTOs considered.

STO-nG basis sets

Some of the simplest spin-orbital basis-sets, are the STO-nG basis sets [100]. In the STO-nG,
each spin-orbital is represented by one STO, which is approximated by n-GTOs. In STO-nG
basis sets, only the spin-orbitals that participate in the HF states, and those of similar energies
are considered. These basis sets are called minimal basis sets, since only the spin-orbitals
sufficient to contain the electrons in the neutral atoms are used.

Split-valence basis sets

More complex and accurate basis sets are the so called split-valence basis sets. Split-valence
basis sets are STO-nGs, where the valence orbitals (the highest-energy occupied orbitals in
the HF state) are represented by n STOs (n−ζ representation). An example of a split-valence
basis set is the 6−31G basis [101].

Correlation-consistent basis sets

Correlation-consistent polarization valence nζ (cc-pVnZ) bases [102] can achieve additional
accuracy. These bases sets include additional virtual spin-orbitals that can recover the
correlation energy. The core occupied spin-orbitals have 1−ζ STO representations, whilst
the valence and virtual spin-orbitals have n− ζ STO representations. The occupied spin-
orbitals are generated by the HF method, while the virtual spin-orbitals can be generated by
correlated calculations on atoms [27].
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1.5 Quantum computational chemistry

Section 1.4 defined the electronic structure problem and presented standard classical com-
putational chemistry methods to solve this problem. In this section, we look into how the
electronic structure problem can be mapped and solved on a quantum computer. The consid-
ered techniques correspond to second-quantized basis-set methods. Quantum first-quantized
methods exist [23, 103], however they are rarely used and I do not discuss them in the thesis.

I begin by presenting three different qubit encodings for the spin-orbitals and the fermionic
ladder operators. I then describe the quantum phase estimation (QPE) and the variational
quantum eigensolver (VQE) algorithms to find the ground state energy of an electronic
Hamiltonian.

1.5.1 Qubit encoding methods

The Jordan Wigner encoding

A qubit encoding method in the context of quantum computational chemistry is a map
from the Fock space of electronic Slater determinants to the Hilbert space of qubit states.
The Jordan-Wigner (JW) encoding is the most straightforward qubit encoding, where the
occupation of the spin-orbital φi is represented by the state of qubit i, such that qubit state |0i⟩(
|1i⟩
)

indicates that φi is unoccupied (occupied). Hence, there is a one to one correspondence
between Slater determinants and computational basis qubit states:

| f0 f1 . . . fNso−1⟩ → |q0⟩|q1⟩ . . . |qNso−1⟩
qi = fi ∈ {0,1} (1.34)

The fermionic ladder operators a†
i and ai are mapped to quantum gate operations as

a†
i = b†

i Zi−1 . . .Z0 and (1.35)

ai = biZi−1 . . .Z0, (1.36)

with
b†

i =
(Xi − iYi)

2
and (1.37)

bi =
(Xi + iYi)

2
, (1.38)

where I refer to b†
i and bi as qubit ladder operators. The operators, b†

i and bi, act to change
the occupation of spin-orbital φi, whereas the products (strings) of Pauli-z gate operators
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act as the exchange phase factor (−1)∑
i
k=0 fk in Eqs. (1.23) and (1.24), accounting for the

electron antisymmetry. The action of the product of Pauli-z gate operators is also referred to
as computing the parity of the (qubit) state.

Using the JW encoding of the fermionic ladder operators [Eqs. (1.36) and (1.38)], the
electron Hamiltonian in Eq. (1.25) can be expressed as a linear combination of products of
Pauli operators as

H = ∑
j

h jPj = ∑
j

h j

Nso−1

∏
i=0

σ
j

i , (1.39)

where h j are a real scalar coefficients (not to be confused with the one- and two-electron
integrals hki and hlk ji in Eqs. (1.26) and (1.27)), Pj is a product of Pauli operators, (or a Pauli
string for a shorthand), and σ

j
i is one of the Pauli operators {Ii,Xi,Yi,Zi} acting on qubit i.

The number of Pauli string terms, in the Hamiltonian quantum gate-expression, scales as the
number of fermionic terms, in the Hamiltonian expression in Eq. (1.25), O(N4

so).
Within the JW encoding it is easy to see the first advantage of using quantum computers

to solve chemistry problems: an Nso qubit state can represent a superposition of 2Nso Slater
determinants, hence it can store the full FCI wavefunction. On the other hand, directly storing
the 2Nso complex amplitudes of the FCI wavefunctions on a classical computer would require
O(2Nso) classical bits of memory.

Parity encoding

In the JW encoding the occupation number is stored locally (one needs to measure the state
of one qubit to find the occupation number), while the parity is stored non-locally (one needs
to measure O(Nso) qubits to determine the parity).

Parity encoding is an alternative encoding where the occupation number is stored non-
locally and the parity locally. The correspondence between Slater determinants and qubit
states is

| f0 f1 . . . fNso−1⟩ → |q0⟩|q1⟩ . . . |qNso−1⟩

qi =
i⊕

j=0

f j, (1.40)

where
⊕

denotes summation modulus 2. The transformed fermionic ladder operators are
described in Ref. [104]. The parity encoding has not yet found a practical use.
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Bravyi-Kitaev encoding

Bravyi-Kitaev encoding is midway between the JW and the parity encoding in the sense
that the occupation number and parity are both stored partially locally. The correspondence
between Slater determinants and qubit states is

| f0 f1 . . . fNso−1⟩ → |q0⟩|q1⟩ . . . |qNso−1⟩

qi =
i⊕

j=0

β
(Nso)
i j f j, (1.41)

where β
(Nso)
i j are elements of the BK matrix for Nso qubits.

The BK matrix is defined recursively as

β
(1) =

[
1
]

(1.42)

β
(2x+1) =

[
β (2x) 000

AAA β (2x)

]
, (1.43)

where 000 is a 2x ×2x matrix of zeros and AAA is a 2x ×2x matrix of zeros except the bottom row,
which is filled with ones. For example, for 2 and 4 qubits the BK matrix is

β
(2) =

[
1 0
1 1

]
and β

(4) =


1 0 0 0
1 1 0 0
0 0 1 0
1 1 1 1

 (1.44)

If the number of orbitals (qubits) Nso is not a power of 2, then the BK matrix is created by
taking the first Nso rows of the BK matrix for the next power, ⌈logNso⌉, of 2.

The quantum gate operation representation of the fermionic ladder operators in the BK
encoding is considerably more complicated than in the case of the JW encoding, and it is
explained in detail in Ref. [104]. The BK encoding represents a fermionic ladder operator
with O(logNso) Pauli operators, acting on O(logNso) qubits, whereas the JW and the parity
encoding represent a fermionic ladder operator with O(Nso) Pauli operators, acting on O(Nso)

qubits. A thorough comparison between the JW and the BK methods is presented in Ref.
[105].



34 Introduction and Theoretical Background

1.5.2 Plane wave spin-orbital basis sets

Section 1.4.4 described some of the standard STO spin-orbital basis sets, used in classical
computational chemistry. While these bases can be used in quantum computational chem-
istry methods to obtain an accurate description of molecular electronic wavefunctions with
relatively few spin-orbitals, they also lead to a number of terms in the Hamiltonian that scales
as O(N4

so), irrespective of the qubit encoding. The number of terms in the Hamiltonian is
proportional to the number of quantum computer measurements required to evaluate the
expectation value of H (see Sec. A).

This number can be reduced by the plane wave and dual plane wave spin-orbital basis
sets [106]. The plane wave basis functions are

φν =
1√
V

exp

(
2πiνr

L

)
, (1.45)

for a plane wave with wave vector corresponding to the ν th harmonic of a cell with size L and
volume V . The dual plane wave basis functions are obtained as the Fourier transform of the
plane wave basis functions [92]. The plane wave and the dual plane wave bases diagonalize
the kinetic and potential operators in the electron Hamiltonian, reducing the number of H
terms from O(N4

so) to O(N3
so) and to O(N2

so), respectively. However, to achieve the same
accuracy as STO bases, plane wave bases need 10 to 100 times more basis functions. This,
results in requiring more qubits, and correspondingly more quantum gates. Hence, plane
wave bases are not ideal for NISQ computers.

1.5.3 Quantum phase estimation

The Quantum phase estimation (QPE) [28, 107] algorithm is a quantum algorithm to estimate
the eigenvalue (or phase) of an eigenvector of a unitary operator. The QPE is used as a
subroutine in a number of quantum algorithms, e.g. Shor’s algorithm [14]. In the context
of quantum computational chemistry the QPE can be used to estimate the eigenvalues of an
electronic Hamiltonian [Eq. (1.15)]. The QPE is described by the steps below [17] and the
circuit in Fig. 1.5

1. Prepare two qubit registers: (1) a target qubit register of Nso qubits to represent the
electron wavefunction, initialized in state |ψ0⟩= ∑i ci|Ei⟩, which should have non-zero
overlap with the true FCI ground state wavefunction (co ̸= 0), and (2) an ancilla qubit
register of nout qubits to store the output value for the energy eigenvalue, initialized in
an equal superposition of all computational basis states, 1/

√
2nout ∑

2nout−1
x=0 |x⟩.



1.5 Quantum computational chemistry 35

|0⟩ Had •

QFT−1|0⟩ Had •
...
|0⟩ Had •

|ψ0⟩
(
e−2πiH)0 (

e−2πiH)1 . . .
(
e−2πiH)nout

Fig. 1.5 Quantum phase estimation circuit. The state |ψ0⟩ is a Nso qubit state representing
the electron wavefunction. H is the electron Hamiltonian [Eq. (1.25)], and nout is the number
of ancilla qubits initialized in state |0⟩. QFT−1 denotes the inverse Fourier transform. Upon
measurement of the ancilla qubits an estimate for an eigenvalue of H is obtained.

2. Apply the controlled gates, shown in Fig. 1.5, that evolve the two qubit register states
as

1√
2nout

2nout−1

∑
x=0

|x⟩∑
i

ci|Ei⟩ →
1√
2nout

2nout−1

∑
x=0

∑
i

e−2πixEi|x⟩ci|Ei⟩ (1.46)

3. Apply the inverse quantum Fourier transform, QFT−1 [108], to the ancilla qubit register
to record the phase into the ancilla register

1√
2nout

2nout−1

∑
x=0

∑
i

e−2πixEi|x⟩ci|Ei⟩ →
1√
2nout

∑
i

ci|bin(Ei)⟩|Ei⟩, (1.47)

where bin(Ei) is the value of Ei as a binary bit string of length nout .

4. Measure the ancilla register and obtain the eigenvalue Ei with probability |ci|2. The
state of the target qubit register is collapsed to the corresponding eigenstate |Ei⟩.

The complexity of the QPE is determined by the depth of the circuits that implement the
controlled unitary evolutions of H. Generaly, the complexity is polynomial in the number
of spin-orbitals, Nso, and the number of electrons, Ne, thus the QPE is exponentially faster
than the classical FCI method. Some of the most efficient implementations of the QPE have
complexities of O(N5

so) [109] and O(N2
e N3

so) [110].
The success probability and precision of the QPE are determined by the number of ancilla

qubits [17]. For a success probability p and a precision εpe =
1
2n to the nth bit

nout = n+
⌈

log2

(
2+

1
2p

)⌉
. (1.48)
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The QPE evolves the target register with H for times {2π,4π, . . . ,2nout π}. Thus, the total
evolution time is approximately T = 2nout+1π . For a success probability p = 0.5, nout = n+2,
and so T = 2n+3π = 8π/εpe. Hence, the target state is transformed by 16π/εpe = 2n+4

controlled unitary evolutions e−iH . On a quantum-circuit computer e−iH cannot be performed
exactly, so it should be approximated using, for example, Trotter decomposition [111]. This
introduces an additional error εU to the finite precision εpe. There are also errors arising due
to quantum gate operations, referred to as circuit synthesis errors εcs. Hence, the total error of
the QPE is upper bounded by εpe + εU + εcs [112]. There has been considerable work done
in minimizing and achieving balance between these three errors, for example, by optimal
state initialization [113], and efficient Hamiltonian simulation [111, 114, 115].

However, to perform the multiple controlled e−iH evolutions, the QPE requires long
quantum circuits with large numbers of quantum gates, on the order of millions to billions
for practical applications [116, 117]. Such circuits greatly exceed the capabilities of NISQ
computers. Therefore, the QPE is considered to be a long-term method, which requires
fault-tolerant quantum computers, or at least quantum computers with enough qubits for
error correction.

1.5.4 Variational Quantum Eigensolver

A promising candidate to solve the electronic structure problem on NISQ computers is
the variational quantum eigensolver (VQE) [23, 29, 118]. The VQE is an algorithm that
determines the lowest eigenvalue, E0, of a Hamiltonian operator H. The VQE relies on the
Rayleigh-Ritz variational principle, which states that

⟨ψ (⃗θ)|H|ψ (⃗θ)⟩ ≡ E (⃗θ)≥ E0, (1.49)

to iteratively minimize the expectation value E (⃗θ) with respect to the parametrized trial state
|ψ (⃗θ)⟩, and thus obtain an estimate for the ground state energy E0. A single VQE iteration
is described by the three steps below, and is illustrated by Fig. 1.6:

1. On a quantum computer prepare the trial state |ψ (⃗θ)⟩

2. On a quantum computer measure the expectation value E (⃗θ)

3. On a classical computer, process the measurement data, and update the variational
parameters θ⃗ for the next iteration using a classical optimizer

The iterations continue until E (⃗θ) converges.
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Fig. 1.6 A diagram summarizing a single VQE iteration

Since classical computers cannot efficiently store and process the electronic wavefunction,
the VQE uses a quantum computer to do so. The variational parameters at the end of
each iteration are updated by a classical computer though. This allows the VQE to store
intermediate results on the classical computer, and restart the state of the quantum computer
after each iteration. Hence, the VQE exchanges the long coherence times (long quantum
circuits) required by the QPE, for multiple quantum measurements and additional classical
processing. As we will see later, this results in a polynomial overhead in the asymptotic
complexity of the VQE as compared to the best QPE implementations. Nevertheless, the VQE
remains exponentially faster than exact classical methods like the FCI. Owing to its use of
both a quantum and a classical computer, the VQE is considered a hybrid quantum-classical
algorithm.

Preparing the trial wavefunction

The trial state for the VQE, |ψ (⃗θ)⟩, is prepared by a parametrized quantum circuit, corre-
sponding to a unitary operation U (⃗θ), acting on an initial reference state |ψ0⟩, such that
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|ψ (⃗θ)⟩=U (⃗θ)|ψ0⟩. I refer to the unitary operator U (⃗θ) as the ansatz and to the circuit that
implements U (⃗θ) as the ansatz circuit, respectively15.

Hamiltonian measurement

Once the trial state is prepared, the expectation value of the Hamiltonian H should be
measured. In the context of computational chemistry, H is an electronic Hamiltonian, with
second-quantized form given by Eq. (1.25). In Sec. 1.5.1 we saw that with the JW encoding
the electronic Hamiltonian can be expressed in terms of quantum gate operations as

H = ∑
j

h jPj = ∑
j

h j

Nso−1

∏
i=0

σ
j

i . (1.50)

Using a different encoding like the BK, also results in a similar expression. Therefore, the
VQE needs to measure the expectation value

E (⃗θ) = ⟨ψ (⃗θ)|∑
j

h j

Nso−1

∏
i=0

σ
j

i |ψ (⃗θ)⟩= ∑
j

h j⟨ψ (⃗θ)|
Nso−1

∏
i=0

σ
j

i |ψ (⃗θ)⟩ (1.51)

at the end of each iteration. In practice the expectation values of all Pauli strings in the
expression for H above are measured on a quantum computer, then they are multiplied with
the corresponding coefficients, h j, and added together on a classical computer, to obtain
E (⃗θ).

The expectation value of a Pauli string, ⟨ψ (⃗θ)|∏Nso−1
i=0 σi|ψ (⃗θ)⟩, can be conveniently

measured on a quantum computer by preparing the state |ψ (⃗θ)⟩, performing a multi-qubit
basis rotation as described in Appendix A, and measuring just a single qubit in the Z-basis. If
a single Pauli string of length l(≤ Nso) is measured at a time, the circuit performing the basis
rotations requires (l−1)CNOT s and at most l single-qubit gates, and has a depth of O(log l).
Therefore, the depth and gate count of the circuit required to measure E (⃗θ) is dominated by
the ansatz circuit, which generates |ψ (⃗θ)⟩.

The number of measurements required to estimate the expectation value of each Hamilto-
nian term to a precision ε scales as O(1/ε2) [119]. Therefore, using a STO-based spin-orbital
basis where the Hamiltonian is expressed by O(N4

so) terms, results in O(N4
so/ε2) measure-

ments required to obtain E (⃗θ). As mentioned in Sec. 1.5.2 using doubly plane wave
spin-orbital bases, the number of H terms can be reduced to O(N2

so), thus reducing the
number of measurements to O(N2

so/ε2). The number of measurements can be additionally
decreased by a constant factor by grouping together and simultaneously measuring mutually

15In literature ansatz is often used interchangeably for any of the two terms
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commuting Hamiltonian terms [120, 121]. Some works have also proposed applying unitary
transformations, resulting in an increased circuit length, to group the Hamiltonian terms even
further, thus reducing the number of measurements from O(N4

so/ε2) to O(N3
so/ε2) [122].

In this thesis, I consider circuit efficiency as a primary cost metric. Therefore, I assume
the use of STO-based spin-orbitals and Hamiltonian term groupings that do not increase the
circuit length. This implies that measuring the expectation value of a molecular electronic
Hamiltonian will require a number of quantum computer measurements, which scale as
O(N4

so).

Classical optimization

The classical optimization subroutine is crucial for the success of the VQE. The classical
optimizer should be able to minimize the multi-variable Hamiltonian expectation value, and
it also should be robust to noise due to quantum errors. Discussion of the details of various
optimization methods is beyond the scope of this thesis. A thorough comparison of various
classical optimizers for the VQE is presented in Ref. [123].

I only mention that classical optimizers are broadly divided into two groups: gradient-
descent and direct-search methods. As the name suggests, gradient-descent methods rely
on calculating the gradient vector of the minimized function with respect to the variational
parameters. In the case of finding the ground state energy of a Hamiltonian with the VQE, the
energy gradient vector can be explicitly calculated by the classical or the quantum computer
(see Appendix C.2). Gradient-descent optimizers are faster than direct-search optimizers,
however the former are more susceptible to noise and are more likely to get stuck in a local
minima.

1.5.5 VQE ansatz

The ansatz, U (⃗θ), is the most critical component of the VQE. First, the variational flexibility
of the ansatz determines how accurately the VQE can approximate the ground state, and
its corresponding energy. Second, as remarked above the circuits required to measure the
expectation values of the Hamiltonian terms are dominated by the ansatz circuit. Hence, both
the run-time of the quantum subroutine and the accumulated quantum errors are determined
almost entirely by the depth and the gate count of the ansatz circuit. Third, the success and
complexity of the classical optimization are determined by the number of ansatz parameters,
θ⃗ , and the dependence of the energy expectation value on these parameters.

Therefore, successfully performing molecular modelling with the VQE on a NISQ com-
puter requires an ansatz that is: (1) variationally flexible enough to approximate accurately
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the ground state of H, (2) implemented by a shallow circuit, especially one with as few
CNOT gates as possible, and (3) easy to optimize. These desired qualities are satisfied,
to various levels, by ansätze that lie in between two extremes: chemically-inspired and
hardware-efficient ansätze.

Hardware-efficient ansätze

Hardware-efficient ansätze correspond to universal unitary transformations implemented as
periodic sequences of parametrized one- and two-qubit gates that are easy to implement on
the available quantum hardware [124–128]. These ansätze aim to prepare a variationally
flexible ansatz state using as few quantum gates as possible. Hence, they are particularly
suitable for small quantum computers that have imperfect quantum gates and limited qubit
connectivity. Hardware efficient ansätze have been successfully used to simulate a number of
small molecules with the VQE [129].

However, as hardware-efficient ansätze lack chemically motivated structure, two major
problems arise. First, in order for the ansatz to be able to accurately approximate an
arbitrary state (in an exponentially large Hilbert space) a large, potentially exponential,
number of variational parameters is required [130]. This problem can be partially alleviated
by constructing a hardware-efficient ansatz that conserves the number of electrons [126].
However, even in this case, an exponentially large Hilbert space needs to be searched. The
second problem is that using a hardware-efficient ansatz with randomly initialized variational
parameters, makes the energy gradients along most parameters close to zero [131]. This
problem becomes exponentially worse with the number of qubits and the circuit depth.
In some scenarios, this is known as the barren-plateau problem [132–134]. Because of
these problems, the classical optimization of hardware-efficient ansätze is considered to be
intractable for large systems, and VQE protocols, using such ansätze, are considered to be
unscalable for practical applications.

Chemically-inspired ansätze

The majority of chemically inspired ansätze come from adapting classical computational
chemistry methods to run on a quantum computer. The most widely used type of ansätze are
the unitary coupled cluster (UCC) ansätze, which as the name suggests are motivated by the
CC (Sec. 1.4.3) method. A general UCC ansatz corresponds to a unitary evolution of a sum
of fermionic excitation operators:

UUCC(⃗θ) = exp
(Nso−1

∑
k,i

θki(a
†
kai −a†

i ak)+
Nso−1

∑
l,k, j,i

θlk ji(a
†
l a†

ka jai −a†
ja

†
i alak)+ . . .

)
(1.52)
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The exponential above cannot be implemented exactly on a quantum-circuit computer.
Therefore, in practice the UCC ansätze are approximated to one or a few Trotter steps
[135, 136] as

UUCC(⃗θ) =
Nso−1

∏
k,i

eθki(a
†
kai−a†

i ak)
Nso−1

∏
l,k, j,i

eθkk ji(a
†
l a†

ka jai−a†
j a

†
i alak) . . . , (1.53)

where each exponential of a fermionic excitation operator can be implemented directly as a
quantum circuit (see Appendix B). In this thesis, I will refer to an exponential of a fermionic
excitation operator as fermionic evolution for shorthand.

As in the case of the CC method, UCC ansätze are typically truncated to include first and
second order fermionic excitation operators only. The most commonly used UCC ansatz
is the UCC Singles and Doubles (UCCSD) [29, 119, 137–140], which includes single and
double fermionic excitation operators above the HF state:

UUCCSD(⃗θ) = exp
(

∑
k∈virt,i∈occ

θki(a
†
kai −a†

i ak)+ ∑
l,k∈virt, j,i∈occ

θkk ji(a
†
l a†

ka jai −a†
ja

†
i alak)

)
(1.54)

The UCCSD has been successfully used to experimentally implement the VQE for various
small molecules [29–31].

Other examples of UCC ansätze include: the generalized UCCSD (GUCCSD), which
includes generalized single and double fermionic excitation operators [135], the k-UpCCSD,
corresponding to repeated layers of selected UCCSD excitation operators [135], and the
Bogoliubov-UCC [139], a quasiparticle variant of the UCC, which includes pairing-terms
present in superconductivity. These UCC ansätze are fixed ansätze that depend only on the
number of spin-orbitals and the number of electrons of the system of interest. By and large,
the various fixed UCC ansätze offer different trade-offs between ansatz size (number of
included fermionic excitation evolutions) and accuracy. Recently a number of VQE protocols,
e.g. the fermionic-ADAPT-VQE [141] and the Pruning-VQE [142], were proposed that
instead of using fixed UCC ansätze, iteratively construct problem-tailored UCC ansätze. I
further discuss such iterative VQE protocols in Chapter 4.

Owing to their physically-motivated fermionic structure, UCC ansätze generate states
that conserve the symmetries of electronic wavefunctions; e.g. electron-number-conservation,
spin-conservation and time-symmetry. This results in small search spaces as compared to
hardware-efficient ansätze, which makes UCC ansätze easy to optimize. In addition, these
symmetries are invariant under certain types of noise, which makes UCC ansätze resilient
to these types of noise [143, 128]. Furthermore, even relatively simple UCC ansätze, like
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the single-Trotterized UCCSD, are highly accurate for weakly correlated systems, such as
molecules near their equilibrium configuration [29, 30, 135, 136].

However, UCC ansätze require long quantum circuits that use particularly large numbers
of CNOT s. Typically, UCC ansätze consist of O(N4

so) number of fermionic evolutions,
resulting in UCC ansatz circuits that require O(N4

so logNso)−O(N5
so) CNOT s and have

depths that roughly scale as O(N3
so logNso)−O(N4

so) [23]. The depths and CNOT counts
of UCC ansatz circuits significantly limit the size of the molecules that can be simulated
on NISQ computers. The CNOT complexity of the UCC ansatz circuits stems from (1) the
CNOT cost of the circuits that implement fermionic evolutions, and (2) the large number
of fermionic evolutions, included in the ansatz, which are not necessarily required for the
approximation of the electronic wavefunction. Moreover, as we will see in Chapter 3, simple
UCC ansätze, like the UCCSD, cannot accurately approximate strongly correlated systems.
Hence, higher-order excitations and/or multiple-step Trotterization [135, 136] are required,
which additionally increases the depth of the ansatz circuit.

In Chapter 2, I construct CNOT -efficient quantum circuits to implement fermionic
evolutions that significantly reduce the CNOT counts of UCC ansatz circuits.



Chapter 2

Quantum circuits for unitary coupled
cluster ansätze

Chapter summary

The ansatz is the backbone of any VQE protocol. The most widely used ans̈atze for molecular
modelling with VQE protocols are UCC ansätze. UCC ansätze correspond to products of
unitary evolutions of fermionic excitation operators. Due to their fermionic excitation
structure these ansätze are accurate and easy to optimize. However, they are implemented
by long circuits, with large CNOT counts and CNOT depths, that severely limit the size
of the molecular systems that can be simulated on NISQ computers. In this Chapter, I
construct circuits, optimized in terms of CNOT count and CNOT depth, to implement unitary
evolutions of single and double fermionic excitation operators. The circuits can be used to
build CNOT efficient UCC ansätze circuits, and can be directly incorporated within existing
VQE protocols to lower their quantum hardware requirements.

Section 2.1 presents some preliminary circuit identities and circuit constructions. Section
2.2 describes the canonical quantum circuits used to implement evolutions of fermionic
excitation operators. In Sec. 2.3, I construct CNOT efficient circuits to implement unitary
evolutions of single and double qubit excitation operators, excitation operators that obey
qubit commutation relations. Then, in Sec. 2.4 I expand the functionality of these circuits
to account for the parity of the state, and thus implement unitary evolutions of fermionic
excitation operators instead. The resulting circuits require up to 2 (8) times fewer CNOT s in
the case of single (double) fermionic excitation evolutions than the canonical circuits.

The multi-qubit controlled rotation circuits in Sec. 2.1.3 are derived in my paper [144].
Sections 2.3 and 2.4 are based on my paper [145].
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2.1 Preliminary circuit identities and circuit constructions

2.1.1 Two-qubit circuit identities

Here I summarize some commonly used 2-qubit circuit identities.

Had • Had
=

• Had Had

Fig. 2.1 A circuit identity exchanging the control and target qubits of a CNOT gate.

Had • Had
=

• •

Fig. 2.2 A circuit identity for transformation between a CNOT and a CP. Both gates are
equivalent in terms of CNOT cost.

× •
=

× • •

Fig. 2.3 A circuit to construct a SWAP gate with 3 CNOT s.

• Ry(−π

2 ) Rz(−π

2 ) Rz(
π

2 ) Ry(
π

2 )

=

• • Rz(
π

2 ) •

Fig. 2.4 A circuit identity to replace a CNOT next to a CP with a circuit with a CNOT cost
of 1.

2.1.2 CNOT staircases

An important circuit construction in quantum computational chemistry is the CNOT staircase
that can be used to compute the parity of a qubit state and record it into the state of a single
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qubit. CNOT staircases are used to measure the expectation values of the Hamiltonian terms
(see Appendix A), and to construct circuits implementing evolutions of fermionic excitation
operators (see Sec. 2.2).

The parity of an n-qubit state can be computed by a staircase of (n−1)CNOT gates such
as the one in Fig. 2.5a. The action of the CNOT staircase on the qubit state can be expressed
as

0

∏
i=n−2

CNOTi,i+1|q0⟩|q1⟩ . . . |qn−1⟩= |q0⟩|q1 ⊕q0⟩ . . . |(qn−1 ⊕ (qn−2 ⊕ (. . .⊕ (q1 ⊕q0) . . .)⟩.

(2.1)
Hence, the parity of all n qubits is recorded in the state of the (n−1)th qubit.

The CNOT staircase circuit in Fig. 2.5.a has a depth of (n− 1), equal to the number
of CNOT s. The depth can be reduced by rearranging the CNOT s. If we construct 2 half-
staircases of ⌈n/2⌉ and ⌊n/2⌋ CNOT s, respectively, which compute the parities of the first
and the second half of the qubits, and then connect the two end qubits of each half-staircase
with a CNOT , the parity of all n qubits will be recorded on the target qubit of the last CNOT .
This rearrangement is visualized in Fig. 2.5b. The result is that the depth is decreased by
a factor of approximately 2. This procedure of halving the staircase depth can be repeated
approximately log2 n times with each half-staircase, until the (n− 1) CNOT s are packed
optimally into a circuit of depth O(logn).

|q0⟩ •

|q1⟩ •

|q2⟩ •
...

...

|qn−3⟩ •

|qn−2⟩ •

|qn−1⟩

(a)

|q0⟩ •

|q1⟩ •

|q2⟩ •
...

...
|q⌈n/2⌉⟩

...
...

|qn−2⟩ •

|qn−1⟩ •

(b)

Fig. 2.5 a) A CNOT staircase to compute and record the parity of the n-qubits state on qubit
n− 1. b) A rearranged CNOT staircase with reduced circuit depth of ⌈n/2⌉, and parity
recorded on qubit ⌈n/2⌉.
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2.1.3 Multi-qubit-controlled single-qubit rotation

Here, I derive a method to construct circuits that implement multi-qubit-controlled rotations,
without using ancilla qubits. These circuits are used later in the chapter (Sec. 2.3) to construct
circuits implementing evolutions of qubit excitation operators.

Lets denote a Ry(θ) rotation on a target qubit 0, controlled by qubits {1, ..,n} in state
|11..1n⟩, as cRy(θ)0,{1,..,n}. If there are no control qubits, cRy(θ)0,{} ≡ Ry(θ)0. The n-qubit-
controlled rotation cRy(θ)0,{1,..,n} can be decomposed into two opposite half-way rotations,
controlled by (n−1) qubits as

cRy(θ)0,{1,..,n} =CNOT1,0cRy

(
−θ

2

)
0,{2,..,n}

CNOT1,0cRy

(
θ

2

)
0,{2,..,n}

, (2.2)

or equivalently, as

cRy(θ)0,{1,..,n} = cRy

(
θ

2

)
0,{2,..,n}

CNOT1,0cRy

(
−θ

2

)
0,{2,..,n}

CNOT1,0. (2.3)

By decomposing the controlled rotations further in the same way, the overall operation can
be reduced to CNOT s and single-qubit rotations. Implementing naively Eqs. (2.2) or (2.3),
results in a circuit with 2n+1 − 2 CNOT s. However, for n > 2, I alternately combine Eqs.
(2.2) and (2.3) to cancel adjacent CNOT s, as shown in Fig. 2.6, and obtain a circuit with 2n

CNOT s. This number of CNOT s is optimal and cannot be reduced further, because there are
2n distinct control states and at least 2n controlled gates are required to “identify” the correct
control state.

|q0⟩ Ry(
θ

4 ) Ry(−θ

4 ) Ry(
θ

4 ) Ry(−θ

4 )

|q1⟩ • •

|q2⟩ • • • •︸ ︷︷ ︸
cRy(

θ

2 )0,{2}

︸ ︷︷ ︸
cRy(− θ

2 )0,{2}

Fig. 2.6 A circuit to implement the 2-qubit controlled rotation cRy(θ)0,{1,2}. The first half-
way rotation cRy(

θ

2 )0,{2} is implemented as in Eq. (2.2), and the second half-way rotation
cRy(−θ

2 )0,{2}, as in Eq. (2.3). This allows the two middle CNOT s between qubits 0 and 1 to
be cancelled (note that CNOT gates with the same target qubit commute).

Rz- and Rx-controlled rotations can be obtained by additional single-qubit rotations on
the target qubit. Similarly the control state can be modified by additional operations on
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the control qubits. Lastly, CP gates can be used instead of CNOT gates in Eqs. (2.2) and
(2.3). In the following sections, I will use implementations with both CNOT and CP gates,
depending on which favours adjacent gate cancellation.

2.2 Canonical fermionic-evolution circuits

This section describes the canonical circuits used to implement evolutions of fermionic exci-
tation operators [116, 23]. I consider evolutions of single and double fermionic excitations
operators only, since these are sufficient to recover the FCI wavefunction [146, 147]. The
majority of UCC ansätze, e.g. the UCCSD and the k-UpCCSD, are also based only on single
and double excitation operators.

Single and double fermionic excitation operators are defined, respectively, by the skew-
Hermitian operators

Ξik = a†
i ak −a†

kai and (2.4)

Ξi jkl = a†
i a†

jakal −a†
ka†

l aia j (2.5)

where a†
i and ai are the fermionic ladder operators, which satisfy the anticommutation

relations
{ai,a

†
j}= aia

†
j +a†

i a j = δi j and {a†
i ,a

†
j}= {ai,a j}= 0. (2.6)

Unitary evolutions of single and double fermionic excitation operators are expressed,
respectively, by the unitaries

Fik(θ) = eθΞik and (2.7)

Fi jkl(θ) = eθΞi jkl , (2.8)

The angle θ is a variational parameter, whose physical meaning can be interpreted, e.g., as
the duration of the evolution. Throughout the thesis, I refer to a unitary evolution generated
by a fermionic excitation operators as a fermionic evolution for shorthand.

As shown in Sec. 1.5.1, within the Jordan-Wigner encoding, a and a† can be written in
terms of quantum gate operators as

ai = bi

i−1

∏
r=0

Zr =
1
2
(Xi + iYi)

i−1

∏
r=0

Zr and (2.9)

a†
i = b†

i

i−1

∏
r=0

Zr =
1
2
(Xi − iYi)

i−1

∏
r=0

Zr, (2.10)
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with the qubit ladder operators

b†
i ≡

1
2
(Xi − iYi) and (2.11)

bi ≡
1
2
(Xi + iYi). (2.12)

Substituting Eqs. (2.9) and (2.10), into Eqs. (2.7) and (2.8), for l > k > j > i, single and
double fermionic evolutions can be re-expressed in terms of quantum gate operators as

Fik(θ) =exp

[
i
θ

2
(XiYk −YiXk)

k−1

∏
r=i+1

Zr

]
and (2.13)

Fi jkl(θ) = exp

[
i
θ

8
(XiYjXkXl +YiX jXkXl +YiYjYkXl +YiYjXkYl

−XiX jYkXl −XiX jXkYl −YiX jYkYl −XiYjYkYl)
j−1

∏
r=i+1

Zr

l−1

∏
p=k+1

Zp

]
, (2.14)

respectively. The Pauli string terms in each of the exponentials above commute. Hence,
single and double fermionic evolutions can be expressed as products of 2 and 8 exponentials
of individual Pauli strings (Pauli string evolutions), respectively:

Fik(θ) = exp

[
i
θ

2
XiYk

k−1

∏
r=i+1

Zr

]
exp

[
− i

θ

2
YiXk

k−1

∏
r=i+1

Zr

]
and (2.15)

Fi jkl(θ) = exp

[
i
θ

8
XiYjXkXl

j−1

∏
r=i+1

Zr

l−1

∏
p=k+1

Zp

]
exp

[
i
θ

8
YiX jXkXl

j−1

∏
r=i+1

Zr

l−1

∏
p=k+1

Zp

]

×exp

[
i
θ

8
YiY jYkXl

j−1

∏
r=i+1

Zr

l−1

∏
p=k+1

Zp

]
exp

[
i
θ

8
YiYjXkYl

j−1

∏
r=i+1

Zr

l−1

∏
p=k+1

Zp

]

×exp

[
− i

θ

8
XiX jYkXl

j−1

∏
r=i+1

Zr

l−1

∏
p=k+1

Zp

]
exp

[
− i

θ

8
XiX jXkYl

j−1

∏
r=i+1

Zr

l−1

∏
p=k+1

Zp

]

×exp

[
− i

θ

8
YiX jYkYl

j−1

∏
r=i+1

Zr

l−1

∏
p=k+1

Zp

]
exp

[
− i

θ

8
XiYjYkYl

j−1

∏
r=i+1

Zr

l−1

∏
p=k+1

Zp

]
(2.16)
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Exponentials of individual Pauli strings can be directly implemented as quantum circuits.
For example, the first exponential in Eq. 2.15, exp

[
iθ

2 XiYk ∏
k−1
r=i+1 Zr

]
, can be implemented

by the circuit in Fig. 2.7 (see Appendix B). The two CNOT staircases together with the
Rz(θ) rotation in between them, are referred to as a CNOT staircase construction. This
construction implements exp

[
iθ

2 ∏
k
r=i Zr

]
. The Had and Rx(±π

2 ) gates, on both sides of
the CNOT staircase construction, act as qubit basis rotations to transform the Zi and the Zk

operators to Xi and Yk operators, respectively. Similarly, by sandwiching a CNOT staircase
construction between single-qubit rotations that transform individual Pauli-Z operators to
Pauli-Y or Pauli-X operators, a circuit for any exponential of a Pauli string can be constructed.
Constructing circuits to implement exponentials of Pauli strings is a standard procedure,
which is described in more detail in Appendix B.

|qk⟩ Rx(
π

2 ) • • Rx(−π

2 )

|qk−1⟩ • •
...

...
...

|qi+1⟩ • •

|qi⟩ Had Rz(−θ) Had

Fig. 2.7 A circuit implementing the exponential exp
[
iθ

2 XiYk ∏
k−1
r=i+1 Zr

]
.

A single fermionic evolution Fik(θ) [Eq. (2.15)] can be implemented by the circuit in Fig.
2.8 that contains 2 CNOT staircase constructions (resulting in 2×2 = 4 CNOT staircases),
and has a CNOT count and a CNOT depth of 2(k− i). A double fermionic evolution Fi jkl(θ)

[Eq. (2.16)] can be implemented by a circuit that contains 8 CNOT staircase constructions
(resulting in 8× 2 = 16 CNOT staircases), and has a CNOT count and a CNOT depth of
8(l+ j−k− i) (the circuit for a double fermionic evolution is shown in Fig. E.1 in Appendix
E due to its length). If the CNOT s of the staircases are rearranged as described in Sec. 2.1.2,
the scaling of the CNOT depth with the number of qubits participating in the fermionic
evolutions can be exponentially reduced.

2.3 Qubit-evolution circuits

The first step in constructing CNOT -efficient fermionic evolution circuits, is to construct
circuits that implement unitary evolutions of qubit excitation operators. I shall refer to a
unitary evolution of a qubit excitation operator as a qubit evolution.



50 Quantum circuits for unitary coupled cluster ansätze

|qk⟩ Rx(
π

2 ) • • Rx(−π

2 ) Had • • Had

|qk−1⟩ • • • •
...

...
...

...
...

|qi+1⟩ • • • •

|qi⟩ Had Rz(−θ) Had Rx(
π

2 ) Rz(θ) Rx(−π

2 )

Fig. 2.8 A canonical circuit to implement a single fermionic evolution [Eq. (2.15)]. The
vertical dots denote CNOT staircases on qubits qi+1 to qk−1.

Single and double qubit excitation operators are generated by the qubit annihilation and
creation operators, b and b† [Eqs. (2.11) and (2.12)], and are given, respectively, by the
skew-Hermitian operators

Ωik = b†
i bk −b†

kbi and (2.17)

Ωi jkl = b†
i b†

jbkbl −b†
kb†

l bib j. (2.18)

The operators b and b† satisfy the commutation relations

{bi,b
†
i }= I, [bi,b

†
j ] = 0 if i ̸= j, and [bi,b j] = [b†

i ,b
†
j ] = 0 for all i, j. (2.19)

Interestingly, these relations are neither bosonic nor fermionic. Some authors have referred
to them as parafermionic [148]. However, as already mentioned, I shall refer to them as qubit
commutation relations instead.

Single and double qubit evolutions are expressed, respectively, by the unitaries

Qik(θ) = eθΩik = exp
[
i
θ

2
(XiYk −YiXk)

]
and (2.20)

Qi jkl(θ) = eθΩi jkl = exp
[
i
θ

8
(XiYjXkXl +YiX jXkXl +YiYjYkXl +YiY jXkYl

−XiX jYkXl −XiX jXkYl −YiX jYkYl −XiYjYkYl)
]
. (2.21)

These unitary operations are similar to the single and double fermionic evolutions [Eqs.
(2.13) and (2.14)], apart from lacking in the exponential the products of Pauli-Z operators
that compute the parity of the qubit state, and account for the anticommutation relations of
the fermionic ladder operators.
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2.3.1 Single-qubit-evolution circuit

A single qubit evolution Qik(θ) [Eq. (2.20)] is a 2-qubit operation that acts to continuously
exchange states |0i1k⟩ and |1i0k⟩ as θ is varied, and acts trivially on all other computational
basis states. Its action on a 2-qubit state can be represented by the matrix

Q01(θ)≡


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

 . (2.22)

This action also corresponds to an evolution of an exchange interaction [126, 149]. A single
qubit evolution can be implemented optimally by a circuit with only 2 CNOT s. I present a
variant of such a circuit in Fig. 2.9.

|qk⟩ Rz(
π

2 ) Rx(
π

2 ) • Rx(θ) • Rx(−π

2 ) Rz(−π

2 )

|qi⟩ Rx(
π

2 ) Rz(θ) Rx(−π

2 )

Fig. 2.9 A CNOT optimal circuit to implement a single qubit evolution [Eq. (2.20)].

However, for the purpose of constructing a double-qubit-evolution circuit, and conse-
quently a double-fermionic-evolution circuit, I construct a single-qubit-evolution circuit as a
partial SWAP gate. A SWAP gate can be expressed by 3 CNOT s as shown in Fig. 2.3, and
has a matrix representation as given in Table 1.4. I modify the SWAP circuit, by replacing
the middle CNOT with a controlled rotation cRy(−2θ)0,{1} so that we obtain the circuit in
Fig. 2.10.a. The action of this circuit is

CNOT0,1cRy(−2θ)0,{1}CNOT0,1 =
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 cosθ sinθ

0 0 −sinθ cosθ




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

=


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

 , (2.23)

which is equivalent to a single qubit evolution. The controlled rotation cRy(−2θ)0,{1} can
be implemented as in Eq. (2.3), using 2 CPs instead of CNOT s. This allows one of the
CPs to be removed by applying the circuit identity in Fig. 2.4. Then, by converting the
remaining CP to a CNOT (Fig. 2.2), and cancelling adjacent single-qubit gates, the explicit
basic-quantum-gate circuit in Fig. 2.10.b can be obtained. This circuit uses 3 CNOT s, one
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more CNOT than the circuit in Fig. 2.9. However, the partial SWAP circuit in Fig. 2.10
has parametrised qubit rotations acting on one qubit only. As we will see next, this is an
advantage when expanding the circuit to implement a double qubit evolution.

|qk⟩ • Ry(−2θ) •

≡
|qi⟩ •

(a)

|qk⟩ Rz(
π

2 ) • Ry(−θ) • Ry(θ) •

|qi⟩ Ry(−π

2 ) Rz(−π

2 ) Rz(−π

2 ) Had

(b)

Fig. 2.10 a) A circuit implementing a single qubit evolution Qik(θ) [Eq. (2.20)]. b) An
explicit basic-quantum-gate circuit for a) obtained by implementing the controlled-Ry(−2θ)
rotation as in Eq. (2.3), and using the circuit identity in Fig. 2.4, to reduce the CNOT cost by
1.

2.3.2 Double-qubit-evolution circuit

A double qubit evolution Qi jkl(θ) [Eq. (2.20)] is a qubit operation that continuously ex-
changes states |1i⟩|1 j⟩|0k⟩|0l⟩ and |0i⟩|0 j⟩|1k⟩|1l⟩ as θ is varied, and acts trivially on all
other computational basis states. Its action on a 4-qubit state can be represented by the matrix

Qi jkl(θ)≡



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 cosθ 0 0 0 0 0 0 0 0 −sinθ 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 sinθ 0 0 0 0 0 0 0 0 cosθ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



. (2.24)
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This operation can be implemented by expanding the partial SWAP circuit, which implements
a single qubit evolution (Fig. 2.10). Now it should exchange the states |1i⟩|1 j⟩|0k⟩|0l⟩ and
|0i⟩|0 j⟩|1k⟩|1l⟩, instead of the states |1i⟩|0k⟩ and |0i⟩|1k⟩. To ensure this, it must act non-
trivially only if the parities of both qubit pairs {k, l} and {i, j} are even. To perform this
parity-controlled partial SWAP operation, I construct the circuit in Fig. 2.11.

In order to understand better the logic of this circuit, let us consider the transformation
of state |1i⟩|1 j⟩|0k⟩|0l⟩. The first two CNOT s, between qubits l and k, and qubits j and
i, compute and encode the parities of the two respective qubit pairs on qubits k and i,
respectively (0 for even parity):

|1i⟩|1 j⟩|0k⟩|0l⟩ → |0i⟩|1 j⟩|0k⟩|0l⟩

Then qubits k and i are used as control qubits, with a control state |0i⟩|0k⟩, for a controlled
partial SWAP operation (the dotted rectangle in Fig. 2.11), between qubits l and j:

|0i⟩|1 j⟩|0k⟩|0l⟩ → cosθ |0i⟩|1 j⟩|0k⟩|0l⟩+ sinθ |0i⟩|0 j⟩|0k⟩|1l⟩

Lastly, the last two CNOT s between qubits k and l, and qubits i and j, respectively, reverse
the parity-encoding action of the first two CNOT s:

cosθ |0i⟩|1 j⟩|0k⟩|0l⟩+ sinθ |0i⟩|0 j⟩|0k⟩|1l⟩ → cosθ |1i⟩|1 j⟩|0k⟩|0l⟩+ sinθ |0i⟩|0 j⟩|1k⟩|1l⟩

For all initial states except |0i⟩|0 j⟩|1k⟩|1l⟩ and |1i⟩|1 j⟩|0k⟩|0l⟩, the controlled partial SWAP
operation will act trivially, hence the overall action of the circuit in Fig. 2.11 will be trivial
as well.

|ql⟩ • • Ry(−2θ) • •

|qk⟩

|q j⟩ • • •

|qi⟩

Fig. 2.11 A circuit to implement a double qubit evolution Qi jkl(θ) [Eq. (2.21)]. The explicit
basic-quantum-gate circuit is given in Fig. 2.12b. The dotted rectangle denotes a partial
SWAP gate between qubits l and j controlled by qubits k and i.
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The controlled cRy(−2θ)l,{k ji} rotation in Fig. 2.11 is implemented by the circuit in Fig.
2.12a. The circuit identity in Fig. 2.4 is again applied to reduce the CNOT cost by one. In
this way, after some single-qubit cancellation, the explicit basic-quantum-gate circuit in Fig.
2.12b is obtained. This circuit has a CNOT count of 13 and CNOT depth of 11.

I note that a circuit for an operation equivalent to a double qubit evolution was suggested
in Refs. [31, 150]. This circuit also has a CNOT count of 13, but is less compact and has a
higher CNOT depth of 13.

2.4 Efficient fermionic-evolution circuits

As already mentioned, the expressions for single and double fermionic evolutions [Eqs.
(2.13) and (2.14)] differ from those for single and double qubit evolutions [Eqs. (2.20)
and (2.21)] only by the additional products of Pauli-Z operators in their exponents. These
products compute the parity of the corresponding qubit state, and account for the fermionic
anticommutation relations [Eq. (2.6)]: in a single (double) fermionic excitation, the Pauli-Z
products change the sign before the parameter θ if the parity of qubit state |qi+1⟩ . . . |qk−1⟩(
|qi+1⟩ . . . |q j−1⟩|qk+1⟩ . . . |ql−1⟩

)
is odd. The fermionic evolutions can be expressed in terms

of qubit evolutions as

Fik(θ) =


Qik(θ) if Par

(
|qi+1⟩ . . . |qk−1⟩

)
= 0

Qik(−θ) if Par
(
|qi+1⟩ . . . |qk−1⟩

)
= 1

, and (2.25)

Fi jkl(θ) =


Qi jkl(θ) if Par

(
|qi+1⟩ . . . |q j−1⟩|qk+1⟩ . . . |ql−1⟩

)
= 0

Qi jkl(−θ) if Par
(
|qi+1⟩ . . . |q j−1⟩|qk+1⟩ . . . |ql−1⟩

)
= 1

. (2.26)

I expand the circuits for qubit evolutions in Figs. 2.10 and 2.11 to implement fermionic
evolutions, by sandwiching the controlled-Ry(−2θ) rotation in each of the circuits between
two CNOT staircases (Figs. 2.13 and 2.14). In this way the CNOT staircases compute the
parities of the relevant qubit states, as given by Eqs. (2.25) and (2.26), and change the sign
before the corresponding excitation parameter θ , thus recovering the action of a fermionic
evolution. Compared to the canonical circuits for fermionic evolutions, (see Sec. 2.2), the
circuits outlined here use only 2 CNOT staircases, instead of 4 or 16, per single or double
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fermionic evolution, respectively. This construction can be expanded to any order of a
fermionic evolution.

2.4.1 Single-fermionic-evolution circuit

Figure 2.13 shows the circuit for a single fermionic evolution, obtained by modifying the
circuit for a single qubit evolution in Fig. 2.10a. The parity of |qi+1⟩ . . . |qk−1⟩ is computed
and recorded in qubit (k−1) by a staircase of CNOT s. Conditioned on qubit (k−1) being in
state |1⟩ (odd parity), the two CP gates between qubits k and k−1, reverse the direction of the
Ry(−2θ) rotation: Ry(−2θ)→ Ry(2θ). The controlled Ry(−2θ) rotation is implemented as
in the single-qubit-evolution circuit (Fig. 2.12a) so that the circuit identity in Fig. 2.4 is again
applied to reduce the number of CNOT s (CPs) by 1. A second CNOT staircase corrects for
the parity computing action of the first one.

Let me define the total number of qubits involved in the single fermionic evolution
as nsf ≡ k − i+ 1. For nsf ≥ 2, the circuit in Fig. 2.13 has a CNOT count of (2nsf − 1)
and a CNOT depth of max[5,2nsf − 3]. For nsf = 2, the circuit equals that in Fig. 2.10b.
Additionally, the CNOT s in the two staircases can be rearranged as described in Sec. 2.1.2,
so that the CNOT depth of the circuit scales as O(logns f ), instead of O(ns f ).

Compared to the canonical circuit (Fig. 2.8) for a single fermionic evolution, the circuit
constructed here, requires up to 2 times fewer CNOT s and is up to twice as shallow.

|qi+1⟩ • •

|qi+2⟩ • •
...

...
...

|qk−1⟩ • •

|qk⟩ • • Ry(−2θ) • •

|qi⟩ •

Fig. 2.13 A CNOT -efficient circuit to implement single fermionic evolution Fik(θ) [Eq.
(2.13)].

2.4.2 Double fermionic-evolution circuit

Figure 2.14 shows the circuit for a double fermionic evolution, obtained by modifying the
double-qubit-evolution circuit in Fig. 2.11. The parity of |qi+1⟩ . . . |q j−1⟩|qk+1⟩ . . . |ql−1⟩ is
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computed and recorded on qubit (l −1) by a CNOT staircase. Conditioned on qubit (l −1)
being in state |1⟩, the two CP gates between qubits l and (l −1) reverse the direction of the
controlled Ry(−2θ) rotation. The controlled Ry(−2θ) rotation is implemented as in Fig.
2.12a, so that the circuit identity, from Fig. 2.4, can be applied again to reduce the number of
CNOT s by 1. A second CNOT staircase corrects for the parity computing action of the first
one.

Let me define the total number of qubits participating in the double fermionic evolution
as ndf ≡ l+ j−k− i+2. The circuit in Fig. 2.14 has a CNOT count of 2ndf+5 and a CNOT
depth of max[13,2ndf−1] for ndf ≥ 5. For ndf = 4 the circuit equals that in Figs. 2.11. Again,
the CNOT s in the two staircases can be rearranged as described in Sec. 2.1.2, so that the
CNOT depth scaling with ndf is reduced from O(ndf) to O(lognd f ).

Compared to the canonical double-fermionic-evolution circuit (Sec. 2.2) the circuit
constructed here requires up to 8 times fewer CNOT s, and is up to 8 times shallower, in
terms of CNOT s.

|qi+1⟩ • •

|qi+2⟩ • •
...

...
...

|ql−1⟩ • •

|ql⟩ • • • Ry(−2θ) • • •

|qk⟩

|q j⟩ • • •

|qi⟩

Fig. 2.14 A CNOT -efficient circuit to implement a double fermionic evolution Fi jkl(θ)
[Eq.(2.14)].

2.5 Conclusion

Single and double fermionic evolutions are the building blocks of the majority of UCC
ansätze. In this Chapter, I presented CNOT -efficient quantum circuits to implement single
and double fermionic evolutions in the Jordan Wigner encoding.
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First, I constructed circuits that implement single and double qubit evolutions, evolutions
of qubit excitation operators that satisfy qubit commutation relations. Next, I expanded
the functionality of the qubit evolution circuits to account for qubit state parity, in order
to implement fermionic evolutions instead. The resulting circuits for single and double
fermionic evolutions consist of 2 CNOT staircases, as compared to 4 and 16 CNOT stair-
cases for the canonical single- and double-fermionic-evolution circuits, respectively. Hence,
the single-(double-)fermionic-evolution circuit constructed here, has a CNOT count and a
depth that scale by a factor of 2 (8) less than the CNOT count and the depth of the canonical
single- (double-)fermionic-evolution circuit. The exact CNOT counts for the circuits are
summarised in the table below.

Evolution Canonical circuit Efficient circuit
single fermionic Fik 4(k− i) = 4nsf −4 2(k− i)+1 = 2nsf −1

double fermionic Fi jkl 16(l + j− k− i) = 16ndf −16 2(l + j− k− i)+9 = 2ndf +5

These circuits can be readily integrated in existing VQE protocols, which use UCC
ansätze, to reduce their quantum hardware requirements. The CNOT gate reduction achieved
by constructing a UCC ansatz with our circuits is bounded between 50%, for single fermionic
evolutions, and 87% for double fermionic evolutions. However, for typical UCC ansätze,
e.g. the UCCSD, where double fermionic evolutions dominate, the minimum CNOT count
reduction is about 70%. As the system size (Nso) increases and the number of double
fermionic evolutions in the ansatz becomes more dominant, the CNOT count reduction
increases and converges to 87%. For example, for a UCCSD ansatz for BeH2, in the STO-3G
basis (Nso = 14), the gate reduction is about 81%.

The ansatz circuits constructed here correspond to local circuit optimizations, in the sense
that individual parts of the ansatz are optimized independently from one another. Global
circuit optimizations on the other hand consider the ansatz circuit as a whole. Examples
of global circuit optimizations for VQE ansätze, include the various optimization methods
deployed by IBM’s compiler, Qiskit [151], with gate count reductions of up to 30% for
UCC ansätze, and a method deployed by the compiler of Cambridge Quantum Computing
(CQC)[152] that achieves gate count reduction of nearly 60%. Shortly after we published
the results presented in this Chapter, the researchers at CQC presented another, competitive
global optimization method that achieves a CNOT count reduction of up to 75% [153].

Lastly, I remark that the fermionic evolution circuits presented in this chapter correspond
to the JW encoding. The CNOT counts of these circuits, scale linearly with the system
size, as O(Nso). Using the BK encoding (Sec. 1.5.1), fermionic evolution circuits can be
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constructed with a number of CNOT s that scales logarithmically, as O(logNso). However, the
BK encoding gate-count reduction becomes significant only for large systems. For example,
the BK gate-count reduction (with respect to the canonical fermionic evolution circuits in the
JW enconding) is at maximum about 25% for systems of up to 50 spin-orbitals (qubits) [105].
Therefore, using the JW encoding together with the fermionic evolution circuits constructed
here will be more advantageous than using the BK encoding for small (Nso < 50) and perhaps
medium size (50 < Nso < 100) electronic systems.

In the next chapter I propose the use of a new type of ansätze for molecular modelling
with the VQE that consist of qubit instead of fermionic evolutions. Qubit evolutions act on a
fixed number of qubits, so they are implemented by fixed size circuits, whose gate count does
not scale with the system size. Hence, qubit evolutions are potentially more circuit-efficient
than fermionic evolutions, irrespectively of the qubit encoding method.





Chapter 3

Qubit unitary coupled cluster ansätze

Chapter summary

In second-quantized basis-set methods, the exchange symmetry of electrons is accounted
for by the anticommutation relations of the fermionic ladder operators that act on the
electronic wavefunction. In the context of molecular modelling with VQE protocols, the
fermionic exchange symmetry is accounted for by the fermionic-operator-representation of
the electronic Hamiltonian [Eq. (1.25)], and consequently translated to its quantum-gate-
operator representation [Eq. (1.39)] by the respective qubit encoding of the fermionic ladder
operators. The electronic wavefunction is expressed as a linear combination (superposition)
of Slater determinants, where each Slater determinant is represented by a computational basis
state of the qubit register, which is independent of the particles’ statistics. Therefore, the
structure of the ansatz, which generates the trial qubit state of a molecular VQE protocol, is
not restricted by an exchange symmetry conservation.

In Chapter 2, I introduced qubit evolutions as a means to derive CNOT -efficient circuits
to implement fermionic evolutions, which are used to construct UCC ansätze. In this chapter,
I consider using qubit evolutions to construct molecular VQE ansätze, thus disposing of the
fermionic structure of UCC ansätze.

Qubit excitation operators act on a fixed number of qubits, as opposed to fermionic
excitation operators that act on O(Nso)

(
O(logNso)

)
qubits in the JW (BK) encoding to

account for fermionic exchange-symmetry. Hence, qubit evolutions are implemented by
fixed-sized quantum circuits that require O(1) CNOT s, as opposed to fermionic evolutions
that are implemented by circuits that require O(Nso)

(
O(logNso)

)
CNOT s in the JW (BK)

encoding. Moreover, qubit evolutions capture many of the physical features of fermionic
evolutions, like time-symmetry and particle conservation. This and the fact that qubit
evolutions are implemented by constant size circuits, suggest that ansätze, built as series of
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qubit evolutions, might be able to approximate electronic wavefunctions almost as accurately
as UCC ansätze, while requiring asymptotically fewer CNOT s. In this Chapter, I investigate
this hypothesis using classical numerical VQE simulations. Throughout the rest of the thesis,
I will refer to qubit-evolution-based ansätze as Q-UCC. A similar terminology is used in Ref.
[154], which also studies Q-UCC ansätze.

In Sec. 3.1 I formally define Q-UCC ansätze. In Sec. 3.2 I perform a comparison between
Q-UCCSD and UCCSD ansätze based on numerical results obtained with classical VQE
simulations.

3.1 Qubit unitary coupled cluster ansätze

A general Q-UCC ansatz can be written as

UQ−UCC = exp
(
∑
k,i

θk,iΩki + ∑
l,k, j,i

θl,k, j,iΩlk ji + . . .
)
=

exp
(
∑
k,i

θk,i
(
b†

kbi −b†
i bk
)
+ ∑

l,k, j,i
θl,k, j,i

(
b†

l b†
kb jbi −b†

jb
†
i b†

l b†
k

)
+ . . .

)
(3.1)

where the sum goes over all qubit excitation operators {Ωki}, {Ωlk ji}, . . ., acting on qubits
{0, . . . ,Nso −1}.

For comparison a general UCC ansatz can be written as

UUCC = exp
(
∑
k,i

θk,iΞki + ∑
l,k, j,i

θl,k, j,iΞlk ji + . . .
)
=

exp
(
∑
k,i

θk,i
(
a†

kai −a†
i ak
)
+ ∑

l,k, j,i
θl,k, j,i

(
a†

l a†
ka jai −a†

ja
†
i alak

)
+ . . .

)
=

exp
(
∑
k,i

θk,i
(
b†

kbi −b†
i bk
) k−1

∏
p=i+1

Zp − ∑
l,k, j,i

θl,k, j,i
(
b†

l b†
kb jbi −b†

jb
†
i b†

l b†
k

) j−1

∏
p=i+1

Zp

l−1

∏
p′=k+1

Zp′ + . . .
)
,

(3.2)

where again the sum goes over all fermionic excitation operators {Ξki},{ Ξlk ji}, . . . acting
on qubits {0, . . . ,Nso −1}.

The only difference between the two ansätze are the computationally expensive products
of Pauli-Z operators, which account for the exchange symmetry of the fermionic ladder
operators, a† and a, in the case of the UCC. However, irrespective of this, both the sum of
qubit excitation operators and the sum of fermionic excitation operators in the exponentials
in Eqs. (3.1) and (3.2), respectively, correspond to a universal Nso-body interaction [23, 93].
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Hence, both the general Q-UCC and the general UCC, by acting on the same initial qubit state,
span the same Hilbert space; if the initial state is a computational basis state of Hamming
weight1 Ne (equal to the number of electrons), then the spanned Hilbert space is the space of
real valued qubit states with Hamming weight Ne, which contains the exact FCI wavefunction.
In fact, it was shown that only single and double excitation operators, and their commutators,
are sufficient to exactly approximate the FCI wavefunction [146, 147]. The lack of the
products of Pauli-Z operators in the expression for the Q-UCC affects only its parameter
dependence.

Even so, similarly as in the case of UCC ansätze, in practice we would like to truncate
Q-UCC ansätze to single and double qubit excitation operators only, and to approximate the
Q-UCC ansätze using one or a few Trotterization steps [111]. In this way Q-UCC ansätze
can be represented as products of single and double qubit evolutions and implemented by
the quantum circuits derived in Chapter 2. However, when only single and double excitation
operators are included, and a Trotter approximation applied, it is not apparent if the spaces
spanned by Q-UCC and UCC ansätze are equivalent, and if the two types of ansätze can
approximate electronic wavefunctions equally well.

3.2 Classical numerical simulations

In this section, I compare the Q-UCCSD and the UCCSD ansätze (a Q-UCC and a UCC
ansätze that include only single and double excitation operators above the Hartree-Fock state)
in their ability to approximate electronic wavefunctions, by performing noiseless classical
numerical VQE simulations for small molecules: LiH, chain H6 and BeH2. LiH and BeH2

have been simulated with the VQE on real quantum computers [124, 29], and are often
used in the field of quantum computational chemistry to classically benchmark various VQE
protocols [155, 141, 154, 156]. H6 corresponds to a chain of 6 hydrogen atoms. The ground
state of this molecule is metastable and it does not occur in nature. Here I used it, similarly
as in Ref. [156], as a prototype of a molecule with a strongly correlated ground state.

The numerical simulations presented in this thesis are performed by a custom in-house
software, which I call the Cavendish Quantum Computational Chemistry (CQCC) package2,
designed to simulate and study the performance of VQE protocols. For the noiseless simula-
tions presented in the thesis the expectation values of operators, including H, are calculated
as products of their matrix representations and the corresponding trial state statevector. The
statevector is calculated by a statevector simulator designed specifically for the quick compu-

1The Hamming weight of a multi-qubit computational basis state, is the number of qubits in state |1⟩.
2The code is available at https://github.com/JordanovSJ/VQE
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tation of statevectors, generated by qubit/fermionic-evolution-based ansätze (see Appendix
C.1). The classical optimization subroutine of the VQE, unless otherwise stated, is performed
by the gradient descent Broyden–Fletcher–Goldfarb–Shanno (BFGS) [157] method. For the
majority of simulations presented in the thesis, the BFGS is supplied an explicit function,
suggested in Ref. [141], to calculate the energy-gradient vector of the ansatz (see Appendix
C.2). Additional computational details about the CQCC package and the classical numerical
simulations presented in the thesis are given in Appendix C.

The simulation results presented here, are obtained for all three molecules (LiH, H6

and BeH2) in the STO-3G (see Sec. 1.4.4) spin-orbital basis, without assuming frozen
orbitals3. For LiH, H6 and BeH2 the STO-3G basis includes 12, 12 and 14 spin-orbitals,
respectively, represented by 12, 12 and 14 qubits. All simulation are performed with the JW
qubit encoding.

3.2.1 Q-UCCSD versus UCCSD

Analogously to the UCSSD, let us define the Q-UCCSD as a Q-UCC ansatz that contains
all single and double qubit excitation operators above the Hartree Fock state. For both the
UCCSD and the Q-UCCSD, let us consider a single-step Trotter approximation. Hence, the
Q-UCCSD is given by the product of single and double qubit evolutions,

UQ−UCCSD = ∏
k∈virt,i∈occ

exp
(

θkiΩki

)
∏

k,l∈virt, j,i∈occ
exp
(

θlk jiΩlk ji

)
=

∏
k∈virt,i∈occ

exp
(

θki
(
b†

kbi −b†
i bk
))

∏
k,l∈virt, j,i∈occ

exp
(

θlk ji
(
b†

l b†
kb jbi −b†

jb
†
i blbk

))
. (3.3)

and the UCCSD by the product of single and double fermionic evolutions

UUCCSD = ∏
k∈virt,i∈occ

exp
(

θkiΞki

)
∏

k,l∈virt, j,i∈occ
exp
(

θlk jiΞlk ji

)
=

∏
k∈virt,i∈occ

exp
(

θki
(
a†

kai −a†
i ak
))

∏
k,l∈virt, j,i∈occ

exp
(

θlk ji
(
a†

l a†
ka jai −a†

ja
†
i alak

))
. (3.4)

I compare the Q-UCCSD and the UCCSD by using the VQE with each of the two ansätze
(let us refer to these as the UCCSD-VQE and the Q-UCCSD-VQE methods) to obtain
energy dissociation curves (energy as function of bond distance) for LiH, H6 and BeH2. The
simulation results are presented in Fig. 3.1.

3A frozen spin-orbital is a spin-orbital assumed to be fully occupied or unoccupied
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(a) (b)

(d)

(g)

(c)

(e)

(h)

(f)

(i)

Fig. 3.1 Energy dissociation curves for LiH, H6 and BeH2 in the STO-3G basis, obtained
with the UCCSD-VQE and the Q-UCCSD-VQE. a,b,c Absolute value for the ground state
energy estimation. d,e,f Error in the estimated value for the ground state energy with respect
to the exact FCI energy. g,h,i Number of VQE iterations required to optimize the parameters
of the ansätze.

First, we observe that the energy dissociation curves obtained by Q-UCCSD-VQE and
UCCSD-VQE for LiH, H6 and BeH2 in Figs. 3.1.a,b,c respectively, are close to indistin-
guishable. In Figs. 3.1.d,e,f the FCI energy 4 is subtracted from the absolute values of the
energy estimates, thus plots of the energy errors as function of the bond distance are obtained
for the Q-UCCSD-VQE and the UCCSD-VQE. For BeH2 the error plots (Fig. 3.1.f) for the
two types of ansätze are almost identical, and for LiH (Fig. 3.1.d) the Q-UCCSD-VQE is
slightly more accurate on average. However, for H6 there is a significant difference in the
error plots (Fig. 3.1.e) at large bond distances, with the UCCSD-VQE being more accurate

4For small molecules, the exact FCI energy can be obtained by diagonalizing the matrix representation of
the electronic Hamiltonian, and getting the lowest eigenvalue.
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in this case. Nevertheless, for H6 at bond distances where chemical accuracy is achieved, the
two ansätze actually perform similarly. These results are not conclusive, but signify that even
with only single and double excitations included, the Q-UCCSD can approximate electronic
wavefunction almost as accurately as the UCCSD. Similar results on the accuracy of the
Q-UCCSD, as compared to that of the UCCSD were obtained in Ref. [154].

We are also interested in how easy to optimize the Q-UCCSD is, in comparison to the
UCCSD. The ease of optimization of an ansatz can be quantified by the number of VQE-
iterations required for convergence. Plots of the iteration numbers as function of the bond
distance, for the Q-UCCSD-VQE and the UCCSD-VQE, are given in Figs. 3.1g,h,i. On
average the number of iterations required for convergence is roughly the same for each
method. The only consistent difference in the number of VQE iterations appears in the
case of H6: at bond distances where the UCCSD is more accurate, it consistently requires
more VQE iterations to converge, which is expected. Overall, it can be concluded that the
Q-UCCSD is as easy to optimize as the UCCSD.

Despite the close equivalence in terms of accuracy and number of iterations required for
convergence of the two types of ansätze, the Q-UCCSD has lower gate counts due to it being
constructed by qubit evolutions. The numbers of fermionic and qubit evolutions included in
the UCCSD and the Q-UCCSD, respectively, scale as O((Nso −Ne)

2N2
e ). Hence, the CNOT

count scaling of the Q-UCCSD is O((Nso −Ne)
2N2

e ), and the CNOT count scaling of the
UCCSD is O((Nso −Ne)

2N2
e Nso)

5. The table below summarizes the exact gates counts of
the two ansätze for each molecule6.

UCCSD Q-UCCSD
LiH, single-qubit gates 6186 5768

LiH, CNOT gates 3496 2280
H6, single-qubit gates 8217 7677

H6, CNOT gates 4593 3033
BeH2, single-qubit gates 13678 12900

BeH2, CNOT gates 8347 5158
Table 3.1 UCCSD and Q-UCCSD gates counts for LiH, H6 and BeH2 in the STO-3G
basis. The two ansätze include all single and double qubit/fermionic evolutions above the
Hartree-Fock state.

The CNOT count reduction from the UCCSD to the Q-UCCSD is not so significant for
these three molecules (about 30% for each molecule). However, this reduction will grow

5The CNOT count of UCCSD would scale as O((Nso −Ne)
2N2

e logNso) in the BK encoding
6The gate counts are obtained for the qubit and fermionic evolution circuits derived in the Chapter 2.
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linearly with the system size, Nso. Thus, for large molecules we can expect that Q-UCC
ansätze will be more advantageous than UCC ansätze.

I finally remark that both the Q-UCCSD and the UCCSD ansätze fail to achieve chemical
accuracy at most bond distances in the cases of H6 and BeH2 (Fig. 3.1d). The likely reason
for this is that the ansätze fail to recover the correlation effects that become stronger as the
dissociation distance is increased [95]. I will come back to this issue in Chapter 4 when
iterative VQE protocols are introduced to construct problem tailored ansätze.

3.3 Conclusion

In this Chapter, I proposed the use of Q-UCC ansätze for molecular modelling that are
constructed as products of qubit evolutions. This proposal was based on the fact that qubit
evolutions are performed by quantum circuits that require asymptotically fewer CNOT s than
the standard fermionic evolutions, and a presumption that Q-UCC ansätze can approximate
electronic wavefunctions as accurately as UCC ansätze.

I investigated this presumption with classical numerical VQE simulations for LiH, H6

and BeH2 using the Q-UCCSD and the UCCSD ansätze. For LiH and BeH2, the two ansätze
could achieve nearly identical accuracies in the estimation of the ground state energies.
However, in the case of the more strongly correlated H6, at large bond distances, the UCCSD
was noticeably more accurate than the Q-UCCSD. These results indicated that the UCCSD
can be more accurate than the Q-UCCSD for strongly correlated states. Nonetheless, the
slight advantage of the UCCSD in terms of accuracy, is likely to be off-set by the circuit-
efficiency of the Q-UCCSD, when it comes to simulations on NISQ computers. However,
these results are inconclusive and additional investigation is required. In terms of ease of
optimization, the two ansätze required approximately the same number of VQE iterations for
convergence on average. These results suggest that the Pauli-Z strings that account for the
anticommutation of the fermionic ladder operators, and are present in the expressions for
UCC ansätze, play little role in the variational flexibility of an ansatz. Similar conclusions
were derived in Refs. [154, 156].

Comparing the Q-UCCSD and the UCCSD is not a thorough comparison of qubit and
fermionic evolutions in their ability to approximate electronic wavefunctions. For instance,
both the Q-UCCSD and the UCCSD have redundantly high numbers of variational parameters,
whose additional variational flexibility may partially compensate for the lack of fermionic
features of qubit evolutions. In the next chapter, I introduce iterative VQE protocols that
construct problem tailored ansätze, using significantly fewer parameters than fixed ansätze,
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such as the Q-UCCSD and the UCCSD. There, I perform a comparison between problem-
tailored iteratively-constructed Q-UCC and UCC ansätze.



Chapter 4

The qubit-excitation based adaptive
VQE

Chapter summary

Most ansätze used for molecular modelling with the VQE, such as the various UCC ansätze,
e.g. the UCCSD [29, 119], the GUCCSD [135] and the k-upCCSD [135], are fixed ansätze,
whose structures are determined only by the number of spin-orbitals (qubits), Nso, and by
the number of electrons, Ne. Generally, even simple fixed UCC ansätze, like the UCCSD,
are accurate for weakly correlated systems and are easy to optimize due to their fermionic
structure. In Chapter 3 we saw that this also holds for the Q-UCCSD ansatz.

However, in the cases of H6 and BeH2 (Fig. 3.1.d), both the UCCSD and the Q-UCCSD
failed to achieve chemical accuracy for long bond distances where correlation effects become
stronger. In order to approximate a strongly correlated wavefunction, fixed UCC and Q-
UCC ansätze need to include higher order excitations and/or use multiple-step Trotterzation,
both of which result in longer ansatz circuits and more variational parameters. Fixed UCC
and Q-UCC ansätze also include redundant excitation terms that do not contribute to the
approximation of the electronic wavefunction, and unnecessarily increase the length of the
ansatz circuit and the number of variational parameters.

To solve these issues, recently, a number of works [141, 156, 158, 159, 155, 142, 160]
suggested VQE protocols that instead of using fixed ansätze, iteratively construct ansätze
tailored to the system of interest. Here I refer to these as iterative VQE protocols.

The ADAPT-VQE protocols [141, 156] are a family of iterative VQE protocols that grow
a problem tailored ansatz by iteratively appending together parametrized unitary operators,
which I refer to as ansatz elements, sampled from a predefined ansatz element pool. The
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sampling is based on an ansatz-growing strategy that aims to minimize the energy estimate
E (⃗θ), after a VQE optimization at each iteration. In this way, an arbitrarily accurate ansatz
can be constructed that has fewer variational parameters, and a correspondingly shallower
circuit than a fixed ansatz of the same accuracy. Similarly to the motivation behind the VQE,
the motivation behind ADAPT-VQE protocols is to further reduce the circuit depth at the
expense of more quantum computer measurements and classical processing. Generally, the
number of additional quantum computer measurements required by ADAPT-VQE protocols,
scales polynomially with the number of ansatz-constructing iterations1. The fermionic-
ADAPT-VQE protocol [141] was the first iterative VQE protocol. It grows a problem
tailored UCC ansatz by iteratively appending spin-complement pairs of single and double
fermionic evolutions2. The fermionic excitation operator, defining the spin-complement pair
of fermionic evolutions at each ansatz-growing-iteration, is sampled from an ansatz element
pool of single and double fermionic excitation operators. The ansatz-growing strategy is
based on an energy gradient hierarchy. The fermionic-ADAPT-VQE was demonstrated to
achieve chemical accuracy for various molecules, using ansätze with several times fewer
variational parameters and correspondingly shallower circuits, than the UCCSD ansatz. In the
follow-up work [156], the qubit-ADAPT-VQE was proposed, utilizing an ansatz element pool
of more rudimentary, but more variationally flexible evolutions of individual Pauli strings.
Due to this pool, the qubit-ADAPT-VQE constructs even shallower ansatz circuits than
the fermionic-ADAPT-VQE, but requires more variational parameters and ansatz-growing
iterations to achieve a given accuracy.

The Evolutionary-VQE (EVQE), proposed in Ref. [158], is another type of an iterative
VQE protocol, suitable for optimizations outside the field of quantum computational chem-
istry, that constructs its ansatz using basic quantum-circuit constructions. In addition, the
EVQE also accounts for hardware noise in constructing its ansatz. In Refs. [159, 155] the
iterative qubit coupled cluster (IQCC) protocol was suggested, where instead of growing an
ansatz, the Hamiltonian is transformed iteratively by being “dressed” with operators from a
pool of Pauli string evolutions. The IQCC can use arbitrary-shallow constant-depth ansatz
circuits, however it needs to evaluate a number of Hamiltonian terms that is exponential in the
number of variational parameters. Finally, I mention the adaptive-pruning VQE, suggested
in Ref. [142], that starts with a UCC ansatz and iteratively removes irrelevant parts of it.

1In the context of ADAPT-VQE protocols, I shall refer to the parameter-optimizing iterations of a single
VQE run as VQE-iterations, and the iterations of an ADAPT-VQE protocol as ansatz-growing iterations; a
single ansatz-growing iteration involves a complete VQE run, which involves multiple VQE iterations

2 The spin-complementary of unitary operator, acting on some spin orbitals, is another unitary operator, that
acts on the opposite-spin orbitals.
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Motivated by the similarity of the Q-UCCSD and the UCCSD ansätze in approximating
electronic wavefunctions, and the success of iterative VQE protocols, in particular the
ADAPT-VQE, here I introduce the qubit-excitation-based adaptive VQE (QEB-ADAPT-
VQE) protocol. As the name suggests, the QEB-ADAPT-VQE is an ADAPT-VQE protocol
that grows a problem-tailored ansatz by iteratively appending qubit evolutions. The QEB-
ADAPT-VQE, and in particular its ansatz-growing strategy, are explained in details in Sec.
4.1. Owing to the utilization of qubit evolutions, the QEB-ADAPT-VQE presumably should
construct more circuit-efficient ansätze than the fermionic-ADAPT-VQE without acquiring
as large overhead in the number of variational parameters and ansatz-constructing iterations
as the qubit-ADAPT-VQE. In Sec. 4.2 I test this hypothesis and benchmark the performance
of the QEB-ADAPT-VQE by estimating the ground state energies of small molecules.

In Sec. 4.3 I use my simulation results to compare iteratively constructed Q-UCC and
UCC ansätze.

Most of the results presented in this Chapter are based on my manuscript [161].

4.1 The QEB-ADAPT-VQE protocol

4.1.1 Protocol description

Here, I describe the three preparation components and the iterative loop of the QEB-ADAPT-
VQE protocol.

Before we start constructing the ansatz, first, we transform the molecular Hamiltonian
H to a 2nd quantized form (see Sec. 1.4), by calculating the one- and two-electron integrals
hki [Eq. (1.26)] and hlk ji [Eq. (1.27)], respectively. Then, we map H to a quantum-gate-
operation representation, as described in Sec. 1.5.1. Since the QEB-ADAPT-VQE uses
qubit evolutions, which act on a fixed number of qubits irrespectively of the qubit encoding
method, we naturally use the simpler JW encoding. These Hamiltonian transformations are a
standard step in every VQE protocol.

Second, we need to define an ansatz element pool. The default choice is to include all
unique single and double qubit evolutions, {Qki(θ)} and {Qlk ji(θ)}, respectively, acting
on the Nso spin-orbitals (qubits), so that i, j,k, l ∈ {0,Nso − 1}. Let us denote this pool as
Pfull(Q,Nso). The size of this pool is |Pfull(Q,Nso)|=

(Nso
2

)
+3
(Nso

4

)
. Note, that Pfull(Q,Nso)

will include evolutions, where i < j < k < l is not true. Alternatively, a smaller ansatz
element pool can be defined that includes fewer elements, e.g. only evolutions of single and
double qubit excitation operators above the Hartree-Fock state. Smaller pools will decrease
the computational cost (see Sec. 4.1.2), but might result in a less efficient ansatz construction.
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Third, we choose an initial reference state |ψ0⟩. For a guaranteed and faster convergence,
|ψ0⟩ should have a significant overlap with the unknown ground state. For ground state
simulations near equilibrium configuration the Hartree-Fock state is a standard choice,
because the Hartree Fock Slater determinant is likely to be dominant in the ground state.

Finally, we can begin to construct the ansatz. We set the iteration number to m = 1, the
initial ansatz to the identity U (⃗θ) → U [0] = I, and initiate the iterative loop of the QEB-
ADAPT-VQE. Below, I describe the six steps of the mth iteration of the QEB-ADAPT-VQE.
Afterwards I explain what is the function of each step.

1. Prepare the state |ψ [m−1]⟩ = U [m−1](θ⃗ [m−1])|ψ0⟩, using the ansatz U [m−1](θ⃗ [m−1]),
with values for the variational parameters θ⃗ [m−1] as determined in the previous iteration.

2. For each qubit evolution Qp(θp) = eθpΩp ∈ Pfull(Q,Nso), which can be either a single
or a double, measure the energy gradient

∂

∂θp
E [m−1](Qp(θp)

)∣∣∣
θp=0

=
∂

∂θp
⟨ψ [m−1]|Q†

p(θp)HQp(θp)|ψ [m−1]⟩
∣∣∣
θp=0

=

∂

∂θp
⟨ψ [m−1]|e−θpΩpHeθpΩp|ψ [m−1]⟩

∣∣∣
θp=0

=

−⟨ψ [m−1]|ΩpH|ψ [m−1]⟩+ ⟨ψ [m−1]|HΩp|ψ [m−1]⟩=
⟨ψ [m−1]|[H,Ωp]|ψ [m−1]⟩. (4.1)

3. Identify the set of nqe qubit evolutions, Q[m](nqe), with largest energy-gradient magni-
tudes, measured in the previous step. For each Qp(θp) ∈Q[m](nqe):

(a) Run the VQE to find

min
θ⃗ [m−1],θp

E (⃗θ [m−1],θp)= min
θ⃗ [m−1],θp

⟨ψ0|U [m−1]†(
θ⃗
[m−1])Q†

p(θp)HQp(θp)U [m−1](
θ⃗
[m−1])|ψ0⟩

(b) Find the energy reduction ∆E [m]
p = E [m−1]− min

θ⃗ [m−1],θp

E (⃗θ [m−1],θp)

(c) Save the (re)optimized values of θ⃗ [m−1]∪{θp} as θ⃗
[m]
p

4. Identify the largest energy reduction ∆E [m] ≡ ∆E [m]
p′ = max

(
{∆E [m]

p }
)
, and its corre-

sponding qubit evolution Q[m](θ [m])≡ Qp′(θp′).

If ∆E [m] < ε , where ε > 0 is an energy-reduction threshold:

(a) Exit
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Else:

(a) Append Q[m](θ [m]) to the ansatz: U [m]
(
θ⃗ [m]

)
= Q[m](θ [m])U [m](⃗θ [m−1])

(b) Set E [m] = E [m−1]−∆E [m]
p

(c) Set the values of the new set of variational parameters, θ⃗ [m] = θ⃗ [m−1]∪{θp′}, to
θ⃗
[m]
p′

5. (Optional) If the ground state of the system of interest is known, a priori, to have
the same spin as |ψ0⟩, additionally append to the ansatz the spin-complement of
Q[m]

(
θ [m]

)
, Q[m](

θ
[m]), unless Q[m]

(
θ [m]

)
≡ Q[m](

θ
[m]):

U [m]
(
θ⃗
[m]
)
= Q[m](

θ
[m])

Q[m](θ [m])U [m−1](
θ⃗
[m−1]).

6. Enter the (m+1)th iteration by returning to step 1

The iterative loop of the QEB-ADAPT-VQE is visualized on the diagram in Fig. 4.1. The
loop begins by preparing the trial state |ψ [m−1]⟩, obtained in the previous, (m−1)th iteration.

To identify a suitable qubit evolution to append to the ansatz, first the gradient of the
energy expectation value, with respect to the variational parameter of each qubit evolution
in Pfull(Q,Nso) is calculated in step 2. The gradients are evaluated at θp = 0, because of the
presumption that |ψ0⟩ is close to the true ground state, which suggests that the optimized
value of θp is close to 0. As shown in Eq. (4.1), each of the gradients can be calculated
by measuring, on a quantum computer, the expectation value of the commutator of H and
the corresponding qubit excitation operator Ωp, with respect to |ψ [m−1]⟩. Steps 1 and 2 are
identical to the original fermionic-ADAPT-VQE.

The gradients calculated in step 2, roughly indicate how much each qubit excitation
can decrease E [m−1]. However, the largest gradient does not necessarily correspond to the
largest energy reduction, optimized over all variational parameters. In step 3 the set of
nqe qubit evolutions, Q[m](nqe), with the largest energy gradient magnitudes is identified.
The larger nqe is, the more likely is Q[m](nqe) to contain the qubit evolution that reduces
E [m−1] the most. For each qubit evolution Qp(θp) in Q[m](nqe), the VQE is run with ansatz
Qp(θp)U [m−1](θ⃗ [m]

)
to calculate how much adding Qp(θp) to the the ansatz reduces the

energy estimate. Step 3 is not present in the original fermionic-ADAPT-VQE protocol
[156], which directly grows its ansätze by the ansatz element with largest energy gradient. I
introduce this step as additional means to reduce the ansatz circuit depth. The performance
of the QEB-ADAPT-VQE for different values of nqe is studied in Sec. 4.1.3.
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Step 4 picks the qubit excitation, Q[m]
(
θ [m]

)
, with the largest contribution to the energy

reduction, ∆E [m]. If |∆E(m)| is below some real positive energy-reduction threshold ε , the
iterative loop is exited. If instead |∆E [m]|> ε , Q[m]

(
θ [m]

)
is appended to the ansatz.

Pool of single and 
double qubit evolutions: 

Prepare trial state

Start
m=1

Calculate the energy gradients of  

 

 

The 
set  
with  largest 

gradients

Run the VQE to find the energy reduction for each  in  

  
with largest

 

  YesNoFinish
 

Expand the ansatz

Fig. 4.1 Schematic diagram of the ansatz constructing loop of the QEB-ADAPT-VQE
protocol (see Sec. 4.1.1). The optional step 5 is not depicted.
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Lastly, if we know a priori the spin of the true ground state of the simulated electronic
system, |ψ0⟩ can be chosen to have the same spin. Then, it can be assumed that qubit
evolutions would come in spin-complement pairs, so that the ansatz remains spin-symmetric
and conserves the spin of the state. Hence, step 5 appends the spin-complementary of
Q[m]

(
θ [m]

)
, Q[m](

θ
[m]) to the ansatz. As demonstrated in Sec. 4.1.4, performing step

5 significantly reduces (up to 50%) the number of ansatz-constructing iterations. One
might suggest that the variational parameters θp and θp must be equal in magnitude, so

that Q[m]
(
θ [m]

)
and Q[m](

θ
[m]) contribute equally and the ansatz remains spin-symmetric.

However, as shown in Sec. 4.1.4 in practice this is not the case. Setting |θp|= |θp| might
reduce the number of variational parameters in some cases, but results in constructing a
longer ansatz circuit.

4.1.2 Analysis of the computational complexity of the QEB-ADAPT-
VQE

Here, I comment on the computational complexity of the QEB-ADAPT-VQE in terms of
number of quantum computer measurements and run time. Both of these complexities are
determined by steps 2 and 3.

Given that H is represented by up to O(N4
so) Pauli strings [Eq. (1.39)], calculating

each gradient in step 2 would require O(N4
so) quantum computer measurements. Since

|P(Ã,Nso)| ∝ N4
so, the complexity of step 2, in terms of quantum computer measurements is

O(N8
so). Step 2 is completely parallelizable so if multiple quantum computers are available,

its time complexity can be arbitrarily reduced down to the time required to evaluate the
expectation value of a Pauli string term, which is proportional to the ansatz circuit depth,
scaling as O(m/Nso) (a Nso-qubits circuit of O(m) qubit evolutions).

Using a gradient-descent minimizer, like the BFGS [157], optimizing ansatz U (m)
(
θ⃗ [m]

)
,

which has O(m) variational parameters (at the mth ansatz-constructing iteration), would
require O(m2) VQE iterations3. Therefore, each VQE run in step 3 would require O(m2N4

so)

quantum measurements. Hence, the overall complexity of step 3 in terms of measurements
would be O(nqem2N4

so). This complexity is a worst case estimate, assuming that at each
ansatz-constructing iteration, all parameters θ⃗ [m] are initialized at zero. In fact though, we
initiate θ⃗ [m] as θ⃗ [m−1]∪0, so we will need fewer VQE-iterations to optimize the new ansatz,
U (m)

(
θ⃗ [m]

)
. However, the complexity also can be higher if we use a direct search minimizer,

e.g. the Nelder-Mead [163], which is likely to be the case in practice, when noisy quantum

3Most gradient-descent optimizers require a number of iterations thaat is quadratic in the number of
parameters [157, 162].
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hardware is used. A detailed discussion of the various minimizers that can be used for the
VQE, and their complexities is provided in Ref. [123]. Again, if multiple quantum devices
are available, each of the nqe VQE runs can be executed in parallel. Hence, the run time
complexity of step 3 is lower bounded by the run time of a single VQE run. With the BFGS
optimizer a single VQE run will involve O(m2) VQE-iterations, where the run time of one
VQE-iteration will scale linearly with the depth of the ansatz circuit as O(m/Nso) (O(m)

quantum gates, assumed to be evenly distributed over the Nso qubits). So the time complexity
of a single VQE run in step 3 would be O(m3/Nso).

Let us denote as |U (⃗θ)| the number of qubit evolutions required to construct an ansatz
to achieve some desired accuracy. Then, overall the QEB-ADAPT-VQE would require
O
(
|U (⃗θ)|(N8

so +nqe|U (⃗θ)|2N4
so)
)

quantum computer measurements, and its run-time com-
plexity would be lower bounded by O(|U (⃗θ)|4/Nso). The size of the ansatz |U (⃗θ)| depends
on the desired accuracy, and also is problem specific. Therefore, it is difficult to predict
how it would scale with Nso. For strongly correlated states, achieving chemical accuracy
might require an ansatz that consists of as many as O(N4

so) qubit evolutions 4. However, for
weakly correlated states, the scaling of |U (⃗θ)| with Nso is likely to be lower. Assuming the
worst case scenario, the time complexity of the QEB-ADAPT-VQE will be lower-bounded
by O(N15

so ) and it will require O(nqeN16
so ) quantum computer measurements. For comparison,

the UCCSD-VQE has a time complexity of O(N11
so ), assuming maximum parallelization,

and requires O(N12
so ) quantum computer measurements. However, as we will see in Sec.

4.2.1, the ansätze constructed by the QEB-ADAPT-VQE are implemented by much shallower
circuits than the UCCSD.

4.1.3 QEB-ADAPT-VQE dependence on nqe

Here I investigate the performance of the QEB-ADAPT-VQE for different values of nqe, the
number of qubit evolutions considered in step 3. As we increase nqe, we increase the chance
to pick at each iteration the qubit evolution that, added to the ansatz, achieves the largest
energy reduction. Following this greedy strategy is no guarantee for an optimal ansatz, since
qubit evolutions do not commute in general. Nevertheless, we do expect, on average, to
construct a more circuit-efficient ansatz by increasing nqe up to some saturation value.

To test this presumption, and to pick a suitable value for nqe, I perform classical numerical
simulations to obtain energy convergence plots for the ground states of LiH, H6 and BeH2 in
the STO-3G basis. The simulations for the three molecules are performed for bond distances

4I base this statement of the fact that the UCCSD, which consists of O(N4
so) fermionic evolutions, cannot

achieve chemical accuracy in some cases.
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rLi−H = 3Å, rH−H = 3Å and rBe−H = 3Å, away from equilibrium configurations5, where
correlation effects are stronger, and the effect of increasing nqe should be more evident. The
simulation results are presented in Fig. 4.2.

(a) (c)(b)

Fig. 4.2 Energy convergence plots obtained with the QEB-ADAPT-VQE with different values
of nqe for the ground states of LiH, H6 and BeH2 in the SO-3G basis, at bond distances
of rLi−H = 3Å, rH−H = 3Å and rBe−H = 3Å. The QEB-ADAPT-VQE is terminated for
ε = 10−12 Hartree.

The table below summarizes the average (over number of qubit evolutions) CNOT count
reductions, with respect to nqe = 1, for each molecule and different values of nqe:

nqe = 5 nqe = 10 nqe = 30
LiH 16% 20% 16%

BeH2 3% 26% 22%
H6 15% 11% 13%

Table 4.1 Average CNOT count reduction for QEB-ADAPT-VQE(nqe > 1) as compared to
QEB-ADAPT-VQE(nqe = 1).

For LiH (Fig. 4.2.a) the QEB-ADAPT-VQE clearly constructs ansatz circuits with
fewer CNOT s as nqe is increased above 1. For BeH2 (Fig. 4.2.c) a significant CNOT count
reduction is obtained for nqe = 10 and nqe = 30, but not for nqe = 5. For H6 (Fig. 4.2.b) the
average CNOT reduction is about the same for nqe = 5, nqe = 10 and nqe = 30, but strangely
the ansatz constructed by the QEB-ADAPT-VQE for nqe = 1 is the most CNOT -efficient for
accuracies higher than 10−4 Hartree. Also, for all three molecules, we observe no further
CNOT reduction for nqe = 30 as compared to nqe = 10. Actually for nqe = 30 the CNOT
reduction is a bit lower. As noted above these inconsistencies can be explained by the fact that

5The equilibrium configurations of LiH and BeH2 correspond to rLi−H = 1.546Å and rBe−H = 1.316Å,
respectively.
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the greedy strategy to obtain the lowest estimate for E (⃗θ) at each iteration is no guarantee
for constructing an optimal ansatz, because qubit evolutions do not commute.

Nevertheless, there is a clear advantage in terms of CNOT count, in performing step
3 of the QEB-ADAPT-VQE for nqe > 1. Despite the associated overhead in the number
of quantum computer measurements with increasing nqe, this is justified as long as the
bottleneck of NISQ computers is the quantum gate fidelity. Furthermore, we can expect
the CNOT count reduction for nqe > 1 to increase for larger molecules, because the QEB-
ADAPT-VQE will have to consider a larger pool of qubit evolutions. The results in Table
4.1 also indicate that for the three considered molecules, 10 is a good value for nqe, around
which the CNOT reduction saturates.

4.1.4 Appending spin-complement qubit evolutions

Here I compare the performance of the QEB-ADAPT-VQE when the optional step 5 is (1) not
performed, (2) performed as described in Sec. 4.1.1, assigning a variational parameter to each
qubit evolution, so that θ (m) and θ

(m) are independent, and (3) performed, by assigning one
variational parameter to a spin-complement pair of qubit evolutions, so that |θ (m)|= |θ (m)|.

The comparison is made with energy convergence plots for the ground states of LiH
and BeH2 in the STO-3G basis, at equilibrium bond distances of rLi−H = 1.546Å and
rBe−H = 1.316Å, respectively. Both molecules have zero spin ground states, so we expect
performing step 5 to significantly reduce the number of ansatz-constructing-iterations. The
energy convergence plots are presented in Fig. 4.3.

From the plots in Figs. 4.3.a and 4.3.b we see that the QEB-ADAPT-VQE constructs
ansätze with approximately the same CNOT counts whether step 5 is performed or not (blue
and green plots, respectively). The reason for this is that even without enforcing appending
of spin-complement evolutions, the QEB-ADAPT-VQE is likely to construct an ansatz where
spin-complement qubit evolutions are appended at adjacent or nearby positions in the ansatz,
since they equally reduce E (⃗θ). This can be observed in the ansätze constructed by the
QEB-ADAPT-VQE for LiH and BeH2 when step 5 is not performed, which are included up
to the 32th ansatz element in Tables D.1 and D.3 in Appendix D.1. Hence, as demonstrated
by the blue and green plots in Figs. 4.3.c and 4.3.d, by performing step 5 and “guessing” that
the next appended qubit evolution will be the spin-complementary of the one appended in
step 4, the number of ansatz-constructing iterations is reduced by up to a factor of 2.

On the other hand, if we assign one parameter for each spin-complement pair of qubit
evolutions (the red plots in Fig. 4.3), the number of variational parameters is reduced in the
case of LiH (Fig. 4.3.e). However, no parameter reduction is achieved in the case of BeH2

(Fig. 4.3.f). Moreover, as seen in Figs. 4.3.a and 4.3.b, the constructed ansätze, on average,
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(a) LiH (b) BeH2

(c) (d)

(e) (f)

Fig. 4.3 Energy convergence plots for the ground states of LiH and BeH2 in the STO-3G basis,
at equilibrium bond distances of rLi−H = 1.546Å and rBe−H = 1.316Å, respectively. Green
plots are obtained with the QEB-ADAPT-VQE when step 5 is not performed. Blue plots are
obtained with the QEB-ADAPT-VQE, when step 5 is performed and each qubit evolution
is assigned an independent parameter. Red plots are obtained with the QEB-ADAPT-VQE,
when step 5 is performed and one parameter is assigned per spin-complement pair of qubit
evolutions. For all plots nqe = 1, and ε = 10−12 Hartree. a,b Accuracy as function of CNOT
count. c,d Accuracy as function of number of ansatz-constructing iterations. e,f Accuracy as
function of number of variational parameters.
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require significantly more CNOT s for both molecules, especially as the circuit sizes increase.
This approach does not work well, because of two reasons. First, a pair of spin-complement
qubit evolutions would have parameters equal in magnitude only if the two qubit evolutions
commute. This issue can be solved by checking if the pair of qubit evolutions commute.
Second, however even if we know that the two spin-complement qubit evolutions commute
and they can share parameters equal in magnitude, the correct relative sign between the
parameters would depend on the parity of the qubit state, which qubit evolutions do not
account for.

Unlike qubit evolutions, fermionic evolutions account for the parity of the qubit state
and can efficiently form pairs of spin-complement fermionic evolutions. Spin-complement
pairs of fermionic evolutions are utilized as ansatz elements by the fermionic-ADAPT-
VQE, thus as we will see in Sec. 4.2.2 it requires up to half as many parameters than the
QEB-ADAPT-VQE.

4.2 Benchmarking the QEB-ADAPT-VQE

In this section, I benchmark the QEB-ADAPT-VQE against other standard methods to obtain
estimates for ground state energies. In Sec. 4.2.1 I compare the QEB-ADAPT-VQE against
the UCCSD-VQE, by obtaining energy dissociation plots. In Sec. 4.2.2 I compare the
QEB-ADAPT-VQE against the fermionic-ADAPT-VQE [141] and the qubit-ADAPT-VQE
[156], by obtaining energy convergence plots. All simulations in this section are performed
for LiH, H6 and BeH2 in the STO-3g orbital basis set, with no frozen orbitals assumed. For
all VQE optimizations, the BFGS optimizer is used. All CNOT counts are obtained assuming
the use of the CNOT -efficient circuits derived in Chapter 2.

4.2.1 Dissociation curves

Figure 4.4 shows energy dissociation curves for LiH, H6 and BeH2, obtained with the QEB-
ADAPT-VQE for nqe = 10 and energy-reduction thresholds ε4 = 10−4 Hartree, ε6 = 10−6

Hartree and ε8 = 10−8 Hartree. Dissociation curves obtained with the Hartree-Fock method,
the FCI method, and the VQE, using an untrotterized UCCSD ansatz (UCCSD-VQE) are
also included for comparison. Unlike, in Sec. 3.2.1 the UCCSD here only includes spin-
conserving single and double fermionic evolutions6 for a fairer comparison to the QEB-
ADAPT-VQE.

6The number of included single-fermionic excitations is 1
2 (Nso−Ne)Ne, and the number of double-fermionic

excitation is 1
8 (Nso −Ne)

(Nso−Ne
2 −1

)
Ne
(Ne

2 −1
)
+ 1

16 (Nso −Ne)
2N2

e .
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Figures 4.4a,b,c show the absolute values for the ground-state energy estimates. All
methods except the HF, produce similar energy estimates that cannot be clearly distinguished.
In Figs. 4.4d,e,f the exact FCI energy is subtracted in order to differentiate better the different
methods and their corresponding errors.

(a) (b)

(d)

(g)

(c)

(e)

(h)

(f)

(i)

Fig. 4.4 Energy dissociation curves for LiH, H6 and BeH2 in the STO-3G spin-orbital
basis, obtained with the QEB-ADAPT-VQE, the UCCSD-VQE and the Hartree-Fock. a,b,c
Estimated ground state energy. d,e,f Error of the ground-state-energy estimate with respect
to the exact FCI energy. g,h,i Number of ansatz parameters. The UCCSD ansätze considered
here contain only spin-conserving fermionic evolutions: for LiH, H6 and BeH2 the UCCSD
has 92, 117 and 204 parameters/fermionic evolutions, respectively.
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As HF does not account for static and dynamic correlations, it is unable to achieve
chemical accuracy at any bond-distance for any of the molecules.

The UCCSD-VQE achieves chemical accuracy over all bond distances for LiH (Fig. 4.4d)
and over bond distances close to equilibrium configuration for H6(Fig. 4.4e) and BeH2(Fig.
4.4f). However, as expected the UCCSD-VQE fails to achieve chemical accuracy for bond
distances away from the equilibrium configurations of H6 and BeH2, where the ground states
become more strongly correlated.

The QEB-ADAPT-VQE for ε4, similarly to the UCCSD-VQE, struggles to achieve
chemical accuracy for strongly correlated ground states. However, for ε6 and ε8 the QEB-
ADAPT-VQE achieves chemical accuracy over all investigated bond distances for all three
molecules. This indicates that the QEB-ADAPT-VQE can successfully construct ansätze to
accurately approximate strongly correlated states.

However, the real strength of the QEB-ADAPT-VQE, similarly to other ADAPT-VQE
protocols, is not just in constructing accurate ansätze, but in constructing accurate problem-
tailored ansätze with few variational parameters, and corresponding shallow ansatz circuits.
Figures 4.4g.h.i show plots of the number of variational parameters used by the ansatz of
each method as function of bond distance. In the cases of LiH (Fig. 4.4g) and BeH2 (Fig.
4.4i), the ansätze constructed by the QEB-ADAPT-VQE for ε6 and ε8 are not only more
accurate than the UCCSD, but also have significantly fewer parameters. However, in the
case of H6 the QEB-ADAPT-VQE on average requires more parameters than the UCCSD.
The reason for this is that H6 is more strongly correlated than LiH and BeH2. Thus, even
an optimally constructed ansatz requires more variational parameters than the UCCSD, to
accurately approximate the ground state of H6.

An interesting point to note are the abrupt changes in the number of variational parameters
used by the QEB-ADAPT-VQE for H6 at bond distances of around 1 Å, 2 Å, and 2.75
Å. The likely reason for these changes are molecular structure transformations, such as
isomerizations, where different eigenstates of H become lowest in energy (energy level
crossings).

4.2.2 Comparison to the fermionic-ADAPT-VQE and the qubit-ADAPT-
VQE

In this section, I compare the QEB-ADAPT-VQE against the fermionic-ADAPT-VQE [141]
and the qubit-ADAPT-VQE [156] with energy convergence plots for LiH, H6 and BeH2.
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All convergence plots are terminated for ε = 10−12 Hartree7. For a fair comparison the
QEB-ADAPT-VQE is performed for nqe = 1. Before I present the energy convergence plots,
I briefly describe the fermionic-ADAPT-VQE and the qubit-ADAPT-VQE protocols.

The fermionic-ADAPT-VQE and the qubit-ADAPT-VQE

The fermionic-ADAPT-VQE is the original ADAPT-VQE protocol that, as already mentioned,
grows a problem tailored UCC ansatz by iteratively appending spin-complement pairs of
single and double fermionic evolutions. Unlike the QEB-ADAPT-VQE, the fermionic-
ADAPT-VQE assigns one parameter per spin-complement pair. This is viable because
fermionic evolutions account for the parity of the qubit state. In this way, the correct relative
sign between the variational parameters of the two spin-complement fermionic evolutions
is “automatically” obtained. Let us denote a spin-complement pair of a single (double)
fermionic evolution as F ′

ki(θki)
(
F ′

lk ji(θlk ji)
)
. Then,

F ′
ki(θki) = Fki(θki)Fki(θki) = eθkiΞkieθkiΞki and (4.2)

F ′
lk ji(θlk ji) = F lk ji(θlk ji)Flk ji(θlk ji) = eθlk jiΞlk jieθlk jiΞlk ji, (4.3)

where the overline denotes the spin-complement of a fermionic evolution, or a fermionic
excitation operator. In the original definition of the fermionic-ADAPT-VQE in Ref. [141],
the protocol utilizes an ansatz element pool defined by all unique spin-complement pairs of
single and double fermionic evolutions, {F ′

ki(θki)} and {F ′
lk ji(θlk ji)}, respectively, that act

on Nso spin-orbitals. The ansatz-growing strategy of the ADAPT-VQE, is to append at each
iteration the ansatz element with largest energy gradient magnitude. This is equivalent to the
ansatz-growing strategy of the QEB-ADAPT-VQE for nqe = 1. For the simulations presented
in this thesis, I implement the fermionic-ADAPT-VQE exactly as in its original paper [141].

The qubit-ADAPT-VQE is similar to the fermionic-ADAPT-VQE, except for its ansatz
element pool. The ansatz element pool of the qubit-ADAPT-VQE consists of unitary evo-
lutions of individual Pauli strings (I will refer to these as Pauli string evolutions). In the
original paper of the qubit-ADAPT-VQE [156], the authors suggested several different pools
of Pauli string excitations. For the simulations presented in this section, I use a pool that
includes all unique XY-Pauli strings that have lengths of 2 or 4 and have an odd number
of Y s. This pool consists of O(N4

so) Pauli string evolutions, which can be combined to
obtain all qubit evolutions in the ansatz element of the QEB-ADAPT-VQE (see Chapter 2).

7In the original papers of the fermionic-ADAPT-VQE [141] and the qubit-ADAPT-VQE [156] an energy-
gradient threshold is used for termination instead.
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Hence, the comparison between the QEB-ADAPT-VQE and qubit-ADAPT-VQE, in terms of
ansatz-circuit efficiency will be fair.

I note that the authors of Ref. [156] actually proved that the qubit-ADAPT-VQE can
construct an ansatz that exactly approximates an electronic wavefunction, using a reduced
ansatz element pool of only 2Nso −2 Pauli string evolutions. This reduced pool can decrease
the number of quantum computer measurements required to evaluate the energy gradients
at each ansatz-constructing iteration from O(N8

so) to O(N5
so). However, this reduced ansatz

element pool will also result in a slower and less circuit-efficient ansatz construction, so a
comparison to the QEB-ADAPT-VQE would not be fair.

Results

The energy convergence plots for LiH, H6 and BeH2, obtained with the QEB-ADAPT-VQE,
the ADAPT-VQE and qubit-ADAPT-VQE are presented in Fig. 4.5. LiH and BeH2 are
simulated at equilibrium bond distances of rLi−H = 1.546Å and rBe−H = 1.316Å, and H6 at
bond distance rH−H = 1.5Å. Figure D.1 in Appendix D includes similar plots for LiH, H6

and BeH2 at bond distances of rLi−H = 3Å, rH−H = 3Å and rBe−H = 3Å instead.
The plots compare the three protocols in terms of three cost metrics, required to achieve

a specific accuracy: (1) the number of ansatz-constructing iterations; (2) the number of
variational parameters; and (3) the CNOT count of the ansatz circuit. The number of
ansatz-constructing iterations and the number of variational parameters8 determine the
total number of required quantum computer measurements and the total run time (see the
analysis of the complexity of the QEB-ADAPT-VQE in Sec. 4.1.2, which is similar for
the fermionic-ADAPT-VQE and the qubit-ADAPT-VQE). The CNOT count of the ansatz
circuit is approximately proportional to its depth. Hence, the CNOT count can be used as
a measure of the run time of the quantum subroutine of the VQE, which also reflects the
resulting quantum error. Since the CNOT s are the current bottleneck of NISQ computers, I
consider the CNOT count as a primary cost metric.

First, we observe, in Figs. 4.5a,b,c that the QEB-ADAPT-VQE and the fermionic-
ADAPT-VQE perform very similarly in terms of number of ansatz-constructing iterations,
especially in the cases of LiH and BeH2. This indicates that the QEB-ADAPT-VQE and the
fermionic-ADAPT-VQE use approximately the same number of qubit and fermionic evolu-
tions, respectively, in constructing their ansätze. The level of this similarity is remarkable,
but not unexpected, since as we saw in Sec. 3.2.1 UCCSD and Q-UCCSD ansätze perform

8 For the fermionic-ADAPT-VQE and the qubit-ADAPT-VQE methods, the number of iterations is the same
as the number of variational parameters. In the case of the QEB-ADAPT-VQE, one or two single-parameter
qubit evolutions are added per iteration. Thus, the number of iterations is less than the number of variational
parameters for the QEB-ADAPT-VQE.
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Fig. 4.5 Energy convergence plots for the ground states of LiH, H6 and BeH2 in the STO-3G
orbital basis set, at bond distances rLi-H = 1.546Å, rH−H = 1.5Å and rBe-H = 1.316Å. Blue
plots are obtained with the QEB-ADAPT-VQE for nqe = 1. Red plots are obtained with
the fermionic-ADAPT-VQE. Green plots are obtained with the qubit-ADAPT-VQE. All
convergence plots are terminated for energy-reduction threshold of ε = 10−12 Hartree. a,b,c
Accuracy as function of ansatz-constructing iterations. d,e,f Accuracy as function of ansatz
parameters (the number of parameters is the same as the number of ansatz-constructing
iterations for the fermionic-ADAPT-VQE and the qubit-ADAPT-VQE). g,h,i Accuracy as
function of the CNOT count of the ansatz circuit. The CNOT counts are calculated assuming
the use of the circuits derived in Chapter 2.
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similarly in approximating electronic wavefunctions. Moreover, the QEB-ADAPT-VQE sys-
tematically outperforms the fermionic-ADAPT-VQE in terms of CNOT count (Figs. 4.5g,h,i),
because qubit evolutions are implemented by simpler circuits than fermionic evolutions.

While the QEB-ADAPT-VQE and the fermionic-ADAPT-VQE require similar numbers
of iterations, the QEB-ADAPT-VQE requires up to twice as many variational parameters
(Fig. 4.5d,e,f). This difference is due to the fact that the QEB-ADAPT-VQE assigns one
parameter to each qubit evolution in its ansatz, whereas the fermionic-ADAPT-VQE assigns
one parameter to a spin-complement pair of fermionic evolutions.

Figures 4.5a,b,c,d,e,f show that the QEB-ADAPT-VQE converges faster, requiring sys-
tematically fewer ansatz-constructing iterations and variational parameters than the qubit-
ADAPT-VQE. The reason for this is that the qubit-ADAPT-VQE utilizes more rudimentary
ansatz elements. As seen from Eqs. (2.20) and (2.21) single and double qubit evolutions
correspond to products of 2 and 8, mutually commuting evolutions of individual Pauli strings,
respectively. Hence, using qubit evolutions the QEB-ADAPT-VQE is able to construct
ansätze more rapidly than the qubit-ADAPT-VQE.

In terms of CNOT count (Figs. 4.5g,h,i), the qubit-ADAPT-VQE is more efficient than
the QEB-ADAPT-VQE at low accuracies. However, at higher accuracies, and corresponding
larger ansätze, the QEB-VQE-ADAPT starts to systematically outperform the qubit-ADAPT-
VQE in terms of CNOT -efficiency. This surprising result can be attributed to the fact that
qubit evolutions allow for the local circuit optimizations introduced in Chapter 2, whereas
Pauli string evolutions, albeit more variationally flexible, do not allow for any local circuit
optimizations9.

Lastly, I note that the observations made here are supported by the additional convergence
plots in Fig. D.1 in Appendix D.

4.3 Comparison of iteratively constructed UCC and Q-UCC
ansätze

In Sec. 3.2.1 I presented simulation results that compared the UCCSD and the Q-UCCSD
ansätze. Generally, the results indicated that the two ansätze can approximate electronic
wavefunctions comparably well. However, the results also indicated that the UCCSD might
be more accurate for strongly correlated states.

Here I further investigate the capabilities of qubit and fermionic evolutions to construct
molecular electronic ansätze, by comparing iteratively-constructed UCC and Q-UCC ansätze.

9A Pauli string evolution is implemented by a single CNOT -staircase construction (as shown in Appendix
B), whose CNOT count cannot be reduced.
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The comparison between the QEB-ADAPT-VQE and the fermionic-ADAPT-VQE in the
previous Sec. 4.2.2 is not a fair comparison between the two types of evolutions: the QEB-
ADAPT-VQE assigns one variational parameter per a qubit evolution in its ansatz, whereas
the fermionic-ADAPT-VQE assigns one variational parameter per a spin-complement pair of
fermionic evolutions. In this section, I compare the QEB-ADAPT-VQE for nqe = 1 and step
5 not implemented, to the fermionic-ADAPT-VQE when it grows its ansatz by appending
individual fermionic evolutions (instead of complement-pairs of fermionic evolutions). In
this way the two protocols differ only in using a pool of qubit evolutions, and a pool fermionic
evolutions, respectively. The ansätze constructed by the two ADAPT-VQE protocols con-
tain only qubit/fermionic evolutions that contribute to the approximation of the electronic
wavefunction. Hence, comparing these iteratively-constructed UCC and Q-UCC ansätze is a
more comprehensive comparison of the two types of evolutions than comparing the fixed
UCCSD and Q-UCCSD ansätze, which contain a redundant number of qubit and fermionic
evolutions, respectively.

Figure 4.6 shows energy convergence plots for the ground states of LiH, H6 and BeH2

at bond distances of rLi-H = 1.546Å, rH-H = 1.5Å and rBe-H = 1.316Å, respectively. The
plots correspond to UCC and Q-UCC ansätze constructed by the QEB-ADAPT-VQE and the
fermionic-ADAPT-VQE as explained above, for energy-reduction threshold of ε = 10−12

Hartree. The plots for the two types of ansätze are similar for each molecule. However, there
is a clear tendency the UCC to be slightly more accurate per number of ansatz elements. This
advantage is most evident for the more strongly correlated H6 (Fig. 4.6.b), where the UCC
requires up to 20% fewer evolutions than the Q-UCC to achieve a given accuracy. These
observations further indicate that UCC ansätze can approximate strongly correlated states a
bit better than Q-UCC ansätze.
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(a) (b) (c)

Fig. 4.6 Energy convergence plots for the ground states of LiH, H6 and BeH2 in the STO-3G
basis at bond distances of rLi-H = 1.546Å, rH-H = 1.5Å and rBe-H = 1.316Å, respectively.
Blue plots are obtained with the QEB-ADAPT-VQE when step 5 is not implemented and
nqe = 1. Red plots are obtained with the fermionic-ADAPT-VQE, when using ansatz
element pool of independent single and double fermionic evolutions. All convergence plots
are terminated for ε = 10−12 Hartree.

To further test this observation, in Fig. 4.7 I include energy convergence plots, similar to
those in Fig. 4.6, but for bond distances of rLi-H = 3Å, rH-H = 3Å and rBe-H = 3Å. At these
larger bond distances the ground states of the LiH, and BeH2 are more strongly correlated.
So we expect to see larger difference in the accuracies achieved by the UCC and the Q-UCC
ansätze per number of fermionic and qubit evolutions, respectively.

(a) (b) (c)

Fig. 4.7 Energy convergence plots, similar to those in Fig. 4.6, for the ground states of
LiH, H6 and BeH2 in the STO-3G basis at bond distances of rLi-H = 3Å, rH-H = 3Å and
rBe-H = 3Å, respectively.

In the case of LiH for rLi-H = 3Å (Fig. 4.7a) the difference between the convergence plots
for the Q-UCC and the UCC is similar to that for rLi-H = 1.546Å (Fig. 4.6c). However, in the
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case of BeH2 for rBe-H = 3Å (Fig. 4.7c) the difference between the convergence plots for the
Q-UCC and the UCC is noticeably larger than for rBe-H = 1.316Å (Fig. 4.6c), with the UCC
requiring on average about 20% fewer ansatz elements to achieve a given accuracy, than
the Q-UCC. These results further indicate that UCC ansätze are more accurate per number
ansatz elements when approximating strongly correlated states.

As a side point it is interesting to note that when the fermionic-ADAPT-VQE is imple-
mented with a pool of independent single and double fermionic evolutions (Figs. 4.6 and 4.7)
it is able to converge, albeit more slowly, to higher final accuracy than when it is implemented
with a pool of spin-complement pairs of single and double fermionic evolutions (Fig. 4.5).
This is due to the fact that the pool of independent fermionic excitation is more variationally
flexible.

4.4 Conclusion

In this chapter, I utilized qubit evolutions to introduce the qubit-excitation based adaptive
variational quantum eigensolver (QEB-ADAPT-VQE). The QEB-ADAPT-VQE simulates
molecular electronic wavefunctions with a problem-tailored ansatz, grown iteratively by
appending single and double qubit evolutions. I benchmarked the performance of the QEB-
ADAPT-VQE with classical numerical simulations for LiH, H6 and BeH2.

First, I compared the QEB-ADAPT-VQE against the UCCSD-VQE and demonstrated
that the ansätze constructed by the QEB-ADAPT-VQE can achieve much higher accuracies
than a fixed ansatz such as the UCCSD, and at the same time require multiple times fewer
variational parameters and correspondingly shallower circuits.

Next, I compared the QEB-ADAPT-VQE to the original fermionic-ADAPT-VQE, and its
more circuit-efficient cousin, the qubit-ADAPT-VQE. Compared to the fermionic-ADAPT-
VQE, the QEB-ADAPT-VQE requires up to twice as many variational parameters. However,
the QEB-ADAPT-VQE requires asymptotically fewer CNOT s, owing to its use of qubit
evolutions that are implemented by simpler circuits than the fermionic evolutions used by the
fermionic-ADAPT-VQE.

The simulations also showed that the qubit-ADAPT-VQE is more CNOT -efficient than
the QEB-ADAPT-VQE in achieving low accuracies that correspond to small ansatz circuits.
However, for higher accuracies and correspondingly larger ansatz circuits, the QEB-ADAPT-
VQE systematically outperformed the qubit-ADAPT-VQE in terms of CNOT -efficiency.
The primary reason for this is that qubit evolutions allow for the local circuit optimizations
derived in Chapter 2, whilst the more rudimentary Pauli string evolutions, utilized by the
qubit-ADAPT-VQE, do not. However, in practice we are only interest in reaching chemical
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accuracy. Therefore, one might question what is the usefulness of constructing more CNOT -
efficient ansätze with the QEB-ADAPT-VQE for accuracies higher than chemical accuracy.
Although the numerical results presented here are not sufficient to draw a general conclusion,
they indicate that the CNOT -efficiency of the QEB-ADAPT-VQE becomes more evident
for larger ansatz circuits. Therefore, for larger molecules, the QEB-ADAPT-VQE will
likely be able to reach chemical accuracy using fewer CNOT s than the qubit-ADAPT-
VQE. Additionally, as demonstrated in Sec. 4.1.3, the QEB-ADAPT-VQE can construct
even more circuit-efficient ansätze by increasing the parameter nqe, at the expense of more
quantum computer measurements. The simulation results also demonstrated that in terms
of convergence speed, the QEB-ADAPT-VQE requires fewer variational parameters, and
correspondingly fewer ansatz-constructing iterations, than the qubit-ADAPT-VQE.

These results imply that the QEB-ADAPT-VQE is more circuit-efficient and converges
faster than the qubit-ADAPT-VQE, which to my knowledge was the previously most circuit-
efficient, scalable VQE protocol for molecular modelling. I do remark though, that in my
comparison of the QEB-ADAPT-VQE and the qubit-ADAPT-VQE, I ignored the fact that the
latter protocol can use a reduced ansatz element pool of O(Nso) Pauli string evolutions. Using
such a reduced pool would decrease the number of quantum computer measurements required
by the qubit-ADAPT-VQE to measure the energy gradients at each ansatz-constructing
iteration from O(N8

so) to O(N5
so). However, using a reduced pool would also result in a

slower and less efficient ansatz construction. Moreover, as discussed in Sec. 4.1.2, the
complexity of a single ansatz-constructing iteration, for both the QEB-VQE-ADAPT and
the qubit-ADAPT-VQE, might turn out to be dominated by the complexity of the VQE run,
which on average can be as large as O(N12

so ).
I also note that in theory, hardware-efficient ansätze and the ansätze of the IQCC protocol

[159, 155] might be implemented by shallower circuits than the ansätze constructed by the
QEB-ADAPT-VQE. However, hardware-efficient ansätze and the IQCC are unlikely to be
scalable for large systems: as noted in Sec. 1.5.5, the optimization of hardware-efficient
ansätze is likely to become intractable for large systems; and the IQCC requires evaluating a
number of expectation values, exponential in the number of variational parameters.

In addition to outlining and benchmarking the QEB-ADAPT-VQE, in this Chapter I also
further compared qubit and fermionic evolutions in constructing molecular electronic ansätze.
I used the QEB-ADAPT-VQE and a slightly modified version of the fermionic-ADAPT-VQE
to compare iteratively-constructed UCC and Q-UCC ansätze. The results indicated that the
Q-UCC and the UCC ansätze can achieve similar accuracies per number of ansatz elements
when approximating weakly correlated states. However, it was also observed a tendency
the UCC ansätze to be more accurate in approximating strongly correlated states. In the
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cases of H6 and BeH2 the UCC ansätze required up to 20% fewer ansatz elements than the
Q-UCC ansätze to achieve a given accuracy. It was also found that qubit evolutions cannot
efficiently form single-parameter spin-complement pairs, whereas fermionic evolutions can.
This feature of fermionic evolutions originates from the fact that they account for the qubit
state parity. Grouping fermionic evolutions in spin-complement pairs, as utilized by the
fermionic-ADAPT-VQE, can be used to nearly halve the number of variational parameters
when the ansatz must respect spin conservation. However, in the era of NISQ computers,
when the ansatz-circuit depth, and in particular the CNOT depth, is a primary cost factor,
these advantages of UCC ansätze are off-set by the circuit-efficiency of Q-UCC ansätze.

So far, I have investigated VQE protocols to find molecular ground state energies. In the
next Chapter, I consider excited states.





Chapter 5

Estimating excited state energies

Chapter Summary

Finding the energies of excited states is important for calculating molecular spectral proper-
ties, e.g. photodissociation rates [164] and absorption bands [165]. In Chapter 4, I introduced
the QEB-ADAPT-VQE protocol for molecular modelling, and benchmarked its performance
in estimating molecular ground state energies. In this chapter, I propose and benchmark
a modified version of the QEB-ADAPT-VQE protocol designed to estimate the energies
of excited states. I call this modified version the “excited-QEB-ADAPT-VQE”, or just the
e-QEB-ADAPT-VQE for shorthand.

Molecular ground states near equilibrium bond configuration typically have a single
dominant Slater determinant, which corresponds to the Hartree-Fock state. Thus, when
dealing with ground states we can straightforwardly choose the Hartree-Fock state as an
initial reference state. However, excited states are generally more statically correlated than
ground states, and might have two or more dominant Slater determinants. In addition, often
excited states have non-zero spin, which is difficult to deduce a priori. Hence, choosing
a priori an initial reference state that has a significant overlap with an unknown excited
state is more difficult than for a ground state. The e-QEB-ADAPT-VQE features a modified
ansatz-growing strategy designed to be less dependent on the choice of an initial reference
state.

The Chapter is organised as follows: In Sec. 5.1 I describe how the energies of excited
states can be calculated with the VQE. In Sec. 5.2 I outline the e-QEB-ADAPT-VQE, and in
Sec. 5.3, I benchmark its performance by estimating excited state energies for LiH and BeH2.
Lastly in Sec. 5.4 I compare iteratively constructed Q-UCC and UCC ansätz for excited
states.
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5.1 Finding excited state energies with the VQE

Two methods to calculate excited state energies with the VQE are the quantum subspace
expansion [166–168], and the overlap-based method [169, 170]. Here I use the more straight-
forward overlap-based method.

As the name suggests the overlap-based method works by including the overlaps between
previously found, lower energy, eigenstates of the electronic Hamiltonian H and the state we
currently want to approximate in the cost function of the VQE. When the cost function is
being minimized, the additional overlap terms force the newly found state to be orthogonal
to the previously found eigenstates. In this way, we obtain a new eigenstate. For example,
after we find the ground state |E0⟩, we modify H as

H → H1 = H +α0|E0⟩⟨E0|, (5.1)

where α0 is a real positive scalar coefficient. If α0 +E0 > E1, where E1 is the energy of the
first excited state of H, the lowest eigenvalue of the modified Hamiltonian H1 will be shifted
from E0 to E1. In order to make sure that α0 +E0 > E1 is satisfied, prior to knowing E1,
we can choose an arbitrary value for α0, which is large compared to the energy scale of the
problem1. Running the VQE for H1 will output an estimate for E1, and the optimized ansatz
will generate an approximation for |E1⟩:

E1 = min
θ⃗

⟨ψ0|U†(⃗θ)H1U (⃗θ)|ψ0⟩= min
θ⃗

⟨ψ0|U†(⃗θ)
(
H +α0|E0⟩⟨E0|

)
U (⃗θ)|ψ0⟩. (5.2)

After E1 is found the same procedure can be repeated multiple times to find the next eigen-
values of H. The kth eigenvalue of H, Ek, can be estimated as

Ek = min
θ⃗

⟨ψ0|U†(⃗θ)HkU (⃗θ)|ψ0⟩= min
θ⃗

⟨ψ0|U†(⃗θ)
(
H +

k−1

∑
r=0

αr|Er⟩⟨Er|
)
U (⃗θ)|ψ0⟩. (5.3)

The first Hamiltonian term in Eq. (5.3) is calculated as usual by evaluating the expectation
values of the Pauli string terms in the quantum-gate operator expression for H [Eq. (1.39)].
Each overlap term in Eq. (5.3), ⟨Er|U (⃗θ)|ψ0⟩, can be evaluated: (1) either directly , which
would require a circuit with total depth equal to the depth of U (⃗θ) plus the depth of the ansatz
generating |Er⟩; or (2) with the SWAP test [171], which would require twice as many, 2Nso,
qubits, but a circuit with the same depth as the circuit for U (⃗θ). Given that the bottleneck

1 For the simulation results presented in the thesis I use α0 = 2|EHF |.
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of NISQ computers is the circuit depth, using the SWAP test would be the better choice in
practice.

I note that the overlap-based method is efficient and reliable for low-lying excited states.
However, due to its recursive nature and build-up of errors in the approximations of the
eigenstates and eigenenergies of H, the method is not suitable for high excited states. In
such cases the quantum subspace expansion method is more suitable. Alternatively one can
also use the method of classical shadows [172] to obtain an estimate for the overlap with a
reduced number of quantum computer measurements.

5.2 The e-QEB-ADAPT-VQE

5.2.1 Protocol description

In this section, I describe the e-QEB-ADAPT-VQE protocol. The preparation part of the
e-QEB-ADAPT-VQE is similar to that of the QEB-ADAPT-VQE. The difference is that now
we need to add the additional overlap terms to H, as described in the previous section, to
obtain Hk, a Hamiltonian to find the kth eigenvalue of H.

As I mentioned in the chapter summary, the e-QEB-ADAPT-VQE is designed to be
less dependent on the initial reference state, |ψ0⟩. The only condition for |ψ0⟩ is to have
Hamming weight equal to the number of electrons, Ne. Therefore, I arbitrarily choose |ψ0⟩
to be the Hartree Fock state again.

We begin constructing the ansatz by setting the iteration number to m = 1, the initial
ansatz to the identity U (⃗θ)→U [0] = I, and then initiate the ansatz-constructing loop of the e-
QEB-ADAPT-VQE. Below, I describe the five steps of the mth iteration. Afterwards I explain
how and why the e-QEB-ADAPT-VQE is changed with respect to the QEB-ADAPT-VQE.

1. Prepare the state |ψ [m−1]⟩=U [m−1](θ⃗ [m−1])|ψ0⟩, using the ansatz U [m−1](θ⃗ [m−1])with
values for the variational parameters θ⃗ [m−1] as determined in the previous iteration.

2. For each qubit evolution Qp(θp) = eθpΩp ∈ Pfull(Q,Nso):

(a) Run a single-parameter VQE optimization to find

min
θp

E [m](θp) = min
θp

⟨ψ [m−1]|Q†
p(θp)HkQp(θp)|ψ [m−1]⟩.

(b) Calculate the energy reduction E [m−1]−min
θp

E [m](θp)
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3. Identify the set of nqe qubit evolutions, Q[m](nqe), with largest energy reductions,
measured in the previous step. For Qp(θp) ∈Q[m](nqe):

(a) Run the VQE to find

min
θ⃗ [m−1],θp

E (⃗θ [m−1],θp)= min
θ⃗ [m−1],θp

⟨ψ0|U [m−1]†(
θ⃗
[m−1])Q†

p(θp)HQp(θp)U [m−1](
θ⃗
[m−1])|ψ0⟩.

(b) Find the energy reduction ∆E [m]
p = E [m−1]− min

θ⃗ [m−1],θp

E
(
θ⃗ [m−1],θp

)
(c) Save the (re)optimized values of θ⃗ [m−1]∪{θp} as θ⃗

[m]
p

4. Identify the largest energy reduction ∆E [m] ≡ ∆E [m]
p′ = max

(
{∆E [m]

p }
)
, and its corre-

sponding qubit evolution Q(m)
(
θ [m]

)
≡ Qp′(θp′).

If ∆E [m] < ε , where ε > 0 is an energy-reduction threshold:

(a) Exit

Else:

(a) Append Q[m]
(
θ [m]

)
to the ansatz: U [m]

(
θ⃗ [m]

)
= Q[m]

(
θ [m]

)
U [m]

(
θ⃗ [m−1])

(b) Set E [m] = E [m−1]−∆E [m]
p

(c) Set the values of the new set of variational parameters, θ⃗ [m] = θ⃗ [m−1]∪{θp′}, to
θ⃗
[m]
p′

5. Enter the (m+1)th iteration by returning to step 1

The major difference between the QEB-ADAPT-VQE and the e-QEB-ADAPT-VQE is
step 2. In step 2 of the e-QEB-ADAPT-VQE the individual energy reduction contribution of
each qubit evolution Qp(θp) ∈ Pfull(Q,Nso) is calculated. Each of these energy reductions
is calculated by a single-parameter VQE optimization performed to minimize the energy
expectation value ⟨ψ [m−1]|Q†

p(θp)HQp(θp)|ψ [m−1]⟩. In this way, we get an indication about
how much the energy expectation value will be reduced when each Qp(θp) is added to the
ansatz and the energy is minimized along the full set of parameters θ⃗ [m−1]∪{θp}, at a cost
of performing O(N4

MO) single-parameter VQE optimizations.
In the QEB-ADAPT-VQE (and the fermionic-ADAPT-VQE [141]) such an indication

is obtained by measuring the energy gradients
{

∂

∂θp
⟨ψ [m−1]|Q†

p(θp)HQp(θp)|ψ [m−1]⟩
}

(see
Sec. 4.1). However, these energy gradients must be evaluated for some values of the
respective parameters

{
θp
}

. If we are approximating the ground state |E0⟩ and we have a
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high level of confidence that |ψ0⟩ has a large overlap with |E0⟩, then the gradients can be
evaluated conveniently for

{
θp = 0

}
. But if we are approximating the excited state |Ek⟩,

where we do not know how close |ψ0⟩ and |Ek⟩ are, measuring the energy gradients for{
θp = 0

}
, or any other arbitrary value, can be a poor indicator, leading to an inefficient and

slow construction of the ansatz, and a possibility of finding a local energy minimum (see
Sec. 5.2.3). Instead the e-QEB-ADAPT-VQE measures the individual energy reduction
contribution for each qubit evolution, which can be obtained by the VQE, using a direct
search minimizer [173], e.g. the Nelder Mead [163], irrespectively of the overlap of |ψ0⟩ and
|Ek⟩.

If we denote by NH the number of terms in the Pauli string representation of H [Eq.
(1.39)], calculating a single energy gradient requires measuring 2NH expectation values.
On the other hand, running a single-parameter VQE requires measuring γNH expectation
values, where γ is the number of function evaluations required for a single parameter
minimization. Hence, the additional cost of the technique pursued here in comparison
to using energy gradients as in the QEB-ADAPT-VQE, is a factor of γ/2 more quantum
computer measurements in step 2. In practice, the value of γ would depend on the used
optimizer, the desired accuracy and the noise levels. However, γ will not scale with the ansatz
size. Also, once the ansatz reaches some critical size, so that |ψ [m−1]⟩ is close to |Ek⟩, we
can switch to the cheaper QEB-ADAPT-VQE.

In addition to step 2, the e-QEB-ADAPT-VQE differs from the QEB-ADAPT-VQE in not
appending spin-complement qubit evolutions. Appending spin-complement qubit evolutions
is advantageous when we know that the ansatz should respect spin-conservation. However,
often excited states have non-zero spin that is difficult to deduce a priori.

5.2.2 The e-QEB-ADAPT-VQE dependence on nqe

Here I compare the performance of the e-QEB-ADAPT-VQE for different values of nqe,
similarly as for the QEB-ADAPT-VQE in Sec. 4.1.3. Figure 5.1 shows energy convergence
plots for the first excited states of LiH and BeH2 in the STO-3G basis at bond distances of
rLi-H = 1.546Å and rBe-H = 1.316Å, respectively. For each molecule, plots are obtained with
the e-QEB-ADAPT-VQE for nqe = 1, nqe = 5, nqe = 10 and nqe = 20.

Interestingly, the CNOT reduction for nqe > 1 is much smaller than in the case of the QEB-
ADAPT-ADAPT (see Sec. 4.1.3). At low accuracies (>10−5 Hartree), for each molecule,
the convergence plots are almost identical. Only at higher accuracies we can observe any
significant CNOT reduction for nqe > 1. The maximum CNOT reduction in the case of LiH
is about 15% and in the case of BeH2, about 10%. These results suggest that the individual
energy reductions calculated in step 2 of the e-QEB-ADAPT-VQE, are a better indicator
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about which ansatz element to add to the ansatz, than the energy-gradients calculated in step
2 of the QEB-ADAPT-VQE. Therefore, implementing step 3 of the e-QEB-ADAPT-VQE for
nqe > 1 is less necessary.

In Fig. 5.1 we also see that the plots for nqe = 5, nqe = 10 and nqe = 20 are similar
at all levels of accuracy. These results suggest that the saturation value of nqe for the
e-QEB-ADAPT-VQE will be lower than for the QEB-ADAPT-VQE. Therefore, the e-QEB-
ADAPT-VQE might be suitable for ground state simulations as well, because the additional
computational overhead of step 2, will be partially offset by using a smaller value for nqe.

(a) (b)

Fig. 5.1 Energy convergence plots for the first excited states of LiH and BeH2 in the STO-3G
basis at bond distances of rLi-H = 1.546Å and rBe-H = 1.316Å, respectively. The plots are
obtained with the e-QEB-ADAPT-VQE for different values of nqe. All convergence plots are
terminated for ε = 10−12 Hartree.

5.2.3 The QEB-ADAPT-VQE vs the e-QEB-ADAPT-VQE

Here I compare the performance of the e-QEB-ADAPT-VQE and the QEB-ADAPT-VQE
in finding excited state energies. Figure 5.2 presents energy convergence plots for the
first excited states of LiH and BeH2 in the STO-3G basis at equilibrium bond distances of
rLi-H = 1.546Å and rBe-H = 1.316Å, respectively.

In the case of LiH the QEB-ADAPT-VQE converges slower, requiring more than twice
as many ansatz-constructing iterations, than the e-QEB-ADAPT-VQE. Since each ansatz-
constructing iteration corresponds to a qubit evolution in the ansatz, the ansatz constructed
by the QEB-ADAPT-VQE is roughly twice as large as the one constructed by the excited-
QEB-ADAPT-VQE. As noted above, the reason for this is that energy-gradient-based ansatz-
growing strategy is not suitable when there is no guarantee that the initial reference state |ψ0⟩
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has a significant overlap with the target state |Ek⟩. In the case of BeH2, the QEB-ADAPT-
VQE completely fails to converge to chemical accuracy, likely getting stuck in a local energy
minimum. On the other hand, the e-QEB-ADAPT-VQE, being independent on the overlap of
|ψ0⟩ and |Ek⟩, converges successfully in the cases of both molecules.

(a) (b)

Fig. 5.2 Energy convergence plots for the first excited states of LiH and BeH2 in the STO-3G
basis at equilibrium bond distances of rLi-H = 1.546Å and rBe-H = 1.316Å, respectively. The
plots are obtained with the QEB-ADAPT-VQE for nqe = 10 and step 5 not implemented,
and the e-QEB-ADAPT-VQE for nqe = 10. The plots are terminated for energy-reduction
threshold of ε = 10−12 Hartree.

5.3 Benchmarking the e-QEB-ADAPT-VQE

5.3.1 First excited states

Here I benchmark the performance of the e-QEB-ADAPT-VQE, for ε = 10−6 Hartree and
ε = 10−8 Hartree, by obtaining energy dissociation plots for the first excited states of LiH
and BeH2 in the STO-3G basis. I also include energy dissociation plots obtained with
UCCSD-VQE and the GUCCSD-VQE, where the GUCCSD is the generalized UCCSD
ansatz, which includes all unique single and double fermionic evolutions.

The energy dissociation curves for the two molecules are given in Figs. 5.3a and 5.3b. In
Figs. 5.3c and 5.3d are plotted the errors of each method with respect to the FCI energy, as a
function of bond distance. In the case of LiH, all methods, surprisingly even the UCCSD-
VQE, achieve chemical accuracy. Figures. 5.3e and 5.3f show the number of variational
parameters, which is also equivalent to the number of qubit/fermionic evolutions, used by the
ansatz of each method. The ansätze constructed by the e-QEB-ADAPT-VQE for LiH are
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(a) (b)

(d)(c)

(e) (f)

Fig. 5.3 Energy dissociation curves for LiH and BeH2 in the STO-3G orbital basis. a,b
Absolute values for the estimated first excited state energies. c,d Error in the estimated
energy values with respect to the exact FCI energy, as function of bond distance. e,f Number
of variational parameters, also equal to the number of ansatz elements, used by the ansatz
of the corresponding method, as function of bond distance. The UCCSD includes non-
spin conserving fermionic evolutions and has 200 and 468 parameters for LiH and BeH2,
respectively. The GUCCSD has 1551 and 3094 parameters for LiH and BeH2, respectively.
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extremely compact, consisting of at most 27 qubit evolutions, whereas the UCCSD and the
GUCCSD consist of 200 and 1521 fermionic evolutions, respectively.

In the case of BeH2 the results are more interesting. First, the UCCSD-VQE fails to
achieve chemical accuracy for the majority of bond distances (Fig. 5.3d). This result is not
surprising as the simple UCCSD ansatz is not suitable to approximate strongly correlated
states such as excited states. Second, in Fig. 5.3d we see that the e-QEB-ADAPT-VQE
fails to achieve chemical accuracy at bond distances rBe−H = 1.5Å and rBe−H = 1.75Å. I
comment on the reason for this below. The only method that achieves chemical accuracy
at all bond distances is the GUCCSD-VQE, owing to the high variational flexibility of the
GUCCSD ansatz. Nevertheless, for the majority of bond distances the e-QEB-ADAPT-VQE
constructs ansätze that are more accurate and consist of nearly 50 times fewer ansatz elements
than the GUCCSD (Figs. 5.3d and 5.3f).

Finding the energy of a wrong excited state

As we saw in Fig. 5.3d, the e-QEB-ADAPT-VQE fails to achieve chemical accuracy for
BeH2 at bond distances rBe−H = 1.5Å and rBe−H = 1.75Å. To investigate the reason for this,
let us consider Fig. 5.4, which depicts the FCI energies for the 10 lowest energy states of
BeH2 (in the STO-3G basis) as functions of bond distance.

The 9 excited states shown in Fig. 5.4 are ordered in three degenerate energy levels. The
table below summarises the energy levels, and their corresponding degenerate excited states,
at bond distances rBe−H = 1.5Å and rBe−H = 1.75Å:

rBe−H = 1.5Å rBe−H = 1.75Å
exc. states energy, Hartree

{1,2} EI(1.5Å)≈−15.3343
{3,4,5,6,7,8} EII(1.5Å)≈−15.3331

{9} EIII(1.5Å)≈−15.3026

exc. states energy, Hartree
{1,2} EI(1.75Å)≈−15.3131

{3,4,5} EII(1.75Å)≈−15.3059
{6,7,8,9} EIII(1.75Å)≈−15.3056

Table 5.1 Low lying excited energy levels of BeH2 at bond distances of rBe−H = 1.5 and
rBe−H = 1.75. Note that the ground state energy is not included here, and the counting of the
excited states starts from 1, so that state 0 is the ground state.

For rBe−H = 1.5Å we can see that EI(1.5Å) and EII(1.5Å) are very close. Upon inspec-
tion of the energy estimate of the e-QEB-ADAPT-VQE(ε = 10−8), for rBe−H = 1.5Å, it turns
out that the algorithm actually finds EII(1.5Å) with accuracy of 3×10−8 Hartree. Therefore,
the problem is not a lack of accuracy, but converging to the wrong excited state.
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Two possible reasons for convergence to a wrong excited state are: (1) the classical
minimizers used by the e-QEB-ADAPT-VQE get stuck in a local minimum corresponding
to EII(1.5Å), and/or (2) the e-QEB-ADAPT-VQE fails to construct an ansatz that can
approximate the degenerate excited states corresponding to energy level EI(1.5Å). Since the
e-QEB-ADAPT-VQE uses a combination of the BFGS and the Nelder-Mead optimization
methods, where the Nelder-Mead is a direct search method that is unlikely to get stuck in
local minima, the first possibility can be ruled out. Hence, we are left with the second one.
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Fig. 5.4 FCI energies for the 10 lowest energy states of BeH2 in the STO-3G basis. The
numbers of the excited states correspond to their order at equilibrium bond distance of
rBe−H = 1.316.

Upon explicit inspection of the degenerate states corresponding to energy level EI(1.5Å),
it is found that they have strong static correlations, where two dominant Slater determinants
contribute equally to the wavefuncion. On the other hand, for each of the degenerate states
corresponding to energy level EII(1.5Å) there is one dominant Slater determinant. Therefore,
what happens is that the first few ansatz-constructing-iterations of the e-QEB-ADAPT-VQE
(see Sec. 5.2) select qubit evolutions that map between the initial reference state, |ψ0⟩, and the
dominant Slater determinant of one of the states corresponding to EII(1.5Å), because these
qubit evolutions decrease the estimate for the energy by the most. From that point on, the e-
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QEB-ADAPT-VQE continues along a “wrong” path to construct an ansatz that approximates
a state corresponding to EII(1.5Å), instead of a state corresponding to EI(1.5Å).

One might suggest that a possible solution would be to initialize |ψ0⟩ as an equal
superposition of two Slater determinants. However, this would not work, because a qubit
evolution that maps between one of the Slater determinants of |ψ0⟩ and the dominant Slater
determinant of a state corresponding to EII(1.5Å) will still decrease the energy estimate by
the most.

In the case of rBe−H = 1.75Å, the situation is slightly different. The three energy levels
EI(1.75Å), EII(1.75Å) and EIII(1.75Å) are close, and the states corresponding to EI(1.75Å)

and EII(1.75Å) have two dominant Slater determinants, whereas the states corresponding to
EIII(1.75Å) have one dominant Slater determinant. Hence, the excited-QEB-ADAPT-VQE
converges to an excited state corresponding to the energy level with highest energy, but
weakest static correlations, EIII(1.75Å).

Overall the following conclusion can be made: A generic feature of the e-QEB-ADAPT-
VQE is that it is more “willing” to construct ansätze for less statically correlated states (which
have just one dominant Slater determinant). Therefore, in the case when (1) the lowest energy
eigenvalues of an electronic Hamiltonian are ordered in two or more closely spaced energy
levels, and (2) the lowest energy level corresponds to eigenstates that have stronger static
correlations than the eigenstates above them, the e-QEB-ADAPT-VQE might converge to
the less statically correlated eigenstates, instead of to the those with lowest energy.

5.3.2 Higher excited states

Here I further benchmark the performance of the e-QEB-ADAPT-VQE by obtaining higher
excited state energies for LiH. Energy dissociation curves for the five lowest energy states of
LiH in the STO-3G basis, obtained with the e-QEB-ADAPT-VQE for nqe = 10 and ε = 10−8

Hartree, are plotted in Fig. 5.5a. Figure 5.5b shows the corresponding errors.
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(a) (b)

Fig. 5.5 a Energies for the 5 lowest energy states of LiH, in the STO-3G basis, obtained with
e-QEB-ADAPT-VQE for ε = 10−8 Hartree. Note that excited states {1,2,3} are degenerate.
b Errors in the estimated energy values with respect to the FCI energies.

The first important thing to verify in these plots is that the e-QEB-ADAPT-VQE success-
fully constructs accurate ansätze for all three degenerate states corresponding to the lowest
excited energy level of LiH. Also, Fig. 5.5b demonstrates how the recursive error of the
overlap-based method scales as more excited states are approximated. Assuming that the
relative error of the excited-QEB-ADAPT-VQE for each excited state is approximately the
same, then the absolute error in the estimate of the energy of excited state k, Ek, should
increase approximately linearly with k. Although we do not have enough excited states to
check if this linear dependence is obeyed, the increase in the error is evident.

5.4 Comparison of iteraively constructed Q-UCC and UCC
ansätze for excited states

In this section, once again I perform a comparison between iteratively constructed Q-UCC
and UCC ansätze, this time approximating excited states. For this purpose I construct both
types of ansätze, using the excited-QEB-ADAPT-VQE(nqe = 10), for the first excited states
of LiH and BeH2 at bond distances of rLi-H = 1.546Å and rBe-H = 1.316Å, respectively.
Energy convergence plots for these ansätze are presented in Fig. 5.6.



5.5 Conclusion 105

(a) (b)

Fig. 5.6 Energy convergence plots for the first excited states of LiH and BeH2 in the STO-3G
basis at equilibrium bond distances of rLi-H = 1.546Å and rBe-H = 1.316Å, respectively. The
plots are obtained with the e-QEB-ADAPT-VQE for nqe = 10 and ε = 10−12 Hartree.

We observe close similarity between the Q-UCC and the UCC ansätze. In the case of
LiH (Fig. 5.6a) the Q-UCC ansatz is slightly more accurate per number of ansatz elements,
consisting of up to 15% fewer ansatz elements than the UCC ansatz. This result does not
agree with our expectation for the UCC to be more accurate for the more strongly correlated
first excited state. However, in the case of BeH2 (Fig. 5.6b), whose first excited state has
strong static correlations, the UCC ansatz is more accurate per number of ansatz elements,
consisting of up to 25% fewer ansatz elements than the Q-UCC ansatz. Nevertheless, since
qubit evolutions are implemented by simpler circuits than fermionic evolutions, the Q-UCC
ansatz will require fewer CNOTs even in the case of BeH2.

5.5 Conclusion

In this chapter, I proposed a modified version of the QEB-ADAPT-VQE protocol, the excited-
QEB-ADAPT-VQE, intended to estimate molecular excited state energies. Choosing an
initial reference state that has a significant overlap with an unknown target excited state is
not as straightforward as for a target ground state. Therefore, the e-QEB-ADAPT-VQE is
designed to be less dependent on the choice of an initial reference state. This is achieved
by an ansatz-growing strategy that does not rely on energy-gradient evaluations, but instead
on individual-ansatz-element energy-reduction evaluations. The modified ansatz-growing
strategy comes at a cost of up to a constant factor of more quantum computer measurements
per ansatz-growing iteration, as compared to the QEB-ADAPT-VQE.
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I benchmarked the performance of the e-QEB-ADAPT-VQE by constructing ansätze
for the first excited states of LiH and BeH2. Generally, it was found that the e-QEB-
ADAPT-VQE can construct highly accurate ansätze that require few variational parameters,
and are implemented by short ansatz circuits, similarly to the ansätze constructed by the
QEB-ADAPT-VQE for ground states.

However, it was also found that the e-QEB-ADAPT-VQE might fail to find excited state
energies in order of increasing energy, if the excited states are ordered in closely spaced
degenerate energy levels, and the lower lying excited states are more statically correlated
than the states above them. This issue derives from the fact that the e-QEB-ADAPT-VQE
pursues the greedy strategy to achieve a lowest estimate for the energy at each ansatz-growing
iteration, which results into the protocol being more likely to construct an ansatz for a less
statically correlated state. In fact, this issue will be present in any iterative-VQE protocol that
relies on such a greedy strategy, including all ADAPT-VQE protocols and the IQCC [155].
Nevertheless, this is unlikely to be a significant problem, because in practice one would be
interested in finding the whole spectrum of low lying excited state energies, so the order in
which they are found is not necessarily important.

Lastly, I used the e-QEB-ADAPT-VQE to compare iteratively constructed Q-UCC and
UCC ansätze in approximating excited states. The results supported my previous observations
in Chapters 3 and 4 that UCC ansätze exhibit a slight advantage in terms of accuracy per
number of ansatz elements, when approximating strongly correlated states.



Chapter 6

Conclusion

In this thesis, I derived techniques to reduce the quantum circuit requirements of existing
VQE protocols for molecular modelling, and developed a new protocol, the QEB-ADAPT-
VQE. The QEB-ADAPT-VQE supersedes previous state of the art VQE protocols in terms
of circuit efficiency and convergence speed. Below I summarise my findings and suggest
future directions for research.

6.1 Summary

In Chapter 1 I outlined the current state of quantum computing. I started by summarising
the different models of universal quantum computers. In particular, I considered the most
widely adopted quantum-circuit-based model of a quantum computer, and discussed its
various physical implementations and their corresponding limitations. The bottleneck in the
performance of quantum-circuit computers is the number of quantum gates, in particular
2-qubit entangling gates, that can be performed reliably before quantum errors build up and
destroy any useful amounts of quantum information. This has prompted the development of
hybrid quantum-classical algorithms, in particular the prominent VQE algorithm, that require
shallower quantum circuits and shorter coherence times than purely quantum algorithms.

The VQE is a hybrid quantum-classical algorithm that can estimate the lowest eigenvalue
of a Hermitian operator exponentially faster than any classical algorithm. A promising,
practically useful, application for emerging NISQ computers is molecular modelling using
the VQE. In Chapter 1 we saw how the electronic structure problem, of finding the ground
state energy and wavefunction of a molecule (or any other electron system), can be mapped
to a quantum computer, and then solved by the VQE. The major component of the VQE,
is an ansatz to generate a trial state to approximate the molecular electronic wavefunction.
For a successful implementation of the VQE on NISQ computers the ansatz should be: (1)
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variationally flexible in order to accurately approximate the ground state of the molecule; (2)
easy to optimize; and (3) performed by a shallow quantum circuit. The most commonly used
anätze for molecular modelling with the VQE are the UCC ansätze, which correspond to
products of parametrized evolutions of fermionic excitation operators (fermionic evolutions).
These ansätze are accurate and easy to optimize owing to their fermionic structure.

In Chapter 2 we saw what are the canonical circuits used to implement fermionic evolu-
tions. Stacking such circuits to construct UCC ansätze results in ansatz circuits that, even for
relatively small molecules, greatly exceed the current capabilities of NISQ computers. In
Chapter 2 I derived alternative circuits to implement single and double fermionic evolutions,
optimized in the number of CNOT gates. For this purpose, first I constructed circuits to
implement single and double qubit evolutions, evolutions of qubit excitation operators that
satisfy qubit commutation relations. Then, I expanded the functionality of the qubit evo-
lution circuits to account for fermionic anticommutation, thus obtaining CNOT -optimized
fermionic evolution circuits. Compared to the canonical circuits, the circuits I derived reduce
the CNOT count by between 25% to 50%, and 73% to 87%, for single and double fermionic
evolutions, respectively.

Fermionic evolutions are implemented by circuits that act on a number of qubits, and
require a number of gates, which scale with the system size, defined by the number of
molecular spin-orbitals, Nso. In the Jordan-Wigner qubit encoding these numbers scale as
O(Nso), and in the Bravyi-Kitaev qubit encoding as O(logNso). On the other hand qubit
evolutions are implemented by circuits that act on a fixed, O(1), number of qubits, and
consequently require a fixed, O(1), number of gates, irrespectively of the qubit encoding. In
Chapter 3, I investigated the use of ansätze corresponding to products of qubit evolutions,
termed as Q-UCC, as a means to further reduce the circuit requirements of the VQE. I
performed a comparison between the UCCSD and the Q-UCCSD ansätze by conducting
classical numerical VQE simulations for LiH, H6 and BeH2. The simulation results for LiH
and BeH2 indicated that the two types of ansätze perform equivalently in approximating
electronic wavefunctions. However, for H6, which has a strongly correlated ground state, the
results indicated a slight accuracy advantage for the UCCCSD.

Motivated by the results about the equivalence, in terms of accuracy, of the Q-UCCSD
and the UCCSD ansätze, in Chapter 4 I proposed the qubit-excitation based adaptive (QEB-
ADAPT) VQE protocol for molecular modelling. The QEB-ADAPT-VQE is a VQE protocol
for molecular modelling, which constructs its own problem tailored ansätze by iteratively
appending single and double qubit evolutions. I benchmarked the performance of the QEB-
ADAPT-VQE with classical numerical simulations for LiH, H6 and BeH2. First, I compared
the ansätze constructed by the QEB-ADAPT-VQE against the fixed UCCSD ansatz, and
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demonstrated that the former ansätze are both more accurate and require multiple times fewer
variational parameters, and correspondingly shallower circuits, than the UCCSD. Second, I
compared the QEB-ADAPT-VQE against the original fermionic-ADAPT-VQE and its more
circuit-efficient cousin, the qubit-ADAPT-VQE. The QEB-ADAPT-VQE was up to 4 times
slower than the fermionic-ADAPT-VQE, but much faster than the qubit-ADAPT-VQE. For
low accuracies the qubit-ADAPT-VQE was the most CNOT -efficient protocol. However,
for higher accuracies, and correspondingly larger ansatz circuits, the QEB-ADAPT-VQE
constructed systematically more CNOT -efficient ansätze than both the fermionic-ADAPT-
VQE and qubit-ADAPT-VQE. These results imply that for large molecules the QEB-ADAPT-
VQE is likely to be both faster and more circuit-efficient than the qubit-ADAPT-VQE, which
to my knowledge was the previous most-circuit efficient practically-scalable VQE protocol
for molecular modelling. Therefore, I believe that the QEB-ADAPT-VQE represents the
current state of the art method to determine molecular state energies on a quantum computer.

In Chapter 5, I proposed a modified version of the QEB-ADAPT-VQE, the excited-QEB-
ADAPT-VQE, designed to estimate energies of excited molecular states. Choosing an initial
reference state, which has a large overlap with an unknown target excited state is rarely
possible. Hence, the e-QEB-ADAPT-VQE, unlike the QEB-ADAPT-VQE, was designed
to be less dependent on the choice of an initial reference state, at the cost of requiring up
to a constant factor of more quantum computer measurements. The performance of the
e-QEB-ADAPT-VQE was benchmarked with classical numerical simulations for the excited
states of LiH and BeH2. Generally, the e-QEB-ADAPT-VQE was found to construct ansätze,
which achieve well below chemical accuracy over a range of molecular bond distances.
This implied that the e-QEB-ADAPT-VQE is well suited to approximate excited states.
Moreover, these ansätze required multiple times fewer parameters, and correspondingly
shallower ansatz circuits, than the generalized UCCSD (GUCCSD) ansatz, which could
achieve similar accuracies. However, it was also found that the e-QEB-ADAPT-VQE might
fail to yield molecular state energies in order of increasing energy, if the molecular system
of interest has energy levels that are closely spaced and the corresponding eigenstates have
strong static correlations. Nevertheless, this issue is unlikely to be important in practice if we
are interested in obtaining the whole spectrum of low lying excited states.

I also used the fermionic-ADAPT-VQE, the QEB-ADAPT-VQE and the excited-QEB-
ADAPT-VQE to perform a comparison of iteratively constructed Q-UCC and UCC ansätze.
The ansätze constructed by these ADAPT-VQE protocols consist of close to optimal numbers
of ansatz elements (qubit/fermionic evolutions). Hence, comparing iteratively constructed
Q-UCC and UCC ansätze corresponds to a more thorough comparison of qubit and fermionic
evolutions, than the comparison of the Q-UCCSD and the UCCSD ansätze (Chapter 3), which
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include redundant numbers of qubit and fermionic evolutions, respectively. In Chapter 4, I
compared Q-UCC and UCC ansätze constructed by the QEB-ADAPT-VQE and a modified
version of the fermionic-ADAPT-VQE, respectively, for the ground states of LiH, H6 and
BeH2. The comparison indicated that on average the UCC ansätze are a bit more accurate per
number of ansatz elements than the Q-UCC ansätze, when approximating strongly correlated
states. In Chapter 5 a similar comparison was performed between Q-UCC and UCC ansätze
constructed by the excited-QEB-ADAPT-VQE for the first excited states of LiH and BeH2.
In this case, it was again observed that there is a tendency for the UCC to be slightly more
accurate when approximating strongly correlated states. Another advantage of fermionic
evolutions over qubit evolutions was found to be that the former can efficiently form spin-
complement pairs, owing to their anticommutation structure, whereas the latter cannot. This
feature of fermionic evolutions allows the number of variational parameters of an UCC ansatz
to be roughly halved when spin-conservation must be obeyed by the ansatz. However, in the
era of NISQ computers, these two advantages of fermionic evolutions are outweighed by the
asymptotically better circuit-efficiency of qubit evolutions.

6.2 Further Work

The main result of this thesis is the QEB-ADAPT-VQE protocol. It improves on previous
VQE protocols for molecular modelling in terms of circuit-efficiency and convergence speed.
Nevertheless, there are numerous opportunities to further improve the QEB-ADAPT-VQE.
Below I suggest three such improvements.

First, the ansatz element pool of the QEB-ADAPT-VQE can be expanded to include
non-symmetry-preserving terms as suggested in Ref. [174]. This expanded pool could
improve the speed of convergence and boost the resilience to symmetry-breaking errors of
the QEB-ADAPT-VQE. Second, the methods suggested in Ref. [142] can be incorporated
into the QEB-ADAPT-VQE, to “prune” (remove) from the already constructed ansatz, ansatz
elements that have little contribution to the energy reduction. These methods could further
reduce the size of the constructed ansatz. Third, the ansatz growing strategy of the QEB-
ADAPT-VQE could be entirely replaced by a generalized machine learning routine that
incorporates both, growing and pruning of the ansatz at the same time. Such an upgrade
could result in constructing close to optimal ansätze, in terms of circuit size and number of
variational parameters. Moreover, a machine learning ansatz-growing routine could allow the
QEB-ADAPT-VQE to “learn” how to construct ansätze for new molecules or excited states,
based on previously constructed ansätze for ground states. This could remove the need to
calculate the energy gradients or energy reductions for all ansatz elements at each iteration.
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Another important direction of future work is to study how the QEB-ADAPT-VQE
protocol performs in the presence of noise. For example, quantum noise causes fluctuations
in the energy landscape, with respect to the parameters of an ansatz, which can produce
inaccurate values for the energy gradients required to grow the ansatz of the QEB-ADAPT-
VQE. This can result in constructing an inefficient or/and inaccurate ansatz. Because of
this, the excited-QEB-ADAPT-VQE might turn out to be more suitable for high noise levels,
since it does not rely on evaluating energy gradients. This and other questions related to
the performance of the QEB-ADAPT-VQE in the presence of noise are being investigated
by Zhenghao Li. This investigation will first include classical noisy simulation of the QEB-
ADAPT-VQE, using the CQCC package. Then, depending on the results of the classical
simulation, the QEB-ADAPT-VQE will be benchmarked on real cloud accessible quantum
computers, offered by IBM, IonQ and Rigetti. As a longer-term goal, we also plan to
incorporate error mitigatation [61] methods in the ADAPT-VQE framework.

Lastly, the optimized circuits for qubit and fermionic evolutions, derived in Chapter
2, correspond to local circuit optimization. In Chapter 2, I also referenced several global
optimization methods. It would be interesting to investigate if these global optimization
methods, especially those suggested in Refs. [152, 153], can be applied to reduce even
further the size of the ansatz circuits constructed with the locally optimized qubit or fermionic
evolution circuits derived in Chapter 2.
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Appendix A

Pauli string measurements on a quantum
computer

The expectation value of a Pauli string (a product of Pauli operators) with respect to a qubit
state |ψ⟩ can be directly measured on a quantum computer by a basis rotation followed by a
single-qubit measurement in the Z (computational) basis.

Let us first consider the simplest case of measuring the expectation value of a Z operator
with respect to a normalized single-qubit state |ψ1⟩= a|0⟩+b|1⟩. The matrix representation
of Z is

Z ≡

[
1 0
0 −1

]
. (A.1)

The two eigenstates of Z are |0⟩ with expectation value +1, and |1⟩ with expectation value
−1. Hence, the expectation value of Z is the probability to measure |0⟩ minus the probability
to measure |1⟩:

⟨ψ1|Z|ψ1⟩= |⟨ψ1|0⟩|2 −|⟨ψ1|1⟩|2 = |a|2 −|b|2. (A.2)

The expectation values of an X or a Y Pauli operator can be measured similarly, by an
additional x or y basis rotation, respectively. An x or a y basis rotation can be implemented
by a Had gate or a Rx(

π

2 ) rotation gate, respectively.
Let us now consider the case of measuring the expectation value of a single Pauli-Z

operator acting on qubit 0 , Z0, with respect to a 2-qubit state |ψ2⟩. Now there are two
eigenvectors corresponding to each eigenvalue of Z0: states |00⟩ and |01⟩ where qubit 0 is
in state |0⟩ with eigenvalue +1, and states |10⟩ and |11⟩ where qubit 0 is in state |1⟩ with
eigenvalue −1. Then, the expectation value is

⟨ψ2|Z0|ψ2⟩= |⟨ψ2|00⟩|2 + |⟨ψ2|10⟩|2 −|⟨ψ2|01⟩|2 −|⟨ψ2|11⟩|2 (A.3)
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This can be extended to the case of an n-qubit state, and operator Zi, acting on qubit i, as

⟨ψn|Zi|ψn⟩= ∑ |⟨ψn| . . .0i . . .⟩|2 −∑ |⟨ψn| . . .1i . . .⟩|2, (A.4)

where each sum runs over all 2n−1 computational basis states with qubit i in state |0⟩ or
|1⟩, respectively. The two sums of n-qubit measurement probabilities are equivalent to the
single-qubit measurement probabilities

∑ |⟨ψn| . . .0i . . .⟩|2 = |⟨ψn|0i⟩|2 and (A.5)

∑ |⟨ψn| . . .1i . . .⟩|2 = |⟨ψn|1i⟩|2. (A.6)

Therefore, the expectation value of a single Pauli-Z operator with respect to an n-qubit state
can be obtained by single-qubit measurements on the ith qubit only:

⟨ψn|Zi|ψn⟩= |⟨ψn|0i⟩|2 −|⟨ψn|1i⟩|2 (A.7)

Let us now consider the more interesting case of measuring the expectation value of two
Z operators with respect to a 2-qubit state, |ψ2⟩. The tensor product of the two Z operators is

Z0 ⊗Z1 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (A.8)

Again Z0⊗Z1 has two eigenvalues; +1, corresponding to states with even parity, {|00⟩, |11⟩},
and −1, corresponding to states with odd parity, {|10⟩, |01⟩}. Hence,

⟨ψ2|Z0 ⊗Z1|ψ2⟩= |⟨ψ2|00⟩|2 +P|⟨ψ2|11⟩|2 −|⟨ψ2|10⟩|2 −|⟨ψ2|01⟩|2. (A.9)

This expectation value cannot be obtained directly by measurements on one qubit in the Z
basis only, because the parity of the state is stored non-locally in the two qubits. However, if
we apply a CNOT gate with control qubit 0 and target qubit 1, the parity of the state will be
recorded on qubit 1. Thus, the expectation value will be the probability to measure qubit 1 in
|0⟩ minus the probability to measure qubit 1 in |1⟩:

⟨ψ2|Z0 ⊗Z1|ψ2⟩= |⟨01|CNOT01|ψ2⟩|2 −|⟨11|CNOT01|ψ2⟩|2 (A.10)
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|0⟩

U|ψ⟩

Had •

|0⟩ Rx(
π

2 ) •

|0⟩

Fig. A.1 Circuit to measure the expectation value ⟨ψ|X0 ⊗Y1 ⊗ Z2|ψ⟩. The unitary Uψ

prepares the state |ψ⟩.

The eigenvalues of a string of l Pauli-Z operators, Z0⊗Z1⊗ . . .⊗Zl−1, are also either +1
or −1, corresponding to even and odd parity eigenstates, respectively. Therefore, the expec-
tation value of Z0 ⊗Z1 ⊗ . . .⊗Zl−1, with respect to an n-qubit state |ψn⟩ is the measurement
probability that qubits {0, . . . , l −1} have even parity minus the measurement probability
that qubits {0, . . . , l −1} have odd parity.

We can use a staircase of (l − 1) CNOT s to record the parity of qubits {0, . . . , l −1}
on, say, qubit l −1 (see Sec. 2.1.2). In this way the expectation value ⟨ψn|Z0 ⊗Z1 ⊗ . . .⊗
Zl−1|ψn⟩ can be obtained by determining the measurement probabilities for qubit (l − 1)
only:

⟨ψn|Zq0 ⊗Zq1 ⊗ . . .⊗Zql−1|ψn⟩= |⟨ψn|
l−2⊗
k=0

CNOTk,k+1|0l−1⟩|2−|⟨ψn|
l−2⊗
k=0

CNOTk,k+1|1l−1⟩|2

(A.11)
The expectation value of any string of Pauli operators can be measured in a similar way,

by additional single qubit basis rotations, applied before the CNOT staircase (see the example
in Fig. A.1).





Appendix B

Pauli-string-exponential circuit

An exponential of a Pauli string can be directly implemented as a quantum circuit. To
see how, let us first consider the case of constructing a circuit for exp

[
iθZ0

]
. The matrix

representation of the action of this exponential on a single qubit state is

exp
[
iθZ0

]
=

∞

∑
k=0

(iθ)k

k!

[
1 0
0 −1

]k

=

[
eiθ 0
0 e−iθ

]
, (B.1)

which corresponds, up to a global phase, to a single-qubit z-rotation gate, Rz(−2θ).
Let us now consider exp

[
iθZ0Z1

]
. The matrix representation of the action of this

exponential on the state of 2 qubits is

exp
[
iθZ0Z1

]
=

∞

∑
k=0

(iθ)k

k!


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


k

= eiθ


1 0 0 0
0 e−2iθ 0 0
0 0 e−2iθ 0
0 0 0 1

 . (B.2)

The odd parity states, |10⟩ and |01⟩, pick up a phase difference of e−2iθ with respect to the
even parity states, |00⟩ and |11⟩. This unitary action can be implemented by the circuit in Fig.
B.1. The first CNOT computes and records the parity of the 2-qubit state on qubit 1. Hence,
the Rz(−2θ) gate on qubit 1 adds a positive phase eiθ to the states that had initial even parity,
and negative phase e−iθ to the states that had initial odd parity. The second CNOT recovers
the original states, but with an additional phase of e±iθ depending on their parity.

Following from Eq. (B.2), it is straightforward to see that the action of an exponential of
a string of l Pauli Z operators, exp

[
iθZ0 . . .Zl−1

]
, is to add a positive phase eiθ to states of
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|q0⟩ • •

|q1⟩ Rz(−2θ)
.

Fig. B.1 A circuit to implement the exponential exp
[
iθZ0Z1

]
even parity, and a negative phase e−iθ to states of odd parity:

exp
[
iθZ0 . . .Zl−1

]
=

2l−1

∑
x=0

exp
[
i(−1)Par(x)

θ
]
|x⟩⟨x|, (B.3)

where Par(x) denotes the parity of the binary representation of x. Therefore, the circuit in
Fig. B.1 can be expanded as in Fig. B.2 to implemented exp

[
iθZ0 . . .Zl−1

]
. This type of a

circuit, consisting of two CNOT staircases and a Rz rotation sandwiched in between them,
is referred to as a CNOT staircase construction. The first sequence (staircase) of (l − 1)
CNOT s computes and records the parity of the l-qubit state on qubit l −1. Hence, similarly
to the case of 2-qubits, the Rz(−2θ) rotation adds a positive phase eiθ to the states of even
initial parity, and negative phase e−iθ to the states of odd initial parity. The second CNOT
staircase recovers the original states, with their corresponding phase shifts.

|q0⟩ • •

|q1⟩ • •
...

...
...

|ql−2⟩ • •

|ql−1⟩ Rz(−2θ)

Fig. B.2 A circuit to implement the exponential exp
[
iθZ0 . . .Zl−1

]
. This type of a circuit is

referred to as a CNOT staircase construction.
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An exponential of an arbitrary Pauli string can be expressed in terms of an exponential of
a Z-Pauli string as

exp
[
iθX0Y1Z2 . . .

]
=

∞

∑
k=0

(iθ)k

k!
(X0Y1Z2 . . .)

k =

∞

∑
k=0

(iθ)k

k!
Had0Rx(

π

2
)1(Z0Z1Z2 . . .)

kRx(
−π

2
)1Had0 =

Had0Rx(
π

2
)1 exp

[
iθZ0Z1Z2 . . .

]
Rx(

−π

2
)1Had0. (B.4)

Hence, a circuit implementing an exponential of an arbitrary Pauli string can be constructed
by additional single-qubit basis rotations to the circuit in Fig. B.2. A circuit to implement
the exponential exp

[
iθX0Y1Z2

]
is given as an example in Fig. B.3

|q0⟩ Had • • Had

|q1⟩ Rx(
π

2 ) • • Rx(−π

2 )

|q2⟩ Rz(−2θ)

Fig. B.3 A circuit to implement the exponential exp
[
iθX0Y1Z2

]
.





Appendix C

The Cavendish Quantum Computational
Chemistry package

The Cavendish Quantum Computational Chemistry (CQCC) package1 is an in-house software
that incorporates existing quantum computational packages, and a fast custom statevector
simulator, into a platform intended to simulate and study of the performance of VQE protocols
for electronic system modelling. The CQCC includes:

1. Transforming Hamiltonians of electronic systems to second-quantized form, and
mapping them to quantum gate operator or matrix representation

2. Constructing custom ansätze in the form of QASM strings and unitary matrices

3. Constructing custom ansatz elements, e.g. qubit/fermionic evolutions and Pauli string
evolutions, for ADAPT-VQE protocols

4. Running the VQE, given an electronic Hamiltonian, an ansatz and a classical optimizer.

5. Implementation of ADAPT-VQE protocols with a custom ansatz element pool, and an
ansatz-growing strategy

6. Evaluating expectation values of unitary operators, using a fast custom statevector
simulator, a quantum computer shot simulator, implemented by Qiskit [151], or one of
IBM’s cloud accessible quantum computing devices [44]

The various Hamiltonian transformations are implemented using the openfermion[175]
and psi4[176] packages .

1Available at: https://github.com/JordanovSJ/VQE
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The classical optimizers are implement by the scipy[177] package. For the majority of
simulations presented in the thesis the gradient-descent BFGS [157] or the direct-search
Nelder-Mead [163] methods are used. Optionally, gradient descent optimizers are supplied
with a function that calculates the energy gradient vector of the ansatz. This function is
described in Sec. C.2.

The CQCC offers three methods to evaluate the various expectation values required by
VQE protocols: (1) a custom-built fast statevector simulator (see Sec. C.1), which explicitly
evaluates the qubit statevector, and then calculates the exact expectation value as a matrix
product; (2) a shot simulator, implemented by Qiskit [151], which simulates the operation
of a quantum computer; and (3) a cloud connection to one of IBM’s quantum computers.
The simulations presented in the thesis are noiseless and are obtained with the statevector
simulator.

C.1 The CQCC statevector simulator

Calculating qubit statevectors is the most computationally expensive and time consuming
process in numerical classical VQE simulations. The statevector simulator, used by the
CQCC, is specifically designed to efficiently calculate statevectors that are generated by
ansätze that correspond to products of exponentials of (fermionic/qubit) excitation operators.

Let us consider an ansatz U (⃗θ) = ∏
1
i=NU

eθiAi , where {Ai} are qubit/fermionic excitation
operators. Excitation operators are anti-Hermitian operators so they satisfy

A†
i =−Ai. (C.1)

Additionally, excitation operators satisfy the relation

A3
i =−Ai. (C.2)

Let |ψ (⃗θ)⟩ is a state generated by U (⃗θ), acting on an initial reference state |ψ0⟩:

|ψ (⃗θ)⟩=U (⃗θ)|ψ0⟩=
1

∏
i=NU

eθiAi|ψ0⟩. (C.3)

To calculate the statevector |ψ (⃗θ)⟩, we need to calculate the NU exponentials {eθiAi} in
Eq. (C.3), and then multiply them sequentially to the statevector |ψ0⟩. For Nso qubits, each
Ai is represented by an 2Nso ×2Nso-dimensional matrix. Hence, the complexity of directly
calculating each exponential eθiAi is O(23Nso) [178]. However, we can make use of relation
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(C.2) and write each exponential in Eq. (C.3) as

eθiAi =
∞

∑
k=0

θ k
i Ak

i
k!

= I +
∞

∑
k1=0

(−1)k1θ
2k1+1
i

(2k1 +1)!
Ai +

∞

∑
k2=1

(−1)k2θ
2k2
i

(2k2)!
A2

i = (C.4)

I + sinθAi +(1− cosθ)A2
i . (C.5)

The operators {Ai} are fixed throughout a simulation. Therefore, if we compute in advance
and store the matrix representations of each Ai and A2

i , we can evaluate the expression in Eq.
(C.4) by performing matrix addition only, which has a complexity of O(22Nso). Hence, the
calculation of |ψ (⃗θ)⟩, requires NU matrix-to-vector multiplications and NU matrix additions,
which have a total complexity of O(NU 22NMO).

Using this method, the statevector simulator of the CQCC is approximately 20 faster than
the Qiskit statevector simulator for 14 qubits (BeH2). However, the method has a drawback in
that it needs to store the matrices for all Ai and A2

i operators. For example, the most memory
demanding simulation in this work, running the qubit-ADAPT-VQE for BeH2, required
around 2GB of RAM to store the matrices for all Pauli string operators, and their squares,
that define the ansatz element pool of the qubit-ADAPT-VQE (see Sec. 4.2.2).

C.2 Energy-gradient vector of an ansatz

When using a gradient-descent minimizer, e.g. the BFGS [157], we have the option to
supply a method that returns the gradient vector of the minimized function. If the minimized
function is differentiable, supplying a gradient vector guarantees a faster optimization of the
variational parameters.

Let us consider minimizing the Hamiltonian expectation value E (⃗θ) = ⟨ψ (⃗θ)|H|ψ (⃗θ)⟩,
where the statevector is

|ψ (⃗θ)⟩=U (⃗θ)|ψ0⟩=
1

∏
i=NU

eθiAi|ψ0⟩. (C.6)

Similarly to above, {Ai} are skew-hermitian operators that correspond to qubit/fermionic
excitation operators or Pauli strings. The ith component of the energy gradient vector, ∇∇∇E (⃗θ),
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can be expressed as

∇∇∇iE (⃗θ) =
∂

∂θi
⟨ψ (⃗θ)|H|ψ (⃗θ)⟩=

∂

∂θi
⟨ψ0|

k1=NU

∏
1

eθk1A†
k1 H

1

∏
k2=NU

eθk2 Ak2 |ψ0⟩=

⟨ψ (⃗θ)|H
i+1

∏
k1=Nu

eθk1 Ak1 Ai

1

∏
k1=i

eθk2Ak2 |ψ0⟩+ ⟨ψ0|
i

∏
k1=1

eθk1 A†
k1 A†

i

NU

∏
k1=i+1

eθk2 A†
k2 |H|ψ (⃗θ)⟩=

2⟨αi(⃗θ)|Ai|βi(⃗θ)⟩,
(C.7)

where

|βi(⃗θ)⟩=
1

∏
k=i

eθkAk |ψ0⟩ and (C.8)

|αi(⃗θ)⟩=
Nu

∏
k=i+1

eθkA†
k H|ψ (⃗θ)⟩. (C.9)

The NU components of ∇∇∇E(θθθ) can be calculated with minimum number of matrix multipli-
cations by updating |βi(⃗θ)⟩ and |αi(⃗θ)⟩ in the following way:

1. For i = NU , initiate
|αNU (⃗θ)⟩= H|ψ (⃗θ)⟩ and (C.10)

|βNU (⃗θ)⟩= |ψ (⃗θ)⟩ (C.11)

2. For 1 < i < NU , update

|αi−1(⃗θ)⟩= eθiA
†
i |αi(⃗θ)⟩ and (C.12)

|βi−1(⃗θ)⟩= (eθiAi)−1|βi(⃗θ)⟩= eθiA
†
i |βi(⃗θ)⟩, (C.13)

where in Eq. (C.13), we use that Ai is skew-Hermitian (A†
i =−Ai).

Let us assume that we have already computed and stored the matrices of the exponentials
{eθiAi}, when calculating the statevector |ψ (⃗θ)⟩. Hence, to calculate each component of
∇∇∇E (⃗θ) we need to perform 3 matrix-to-vector multiplications. Thus, overall to calculate
∇∇∇E (⃗θ) we need to perform 3NU matrix-to-vector multiplications, resulting in a total cost of
O(3NU 22NMO) operations.

The cost of calculating ∇∇∇E (⃗θ) is about 3 times the cost of calculating |ψ (⃗θ)⟩. However,
using the energy-gradient vector in the optimization subroutine of the VQE, reduces the
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number of VQE iterations by at least an order of magnitude, which justifies the use of the
energy-gradient vector.

The energy-gradient vector of an ansatz can also be calculated using a quantum computer.
Each component of ∇∇∇E (⃗θ) can be obtained by explicitly measuring the expectation value
in Eq. (C.7). The most efficient way to do this, in terms of circuit-depth, is to measure the

overlap of
(

∏
Nu
k=i+1 eθkA†

k

)†
Ai ∏

1
k=i eθkAk |ψ0⟩ and H|ψ (⃗θ)⟩, using the SWAP test [171]. This

would require a circuit with maximum depth roughly equal to the depth of the ansatz circuit
generating |ψ (⃗θ)⟩, and 2Nso qubits.





Appendix D

Additional results and simulation data

D.1 Energy convergence data
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iteration E element var_parameters
0 1 -7.877119623435884 d_q_exc_[2, 3]_[10, 11] -0.11031109472387213
1 2 -7.878915001650162 d_q_exc_[2, 3]_[5, 10] 0.05700525215310389
2 3 -7.880581566203068 d_q_exc_[2, 3]_[4, 11] -0.05737310731341327
3 4 -7.880668708374632 d_q_exc_[0, 1]_[4, 5] -0.003928578568135717
4 5 -7.8812514499854585 d_q_exc_[2, 3]_[6, 7] -0.028015551814893413
5 6 -7.881806943859643 d_q_exc_[2, 3]_[8, 9] -0.028026661663886527
6 7 -7.882217915759775 d_q_exc_[2, 3]_[4, 5] -0.03138833150495772
7 8 -7.882233950748895 d_q_exc_[0, 1]_[8, 9] -0.001959697647985118
8 9 -7.882249868462785 d_q_exc_[0, 1]_[6, 7] -0.001959583309577129
9 10 -7.882270611904488 d_q_exc_[1, 2]_[6, 7] -0.0035499803675991416
10 11 -7.882291346534323 d_q_exc_[0, 3]_[8, 9] 0.0034230829074340914
11 12 -7.882311595621427 d_q_exc_[0, 3]_[6, 7] 0.003423409616028284
12 13 -7.882331839546545 d_q_exc_[1, 2]_[8, 9] -0.003550533798326349
13 14 -7.88233763339666 d_q_exc_[0, 1]_[10, 11] -0.0011497317831317589
14 15 -7.882541770888251 s_q_exc_2_4 -0.03850398164110951
15 16 -7.882724374672856 s_q_exc_3_5 0.03883460917281597
16 17 -7.882739715836327 s_q_exc_2_10 0.005798213133724907
17 18 -7.8827420181984005 d_q_exc_[1, 2]_[4, 11] 0.0009570729120199658
18 19 -7.8827443222474765 d_q_exc_[0, 3]_[5, 10] 0.000956659940102136
19 20 -7.882746119842321 d_q_exc_[1, 3]_[5, 11] 0.013899535004236947
20 21 -7.882747912380555 d_q_exc_[0, 2]_[4, 10] 0.0029821381122755036
21 22 -7.882748761684853 s_q_exc_1_11 -0.0005236492575660854
22 23 -7.882749474720335 s_q_exc_0_10 0.0005144177367431057
23 24 -7.882749790026824 d_q_exc_[1, 2]_[10, 11] -0.0002927907900392912
24 25 -7.88275005649819 d_q_exc_[0, 3]_[10, 11] 0.0002970333290100582
25 26 -7.882751665773464 s_q_exc_3_11 -0.002114870567031991
26 27 -7.882751834270224 s_q_exc_1_5 -0.0002912486350685454
27 28 -7.882751886532499 d_q_exc_[0, 1]_[4, 11] -4.6102121494920244e-05
28 29 -7.882752009391789 d_q_exc_[1, 2]_[4, 5] -0.008651612377156632
29 30 -7.882752058562675 d_q_exc_[0, 1]_[5, 10] 0.0003097995650207747
30 31 -7.8827521621056755 d_q_exc_[0, 3]_[4, 5] 0.011379025673876449
31 32 -7.88275226100295 s_q_exc_0_4 -0.009221817747341363

Table D.1 Simulation data for an energy convergence plot for LiH. The simulation parameters
are summarised in the table below. Pairs of rows of the same colour indicate spin-complement
pairs of qubit-evolutions that are appended at either adjacent or close positions in the ansatz.

molecule SO-basis bond distance state method method params
LiH STO-3G rLi−H = 1.546 ground QEB-ADAPT nqe = 1, step 5 NOT performed
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iteration E element var_parameters
0 1 -7.877119623435893 d_q_exc_[2, 3]_[10, 11] -0.11033939450288231
1 2 -7.880581566203079 d_q_exc_[2, 3]_[5, 10] 0.05698398343753387
2 2 -7.880581566203079 d_q_exc_[3, 2]_[4, 11] -0.05732520809517464
3 3 -7.880668708374645 d_q_exc_[0, 1]_[4, 5] -0.003915773378408674
4 4 -7.881251449985466 d_q_exc_[2, 3]_[8, 9] -0.028010049292039194
5 5 -7.881806943859642 d_q_exc_[2, 3]_[6, 7] -0.028021169417229225
6 6 -7.882217915759778 d_q_exc_[2, 3]_[4, 5] -0.03139017108753022
7 7 -7.882233950748927 d_q_exc_[0, 1]_[6, 7] -0.0021217090274751787
8 8 -7.882249868462803 d_q_exc_[0, 1]_[8, 9] -0.002121319516193217
9 9 -7.8822911540293825 d_q_exc_[0, 3]_[8, 9] 0.003421147814629044
10 9 -7.8822911540293825 d_q_exc_[1, 2]_[9, 8] -0.0035506035220592117
11 10 -7.882331839546547 d_q_exc_[0, 3]_[6, 7] 0.00342135193510341
12 10 -7.882331839546547 d_q_exc_[1, 2]_[7, 6] -0.003551072945642547
13 11 -7.882337633396636 d_q_exc_[0, 1]_[10, 11] -0.0012290844228192265
14 12 -7.882724374672847 s_q_exc_2_4 -0.038528581457990416
15 12 -7.882724374672847 s_q_exc_3_5 0.03897971049612066
16 13 -7.882741306974246 s_q_exc_2_10 0.005755202876815314
17 13 -7.882741306974246 s_q_exc_3_11 -0.001639538099921524
18 14 -7.882745931382006 d_q_exc_[1, 2]_[4, 11] 0.0009570458644833416
19 14 -7.882745931382006 d_q_exc_[0, 3]_[5, 10] 0.0009569066935167765
20 15 -7.8827495281959985 d_q_exc_[1, 3]_[5, 11] -0.008857527398217522
21 15 -7.8827495281959985 d_q_exc_[0, 2]_[4, 10] 0.003423331219033033
22 16 -7.8827510818421995 s_q_exc_1_11 -0.0005276571447948891
23 16 -7.8827510818421995 s_q_exc_0_10 0.0005196832728877846
24 17 -7.882751664140968 d_q_exc_[1, 2]_[10, 11] -0.0002950990563134189
25 17 -7.882751664140968 d_q_exc_[0, 3]_[11, 10] 0.0002984848527454705
26 18 -7.882751942117987 s_q_exc_1_5 -0.016264238078149616
27 18 -7.882751942117987 s_q_exc_0_4 -0.011827197819832056
28 19 -7.882752044478731 d_q_exc_[0, 1]_[4, 11] -9.446949692716319e-05
29 19 -7.882752044478731 d_q_exc_[1, 0]_[5, 10] 0.00045161967586454315
30 20 -7.882752261018141 d_q_exc_[1, 2]_[4, 5] -0.008672994688781101
31 20 -7.882752261018141 d_q_exc_[0, 3]_[5, 4] -0.0002443567211394347
32 21 -7.8827523380554085 d_q_exc_[0, 3]_[4, 11] -0.000381069865828933
33 21 -7.8827523380554085 d_q_exc_[1, 2]_[5, 10] 5.7151669729966596e-05

Table D.2 Simulation data for an energy convergence plot for LiH. The simulation parameters
are summarised in the table below.

molecule SO-basis bond distance state method method params
LiH STO-3G rLi−H = 1.546 ground QEB-ADAPT nqe = 1, step 5 performed
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iteration E element var_parameters
1 1 -15.566756541415858 spin_d_q_exc_[4, 5]_[10, 11] -0.0365422971177455
2 2 -15.569262535720876 spin_d_q_exc_[4, 5]_[12, 13] -0.010788079384711477
3 3 -15.572885374947806 spin_d_q_exc_[2, 3]_[10, 11] -0.05769017655578784
4 4 -15.575574310943724 spin_d_q_exc_[2, 3]_[8, 9] -0.029069596900987475
5 5 -15.578106252821492 spin_d_q_exc_[2, 3]_[6, 7] -0.029122216025795986
6 6 -15.582672418985373 spin_d_q_exc_[3, 4]_[11, 12] -0.7103254767463593
7 7 -15.583820316263392 spin_d_q_exc_[2, 3]_[12, 13] -0.0584229021059216
8 8 -15.588907810928106 spin_d_q_exc_[2, 5]_[10, 13] -0.04614373906725295
9 9 -15.591462440717539 spin_d_q_exc_[2, 5]_[11, 12] 0.05957457991923902
10 10 -15.594260856812149 spin_d_q_exc_[3, 4]_[10, 13] 0.059524516230038925
11 11 -15.594302831067278 spin_d_q_exc_[0, 1]_[10, 11] -0.0005412304122581799
12 12 -15.594338503692283 spin_d_q_exc_[0, 1]_[12, 13] -0.00045017692821196724
13 13 -15.594358985691448 spin_d_q_exc_[0, 1]_[6, 7] -0.0008794528673684362
14 14 -15.594379267137636 spin_d_q_exc_[0, 1]_[8, 9] -0.0008784845650083714
15 15 -15.594423360314249 spin_d_q_exc_[1, 2]_[8, 9] 0.0038771748286376296
16 16 -15.594466984266408 spin_d_q_exc_[1, 2]_[6, 7] 0.0038357052194273222
17 17 -15.594509469940203 spin_d_q_exc_[0, 3]_[6, 7] -0.00011680454200448313
18 18 -15.594551506809633 spin_d_q_exc_[0, 3]_[8, 9] -0.00012006913743716484
19 19 -15.59459978746691 spin_d_q_exc_[3, 5]_[11, 13] 0.9091534952632134
20 20 -15.5946516602168 spin_d_q_exc_[2, 4]_[10, 12] 0.019832660453935363
21 21 -15.594660647475756 spin_d_q_exc_[0, 3]_[12, 13] 0.002256746002918719
22 22 -15.594669557248602 spin_d_q_exc_[1, 2]_[12, 13] -0.021407917876685743
23 23 -15.594746643416066 spin_s_q_exc_10_2 -0.019205764184440914
24 24 -15.594822475160214 spin_s_q_exc_11_3 -0.0030174286489695183
25 25 -15.59482545054788 spin_d_q_exc_[0, 3]_[10, 11] -0.026617575562520097
26 26 -15.594828399050765 spin_d_q_exc_[1, 2]_[10, 11] -0.017398718739672303
27 27 -15.594842129303547 spin_s_q_exc_13_5 -0.008649017103510407
28 28 -15.594855756479141 spin_s_q_exc_12_4 0.00633965849679309
29 29 -15.594859484903104 spin_d_q_exc_[4, 5]_[6, 7] -0.010677556956574902
30 30 -15.594863000847486 spin_d_q_exc_[4, 5]_[8, 9] -0.010644681862704633
31 31 -15.594864375801164 spin_d_q_exc_[0, 5]_[10, 13] 0.001434854392674299
32 32 -15.594865564156931 spin_d_q_exc_[0, 5]_[11, 12] 0.0032172172894219388

Table D.3 Simulation data for an energy convergence plot for BeH2. The simulation pa-
rameters are summarised in the table below. Pairs of rows of the same colour indicate
spin-complement pairs of qubit-evolutions that are appended at either or adjacent or close
positions in the ansatz.

molecule SO-basis bond distance state method method params
BeH2 STO-3G rLi−H = 1.316 ground QEB-ADAPT nqe = 1, step 5 NOT performed
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D.2 Energy convergence plots
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Fig. D.1 Energy convergence plots for the ground states of LiH, H6 and BeH2 in the STO-3G
orbital basis set, at bond distances rLi-H = 3Å, rH−H = 3Å and rBe-H = 3Å. Blue plots are
obtained with the QEB-ADAPT-VQE for nqe = 1. Red plots are obtained with the fermionic-
ADAPT-VQE. Green plots are obtained with the qubit-ADAPT-VQE. All convergence plots
are terminated for energy decrease threshold of ε = 10−12. a,b,c Accuracy as function of
ansatz-constructing iterations. d,e,f Accuracy as function of ansatz parameters (the number of
parameters is the same as the number of ansatz-constructing for the fermionic-ADAPT-VQE
and the qubit-ADAPT-VQE). g,h,i Accuracy as function of ansatz circuit CNOT count. The
CNOT counts are calculated assuming the use of the circuits derived in Chapter 2.
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Appendix E

Double-fermionic-evolution circuit

H • • H H • • H . . .

H • • H H • • H . . .

• • • • . . ....
...

...
...• • • • . . .

Rx(
π

2 ) • • Rx(−π

2 ) H • • H . . .

H Rz(−θ

4 ) H Rx(
π

2 ) Rz(−θ

4 ) Rx(−π

2 ) . . .

H • • H Rx(
π

2 ) • • Rx(−π

2 ) . . .

Rx(
π

2 ) • • Rx(−π

2 ) H • • H . . .

• • • • . . ....
...

...
...• • • • . . .

Rx(
π

2 ) • • Rx(−π

2 ) Rx(
π

2 ) • • Rx(−π

2 ) . . .

Rx(
π

2 ) Rz(−θ

4 ) Rx(−π

2 ) Rx(
π

2 ) Rz(−θ

4 ) Rx(−π

2 ) . . .

H • • H Rx(
π

2 ) • • Rx(−π

2 ) . . .

Rx(
π

2 ) • • Rx(−π

2 ) H • • H . . .

• • • • . . ....
...

...
...• • • • . . .

H • • H H • • H . . .

H Rz(
θ

4 ) H H Rz(
θ

4 ) H . . .

Rx(
π

2 ) • • Rx(−π

2 ) Rx(
π

2 ) • • Rx(−π

2 )

Rx(
π

2 ) • • Rx(−π

2 ) Rx(
π

2 ) • • Rx(−π

2 )

• • • •...
...

...
...• • • •

H • • H Rx(
π

2 ) • • Rx(−π

2 )

Rx(
π

2 ) Rz(
θ

4 ) Rx(
π

2 ) H Rz(
θ

4 ) H

Fig. E.1 A standard circuit to perform a double fermionic evolution [Eq. (2.5)].
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