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Abstract

An electron spin confined to a self-assembled quantum dot presents itself

as a natural candidate for the node of a quantum network, offering a highly

coherent interface between a solid-state spin and an optical photon. Crucial

to the construction of such a network will be the exploitation of the long-lived

coherence of the surrounding environment of nuclear spins. This dissertation

presents a series of experiments which address some of the challenges of

exploiting quantum dots for quantum technologies.

First, we implement a new technique for performing coherent control of

a spin confined to a quantum dot, achieving the highest control fidelity ever

reported in this type of system. The technique is fully flexible, meaning that

we can programmatically design control sequences of arbitrary complexity.

Next, we use this control technique to mitigate the unwanted effects

of the nuclear spin environment on the electron spin. We show that we

can tune the rate of coupling to the nuclei, allowing us to protect a known

quantum state stored on the electron spin by taking it out of resonance with

environmental modes.

We then show that we can resolve collective spin-wave modes of the

nuclei, each associated with a single spin flip distributed among the ensem-

ble. By probing the coupling frequency between the electron spin and these

nuclear modes, we show how to extract information about the population

distribution of the nuclear ensemble across its single-particle spin-states. In

our case, this procedure reveals the presence of entanglement within the

nuclei, manifesting itself as a many-body dark state.



Finally, we perform the first spin-control experiments of an electron spin

confined to an optically active gallium arsenide quantum dot. We demon-

strate coherent control of an electron spin, and probe its coherence via free

induction decay and Hahn-echo spectroscopy.

The scientific insights and technical knowledge gained from this work

could enable the construction of a quantum dot system consisting of a qubit

(an electron spin) and a high-fidelity, in situ quantum memory (the en-

semble of nuclear spins). This leads towards the assembly of a physically

distributed, coherently connected array of quantum dots: a quantum net-

work.

iv



Declaration

This dissertation is the result of my own work and includes nothing

which is the outcome of work done in collaboration except as declared in

the Preface and specified in the text.

It is not substantially the same as any that I have submitted, or, is being

concurrently submitted for a degree or diploma or other qualification at the

University of Cambridge or any other University or similar institution except

as declared in the Preface and specified in the text. I further state that no

substantial part of my dissertation has already been submitted, or, is being

concurrently submitted for any such degree, diploma or other qualification

at the University of Cambridge or any other University or similar institution

except as declared in the Preface and specified in the text.

It does not exceed the prescribed word limit of 60,000 words, including

abstract, tables, footnotes, and appendices.

Jonathan H. Bodey

July 2021

v



Acknowledgements

The work contained in this dissertation is the culmination of almost 4

years of collective efforts, and some thanks are due to those who made it

happen.

Firstly, I want to thank my supervisor, Prof. Mete Atatüre, for giving
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Chapter 1

Introduction

In recent decades since the introduction of Erwin Schrödinger’s founda-

tional wave equation for particles [1], the fundamentally quantum nature

of the world has consistently been supported by several keystone discover-

ies [2–7]. More recently, the study of many-body systems governed by quan-

tum laws [8, 9] has motivated the development of a technique to simulate

their behaviour. Quantum physics can be exploited for this task by assem-

bling large-scale entangled states of coherent quantum objects [10]. These

objects are often two-level systems, referred to as quantum bits or qubits

accordingly [11]. Distributed entanglement is emerging as an extremely pow-

erful resource, providing novel routes to information processing and secure

communication [12–15]. These two avenues are elegantly combined under

the quantum internet - a physically distributed network of coherently con-

nected quantum bits [16].

Early work towards assembling a quantum network centred on single

atoms [17] and ions [18–20], thanks in part to their outstanding environ-
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mental isolation. More recently, highly sophisticated design and fabrication

have enabled the study of local (single chip) networks of qubits housed on

superconducting circuits [21–24] and in defects in silicon [25, 26]. However,

the construction of a spatially distributed quantum network relies on both

scalability and efficient interface with photonic channels. This dual require-

ment brings solid-state quantum emitters - where a defect in a crystalline

structure supports optical excitation - into the limelight [27]. There are

many such systems, including atomic defects in diamond [28], emitters in

two-dimensional materials [29], and single charges in semiconductors [30],

each with its own unique advantages and challenges.

The platform for this dissertation will be a mesoscopic defect (105 atoms)

of indium-gallium arsenide embedded in a gallium arsenide bulk. Since the

defect has a smaller bandgap than the bulk, this can give strong confine-

ment of a resident electron, quantising its energy spectrum. This structure,

known as a quantum dot (QD), can have a very strong interaction with

light, allowing for measurement and control of a confined spin. Whilst these

spins themselves have been proposed as a platform for quantum information

processing [31–33], the best-in-class spin-photon interface makes the QD an

attractive candidate for the source of entangled states of photons [34–37],

and for the node of a quantum network. Several landmark capabilities on the

road towards these end goals have been demonstrated, including spin initial-

isation [38–40], coherent manipulation [41–43], single-shot readout [44, 45],

spin-photon [46–48] and spin-spin [49, 50] entanglement. Despite this spec-

tacular progress, there remain several challenges which must be addressed

to allow QDs to fulfil their promise as quantum network nodes.

This dissertation will present experiments which focus on addressing

some of these challenges. First, in Chapter 2, we will outline the state of
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play for InGaAs QDs, alongside the techniques and equipment which we

will employ throughout the work. In Chapter 3, we develop a new tech-

nique for manipulating a single spin confined to a QD. The advantages of

this technique over the previous state-of-the-art allow us to implement ar-

bitrary control sequences, which we use in Chapter 4 to protect a known

quantum state from decoherence. We further use this technique to tune the

interaction between a confined electron spin and its environment of nuclear

spins, which in Chapter 5 allows us to probe the state of these nuclei, reveal-

ing the presence of many-body quantum correlations. Chapter 6 presents

work developing spin control in a new generation of samples, allowing us to

probe their spin coherence for the first time. Finally, Chapter 7 concludes

the dissertation, and gives some brief perspectives on future experiments.
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Chapter 2

InGaAs Quantum Dots:

Methods and Phenomena

Modern semiconductor growth techniques and apparatus, notably molec-

ular beam epitaxy [51, 52], have allowed for the production and study of

highly sophisticated semiconductor structures. These include self-assembled

quantum dots (QDs), consisting of a mesoscopic defect embedded in a bulk

semiconductor. If this defect is chosen to have a smaller band gap than

the bulk, its energy structure will resemble a trap and allow confinement of

charges [53–57].

This condition is met by indium gallium arsenide QDs [58] embedded in

a gallium arsenide/aluminium gallium arsenide structure, and this system

will be the initial focus of this report. The size and shape of the InGaAs

defect give, to a very good approximation, zero-dimensional confinement

and the structure is then able to house a selection of bound states [59], the

most important of which include single charges, neutral excitons, and singly
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charged excitons. These bound states are described by a discrete energy

spectrum, giving the QD its alternative name: artificial atom [60–62]. The

solid-state nature of a QD, however, means that the physics governing its

behaviour is far richer than for a corresponding isolated atom [63].

2.1 Sample structure

InGaAs QDs form spontaneously during Molecular Beam Epitaxy, under a

process known as Stranski-Krastanov growth [64, 65]. The 6% mismatch in

lattice parameter between InAs and GaAs means that when growing InAs on

a GaAs substrate, the interface is strained. After ∼ 1.6 monolayers of InAs

have been grown, further InAs prefers to nucleate into islands on top of this

original layer of InAs (which is termed the “wetting layer”) [66–71]. These

islands measure around 20nm in diameter and 5nm in height; strongest

confinement is along the growth axis. The QDs are capped with further

GaAs to prevent oxidisation and interaction with surface states, and we

are left with randomly distributed array of InAs clusters made of 104 − 105

atoms.

When designing a structure in which to house our QDs, shown in Fig.

2.1 (a), some important considerations are taken into account. Firstly, since

the QDs are to be addressed using optics, it is important to maximise the

quality of their already excellent optical interface to allow the collection of

as many emitted photons as possible. To this end, the QDs are grown on

top of a distributed Bragg reflector (DBR) [72], which allows collection of

downwardly emitted photons. Placing the QDs at λ(2n+1)
4 above the DBR

ensures constructive interference between photons which reflect from the

DBR and photons which are originally emitted upwards by the QD. In ad-
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dition, the difference in refractive index of GaAs and air [73] can cause total

internal reflection of photons at the sample surface [74]. To mitigate this

we top the structure with a super-hemispherical (also called “Weierstrass”)

Zirconia solid immersion lens (SIL), giving smaller jumps in refractive index

at the interfaces and enhancing collection efficiency [75–77]. The shape of

the SIL also serves to funnel photons towards the vertical emission direction.

Secondly, QDs are capable of supporting several different types of bound

state, each distinguished by their charge; these bound states are discussed

further in Section 2.2. Interfacing the properties of these bound states with

optical modes requires that the desired type of bound state can be selected.

In addition, the charge state of the QD must be stable, and isolated from

electrical noise, in order to achieve sufficient spin-lifetime properties (fur-

ther discussed in Section 2.7). This is done by integrating the QDs into a

Schottky diode structure, shown schematically in Fig. 2.1 (b). Such a diode

structure has an in-built junction potential, Vdiode, leading to a sloped band

structure across the diode (Fig. 2.1 [b]). In addition, we make top and back

contacts, allowing a voltage bias Vgate to be applied across the structure.

When this bias is sufficient to bring the energy of a single electron in the

QD below the Fermi energy of the n-doped reservoir, a single electron tun-

nels into the QD. From there, the extra Coulomb energy of an additional

charge forms a Coulomb blockade to prevent additional charges from enter-

ing [78,79]. In this way, the charge state of the QD can be straightforwardly

selected [80]. This bias additionally exerts a DC Stark effect [81] on the

QD level structure, allowing the energy of the transitions to be tuned. The

samples are designed to study the neutral and negative excitons and thus

are n-doped, allowing easy selection of this charge state by simply selecting

a gate voltage such that an electron can tunnel into the QD from the doping
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Figure 2.1: The layered sample structure. (a) Schematic side view. The growth direction
is labelled by z. (b) Schematic band energies across the Schottky diode, which has an
intrinsic bias Vdiode.

7



layer. Positive excitons can be studied by driving the neutral exciton transi-

tion optically, generating an electron-hole pair, and selecting a gate voltage

to tunnel the electron out of the QD. The QDs must be isolated from the

n-doped layer in order to avoid fast spin thermalisation with the Fermi sea,

and for this reason they are protected by a 35-nm tunnel barrier from below;

in order to minimise charge leakage, a 50-nm blocking barrier protects them

from above.

The InGaAs samples used in this dissertation were grown at the EPSRC

National Centre for III-V Technologies in Sheffield, UK.

2.2 Bound states

The general form of the band structure of a crystal is determined by the

type of compounds of which it is composed, and the structure which they

adopt. We consider solid state structures based on III-V semiconductors,

arranged in the zincblende structure; Figure 2.2 depicts the band structure

of such a material. The crystal ground state corresponds to a fully occupied

valence band and an empty conduction band, and all other QD states are

considered relative to this ground state. The below follows the discussion

in [82].

In the region around the Γ point, where the wavenumber k = 0, the

conduction band (c) consists of an almost-parabolic dispersion and an orbital

angular momentum of L = 0. This means that an electron in a bound state

will have total angular momentum J = 1/2 and projection mJ = ±1/2.

By contrast, the highest-energy valence band states have p-like atomic

orbitals, with L = 1. Populating with a pseudospin-1/2 hole leads to states

with a total angular momentum of J = 1/2 and J = 3/2, which are split

8



Figure 2.2: A schematic representation of the band structure of a spin confined to a QD
in the vicinity of the Γ point, taken from [82]. c: conduction band, hh: heavy hole, lh:
light hole, so: split off. (a): strain free. (b): uniaxial strain. k‖: wavevector perpendicular
to strain axis.

by the spin-orbit interaction. The J = 1/2 states are referred to as the

“split-off” (so) band thanks to their energy difference ∆so caused by this

interaction, which is sufficient to neglect these states from our discussion.

The J = 3/2 states can take an angular momentum projection of mJ = 1/2

and mJ = 3/2. The strain present in our samples - an intrinsic part of

the QD growth process, discussed further in Section 2.1 - means that the

J = 3/2 states are split in energy by ∆hh−lh at k = 0, with the highest being

the state with angular momentum projection mJ = ±3/2. The relatively

shallow curvature for this level earns it the name “heavy hole” (hh), due

to its high effective mass compared with the mJ = 1/2 states (“light hole”,

lh). This splitting means that all bound states considered in this report are

formed using predominantly heavy holes, with a small light hole component.

These bound states are discussed below.
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2.2.1 Neutral exciton

Optical excitation of the crystal ground state allows an electron to move into

the conduction band, leaving a hole in its place; this electron-hole pair is

then bound together by the Coulomb interaction. Since a photon is able to

transfer ±1 unit of angular momentum, the formation of a neutral exciton

with total angular momentum ±1 is allowed, and this arrangement is known

as a bright exciton. The other possibility is the alignment of the total angular

momenta of the electron and the hole, giving the exciton a total angular

momentum of ±2. The optical generation of this state is forbidden, and it

is known as the dark exciton accordingly. Now exclusively considering the

case of the bright exciton, whose schematic structure is shown in Figure 2.3

(a), we have the following possible configurations:

ψx =
1√
2

(|↑⇓〉+ |↓⇑〉) (2.1)

ψy =
1√
2

(|↑⇓〉 − |↓⇑〉) (2.2)

where ↑ (↓) denotes an electron with total angular momentum +1/2 (−1/2),

whilst ⇑ (⇓) refers to a heavy hole with total angular momentum +3/2

(−3/2). The spin eigenstates are mixed into these states by the spin ex-

change interaction between the electron and the hole, which is present be-

cause the QD is not circularly symmetric [83,84]; this gives a fine structure

splitting ∆FS to the neutral exciton.

The total angular momentum of the energy eigenstates determines the

selection rules for optical excitation of the transitions. Since both ψx and

ψy contain equal superpositions of states with angular momentum ±1, their

angular momentum projection is zero and as a result they must be excited
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Figure 2.3: ↑,⇑ denotes electron spin, hole pseudospin. (a) The neutral exciton transi-
tions in the absence of magnetic field. Transitions from the crystal ground state (c.g.s.)
are split by the fine structure splitting, ∆FS. (b) The negative exciton transitions, un-
der an external magnetic field parallel to the QD growth axis. Diagonal transitions are
weakly allowed via the small light-hole component present in the excited states. (c) Same
as (b), but under an external magnetic field perpendicular to the QD growth axis. In this
case the z-eigenstates are mixed, giving four linearly polarised transitions. Their energy
separations are dictated by the electron and hole Zeeman energies, ωe, ωh.

with linearly polarised light. Applying a magnetic field strong enough to

dictate the quantisation axis allows the spin eigenstates to be recovered,

returning us to the circularly polarised selection rules which would be present

without the effect of spin exchange.

2.2.2 Negatively charged exciton

If instead we start from a ground state of a single electron in the QD, we

then have access to a different family of states known as the negative trion,

which is depicted in Figure 2.3 (b,c). Optical excitation again generates an

electron-hole pair, resulting in an excited state of two electrons in a spin

singlet, accompanied by a hole. In this case there is no net electron spin in

the excited states, and no hole pseudospin in the ground states, and as a

result the spin eigenstates are not affected by any exchange interaction. The

states are differentiated solely by the spin of the unpaired particle, which for

the ground states is the electron and for the excited states is the hole. This
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means that both the ground states and excited states are doubly degenerate

in the absence of applied magnetic field.

In the presence of an external magnetic field along the QD growth axis

(“Faraday geometry”, Fig. 2.3 [b]), the selection rules require circularly po-

larised light for the transitions |↑〉 ↔ |⇑↓↑〉 and |↓〉 ↔ |⇓↓↑〉. The remaining

optical-frequency transitions are forbidden since they require a transfer of

±2 units of angular momentum by a single photon, and can only take place

to first order via the small light-hole component of the excited state pseu-

dospin [38]. In this configuration, therefore, the electron spin states are not

coupled to each other via optical transitions.

Aligning the magnetic field perpendicular to the QD growth axis (“Voigt

geometry, Fig. 2.3 [c]) defines a new quantisation axis, and the eigenstates

can be expressed as superpositions of those defined by the growth axis. Sim-

ilarly, superposing the circular transitions from Faraday geometry results

in four equally favoured, linearly polarised, transitions. Under this condi-

tion the electron spin states are connected via two equal-strength Λ-systems

consisting of optical-frequency transitions [85]. Because this configuration

connects spin states to each other via optical transitions, allowing for co-

herent spin control [42, 43], Voigt geometry is employed throughout this

dissertation.

2.2.3 Positively charged exciton

This system consists of a QD populated by a single heavy hole. This

leads to ground states differentiated by hole pseudospin |⇑〉 , |⇓〉 and ex-

cited states containing a hole pseudospin singlet and an unpaired electron

spin |↑⇓⇑〉 , |↓⇓⇑〉. The system, known as X+, supports the same transitions
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as X− and the two arrangements are largely similar.

Throughout this dissertation, we work mainly with either the negative or

the positive exciton, in Voigt geometry. The two-level ground state manifold,

formed by the two spin projections of the electron or hole, forms a natural

basis in which to conduct qubit control experiments, enabled by optical

transitions [86].
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Figure 2.4: A simplified diagram of our setup. (a) Cryostat system, with sample mounted
in Voigt geometry. (b) Optical setup. LP: linear polariser, BS: 90:10 beamsplitter, QWP:
quarter wave plate, SNSPD: superconducting nanowire single-photon detector.

2.3 Experimental setup

Figure 2.4 contains a schematic diagram of our experimental setup. The

solid-state nature of the QD sample means that at ambient temperatures,

incoherent scattering via highly occupied phonon modes degrades the quality

of optical transitions [87–89]. To mitigate this, we house our sample inside

a liquid-helium bath cryostat at 4.2K (Fig. 2.4 [a]). Within the cryostat,

the sample is placed inside an insert containing low pressure helium gas,

simultaneously ensuring good thermal contact with the liquid helium, and

allowing optical access to the sample. The insert is surrounded by supercon-

ducting electromagnetic coils, which can generate a magnetic field of up to

9 Tesla along the direction of optical access. For this reason, we must orient

the growth axis of the sample perpendicular to the optical axis of the cryo-

stat in order to operate in Voigt geometry. The sample is further mounted

on a piezoelectric stack to give nanoscale three-dimensional control over its

position, and is further connected electrically to an external voltage source
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(not shown), to allow DC Stark shift tuning and charge state selection.

Optical access to the cryostat is achieved using a home-built confocal

microscope, depicted schematically in Fig. 2.4 (b), in combination with a

0.5 NA aspheric objective lens immediately before the sample (inside the

insert, shown in Fig. 2.4 [a]).

The microscope itself is a dark-field confocal microscope [90]. Linear po-

larisers on the excitation arms (which can accommodate both resonant and

detuned lasers) and collection arms of the microscope allow the laser back-

ground, reflected from the sample, to be suppressed by a factor of ∼ 105.

Detuned laser background can be additionally filtered using a holographic

grating (produced by Spectrogon) which features a 90% diffraction efficiency

into the first order mode. The excitation light is sculpted into the desired

polarisation (linear, or circular) using a combination of the aforementioned

linear polarisers and a quarter-wave plate. Finally, a beamsplitter immedi-

ately preceding the cryostat is used to pick off light to send to a photodiode,

which allows the excitation power to be stabilised.

These optical modes are shaped into pulses in the time domain using both

electro-optic modulators (EOMs) and acousto-optic modulators (AOMs), in

series. We use the photodiode signal to feed back on the AOM transmission,

in order to stabilise the input power. The EOMs (custom-made by EOSpace)

have a 20-GHz bandwidth, which allows us to form short pulses. Whilst

an AOM pulse is slower (our AOMs are either 80MHz or 350MHz), we

nevertheless use a simultaneous AOM pulse in order to achieve a high pulse

suppression ratio, whilst retaining the precise pulse shaping offered by the

EOM.

The transmission of an EOM or AOM is tuned via the voltage bias across

it. For an AOM, the origin (where transmission is minimised) is always
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found when no bias is applied. However, in the case of an EOM, this origin

drifts significantly over time, and the bias voltage must therefore be actively

stabilised. This is done by monitoring the optical intensity after the EOM.

Into the voltage bias we feed the output of a PID loop (SRS SIM960), and

the output of a lock-in amplifier (SRS SR830 DSP). The lock-in applies an

oscillating bias to the EOM, and is fed the optical intensity after the EOM

in return. Using the PID stabiliser to set the error signal of the lock-in to

zero, with the correct sign of the P parameter of the stabiliser, ensures that

we remain at the minimum of EOM transmission (changing the sign of P

moves us to a transmission maximum).

In order to detect signal from our QD, we use either a spectrometer (in

which case we must of course bypass the grating), a silicon-based avalanche

photodiode (APD), or (most commonly) a superconducting nanowire single-

photon detector (SNSPD). In all, we achieve an estimated photon detection

efficiency of around 0.1% (0.4%) with an APD (SNSPD).

The inputs and outputs of the microscope are delivered from the lasers

and to the detectors using a series of optical fibres.

2.4 Experimental techniques

Having established the QD bound states of interest and the general setup

with which we can study them, we now proceed to the techniques used to

perform our experiments.

2.4.1 Photoluminescence

Photoluminescence (PL) refers to optical emission which is optically acti-

vated by a non-resonant laser. In the case of InGaAs QDs, optical activation
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Figure 2.5: A typical QD photoluminescence spectrum. The two most prominent lines
are labelled with their exciton complex. Inset: schematic of the PL excitation and recom-
bination channel.

is achieved using a 780nm laser. Because this is above the band gap of the

structure, valence band electrons can be promoted to the conduction band,

leaving a hole behind. These free charge carriers enter the wetting layer,

where they form excitons. When in the vicinity of a QD, excitons can relax

non-radiatively into the lowest-energy state, before radiative recombination

(inset to Fig. 2.5). The frequency of recombination is characteristic of the

QD and exciton complex and depends on the competition of confinement

strength, binding energy, and Coulomb repulsion.

Passing the collected light to a spectrometer results in a spectrum such

as the one shown in Fig. 2.5. Laser background is automatically filtered

by its large detuning from the optical transitions. The spectrum contains

multiple lines because our optical excitation can load the structure with

charges, and the resulting recombination channels will all be observed in
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Figure 2.6: A photoluminescence spectrum, as a function of applied voltage bias. Lines
shift linearly with gate voltage thanks to the DC Stark shift, and disappear outside of a
fixed gate voltage range as the QD is loaded with different charge configurations.

a time-averaged measurement. In this spectrum, we observe two bright,

narrow peaks at 963nm and 967nm, corresponding to the neutral exciton

(X0) and the negative exciton (X−) respectively. The 10-GHz resolution of

our spectrometer does not allow us to resolve the fine structure splitting of

X0. The 4-nm redshift of X− relative to X0, a hallmark of these InGaAs

QDs which allows assignment of these two lines, is caused by the competition

between the changes in Coulomb energy and binding energy of the two

complexes [82].

Now varying the gate voltage across the sample whilst measuring PL, we

bring different QD excitons into stability, resulting in the PL map presented

in Fig. 2.6. As the bias voltage is increased, states of increasing negative

charge sequentially come into stability. Each of these is visible over a gate
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voltage range (often called a charging plateau), the middle of which exhibits

long-lived (∼ ms) charge states. Across its plateau, the emission wavelength

of an exciton is tuned with gate voltage via the DC Stark shift. At certain

gate voltages, multiple lines are visible, for the reasons given above.

This technique allows the emission frequencies and gate voltage stability

plateaus for the excitons of interest (which for this work are the X+, X0,

and X−) to be characterised. During this stage of characterisation, we also

align our QD and microscope in order to maximise collection efficiency. PL

is a crucial step in characterising a QD, but does not allow for coherent inter-

action with the QD bound states; emission under PL is entirely spontaneous

(i.e. incoherent).

2.4.2 Resonance fluorescence

Theoretical introduction: Resonance fluorescence (RF) here refers to

the interaction between near-resonant optical modes and the bound states

of our QD. Here, we outline the essential principles of operation, using the

simple example of a two-level system. Whilst a full quantum treatment

can be used [91], identical results are realised semiclassically, by treating

the optical field as a classical field [92, 93], and we here adopt the latter

approach for simplicity.

First, we introduce the Hamiltonian for our two-level system, which con-

sists of a ground state |g〉 and an excited state |e〉, separated by an energy

ω:

Ĥ0 = h̄ω |e〉 〈e| . (2.3)

We then introduce a drive field, with electric field strength E0, at fre-
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quency ωL, and which without loss of generality we assume to be linearly

polarised along the x axis. The interaction Hamiltonian can be written:

Ĥ1 = −~d · ~xE0 cosωLt (2.4)

where ~x is a unit vector along the x axis, and ~d is the electric dipole operator.

Then, the Hamiltonian can be expressed in the rotating frame, corre-

sponding to removing a common rotation at ωL from all terms. In addition,

we make the rotating wave approximation, since we are concerned with the

case where our drive field is near-resonant. We arrive at:

Ĥ = −h̄δ |e〉 〈e|+ h̄Ω

2
(|e〉 〈g|+ |g〉 〈e|) (2.5)

where δ = ωL−ω refers to the detuning of the drive field from the transition

frequency, and Ω = −E0 〈e| ~d |g〉 /h̄ is the Rabi frequency at which the two

levels are coupled [94].

Of course, introducing an additional term to the Hamiltonian changes

the eigenbasis of the system, which becomes:

|+〉 = sin θ |g〉+ cos θ |e〉 (2.6)

|−〉 = cos θ |g〉 − sin θ |e〉 (2.7)

with a mixing angle θ = arctan
[
Ω/(δ +

√
Ω2 + δ2)

]
; these states are termed

the dressed states. The eigenenergies which accompany these dressed states

are:

E± =
h̄

2

(
δ ±

√
Ω2 + δ2

)
. (2.8)
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This energy shift from the bare, undriven eigenenergies is termed the

Autler-Townes splitting [81,92,95]. These effects, which are hallmarks of the

coherent light-matter interaction with a two-level system, were first observed

in atomic systems [96, 97] and were later measured in self-assembled QDs

[98–100].

In order to arrive at a description which corresponds to physical reality,

we include relaxation into our example. To do this, we express the decay

rate from |e〉 to |g〉 as Γ, which sets a lifetime T1 = 1/Γ on the excited state.

At the same time, we move into the density matrix formalism, where the

density matrix for a general state |ψ〉 is:

ρ = |ψ〉 〈ψ| =

ρee ρeg

ρge ρgg

 . (2.9)

The diagonal terms, often named the populations, give the probabil-

ity of finding the system in |g〉 and |e〉, as denoted by their indices. The

off-diagonal terms, called the coherences, describe the phase relationship

between |g〉 and |e〉 when they are present in superposition.

In this formalism, the equations of motion can be found:

ρ̇ = − i
h̄

[Ĥ1, ρ]− 1

2
{c†c, ρ}+ cρc† (2.10)

and using the following dephasing matrix, to include the excited-state life-

time:

c =
1√
T1

0 0

1 0

 (2.11)
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we arrive at:

ρ̇ee = i
Ω

2
(ρeg − ρge)−

ρee
T1

(
= −ρ̇gg

)
(2.12)

ρ̇ge = i
Ω

2
(ρgg − ρee)− ρge(

1

2T1
+ iδ)

(
= (ρ̇eg)

∗). (2.13)

These expressions elegantly capture the coherent nature of the driven

transfer of population between |g〉 and |e〉; the rate of change of these pop-

ulations is intimately connected to generation of coherences in the system,

and vice versa. In addition, we note the rate of population relaxation is

1/T1 = Γ, as we imposed. However, the rate of loss of coherence is limited

to 1/(2T1), which denotes the so-called transform limit where decoherence

is driven exclusively by relaxation [101]. More generally, we can write the

decoherence rate:

1

T2
=

1

2T1
+ γ2 (2.14)

where the coherence time T2 now accounts for an additional pure dephasing

rate γ2, at which coherence is removed from the system without affecting

populations. This is a general expression and can be applied to any two-

level system; later in this discussion, it will be particularly relevant to the

ground-state manifolds of X− and X+, consisting of two spin projections

(see Section 2.7). However, we can also use it to describe the coherence of

photon emission (i.e. we take the two levels to be, for example, the crystal

ground state and one of the X0 optical excited states). In this case, the

excited-state lifetime is usually a few hundred ps [102], and because the ex-

citation process is typically much slower than this, we can take the system

to be at steady state. For optical transitions in QDs, we can encounter two
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main dephasing channels. The first is spectral wandering which is slow when

compared to the lifetime, and which can be straightforwardly modelled by

considering a spread of transition frequencies. The second stems from in-

teraction with the phonon bath, giving rise to a phonon sideband (biased

towards redshifted emission due to temperature-suppression of phonon ab-

sorption [103]) which can be spectrally filtered due to its non-Markovian

nature [104]. Experimental studies have shown that pure dephasing is not

relevant to QD optical transitions [105, 106]. Nevertheless, we keep the fol-

lowing expressions general by including T2.

In the steady state, Eqs. 2.12 and 2.13 both equal zero, and we can

straightforwardly calculate the excited-state population:

ρee =
1

2

Ω2

(T1T2)−1 + δ2T2T
−1
1 + Ω2

. (2.15)

It is convenient to define the saturation parameter, s = T1T2Ω2, which

allows us to recast Eq. 2.15 in the following form:

ρee =
1

2

s

1 + s+ δ2T 2
2

. (2.16)

This expression has a maximum value of 1
2 , which it approaches as s→

∞. The excited state population expressed here is directly proportional to

the count rate measured experimentally, with the proportionality constant

set in our case by the QD brightness and experimental collection efficiency.

When using a drive field which is resonant with the transition i.e. δ = 0, we

obtain the data presented in Fig. 2.7, alongside which is plotted a fit of the

form shown in Eq. 2.16.

Saturation measurements such as these are very important for our ex-
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Figure 2.7: Count rate of the low energy X0 transition at 0 T (pink circles) under
resonant excitation, as a function of excitation power P . A fit of the functional form
a P
P+PS

(black curve) allows the saturation power PS and count rate when ρee = 0.5 a to
be extracted and the axes to be relabelled accordingly.

periments, because they allow both the QD brightness and saturation power

to be monitored and routinely optimised, by aligning the QD to the collec-

tion arm (for brightness) or excitation arm (for saturation power) of our

microscope.

The state of the art in QDs: The energy associated with the cre-

ation (or recombination) of an electron-hole pair in a QD depends on the

occupancy of the QD, because of the Coulomb interaction. Under resonant

excitation, only one electron-hole pair can occupy the QD at a time, be-

cause further electron-hole pairs require a different energy to be generated.

Therefore, in this configuration, the system behaves as an effective two-

level system, because other excited states (containing additional charges or

electron-hole pairs) are far from resonance. Based on this principle, QDs

have been shown to emit single photons, independent of the excitation in-

tensity [107–110]. In order for these single photons to be useful for quantum
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technologies, they must also be indistinguishable; this has been addressed us-

ing a variety of techniques, including spectral filtering of incoherent phonon-

assisted emission [111,112], direct measurement and stabilisation of environ-

mental noise [101,103,113–116], post selection of emitted photons [117], Pur-

cell enhancement to shorten the radiative lifetime T1 [118–124], and photon

shaping by working in the regime where photon emission is mostly coher-

ent [106,125,126]. The very high intrinsic brightness of QDs, combined with

microstructures designed to achieve high collection efficiencies, have moved

QDs clearly into the lead as a bright, deterministic source of indistinguish-

able single photons [127–131]. These works demonstrate the outstanding

optical quality of QDs.

Experimental implementation: Having explored the general concept

of resonance fluorescence, we now shift our focus to its particular application

in our QD system. We wish to measure RF of optical transitions in the QD,

including the X0, X− and X+. In order to do this, we must use a laser which

is resonant with the optical-frequency transition in question. The signal

collected is composed of QD emission (the RF signal) and laser light which

is reflected from the sample. Here, we can no longer use the spectral filtering

(which was previously exploited in PL) to remove the laser background.

Instead, we use a system of polarisation optics in order to ensure that the we

collect light of orthogonal polarisation to the laser excitation [132]. Using

this method prevents us from aligning our excitation polarisation to the

intrinsic polarisation of the transition which we wish to drive, because this

would cause our polarisation suppression to simultaneously remove the QD

signal. Because of this, the polarisation filtering removes approximately

half of the QD emission, since we are prevented from aligning it with the

polarisation of emission for the above reason.
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Figure 2.8: (a): Resonance fluorescence on the neutral exciton in the absence of external
magnetic field. Two transitions are visible thanks to the fine structure splitting of this
exciton. (b): same as (a) but for the negative exciton.

In Fig. 2.8 (a), we scan the laser frequency for a set of different gate

voltages to map out the stability plateau of the neutral exciton transitions,

in the absence of an external magnetic field. We work at half the saturation

power of the transition in order not to power broaden or dress the states

[92, 133, 134]. Using this technique we resolve the fine structure splitting of

the exciton, previously invisible under PL. Performing the same procedure

for the negative exciton reveals the data plotted in Fig. 2.8 (b): a single

transition energy for the negative exciton. Attention should be paid to

the x-axes of these two figures; the small overlap in gate voltage between

the two lines (around 400mV, in this case) corresponds to the so-called

“cotunnelling” region, where fast tunnelling between the two charge states

takes place.

Having mapped the transitions at zero external magnetic field, we now

apply a field (in Voigt geometry) and perform the same measurements. We

observe a very similar response on the neutral exciton, whose splitting is now

due to the combination of Zeeman effect and exchange interaction. For the

negative exciton, however, the previously solitary transition splits into four
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lines, separated by the electron and hole Zeeman energies (or linear combi-

nations thereof), as shown experimentally in Fig. 2.9 (a) (and schematically

in Fig. 2.3 [c]). However, the region in gate voltage over which these lines

are visible is dramatically curtailed, compared to the data obtained in the

absence of external magnetic field (Fig. 2.8 [b]). Indeed, we only observe

RF in the cotunnelling gate region, where the electron spin is thermalised

with the Fermi reservoir on a ns timescale [135,136]. At gate voltages away

from the cotunnelling region, the spin lifetime extends to several tens of µs,

and no RF is measured. These observations are due to spin pumping, a very

important phenomenon for all experiments which follow, and which is illus-

trated in Fig. 2.9 (b). A resonant laser excites population from one of the

spin states to one of the excited states (|↓〉 to |⇑↓↑〉 is illustrated in Fig. 2.9

(b), but any combination is possible by selecting laser frequency). From the

excited state, the population can decay via either of the two radiative chan-

nels which return it to the ground state manifold; neither of these channels

is preferred to the other. If the population returns to its original state, it

is then re-excited by the resonant laser and the relaxation process repeats.

However, if the population decays to the other spin state, the laser is no

longer able to address it. In combination with a spin lifetime T1 in the tens

of µs in the centre of the plateau, this strongly quenches the QD emission.

In Voigt geometry, spin pumping from the bright state to the dark state

(in the illustrated case, from |↓〉 to |↑〉) only requires an average emission of

two photons. Figure 2.9 (a) depicts RF measured in the cotunnelling region

between the negative and neutral excitons; under these conditions the elec-

tron spin T1 is reduced to around 1ns via rapid cotunnelling with the X0,

meaning that an RF signal is recovered.

Probing spin-pumping in a time-resolved experiment reveals the signal
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Figure 2.9: (a) Resonance fluorescence on the negative exciton measured in the cotun-
nelling region, under an external magnetic field of 3 T. Line splittings are determined
by the electron and hole Zeeman energies, denoted ωe and ωh respectively. (b) Negative
exciton level diagram. When driven by a resonant laser (black arrow), spontaneous decay
from the excited state can proceed via two channels of equal strengths (blue wiggles). (c)
Time-resolved signal obtained under driving in the configuration shown in (c), away from
the cotunnelling region.

plotted in Fig. 2.9 (c). Initial fluorescence decays exponentially as the sys-

tem is pumped into the dark state. Crucially, the amount of fluorescence

collected is proportional to the population in the spin state under interroga-

tion, allowing spin readout to be performed; this simultaneously initialises

the spin [38,40,137]. This read-and-prepare process is a vital capability for

quantum control. Throughout this dissertation, we use this technique to

probe spin polarisation.

2.5 Quantum dot spin control

Having seen the highly coherent nature of the QD optical transitions and

shown that we can read and prepare the spin of a single charge confined

to a QD, we need one more capability before we can begin to exploit these

spins for quantum information experiments: universal coherent control. For

the purposes of the following discussion we will use the example of a single
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electron, but these considerations apply equally to single holes.

At our typical external magnetic fields of a few Tesla (required for reasons

discussed in Section 2.7), the electron spin states are split by a few tens

of GHz (dictated by the electron g factor, which is typically close to 0.5

[138–140]). In this case, a natural approach is to drive the microwave-

frequency transition resonantly using a microwave field. However, in the case

of QDs, the short spin coherence of a few ns (further discussed in Section

2.7) dictates that control must be much faster than the Rabi frequencies

achievable using microwaves [141–144]. In parallel, the outstanding optical

interface of a QD motivates a different approach, based on ultrashort, optical

pulses [138,145–150]. This technique was demonstrated to allow full coherent

control of single electron [42] and hole [151] spins in QDs, and proceeds as

follows.

2.5.1 In principle

Under a magnetic field in Voigt geometry, we realise the level system shown

in Fig. 2.3 (c), where the two spin-states of the QD are both linked optically

to the excited state, and transitions between them can therefore be optically

driven.

The state of the two-level system is described generally by [152]:

|ψ(t)〉 = c1 |↑〉+ c2e
−iωet |↓〉 (2.17)

for two spin states |↑, ↓〉 split in energy by h̄ωe. We then have the density

29



matrix

ρ =

 |c1|2 c∗1c2e
−iωet

c1c
∗
2e
iωet |c2|2

 =

ρ11 ρ12

ρ21 ρ22

 (2.18)

We define the Bloch vector:

R =


ρ12 + ρ21

−i(ρ12 − ρ21)

ρ11 − ρ22

 (2.19)

In this picture, the relative population of the two states in the system

is described by the z-component of the Bloch vector, whilst its x- and y-

components describe the relative phase between the two states in the super-

position.

The time evolution of the Bloch vector, and hence the state of the system,

is defined by the level splitting h̄ωe, which causes the x- and y-components of

the Bloch vector to precess via the time dependence of ρ12 and ρ21. Finally,

we define the Rabi vector:

W =


Ω cos(φ)

Ω sin(φ)

δ

 (2.20)

for a drive field which generates a Rabi frequency Ω, phase φ, and detuning

δ.

In the presence of a drive field the equations of motion can be written:

Ṙ = R×W (2.21)
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Figure 2.10: A spin Rabi rotation driven by an ultrashort pulse. (a) QD level scheme,
showing action of control and repump lasers. (b) Schematic pulse sequence. The height
of a train of ultrashort pulses, separated by τ0, is varied whilst the QD is continuously
repumped. (c) Fluorescence from the readout transition is plotted as a function of average
power measured at the input to the cryostat. The 40-kHz background in the absence of
rotation pulses originates from the continuously-operated repump laser.

and the Bloch vector precesses around the Rabi vector with frequency |W| =
√

Ω2 + δ2. Hence, in this manner, coherent rotations of a Bloch vector can

be driven. A note on terminology: Ω is typically called the “bare Rabi

frequency”, and |W| is normally labelled Ω′ and referred to as the “grand

Rabi frequency”.
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2.5.2 In practice

Figure 2.10 illustrates a coherent rotation driven by an ultrashort pulse.

The action of such a pulse can equivalently be considered under a Raman

transition picture, or an AC Stark shift picture; we here use the latter. Due

to the very high power of an ultrashort pulse, the associated Stark shift

is much larger than the Zeeman energy, and we can therefore neglect the

external field and consider the action of the laser pulse in the zero-field basis

(c.f. Fig. 2.3 [b]). In this basis, which is equivalent to Faraday geometry,

two optical transitions are allowed. Because these transitions have opposite

circular polarisations, a circularly polarised pulse generates a Stark shift Ω

on one of these transitions, and not the other. The large detuning ∆ of

the ultrashort pulse allows the excited states to be adiabatically eliminated,

but a ground state AC Stark shift nevertheless remains and is given (in

frequency units) by:

δ(t) =
1

2

√
∆2 + Ω(t)2 − ∆

2
≈ Ω(t)2

4∆
. (2.22)

In the previous section, we saw how to initialise the system into the |↑〉x
state, which is an eigenstate of an in-plane external magnetic field (Voigt

geometry). Therefore, we consider the action of an ultrashort pulse on

this initial state. The pulse arrival redefines the basis, meaning that it is

convenient to recast the state as

|↑〉x =
1√
2

(|↑〉z + |↓〉z). (2.23)
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The AC Stark shift distinguishes the two states in this superposition, causing

them to acquire a phase difference

θ =

∫
δ(t)dt (2.24)

so that the state becomes

1√
2

(|↑〉z + eiθ |↓〉z) (2.25)

=
1

2
[(eiθ + 1) |↓〉x + (eiθ − 1) |↑〉x]. (2.26)

By selecting the pulse area, which controls θ, the desired spin rotations

can be performed. Experimentally this is typically done by varying the

pulse power, as depicted in Fig. 2.10. Rotation around an arbitrary axis

can be achieved by combining an ultrashort pulse of suitable power (giving

rotation through θ around the QD growth axis) with precisely timed Larmor

precession (giving rotation φ around the in-plane magnetic field). However,

for reasons which will become obvious in the following Section, this approach

is very limiting in practical terms for more complex pulse sequences.

2.5.3 Experimental setup

In order to do this, we use the setup depicted schematically in Fig. 2.11.

We derive a stream of ultrashort pulses from a modelocked laser (Coherent

Mira 900), which are separated temporally by a delay τ0. We split this

stream into two halves using a 50:50 beamsplitter. One of these streams

travels along a path length which can be tuned by physically moving the

position z of a retroreflector (the “moving arm”) . On recombination with

the other stream (which traverses the “static arm”), the two pulse trains
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Figure 2.11: Schematic depiction of pulse sequence construction apparatus. A mod-
elocked laser produces pulses with a fixed repetition time of τ0. BS denotes a 50:50
beamsplitter, RR a retroreflector, and other solid black lines are mirrors. The retrore-
flector position z tunes the relative delay between the two arms, τ(z). The final delay is
τ(z) + nτ0 for integer n, depending on pulse selection from the two arms, which is done
using the AOMs.

will be offset by a delay τ which depends on z. By using acousto-optic

modulators (AOMs) to select pulses from the trains and by tuning z, an

arbitrary delay (of τ(z) +nτ0) between two pulses can be selected, provided

that τ(z) can range from zero to τ0/2. Some multi-pulse sequences, including

Hahn echo [153] and simple dynamical decoupling sequences [154, 155], are

also possible using this technique [156,157].

Using this approach, spin π-rotation fidelities of 89% and 91% have been

reported for the hole and electron spin, respectively [42,157]. These can be

improved further by using compound pulses consisting of two closely spaced

π
2 pulses. This removes the detrimental effect of spin precession during

the rotation pulse, allowing electron spin rotation fidelities of 98% to be

achieved [49].
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2.6 Nuclear spin interactions

A QD based on III-V materials is set apart from many other systems by the

nature of its hyperfine interaction, giving near-homogeneous coupling be-

tween a QD spin and its environment of nuclear spins to realise the central

spin system [158–160]. The mesoscopic ensemble of nuclear spins is attrac-

tive to study because nuclear spins have very long coherence times [161],

and the unique homogeneity of electro-nuclear coupling means that the QD

spin fundamentally couples to an ensemble, rather than individual nuclear

spins. However, we first discuss their effect on the QD bound states, which

is greatly enhanced by the concentration of the wavefunction over the ∼ 105

lattice sites. This mesoscopic scale is too small to be cancelled by averag-

ing and nuclear spin interactions are a crucial consideration for all following

experiments [162].

2.6.1 Physical origin

The Fermi contact interaction: Because of its contact nature, this term

applies only to spins in s-shell orbitals; it is relevant for electrons but not

for heavy holes. The Hamiltonian for this term takes the form [163–165]:

Ĥfc =
∑
j

Aj(Îjz Ŝz +
1

2
[Îj+Ŝ− + Îj−Ŝ+]) (2.27)

Here, j indexes nuclear site, Îj refers to the spin of the j-th nucleus in

the QD, and Ŝ denotes the electron spin. Aj denotes the hyperfine coupling

constant per nucleus, and varies to account for different nuclear species and

the inhomogeneous distribution of the electron wavefunction. The total
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hyperfine constant Aj ×N is ∼ 10 GHz for In, Ga, and As [163,166].

The first term in the above expression alters the electron spin precession

frequency around a given quantisation axis (denoted by z). We can consider

this interaction in a semiclassical picture where the electron spin sees a mean

field arising from an average nuclear polarisation 〈Iz〉. This mean field, which

is typically termed the Overhauser field [167], can then be expressed [163]:

BOH =

∑
j A

j〈Ij〉
geµB

(2.28)

At full polarisation, the Overhauser field constitutes an effective mag-

netic field of several Tesla [168], which is comparable to the magnetic field

we can apply externally.

Whilst we operate our experiments at a temperature of 4K and under a

magnetic field of a few Tesla, these conditions are insufficient to polarise the

nuclei; at thermal equilibrium, the nuclear spins are unpolarised. Because

the Overhauser field can be so large, the distribution of the nuclear state is

crucial for determining the coherence of a confined spin. This is discussed

further in Sections 2.6 and 2.7.

The final two terms in Ĥfc enable electro-nuclear flip-flops. In practice,

since we operate experiments under external fields of a few Tesla, these

interactions are strongly suppressed due to the mismatch in Zeeman energies

between the electron (∼ 7 GHz T−1 [163]) and the nuclei (7− 13 MHz T−1

[156]).

The dipolar interaction: For the heavy hole, the dominant interaction
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is based on dipole-dipole coupling and takes the form [163,169]:

Ĥdd =
∑
k

Ahk
1 + β2

(Îkz Ŝ
h
z +

α

2
[

ˆ
Ij+Ŝ

h
− +

ˆ
Ij−Ŝ

h
+]) (2.29)

β denotes the heavy hole-light hole mixing, Ŝh is the pseudospin operator

for heavy holes, and α = 2β√
3
. This interaction, in contrast to the Fermi

contact hyperfine interaction, is anisotropic (when α 6= 1), meaning that

the hole pseudospin has different sensitivities to Overhauser fluctuations

in different directions. Secondly, the hole pseudospin hyperfine constants

are about an order of magnitude weaker than those for the electron spin

[169, 170], with corresponding consequences for hole pseudospin coherence;

these will be discussed further in Section 2.7.

The noncollinear hyperfine interaction: The inhomogeneous strain

of the QD, present due to the self-assembly growth method, induces electric

field gradients which couple to the quadrupolar moments of the nuclei. This

coupling tilts the quantisation axis for the nuclei away from the direction

of the applied magnetic field. The Hamiltonian which describes the nuclear

quadrupolar interaction can be written [163,171–173]:

ĤQ =
∑
j

Bj
Q

[
(

ˆ
Ijx)2 sin2 θj +

1

2
(

ˆ
Ijx

ˆ
Ijz +

ˆ
Ijz

ˆ
Ijx) sin 2θj + (

ˆ
Ijz )2 cos2 θj

]
(2.30)

Here, we sum over the nuclear lattice sites j, each of which has a quadrupo-

lar coupling strength BQ, and an angle θ between the quadrupolar axis and

the magnetic field.

Extracting the part of this Hamiltonian which is entirely off-diagonal in

the nuclear Zeeman eigenbasis, and then performing a Schrieffer-Wolff trans-

formation [174,175] to result in the appropriate corrections to the Hamilto-
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nian, we arrive at [171,176]:

V̂ ′Q = −Ŝz
∑
j

AjBj
Q

ωnz

{[
(

ˆ
Ijx)2 − (

ˆ
Ijy)2

]
sin2 θj +

[
ˆ
Ijx

ˆ
Ijz +

ˆ
Ijz

ˆ
Ijx
]

sin 2θj
}
.

(2.31)

Aj is again the hyperfine constant per nucleus, and ωnz is the nuclear

Zeeman energy. This perturbation to the hyperfine Hamiltonian allows a

collective interaction between the electron and nuclear spins. This interac-

tion can alter Iz by 1 unit (ÎxÎz or Îz Îx) or 2 units (Î2
x or Î2

y ) units, without

flipping the electron spin. These therefore correspond to low-energy excita-

tions, in the sense that for them to occur, an energy gap of only a few tens

of MHz (the nuclear Zeeman energy) must be bridged. The noncollinear

interaction has been reported to closely match experimental observations of

the electro-nuclear dynamics [177,178]; many of the exciting and interesting

consequences of this Hamiltonian will be discussed in later sections of this

dissertation.

2.6.2 Nuclear spin feedback

The nature of the interaction between bound states and nuclear spins is

bidirectional: nuclear spin flips are enabled by the presence of a confined

spin, and the nuclear spin state affects the confined spin via the hyperfine

interaction. Together, these effects result in feedback between the bound

state and nuclear spins. This effect is discussed below using the example of

the neutral exciton transition.

We previously introduced the neutral exciton manifold under an external

field as three states: the crystal ground state, and two optically excited
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Figure 2.12: Adapted from [178]. The neutral exciton blue (red) branch (a, [b]), dressed
with nuclear state parametrised by average polarisation. |0〉 denotes crystal ground state.
The carrier transition is driven by a laser which is resonant when at a polarisation of Iz
(black arrow). This laser can also drive diagonal, nuclear spin-flipping transitions (pink
arrows), which combine with spontaneous emission (blue wiggles) to alter the nuclear
spin state. Due to the resonance condition and the ladder anharmonicity, these can be
relatively stronger (more opaque) or weaker (more transparent), depending on direction
of change of Iz and the type of anharmonicity.

states consisting of an electron-hole pair aligned or anti-aligned with the

field. We now dress the reduced manifold, formed by the ground state

and the blue excited state, with the nuclear spin state characterised by its

spin projection Iz. This is illustrated in Fig. 2.12 (a). The ground state

manifold is split simply by the nuclear Zeeman energy ωnz . In the excited

state manifold, an additional shift due to the hyperfine interaction between

the nuclear spins and the spin of the electron-hole pair leads to a splitting

of ωnz + AX0 . This results in an anharmonic ladder of states. Within this

ladder, in addition to the principal vertical transitions, diagonal processes

are weakly allowed by the noncollinear interaction captured by Eq. 2.31.

We now drive the neutral exciton transition resonantly and consider the

effect of a fluctuation in Iz, increasing it to Iz + 1. This causes our laser to

no longer be strictly resonant with the resulting neutral exciton transition,

which is shifted by AX0 . The anharmonicity of the ladder means that the

laser frequency is closer to resonance with the diagonal transition which
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reduces Iz by one unit than it is to the vertical X0 transition. The effect

is reversed for fluctuations which reduce Iz. In this way, the polarisation of

the nuclear spins is stabilised around a value which causes a drive laser to be

resonant with the X0 transition. If a laser is spectrally swept through this

X0 resonance, we observe a broad, flat-top resonance profile as Iz is driven

to retain the resonance condition; the nuclear spin state is “dragged”.

Very similarly, if instead selecting the red excited state (Fig. 2.12 [b]),

we arrive at a ladder of states of the opposite anharmonicity, and a feed-

back which has the opposite directionality: Iz is de-stabilised such that

the nuclear spin state is driven away from resonance. This effect is termed

“anti-dragging” accordingly.

Whilst the neutral exciton has been used as an illustration, these feed-

back effects exist for all types of bound state discussed in this work. We will

revisit them in Section 3.9 in the context of the positive trion, and we will

discuss feedback effects in the negative exciton system at length in Section

4.4 and throughout Chapter 5.

2.7 Spin coherence

To exploit a QD as a qubit, the negative and positive trions are natural

choices thanks to their two-level ground (spin) states. We previously devel-

oped a general expression involving the coherence between two levels, shown

in Eq. 2.14. Here, we apply that relationship to the two-level spin states of

X− (which are |↑〉 , |↓〉) or X+ (which are |⇑〉 , |⇓〉). For this purpose, we

will characterise the dynamics of the qubit using three timescales.

The first, known as the lifetime (T1), refers to the timescale of population

decay from the upper level to the lower. In the context of this discussion,
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this refers to the timescale for a polarised spin to be thermalised (i.e. ran-

domised). A QD spin lifetime can reach the ms regime [179]; when operating

in the centre of the X− or X+ plateau, we typically measure a T1 of tens of

µs in our samples. This is a property of the sample heterostructure design,

itself a compromise between the need for long lifetimes in the centre of the

plateau for spin control, and short cotunnelling times to allow mapping of

the QD resonances in the cotunnelling regime. Equation 2.14 illustrates the

limit to coherence imposed by relaxation; T1 on the scale of tens of µs is

well suited to our system because the lifetime limit on coherence (T2 = 2T1)

is roughly three times longer than other decoherence processes. For this

reason, T1 will not be considered further in this section.

The remaining two timescales for spin dynamics are known as the ho-

mogeneous and inhomogeneous dephasing times, denoted T2 and T ∗2 , re-

spectively. It turns out that interactions with the surrounding nuclear spin

ensemble dictate spin coherence [156, 157, 162, 180–182]. Here, we outline

the physical principles behind these mechanisms.

The hyperfine interaction between the spin and surrounding nuclei can

be described as an effective magnetic field on the confined spin, termed the

Overhauser field [167]. The precession frequency of a confined spin is dic-

tated by the sum effect of the external magnetic field and this Overhauser

field. The nuclear spins have a complex spectral distribution containing

broad low-frequency components, as well as contributions at higher frequen-

cies (of order 10 MHz T−1). This distribution is inherited by the precession

frequency of a confined spin, via the Overhauser shift, causing a loss of phase

information: the spin dephases.

Applying an external magnetic field suppresses the effect of these fluc-

tuations. Considering the total field:
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Btot ≡ |Btot| =
√

(Bext +B
‖
OH)2 + (B⊥OH)2 (2.32)

We then examine the limit of |Bext| � |BOH |, leading us to:

Btot ≈ Bext +B
‖
OH +

(B⊥OH)2

2Bext
(2.33)

In this way we arrive at the result that the Overhauser field fluctuations

along the direction of the external field remain linear and unsuppressed,

whilst those perpendicular to the external field are suppressed by a factor

B⊥OH/2Bext ∼ 100.

These fluctuations, and their effect on spin coherence, can be measured

using Ramsey interferometry [183]. In this scheme, the spin is initialised

into a superposition state 1√
2
(|↑〉 + |↓〉) using an initial π/2 rotation pulse.

It is then allowed to undergo free precession for a time τ , during which it

evolves to 1√
2
(|↑〉+e−iωt |↓〉), where ω is the sum of the Larmor frequency and

the Overhauser shift. A second π/2 rotation pulse, followed by a readout,

allows us to measure the spin precession, an example of which is presented in

Fig. 2.13. We observe a decay envelope corresponding to the inhomogeneous

dephasing time T ∗2 , which is dictated by quasi-static Overhauser noise (which

are the dominant noise terms in B
‖
OH) [156]. This noise is effectively frozen

during each Ramsey experiment (a few hundred nanoseconds) but changes

from run to run (on the timescale of a few milliseconds [184]), meaning that

when we integrate over O
(
106
)

experimental cycles, we average over free

precession at many different frequencies, giving the observed decay envelope.
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Figure 2.13: Ramsey interferometry of a QD electron spin. (a) Pulse sequence schematic.
The electron spin evolves for a time τ between two π

2
pulses, before being read. (b)

Readout signal as a function of τ (blue curve). The oscillation visibility decays according
to a fitted Gaussian envelope (black dashed curves) yielding a T ∗2 of 1.90(9) ns. (c) Fast
Fourier Transform of the data in (b) illustrates the Larmor precession frequency, which is
fitted as 25.402(5) GHz.
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Because the precession frequency inherits the noise distribution, the decay

profile is simply related to the Overhauser noise distribution by a Fourier

transform; in the case of this type of T ∗2 measurement, the profile is Gaussian,

testifying to the quasi-static nature of the dominant noise [162]. In QDs,

typical measurements observe electron spin T ∗2 around 1−3 ns [156,185–190]

and hole pseudospin T ∗2 around 30− 40 ns [151,157,191,192]. In both cases,

nuclear spins constitute the principal limitation; hole pseudospins are less

severely affected because the hyperfine interaction is ∼ 10 times weaker than

for the electron. However, hole pseudospins also couple to electrical noise,

which presents an additional barrier to achieving long-lived coherence [157].

The decoherence effect of a quasi-static noise source can be efficiently

removed using pulse sequences, a technique known as decoupling [193–196].

This technique can take many forms; the simplest is known as Hahn echo

[153]. This sequence (depicted schematically in Fig. 2.14 [a]) is very similar

to the above Ramsey sequence, with the addition of a π rotation pulse after

the spin has evolved for τ/2. This pulse reverses the sign of phase acquisition

during the second half of the free evolution period, which cancels shifts which

are static during τ . This causes a coherence echo after a full τ of evolution,

whose visibility can then be probed by varying the position of the π pulse

over one Larmor period. This reveals a decay profile with a characteristic

timescale given by the homogeneous dephasing time, known as T2.

For electron spins, T2 can be extended by increasing the external mag-

netic field to suppress fluctuations in B⊥OH . A non-trivial dependence on

magnetic field is observed, arising from the interplay of quadrupolar effects,

the Zeeman effect, and the hyperfine interaction [156]. When the external

magnetic field is sufficient to allow quadrupolar effects to be neglected, an

exponential decay in coherence is observed, with a coherence time T2 typi-
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Figure 2.14: (a) Hahn-echo pulse sequence schematic. (b) Hahn echo of an electron
spin, at 3.5 T. Visibility is measured as a function of Hahn-echo time T (pink circles). An
exponential fit (black curve) reveals T2 = 1250(30) ns.

cally of a few µs under our usual conditions of 3-4 Tesla; we plot an example

measurement in Fig. 2.14. This envelope is driven by nuclear noise which is

much faster than the timescale of the experiment [156].

In addition to filtering quasi-static noise, the Hahn-echo sequence oper-

ating for a total time τ removes noise which evolves at frequencies satisfying

ω = (2n+1)π
τ for integer n. In contrast, noise at frequencies ω = 2nπ

τ is

enhanced. As is evident from Eq. 2.31, the noncollinear interaction ren-

ders the electron spin splitting sensitive to transverse components of the

nuclear polarisation. This means that there exist characteristic frequencies
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in the nuclear noise spectrum corresponding to the nuclear Zeeman ener-

gies, causing dramatic drops and revivals in electron spin coherence in a

Hahn-echo measurement [197]. At Hahn-echo delays commensurate with a

nuclear Zeeman frequency, noise at these frequencies is amplified and co-

herence sharply reduced [156]. In this way, the Hahn-echo sequence (and

decoupling sequences in general) act as sophisticated probes of the nuclear

noise spectrum [198, 199]. As the magnetic field is increased, coupling to

nuclear noise is suppressed as the Zeeman interaction dominates the nuclear

dynamics, reducing the strength of noncollinear coupling. This is the reason

that drops and revivals are not visible in Fig. 2.14.

For hole pseudospins, a similar increase in T2 is observed on increasing

the external field, up to ∼5 Tesla. Beyond this, electrical noise from the

sample structure becomes dominant and the coherence begins to decrease

again. This electrical noise causes fluctuations in the average position of

the hole within the QD, and the inhomogeneous strain alters the mixing

between heavy- and light-hole states, modifying the effective hole g factor.

This effect becomes worse at large B-fields since the decoherence stems from

fluctuations in the level splitting, which is linear in magnetic field for Zeeman

levels. In our samples, there exists a coherence optimum at around 4T [157].

For the above reasons, the Hahn-echo sequence can be pictured as a peri-

odic notch filter in frequency space, allowing certain frequencies to pass and

removing others [193, 196,200–203]. Other dynamical decoupling sequences

can also be pictured in this way. Beyond, if the noise spectrum is known,

the ideal decoupling sequence can even be reverse-engineered by designing

the desired filter function [204–206].
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2.8 Summary

At this point, we conclude our whistle-stop tour of the past few decades of

experimental and theoretical efforts in the study of InGaAs quantum dots

with a summary of key achievements and outstanding challenges.

Firstly, coherent control of single spins confined to QDs has been achieved

using ultrafast optical pulses, allowing complete quantum control over both

confined electrons [42] and holes [151]. This technique has driven the study

of QD spin physics to great sophistication, yielding important insights into

spin coherence [156, 157]. However, this sophistication has been reached

within the tight limits imposed by the impracticality of spin control using

ultrafast pulses, which leaves many spin control protocols out of reach.

Secondly, nuclear spins in QDs have been extensively probed using a

variety of techniques, shedding much light on the physics which governs their

behaviour [163]. However, work to-date has largely addressed the nuclei as

an obstacle to be navigated, rather than as a resource to be exploited.

This dissertation is intended to move smoothly through these challenges.

In Chapter 3, we develop a new optical technique for performing QD spin

control, applied to a single hole. We demonstrate the high fidelity and

arbitrary flexibility of our technique, which allows us to construct pulse

sequences at will, designed electronically and delivered via imprinting a mi-

crowave signal onto laser light.

In Chapter 4 we apply the same technique to the control of a single

electron spin. In order to do this, we must cool the nuclear spin environment,

which enhances the electron spin coherence time by an order of magnitude.

With this in place, we demonstrate the highest π-rotation fidelities reported

in this system. From there, we use our spin control technique to show
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deterministic coupling - via Hartmann-Hahn resonances - and decoupling -

via spin locking - of the electron spin from its nuclear spin environment.

In Chapter 5, we turn our attention to the nuclear spins of the QD.

Using the control technique developed in Chapter 3 and the nuclear reso-

nances uncovered in Chapter 4, we reveal single collective spin excitations

of the nuclear ensemble. By measuring the interaction frequency with these

collective excitations, we can probe correlations in the nuclear ensemble. Us-

ing this novel technique, we witness entanglement in the form of quantum

coherences akin to a dark many-body state.

Finally, in Chapter 6, we characterise the next generation of QD sam-

ples: a lattice-matched system based on GaAs QDs embedded in an AlGaAs

matrix. We reveal high optical quality and long spin lifetime, allowing us to

perform the first coherent control of an electron spin in this type of QD. Be-

yond, the highly homogeneous nuclear environment of these QDs, which we

probe using Hahn-echo spectroscopy, places useful quantum technological

applications firmly within reach [207].
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Chapter 3

Flexible Control of a Spin in

a Quantum Dot

Exploiting the attractive properties of a QD spin requires mastery of its

quantum state. Whilst the current state of the art is in principle complete, it

is in practice found wanting on several fronts. In this Chapter we implement

a new approach to QD spin control, based on a driven Raman process. We

first show that we can perform coherent rotations of a hole pseudospin using

a two-colour Raman laser pulse. We then demonstrate that the technique

is complete, both in principle and in practice, and benchmark the fidelity of

our pseudospin rotations.

A brief note on terminology: the heavy hole studied in this Chapter

carries a pseudospin, which can be +3/2 or −3/2. For the sake of simplicity,

we refer to it simply as a spin throughout the Chapter.

The following experiments were carried out with Rob Stockill.

49



3.1 Background

We have seen that complete control of a QD spin is not an outstanding chal-

lenge [41,42,151]. Over a decade ago, ultrashort optical pulses were utilised

to demonstrate full qubit manipulation, by combining single-axis rotations

with precisely timed Larmor precession in order to reach an arbitrary point

on the Bloch sphere. Because these ultrashort pulses are derived from a

modelocked laser, they are generated with a fixed repetition time which is

intrinsic to the source. In order to generate sequences where pulses are

separated by arbitrary delays, such as a Ramsey interferometry sequence,

we employ the setup previously depicted in Fig. 2.11. The pulse stream is

split into two arms by a beamsplitter, termed the static and delay arms.

In the delay arm, a variable path length allows the timing of pulses to be

tuned relative to the static arm. When re-combined on a second beam-

splitter, the two arms result in a stream of pairs of pulses separated from

adjacent pairs by the laser repetition time, and within each pair by a de-

lay (which is the delay between the static and moving arms) which can be

precisely controlled. Because this delay relies on path length, it cannot be

tuned on the timescale of a pulse sequence, meaning that the resulting con-

trol protocol is constrained to contain two different delays at most. This

renders a plethora of desirable pulse sequences, such as most composite con-

trol sequences designed to enhance gate fidelities [208], and many types of

dynamical decoupling sequence [209], impractical.

In terms of flexibility, the ideal method of spin manipulation would be to

directly drive the magnetic dipole transition which connects the spin ground

states, via a single-photon process involving a tens-of-GHz (microwave) field.

This has been exploited for control in other systems, notably electrically de-

50



Figure 3.1: X+ level diagram in Voigt geometry. Pink arrows are optical transitions, of
linear polarisation H or V . ωe(ωh) denotes the electron (hole) Zeeman energy.

fined QDs [141–144]. There, the combination of longer electron spin coher-

ence time (tens of ns vs. a few ns [210]) and lower ESR frequencies (hundreds

of MHz vs. tens of GHz [141]) when compared to self-assembled QDs facili-

tated the implementation of magnetic spin resonance. In our self-assembled

QDs, the requirement to generate Rabi frequencies of the order of the ESR

width (hundreds of MHz) using microwave fields resonant with the ESR

(tens of GHz) presents severe technical challenges. For high fidelity opera-

tions, spin rotations must be completed well within the spin coherence time,

which in our system places a stringent minimum on rotation speed.

For these reasons, the work of this Chapter addresses the outstanding

problem of achieving arbitrary spin manipulation. At this point, we have a

choice of qubit: an electron spin, or a hole spin. Here, we choose to work

with the hole spin because its order-of-magnitude weaker coupling to the

environment of nuclear spins makes it a cleaner platform, with easier access

to the ideal spin dynamics. Quantitatively speaking, coherence stored in

a hole spin will live for an order of magnitude longer than in an electron

spin [156,157,211–213], placing a less stringent minimum on the speed of our

spin control. Many important control capabilities have been demonstrated
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already using holes confined to QDs, including state preparation [39, 40],

ultrafast manipulation [151], and spin-spin entanglement generation [50].

Figure 3.1 depicts the relevant energy levels and allowed transitions in this

basis, all of which are at optical frequency. We note that the ground states

form two Λ systems of allowed transitions with the excited states.

3.2 Spin control in the rotating frame

Our approach is based on driving a Raman transition between the two

ground states [214–219], for which we require an optical field composed

of two colours, phase coherent with each other. Whilst such a field could

be derived in a number of ways, we choose to use the technique depicted

in Fig. 3.2. We modulate an optical-frequency, continuous-wave laser with

a sinusoidal microwave-frequency signal, splitting the output into two side-

bands separated by twice the modulation frequency. In addition, any phase

offset ∆φµw in the microwave signal causes the two generated sidebands to

have a phase offset 2∆φµw relative to each other. This technique allows

us to marry the speed and fidelity of optical control with the versatility of

magnetic spin resonance, because the effective drive inherits the properties

of the microwave field. Crucially, since our drive now consists of two com-

ponents with a frequency difference, our effective drive acquires phase at

this frequency difference and so we can now picture our spin in the rotating

frame. In other words, our drive is near resonant with our spin. We can

therefore recast Eq. 2.17 in this picture:

|ψ〉 = c1e
iδt/2 |↑〉+ c2e

−iδt/2 |↓〉 (3.1)
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Figure 3.2: Microwave modulation schematic. A continuous-wave spin-control laser (at
frequency ωL is modulated by a microwave-frequency signal with controllable frequency
ωµw and phase φµw, using an electro-optic modulator (EOM). The resulting signal is
composed of two sidebands, separated spectrally by 2ωµw.

which leads to the density matrix:

ρ =

 |c1|2 c∗1c2e
−iδt

c1c
∗
2e
iδt |c2|2

 =

ρ11 ρ12

ρ21 ρ22

 (3.2)

where δ refers to the effective detuning of the process, corresponding to

the two-photon detuning in the case of a two-photon process such as this.

We have made the rotating-wave approximation, assuming that δ is small

compared to Ω.

Our Bloch vector then becomes:

R =


ρ12 + ρ21

−i(ρ12 − ρ21)

ρ11 − ρ22

 (3.3)
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As defined in Eq. 2.20, the Rabi vector is:

W =


Ω cos(φ)

Ω sin(φ)

δ

 (3.4)

for a system in the presence of a drive field with detuning δ and Rabi fre-

quency Ω , with phase φ relative to the system.

The equations of motion then reduce to:

Ṙ = R×W (3.5)

and described geometrically, the Bloch vector precesses around the Rabi

vector at the so-called “grand Rabi frequency” Ω′ =
√

Ω2 + δ2. Using this

technique, we have full SU(2) control over the Rabi vector itself via the

optical power (which controls Ω), the microwave frequency (which controls

δ), and the microwave phase (which controls φ).

We can make some important observations at this stage. As became

obvious already in Eq. 3.1, in this reference frame, which is defined by the

phase acquisition of our effective drive, spin precession is observed only when

there exists a two-photon detuning in the system i.e. when δ 6= 0. When

interrogated resonantly using this technique, the phase of the drive exactly

follows the Larmor precession of the spin, and the Bloch vector will not be

observed to precess around the magnetic field. The phase of the Rabi vector

relative to the Bloch vector, which defines the trajectory of the Bloch vector

on the Bloch sphere, is itself defined by the microwave modulation field,

which controls φ directly. The effective drive has inherited the versatility of

the microwave field.
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As can be seen in Fig. 3.1, the ground-state manifold forms two Λ-

systems with the optically excited states. We must ensure that these two

paths interfere constructively, which amounts to selecting circular polarisa-

tion. In this configuration, all four transitions are driven with equal strength,

and we expect a Rabi frequency given by Ω = Ω2
L/∆ where ΩL is the Rabi

frequency of the Raman laser on the optical transitions.

In writing Eq. 3.1 we neglected the optically excited states in our treat-

ment. This is justified in the following way. During the process, the excited

state population can be at most:

ρee =
Ω2
L

Ω2
L + ∆2

. (3.6)

We can recast this expression in terms of our spin Rabi frequency Ω as:

ρee =
Ω

Ω + ∆
. (3.7)

Provided we remain in the limit ∆� Ω, the excited states can be safely

neglected.

3.3 Experimental setup

We apply this technique to our sample in Voigt geometry by passing a

continuous-wave laser (Toptica DL Pro) through an amplitude electro-optic

modulator (EOM) (EOSpace, Ultra-High Extinction Ratio, 20-GHz band-

width). This EOM is controlled by the output of a switch (Mini Circuits),

into which we send a continuous-wave, microwave-frequency sinusoidal sig-

nal from a signal generator (Rohde&Schwarz SMF100A), alongside a pulse

sequence from a delay generator (SRS DG645) which also functions as the
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clock for our experiment. Further details about the microwave system are

given in Appendix A. A second laser (Toptica TA Pro), resonant with one of

the transitions to an excited trion state, performs readout of our spin state

as well as performing the initialisation for the next cycle [38, 40]. This is

depicted in Fig. 3.3 (a). Finally, as previously described, we must drive the

neutral exciton transition with a third laser (New Focus Velocity Tunable

Diode Laser) in order to populate our n-doped QD sample with a hole.

3.4 Driven spin-Rabi oscillations

The first step towards demonstrating full coherent control of a qubit is to

drive Rabi oscillations between the two qubit states. To this end, we drive

the system with a pulse of variable length and detuning. In practice, as

shown in Fig. 3.3 (b), a driving pulse of length T is paired with a comple-

mentary pulse of length T0 − T , such that the total drive time is constant

and the power can be stabilised. The sideband drive laser provides the vast

majority of the input power and so is the only relevant laser for power stabil-

isation. Each region of sideband drive is followed by a readout-preparation

pulse, and we measure the fluorescence during this pulse as our signal.

We show our experimental data in Fig. 3.3 (c), which demonstrates co-

herent Rabi oscillations of a single QD-confined hole spin using a Raman

drive. We take the Fourier transform of these Rabi oscillations in Fig. 3.3

(d). We observe good quantitative agreement with the expected functional

form of our Rabi frequency:
√

Ω2 + δ2, where Ω is the resonant Rabi fre-

quency and δ is the two-photon detuning [152]. Additionally, we plot the

visibility of our oscillations in Fig. 3.3 (e), again observing good quantitative

agreement with the expected functional form: Ω2

Ω2+δ2 [152].
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Figure 3.3: (a) Level diagram with lasers and decay channels. Transitions between the
ground spin states are driven by two Raman fields (pink), detuned by ∆ from the excited
states and with a two-photon detuning δ from the spin resonance ωh. We use a second
laser (purple arrow) to pump population from |⇓〉 to the excited state, from which it
decays (purple wiggle), allowing us to perform readout and preparation. (b) Rabi pulse
sequence. Drive pulses are paired to conserve total pulse area. Readout pulses follow
each control operation. (c) Count rate as a function of preceding drive pulse length and
two-photon detuning. (d) FFT of data in (c). The white dashed line has the functional
form

√
Ω2 + δ2 and is offset for clarity. (e) The maximum value of the data in (d) (pink

data points), along with a Lorentzian fit (black curve).
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In addition to these observations, our data show departures from the

behaviour of an ideal two-level system. Some of these are technical: we ob-

serve a universal darkness of the system for drive times less than ∼ 2 ns, due

to the finite response time of our switch. Others are physical: we observe a

systematic difference in long-time brightness between positive (brighter) and

negative (dimmer) detunings, as well as a departure from the ideal expected

frequency for small negative detunings δ ∼ −20 MHz. Of course, we do not

expect to observe the behaviour of an ideal two-level system since this is not

an accurate description of our system. These observations are likely a result

of the interaction between the hole spin and its environment of nuclear spins,

one consequence of which is a hole-spin-polarisation-dependent feedback on

the nuclei. We will return to a much more thorough study of our QD sys-

tem, including the interaction between a confined spin and the surrounding

nuclear spins, in Chapters 4 & 5. For now, we continue to investigate the

hole spin using our Raman control technique.

3.5 Dependence on power

For a two-photon process, we expect an effective Rabi frequency which obeys

Ω ∝ Ω2
L/∆ [152]. We drive an electric dipole transition, meaning that the

Rabi frequency ΩL for the individual transitions is proportional to the matrix

element of the relevant states with the electric dipole operator. This has the

form, for example:

〈↑| ~E |⇑↓↑〉 = | ~E| 〈↑|~r |⇑↓↑〉 (3.8)

Here, | ~E| is the electric field strength of the optical field, which depends
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on the square root of the laser power. As a result, we expect that a two-

photon process will show a linear dependence of its Rabi frequency on laser

power, in contrast to the square-root dependence of a single-photon process.

In Figure 3.4, we drive Rabi oscillations at two-photon resonance for a set

of different input powers. We then extract the oscillation frequency to show

its dependence on power; this is well described by a linear fit to the data,

evidencing the two-photon nature of the process. We note that for Rabi fre-

quencies under 100 MHz, Rabi oscillations are impeded by nuclear feedback

effects.

Figure 3.4: (a): Driven Rabi oscillations as a function of input laser powers. (b): Rabi
frequency extracted from fits to data in (a) as a function of input laser power (pink data
points), with a linear fit to the data (black curve).

3.6 Dependence on single-photon detuning

The above form of the effective Rabi frequency means that we expect a

Rabi frequency depending on the single-photon detuning as 1/∆ [152]. In

Figure 3.5, we drive Rabi oscillations at two-photon resonance for a set of

different single-photon detunings. We then extract the Rabi frequency of

these oscillations and plot it as a function of single-photon detuning; the
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expected behaviour is closely followed.

At single-photon detunings which are small enough to be comparable to

the single-transition Rabi frequencies, we expect to generate excited-state

population. In our case, the excited state is additionally broadened by a

phonon sideband, which in this experiment can be seen to dramatically

reduce oscillation visibility when the single-photon detuning is less than

25 GHz. This is because populating the excited states enables incoherent

spontaneous decay processes, which randomise our hole spin.

In addition, we are prevented from operating at single-photon detunings

exceeding 70 GHz since in this case our Rabi frequency drops below the

100 MHz cut-off shown in Fig. 3.4 to render the experiment susceptible to

nuclear spin feedback effects.

Figure 3.5: (a): Rabi oscillations as a function of single-photon detuning. (b): Rabi
frequency extracted from fits to data in (a) (purple circles), which has then been fitted
with ∆β with β = −1.01(9) (black curve).

3.7 Ramsey interferometry I

A convenient method for demonstrating access to any point on the Bloch

sphere, an essential requirement for a qubit control technique, is Ramsey

interferometry [183]. This involves applying two π
2 pulses to the qubit, sep-
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arated by a variable time delay τ . During this period of free evolution,

the spin precesses at the Larmor frequency, which we previously observed

in Fig. 2.13. Figure 3.6 presents Ramsey interferometry performed using

our Raman drive technique. In this case, the first pulse defines an initial

phase for the system, rotating the Bloch vector into the equatorial plane

of the Bloch sphere. Once the pulse is turned off, the Bloch vector under-

goes Larmor precession in the external magnetic field. However, because

the final pulse is generated using the same, phase-stable microwave signal

as the first, it acquires phase during the free precession period at twice the

microwave modulation frequency. For this reason, when the microwave fre-

quency matches half of the hole Zeeman energy, no Larmor precession is

observed: the final rotation pulse “Larmor-precesses” with the spin. When

we do not match the hole spin resonance, the system is observed to precess

at the two-photon detuning δ, which is the difference in precession frequency

between the drive and spin.

Because in this case the drive acquires phase at twice the modulation

frequency, the observed precession frequency is given simply by δ, the two-

photon detuning. In other words, when we are on resonance with the hole

spin, the Bloch and Rabi vectors are phase-locked and no precession is ex-

pected. In the data, we observe exactly this: a linear dependence of preces-

sion frequency on δ.

This ideal behaviour is partially obscured by the presence of nuclear spin

feedback effects, which are likely responsible for the global oscillation on a

∼ 25 ns timescale. These effects are more prominent in the case of Ramsey

interferometry than under Rabi drive because the system is more sensitive to

Overhauser field in this configuration. Altering the Overhauser field leads

to a different precession frequency, and so a different final state. When
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Figure 3.6: (a): Ramsey interferometry on a single hole spin, as a function of two-photon
detuning δ. (b): FFT of data in (a).

we consider that our readout processes are subject to nuclear feedback and

appear “dragged” or “anti-dragged” as a result, we note that Ramsey in-

terferometry is in practice a highly effective method for altering the nuclear

state [156, 220]. This has unfortunate consequences for this particular ex-

periment, reducing our access to the ideal spin behaviour. Serendipitously,

these feedback effects can be mitigated by a number of methods; we shall

exploit one of them in an later version of this experiment in Section 3.9.

3.8 Phase control

An important advantage of this technique is the possibility of controlling

the azimuthal angle of the Rabi vector with respect to the Bloch vector,

through the phase of the microwave signal. This corresponds to full SU(2)

control over the Rabi vector itself, making rotation of the spin about any

axis possible. Thus far, we have used the combination of microwave source,

switch and delay generator in order to generate our pulse sequences. To

incorporate phase control, we replace this system with an arbitrary waveform

generator (AWG) (Tektronix AWG70002A). This gives us the ability to
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Figure 3.7: (a) Pulse sequence schematic. (b) Resulting count rate (pink circles) and a
sinusoidal fit (black curve).

design waveforms electronically, whose phase we can trivially control. Since

the AWG is capable of generating arbitrary waveforms, we no longer need

the switch to turn the microwave signal off. We simply feed the AWG signal

(after amplification, with a Tektronix PSPL5865 12.5 GHz amplifier) directly

to the EOM. This setup allows us to design arbitrary pulse sequences, with

freedom to vary the phase of the microwave signal within a single pulse

sequence. Further details of the microwave system are given in Appendix

A.
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We demonstrate this phase control by performing zero-delay Ramsey

interferometry. In this implementation, we do not vary the separation of our

two π
2 pulses, which is fixed at zero. We instead increase the phase of the

second pulse relative to the first, as shown in Fig. 3.7 (a). This has the effect

of precessing the rotation axis of the second pulse, rather than precessing

the spin. The resulting fringes are plotted in Fig. 3.7 (b), and demonstrate

our ability to jump the phase of our drive. The expected doubling of the

microwave phase φµw is observed, as the pulse phase φ precesses through a

full 2π each time φµw increases by π.

In addition, because these fringes were acquired using two immediately

consecutive pulses, we confirm our ability to jump the phase of the drive on

a fast timescale compared to the pulses themselves. In this dataset, visibility

is limited simply by the fidelity of our pulses, which is discussed further in

Section 3.10.

3.9 Ramsey interferometry II

One consequence of this capability is the pulse sequence depicted in Fig.

3.8 (a); here, we pair our control sequences into readouts of the |⇑〉 and |⇓〉

states. This is done by adding an additional phase of π to the final rotation

pulse on the second sequence in the pair. In this manner we can avoid

generation of hole spin polarisation during our sequence. To understand why

this is advantageous, let us imagine using a “dragged” transition to read out

and prepare the hole spin. In this case, the nuclear environment undergoes

stable, negative feedback as part of the scattering process. Hence, when the

scattering rate is highest, the system is most stable: it effectively prefers to

be bright. The result of this process is that feedback acts on the nuclear state
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in order to maximise the count rate after a Ramsey sequence. If the Ramsey

delay and detuning are such that the hole spin precesses through an angle

of π, the readout will be bright and feedback will be minimal. However,

if the spin has precessed through π
2 , the system is maximally sensitive to

changes in Overhauser field, which will be driven to increase, increasing

the Overhauser shift and the resulting precession frequency. Conversely, if

the spin has precessed through 3π
2 , the system will drive a reduction in the

Overhauser field for the same reason. Crucially, therefore, the sign of the

feedback changes as the hole spin passes multiples of π in precession angle.

With this important observation in mind, if we now consider an experiment

where we alternate the hole spin state which is bright, we can reduce nuclear

feedback effects [156].

To this end, we generate the pulse sequence depicted in Fig. 3.8 (a).

Using this approach of pairing sequences of opposite hole spin polarisation,

we repeat the measurements presented in Fig. 3.6. The resulting data are

presented in Fig. 3.8 (b,c); we observe improved access to the ideal hole

spin behaviour. Oscillations emerge at a frequency equal to δ, as the spin

and drive precess relative to each other, with a global loss of contrast with

increasing τ over the hole spin dephasing time T ∗2 .

Again, as when driving Rabi oscillations, we observe the departure of

our hole spin from the behaviour of an ideal two-level system. In this case,

the signal is globally modulated at ∼ 40 MHz, and the oscillation contrast

is insensitive to δ. These effects are more pronounced than those seen under

Rabi drive because the free precession of the hole spin is sensitive to the

Overhauser field to first order via δ (whereas the precession [grand Rabi]

frequency goes as
√

Ω2 + δ2 during a Rabi pulse).
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Figure 3.8: (a) Polarisation-minimising Ramsey pulse sequence schematic. (b) Measured
count rate on application of the pulse sequence in (a), as a function or two-photon detuning
δ. (c) FFT of data in (b).

3.10 Pulse fidelity

We now wish to characterise the fidelity of our hole spin control, which

is typically performed using a series of gates randomly sampled from the

possible operations (“randomised benchmarking”) [221–223]. However, for

our relatively modest fidelities we can approach this simply by fitting our

Rabi oscillations with the functional form cos(2πΩt)e−Γt, allowing us to

extract the Rabi frequency Ω and decay rate Γ. From these, we compute

the Q factor as twice the ratio of the Rabi frequency to the decay rate.

This Q factor is in direct analogy to the language used in other branches

of physics, and here refers to the number of π rotations completed before

the visibility falls to 1
e of its initial value. From the Q factor, the fidelity

of a π rotation is simply given by fπ = 1
2(1 + e

− 1
Q ), [224]. This expression
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Figure 3.9: (a) Rabi oscillations of a hole spin (pink circles) and a fit (black curve),
whose functional form a cos(2πΩt)e−Γt + b allows Rabi frequency Ω and decay rate Γ to
be extracted. (b) Fitted decay rates Γ vs. fitted Rabi frequencies Ω.

applies when the Rabi frequency greatly exceeds the Overhauser width, a

condition which is discussed in much more detail in Section 4.7. In our

case, the Overhauser width is difficult to accurately extract from the data

in Fig. 3.8 (b) due to the evident nuclear spin feedback effects, but we can

safely estimate it as O(MHz), consistent with the extensive measurements

of Ref. [157].

With this in mind, Fig. 3.9 (a) depicts Rabi oscillations from which we

extract a Rabi frequency of 270 ± 1 MHz and a decay rate of 67 ± 6 MHz,

leading to a fidelity of 94.1±0.2%. This comfortably surpasses the previously

measured fπ of 89 ± 1% for hole spin control using ultrashort pulses [157].

This increase in fidelity could be a result of the smaller optical power needed

here, since our control pulses have lower single-photon detuning than re-

quired for an ultrashort pulse; high laser power at the sample can generate

charges, which have been shown to dephase the hole spin [157].

Figure 3.9 (b) plots extracted decay rate Γ against Rabi frequency Ω.

The observed dependence, which agrees closely with a linear fit, indicates

their relationship of direct proportionality. Because fπ depends on their
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ratio, this result indicates that we cannot exceed our currently achieved

fidelities by moving to higher Rabi frequency. In doing so, we accelerate

dephasing of the system, capping our Q factor and fidelity.

When the Rabi frequency is large, variations in the Overhauser field have

an effect on the Rabi frequency and polar angle of the Rabi vector, which

are both suppressed by a factor 1
Ω2 . However, when the Rabi frequency

is decreased, our π rotations become much more sensitive to nuclear spin

feedback effects, which in this regime can alter the rotation angle since they

can be as large as the Rabi frequency. In this regime, control fidelity is

impaired; for these reasons, we cannot improve our fidelities by tuning Rabi

frequency.

3.11 Conclusions and Outlook

In this Chapter we have seen that using Raman control to manipulate a

single hole spin confined to a QD circumvents many of the challenges of

the previous state-of-the-art, allowing the straightforward construction of

arbitrary pulse sequences. We first showed that this technique allowed the

coherent control of a hole spin, and confirmed the two-photon nature of

the process. We then demonstrated that this approach gave us full SU(2)

control over the Rabi vector itself. As a working example, this flexibility

trivially allowed the construction of a Ramsey pulse sequence with improved

access to the ideal quantum dynamics of the hole spin qubit. Whilst Raman

control operates at lower Rabi frequency than its predecessor, the relatively

long coherence time of a hole spin nevertheless enabled us to achieve a

significantly higher fidelity, bringing Raman control firmly into pole position

for future work involving spin control in QDs.
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The immediate next step is to improve the fidelity of our operations.

Whilst we have exceeded the previous state-of-the-art, our maximum fidelity

of 94% still only allows 16 π-gates before the visibility falls to 1/e, placing

another hard limit on the pulse control protocols available. Experiments

on different QDs have shown anticorrelation between control fidelity and

electrical noise in the QD vicinity [49], but the exact microscopic mechanism

remains unclear. It may be possible to improve fidelities with alterations to

the device design, but in the absence of an understanding of the mechanisms

at play the necessary changes are not evident.

From a longer term perspective, we must consider the hole spin in the

context of our motivation of constructing a quantum network. This re-

quires the storage of information in a network node for a time longer than

the photon travel time between two nodes. Therefore, the node coherence

time constrains the maximum physical separation of the nodes. In order

to achieve a certain node separation, the node coherence time must be ac-

cordingly long (several tens of microseconds of coherence allows tens of km

separation). Exploiting a hole spin for this task means that the storage time

is given by the hole spin coherence time T2, which is fundamentally limited

by electrical noise within the QD device [157]. Improving the T2 of the hole

spin beyond its current maximum of a few µs is a question of device engi-

neering and sample fabrication, and will not be the focus of the remainder

of this dissertation.

In order to sidestep these challenges, we change our basis to the electron

spin from hereon in. The reasons for this are twofold; the first concerns

fidelity, and the second coherence. The electron has previously (when work-

ing with ultrashort pulses) supported operations of higher fidelity than the

hole, and we therefore hope for a straightforward improvement in control
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fidelity when switching to the electron. We will see (in Chapter 4) that this

requires some optimisation of the electron spin coherence, which is strictly

limited by its environment of nuclear spins. Fortunately, and interestingly,

we can take steps in order to lift this limit.

70



Chapter 4

Optical Spin Locking of a

Solid-State Qubit

In Chapter 3, we implemented a new technique for controlling a hole

spin confined to a QD. This technique proved itself superior to the previous

state of the art in almost every regard, losing out only on rotation speed.

However, whilst it surpassed pulsed laser control with regard to rotation

fidelity, the maximum of 94% remains well short of the requirements of

quantum technological applications.

However, in QDs, there exist two possible platforms for spin control:

a single hole, or a single electron, each bringing their own challenges and

opportunities. The shorter spin coherence time of an electron makes coher-

ent control more difficult, but the electron spin could offer the potential to

match or exceed the 97% rotation fidelity achieved using ultrashort pulses.

This would allow Raman control to fully surpass ultrashort pulsed laser con-

trol. In parallel, the shorter electron spin coherence time originates from a

71



stronger coupling to the nuclear environment. Whilst this frustrates efforts

to control it coherently, the two-way nature of this coupling also presents an

opportunity to address the nuclear spins through their interaction with the

electron spin.

In this Chapter, we demonstrate high-fidelity control of a QD electron

spin, using Raman control. We circumvent the challenge of short electron

spin coherence by extending it, using an optical nuclear spin narrowing

technique to reduce noise from the environment. Using our Raman control

technique, we are then able to deterministically enable and disable coupling

to the nuclear ensemble. This allows us to protect a known quantum state

from decoherence, using a particular multi-axis control sequence known as

spin locking.

The measurements of Sections 4.2 & 4.3 were carried out with Rob

Stockill. The remaining work presented in this Chapter was carried out

with Claire Le Gall. The nuclear spin narrowing technique was developed by

Dorian Gangloff and Gabriel Éthier-Majcher. Modelling of the Hartmann-

Hahn resonances discussed in Section 4.7, as well as development of the the-

ory underpinning the electro-nuclear interactions, were performed by Emil

Denning. Modelling of spin locking presented in Section 4.8 was performed

by Claire Le Gall. The results of this Chapter have been presented in two

peer-reviewed publications [176,224].

4.1 Experimental setup

In switching our focus from a hole spin to an electron spin, we must make

some minor modifications to the experimental setup discussed in Section 3.3.

Firstly, we no longer require photocreation of holes. Secondly, the electron
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spin resonance is significantly larger than the hole spin resonance (in our

case, 25 GHz vs. 9 GHz). The microwave frequencies required are at the

bandwidth limit of our AWG, and to retain phase control of the microwave

signal we therefore alter our microwave setup as detailed in Appendix A.

With these small changes, we can now design arbitrary pulse sequences

electronically to address the electron spin.

4.2 Preliminary spin control
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Figure 4.1: Count rate as a function of pulse length, for a Raman pulse resonant with
the ESR. Data points are pink circles, and pink lines simply connect them to guide the
eye.

Working with an electron spin, rather than a hole spin, increases the

coupling strength between the qubit and its nuclear environment by an order

of magnitude. This poses challenges for coherent control, which we were able

to perform in Chapter 3 by simply driving Rabi oscillations, with no regard
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given to the environmental coupling. Here, blissful ignorance of the nuclei is

no longer sufficient, as we see in Fig. 4.1. We drive the system with a Raman

pulse of variable length, and measure the subsequent spin polarisation via

the count rate. Coherent Rabi oscillations are dramatically and emphatically

obstructed by environmental coupling, leading to a saw-tooth response and

a sharply reduced visibility. These interesting effects have been extensively

studied in QDs (see e.g. Ref. [156]). Here, however, our aim will be to avoid

them.

4.3 Composite control sequences

As we saw in Chapter 3, using Raman beams to control a spin confined

to a QD brings some important advantages over the previous state of the

art. Of particular relevance to this section will be the ability to implement

control sequences composed of an arbitrary number of spin rotations, each

rotating about an arbitrary axis, and all separated by arbitrary delays. This

level of flexibility is not unique to QD spin control, and indeed has become

a keystone capability in other physical systems, including nuclear magnetic

resonance (NMR) [207, 225], superconducting circuits [226], and nitrogen-

vacancy centres in diamond [204]. The maturity of NMR in particular has

allowed the development of a wide variety of so-called “composite control”

techniques.

Composite control techniques are pulse sequences which are designed to

perform qubit gates with improved fidelities with respect to regular con-

trol pulses, by compensating for various types of error [208, 227]. In NMR,

the most common error types are pulse length errors, where the rotation

angle differs from the intention, and detuning errors, where the resonance
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condition varies across the ensemble of spins under study and so gives an

uneven rotation. In the case of QDs we can encounter both of these errors;

whilst we control a single confined spin rather than an inhomogeneous en-

semble, slow Overhauser noise means that our resonance condition varies

from experimental run to run and we arrive at a similar result.

Throughout this Chapter, we will use the convention that (θ)φ denotes

a rotation of angle θ, around a Rabi vector which has an azimuthal angle

of φ. We begin with a simple control sequence which involves replacing a

regular π0 rotation with a composite pulse having the form [227]:

π

2 φ1=0
πφ2=π

2

π

2 φ3=0
(4.1)

This sequence is designed to correct for pulse length errors; Figure 4.2 (a)

depicts its performance against a direct rotation when subject to this type

of error. However, we also find this protocol to exhibit enhanced robustness

to detuning errors compared to a direct rotation, as shown in Fig. 4.2 (b).

This sequence should therefore improve our rotation fidelities in the regime

where we are limited by nuclear feedback effects, because these manifest

themselves as a shift in the resonance condition (or equivalently, a detuning

error).

In Fig. 4.2 (c), we drive the system with a pulse sequence whose form we

tune continuously from regular to composite rotation. To do this, we vary

the phase φ2 of the central portion of the pulse relative to the ends. We

also vary the length of the total sequence (whilst keeping the proportions

fixed i.e. the ends are always half the length of the central portion). From

this, we select two linecuts corresponding to a composite rotation (φ2 = π
2 )

and a direct rotation (φ2 = 0); these are pitted against one other as a
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Figure 4.2: Calculated π-rotation fidelity of a composite pulse (blue curve) and a direct
rotation (black curve), in the presence of (a) pulse length errors and (b) detuning errors.
(c) Count rate as a function of the length of the entire pulse, and of the phase φ2 of the
central half of the pulse. When φ2 = 0 (π/2), direct (composite) rotations are performed.
(d) Linecuts from the data in (c) as indicated by the dashed lines.
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function of pulse length in Fig. 4.2 (d). Its resistance to pulse errors means

that the composite rotation clearly outperforms the direct drive, exhibiting

more oscillations and at a higher amplitude, over a longer period of time.

Whilst this composite pulse sequence does improve our control fidelity, it

nevertheless remains low. The tight lower bound on Rabi frequency imposed

by the short coherence time of the electron spin, coupled with the tight

upper bound on Rabi frequency imposed by the need for low population in

the excited state, means that we need a different approach.

4.4 Nuclear state preparation

We can directly extend the coherence time of the electron spin using nuclear

state preparation. This idea, whereby the electron is driven in such a way as

to remove entropy from its environment, has been extensively studied and

performed in QDs using a variety of techniques [185,228–233]. Here, we will

focus the discussion on our immediate aim, which is twofold: to reduce the

Overhauser broadening of the ESR and to pin the Overhauser field close to

zero.

To this end, we utilise our Raman drive by developing an approach in

close analogy to Raman cooling of atoms [234, 235]. We drive our negative

trion system with a Raman laser and a repump laser, as illustrated in Fig.

4.3 (a). However, in contrast to our previous pulsed experiments, we now

drive the system with both lasers continuously and simultaneously (Fig. 4.3

[b]). Because the excited state population decays very quickly compared

to other timescales in the system, we can reduce our consideration to an

effective two-level system of the electronic spin states, shown in Fig. 4.3 (c).

In this drive configuration, we have engineered an effective lifetime to |↓〉,
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Figure 4.3: Raman cooling using the negative trion. (a) The ESR is driven by two
Raman beams, detuned from the excited states. A repump laser transfers population
from |↓〉 to |⇑↓↑〉, from where it decays to |↑〉. (b) We drive the system continuously with
both Raman and repump lasers. (c) Effective two-level system formed by the electron spin
states split by ωe, driven resonantly at a Rabi frequency Ω and with effective decay rate Γ
caused by the repump laser. (d) Dressing the states of (b) with nuclear state, parametrised
by average polarisation Iz. The resulting ladder of states (split by the nuclear Zeeman
energy ωnz ) is anharmonic due to the hyperfine interaction between electronic and nuclear
spins (characterised by A). The thick pink arrow is the ESR, which is resonantly driven.
The thin but solid pink arrows are diagonal transitions, which are driven near-resonantly.
The faint pink arrows are off-resonant transitions. Purple wiggly arrows are radiative
decay channels. (e) Feedback function generated by the drive scheme. Fluctuations away
from the preferred polarisation generate negative feedback, which peaks in strength when
the Raman beams resonantly drive diagonal transitions on the ladder of states of (d). This
condition is met approximately when Iz = ±ωnz /2A.

78



set by the repump power, which is much shorter than the bare spin lifetime

1/T1.

On top of these two electronic levels, we now bring the nuclear spin

state into the picture, which we parametrise using the total polarisation

Iz. The electron spin and nuclear spins have Zeeman energies ωe and ωnz

respectively. In addition, the hyperfine interaction (characterised by the

hyperfine constant per nucleus A) between the electronic and nuclear spins

causes the ESR frequency to depend on Iz via the Overhauser effect. We

then arrive at the ladder of energy levels shown in Fig. 4.3 (d); anharmonicity

is caused by the hyperfine interaction.

Within this ladder, we wish to understand the transitions which are al-

lowed. Obviously, vertical transitions correspond simply to the electron spin

resonance at a given nuclear polarisation. The quadrupolar Hamiltonian de-

tailed in Section 2.6, induced by the strained setting provided by the QD,

was previously expressed:

V̂ ′Q = −Ŝz
∑
j

AjBj
Q

ωnz

{[
(

ˆ
Ijx)2 − (

ˆ
Ijy)2

]
sin2 θj +

[
ˆ
Ijx

ˆ
Ijz +

ˆ
Ijz

ˆ
Ijx
]

sin 2θj
}
.

(4.2)

When driving the electron spin, the relevant terms can be acquired by

dressing the electron driving Hamiltonian with V̂ ′Q, which results in the

following correction term:

V̂ ′′Q = −2ΩŜy
∑
j

AjBj
Q

(ωnz )2

[
1

2
(

ˆ
Ijx

ˆ
Ijy +

ˆ
Ijy

ˆ
Ijx) sin2 θj + (

ˆ
Ijz

ˆ
Ijy +

ˆ
Ijy

ˆ
Ijz ) sin 2θj

]
.

(4.3)

We note that Cartesian nuclear spin operators can be related linearly to
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nuclear spin ladder operators according to

Îx
Îy

 =
1

2

 1 1

−i i

Î+

Î−

 . (4.4)

With this in mind, terms in Îy Îz and Îz Îy give rise to single nuclear spin

flips, and those in ÎxÎy and Îy Îx give rise to double nuclear spin flips, taking

place at a rate dictated by ABQ/(ω
n
z )2. Both of these processes are allowed

to first order by the nature of our Hamiltonian; the reader is referred to

Chapter 5 for a much more detailed investigation of these interactions. For

now, we note that we can therefore use the noncollinear hyperfine interaction

to drive nuclear spin flips [176]. These spin flips arise as diagonal transitions

on our ladder of states, connecting levels of different nuclear polarisation.

In the ladder of states shown in Fig. 4.3 (d), spontaneous Iz-preserving

decay from the upper levels is driven by the repump laser, and vertical

(electron-only) and diagonal (electro-nuclear) spin-flipping processes can be

driven by our Raman laser. We emphasise that the Raman laser is allowed

to drive 5 electron-spin-flipping transitions: the central ESR, the “first side-

bands” which transform Iz → Iz ± 1, and the “second sidebands” which

transform Iz → Iz ± 2.

In order to understand the action of the lasers in this configuration, we

picture the system occupying a single microstate: |↑, Iz〉. Of the 5 Raman-

driven transitions, the ESR is by far the strongest. The first sidebands

are reduced compared to the central ESR by a factor
√
NABQ/(ω

n
z )2 ∼

0.1 [176], and are energetically detuned from the drive by ωnz . Here, it is

sufficient to consider only these processes: we neglect the second sidebands.

When the Raman laser is exactly resonant with the ESR, the two Iz → Iz±1
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transitions have the same detuning from the laser, and they are therefore

driven at equal rates and there is no net driven polarisation: the system is

stable.

We now consider the case of a nuclear state with a polarisation Iz higher

than that of the state where the drive is resonant with the ESR. Because

of the anharmonicity of the ladder, our drive is closer to resonance with

the diagonal transition which reduces Iz than to its Iz-increasing counter-

part. Conversely, a state with polarisation smaller than the ESR resonance

condition leads to the reverse arrangement; transitions which increase Iz be-

come preferred. Driving the system in this configuration therefore induces

negative feedback on the nuclear polarisation, narrowing it around a stable

lockpoint where the drive is resonant with the ESR. The feedback function

which we generate is depicted in Fig. 4.3 (e). Fluctuations in polarisation

are driven back towards the stable point. Feedback strength peaks when the

Raman drive becomes exactly resonant with a diagonal transition i.e. when

the change in Iz, ∆Iz × 2A = ωnz .

As a side note, the choice of electron spin state which is used as the

effective excited state is crucial here, since it dictates the anharmonicity of

the ladder. For stable feedback, we require a ladder whose excited-state

splitting exceeds its ground-state splitting. Pumping the other electron spin

state results in the opposite type of anharmonicity, leading to anti-stable

feedback.

Performing the cooling protocol between each experimental run has a

dual effect. It resets the nuclear polarisation to a given value, which reduces

nuclear spin feedback effects, and it also reduces the Overhauser fluctuations

by pumping the nuclear spins into a narrowed state. We have seen that

experimental sequences themselves can exert strong feedback effects onto

81



Figure 4.4: (a,b) Ramsey interferometry pulse sequence. We prepare the nuclear envi-
ronment for a time 10T , following which we perform Ramsey interferometry for T . We can
choose the π

2
pulses to be (a) in phase or (b) in antiphase, producing the upper and lower

data in (c), respectively. These are fitted (black curves) according to ±ae−(τ/T∗
2 )2 + b,

yielding T ∗2 = 47(3) ns.
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the nuclei, and for this reason we operate with a duty cycle exceeding 90%,

meaning that we prepare the nuclear state for > 90% of the time, and

perform experiments for the remainder. This ensures that the nuclear spin

polarisation remains at the stable point, within the capabilities of the optical

feedback.

The optimum performance of this feedback mechanism occurs when the

gradient of the feedback function at the stable point is maximised i.e. when

the width of the two peaks of the feedback function (Fig. 4.3 [e]) matches

their splitting. It can be shown that this is achieved when the ESR Rabi

frequency roughly matches half the nuclear Zeeman energy, and the effec-

tive excited-state lifetime exceeds the ESR Rabi frequency by a factor of
√

2 [176]. Operating under these conditions, we perform Ramsey interfer-

ometry on a confined electron spin, presenting the experimental data in Fig.

4.4. The decay profile we measure matches the Fourier transform of the nu-

clear distribution; since preparation narrows the distribution, we measure an

extended inhomogeneous dephasing time of T ∗2 = 47(3) ns. This is an order

of magnitude larger than the bare, unprepared T ∗2 [156], and corresponds to

an Overhauser width of 4.8 MHz. The precise effects of the preparation on

the nuclear state will be discussed in detail in Chapter 5.

As a final side note, the reader may have noticed the parallels between

the ladder of states of Fig. 4.3 (d) and the ladder of states of Fig. 2.12.

Both cases can be described by an anharmonic ladder of states, containing

an excited state manifold which decays to a ground state manifold, and

both of these configurations exhibit feedback on the nuclei. Besides its extra

tunability, the principal advantage of the Raman cooling technique is that

it locks to a spin transition, rather than an optical transition. The latter is

far less stable because it is sensitive to electrical noise in the environment
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Figure 4.5: (a) Driven Rabi oscillations (coloured circles) after preparing the nu-
clear state, for single photon detunings ∆ = [400, 700, 1400, 2000, 4000] GHz (bot-
tom to top), offset for clarity. Plotted alongside are fits (black curves) of the form
A cos (2πΩT )e−T/τ1/e + B. From these fits we extract a Q factor Q = 2Ωτ1/e and a

π fidelity fπ = 1
2
(1 + e−1/Q), which we plot against 1/∆ in (b,c) respectively, indicated

by colour. Error bars indicate 66% confidence intervals.

via the DC Stark effect.

4.5 Coherent electron spin control

Having prepared our nuclear environment into a narrow state with a well-

defined polarisation, we now return to driving Rabi oscillations. Thanks to

our preparation, the new ESR width of a few MHz enables a lower ESR

drive frequency, allowing us to increase our single-photon detuning ∆ far
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beyond our previous limits. In Fig. 4.5 (a) we drive Rabi oscillations for

a set of different single-photon detunings. By fitting the response, we can

extract the Q factor and π fidelity for each configuration, which we plot in

Fig. 4.5 (b,c) respectively.

As we decrease 1/∆ below 1 THz−1, we observe a decrease in Q and

fπ, which is particularly marked at the smallest value measured: 1/∆ =

0.25 THz−1. Here, the fitted Rabi frequency was 10.7± 0.1 MHz. By com-

parison, in this experiment, our T ∗2 of 47 ns corresponds to an Overhauser

width of 4.8 MHz. Under these conditions of comparable Rabi frequency and

Overhauser width, we expect a considerable decrease in Q as our Rabi drive

is no longer powerful enough to decouple the system from its environment.

This drive-induced decoupling is discussed in Section 4.7.

Increasing 1/∆ beyond 1.5 THz−1, we observe another decrease in Q and

fπ. This could stem from excited state population, which would increase as

we increase 1/∆.

We observe a peak in both Q and fπ for 1/∆ = 1.4 THz−1; the maximum

in fπ appears less pronounced simply because of the functional form of the

relation between these two parameters. We therefore select this setting for

the following experiments. This corresponds to a Q factor of 37(2) and a π

fidelity of 98.7(2)%.

4.6 A return to composite pulses

Having located the optimum operating conditions for Raman control, we

now investigate the action of composite pulses on our electron spin [227,236].

We begin with a pulse sequence designed to correct for pulse length

errors, which would effectively mitigate errors due to laser power fluctu-

85



ations, for example. This is because we can operate at Rabi frequencies

greatly exceeding the Overhauser width, meaning that we expect detuning

errors to be insignificant. The pulse sequence, termed “scrofulous” (Short

Composite ROtation For Undoing Length Over and UnderShoot) by its in-

ventors [236,237], has a complicated general expression; however in the case

of our desired π rotation, it can be written in the simple form

π0π 2π
3
π0. (4.5)

In order to test the fidelity of this composite rotation, we implement a

series of these effective π rotations (Fig. 4.6 [a,c]). In this experiment, we

tune our input power in order to maximise the fidelity we measure, meaning

that we can assume that any errors in pulse length are not systematic.

Remaining pulse infidelity leads to a shortening of the Bloch vector, when

averaged over experimental runs. Under these assumptions, we expect to

see a modulation of the signal according to

(1− [−fπ]Nπ) (4.6)

where Nπ indicates the number of π rotations applied to the system, and fπ

is the fidelity of a single π rotation.

Figure 4.6 (b,d) presents a comparison of the signal we measure, along-

side a fit of the above functional form. This allows us to extract fidelities of

fπ = 93.0±0.3% for a “scrofulous” rotation, and fπ = 97.1±0.2% for a sim-

ple π pulse. This result suggests that pulse length errors are not our primary

source of error. Instead, because the “scrofulous” sequence is longer than a

regular rotation by a factor of 3, its lower performance could be caused by
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Figure 4.6: Pulse sequences for (a) regular π rotations, (c) “scrofulous” rotations and
(e) “corpse” rotations. The resulting count rates are plotted in panels (b,d,f) respectively
(pink circles) along with a fit of the form a(1− [−fπ]Nπ ) + b (black curves). From the fits
we extract (b) fπ = 97.1(2)%, (d) fπ = 93.0(3)%, and (f) fπ = 90.6(4)%.
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a dephasing process related to the total pulse area (but unrelated to errors

in the pulse length). This will be discussed in further detail in Section 4.9.

Nevertheless, we proceed to test a pulse sequence designed to correct

for detuning errors, in the hope of an (unexpected) improvement in fidelity.

The sequence we choose, named “corpse” (Compensation for Off-Resonance

with a Pulse SEquence), again has a complicated general form [236]. If a π0

rotation is desired, however, the sequence is simplified to

(
7π

3

)
0

(
5π

3

)
π

(π
3

)
0
. (4.7)

Figure 4.6 (e) depicts the pulse sequence we use, and Fig. 4.6 (f) depicts

the resulting count rate along with a fit. In this case, the loss in fidelity when

using the composite sequence is even more pronounced: 90.6 ± 0.4% when

using “corpse”. This suggests that off-resonance errors are not primarily

responsibly for the limitations in fidelity which we observe. In addition,

this constitutes further evidence for a dephasing process related to the total

pulse area, which is even larger for “corpse” than “scrofulous”.

A final note on this fidelity measurement technique: in the case of com-

posite pulses, where an analytical expression for the pulse for smoothly

increasing final rotation angle is not forthcoming, we are forced to adopt

the approach of applying a series of π pulses and fitting the envelope. In

order to compare these composite pulses to regular rotations, we use the

same technique to benchmark the regular π rotation fidelity. In this case,

we measure a lower fidelity than we previously recorded by fitting our Rabi

oscillations (in Section 4.5). This is because, here, we sample a Rabi curve

at multiples of π. The Rabi frequency is pre-defined by the step size of the

pulse length, which we must then match by tuning the power. Previously,
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we sampled the Rabi curve at very small intervals compared to the period,

which renders the fidelity extraction completely insensitive to systematic

errors in Rabi frequency by using the Rabi frequency as a fit parameter.

4.7 Power dependence of Rabi oscillations

Whilst we have so far observed a dephasing mechanism which depends on

total pulse area, we have not yet explored for which regime of Rabi frequency

this mechanism is dominant. With this in mind, we drive Rabi oscillations

for a set of different Rabi frequencies, a selection of which we present in Fig.

4.7. In this experiment, our focus is on the decay time of the envelope which

encloses these oscillations, since that governs our fidelity. Immediately, we

can see by eye that the relation between decay rate and Rabi frequency is

not monotonic; in order to capture this behaviour, we must fit the data.

Figure 4.7: Rabi oscillations for a set of different Rabi frequencies, distinguished by
colour and offset for clarity.

89



4.7.1 Fitting in the low-power regime

For most datasets, the decay profile is well described by an exponential

envelope; in these cases, we can straightforwardly extract the decay time,

Q factor, and π fidelity by fitting. However, in the regime where the Rabi

frequency is on the order of the Overhauser noise, we must take a different

approach.

The Overhauser noise, which is quasi-static over the course of an ex-

perimental sequence but varies from run to run [156], causes the electron

spin resonance to sample values from a Gaussian distribution, centred on the

electron Zeeman energy, and with a standard deviation of σ (the Overhauser

width). This is equivalent to sampling the detuning δ of our drive from a

Gaussian distribution, centred around zero, and with a standard deviation

of σ. We recall that the Rabi vector is expressed

(Ω cos(φ),Ω sin(φ), δ). (4.8)

Fluctuations in detuning therefore affect both the length of the Rabi vector,

which is Ω′ =
√

Ω2 + δ2, and its polar angle, which is θ = arctan
(
δ
Ω

)
. The

length of the Rabi vector is equal to the grand Rabi frequency, and dictates

the oscillation frequency under our drive; in the regime where Ω ∼ σ, we

are sensitive to fluctuations in δ to second order only. This means that we

do not recover a Gaussian decay profile, as we measured for the case of a

linear relation between precession frequency and detuning (under Ramsey

interferometry, Fig. 4.4).

The polar angle of the Rabi vector controls the amplitude of oscillation

which we can achieve; when the polar angle is π
2 the Bloch vector traces
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a great circle on the Bloch sphere, and oscillation visibility is maximised.

For any other value of θ, the Bloch vector traces reduced circles on the

Bloch sphere. The oscillation amplitude is given by Ω2

Ω2+δ2 and means that

during Rabi oscillations, the average electron spin polarisation is not zero

(i.e. the oscillations are not centred around the unpolarised state). This

means that using Rabi frequency and decay time to extract fidelity causes

an overestimation of the actual maximum population transfer.

In this regime, we instead use a two-level Bloch equation approach to

model the response of our system. We describe the time evolution of the

electron spin polarisation according to

ρ↓↓ = −1

2

Ω2

Ω2 + δ2

{
cos
(

2π
[√

Ω2 + δ2
]
t
)

+ 1
}
. (4.9)

Next, we constrain our Overhauser noise by performing Ramsey inter-

ferometry; the Gaussian decay profile has a characteristic time, T ∗2 which is

related to the Overhauser width σ according to

σ =
1√

2πT ∗2
. (4.10)

In our case, we measure a T ∗2 of 47 ns, which corresponds to σ = 4.8 MHz

(this measurement was presented in Fig. 4.4). We therefore sample δ from

a Gaussian distribution, centred around zero, and with standard deviation

σ = 4.8 MHz.

Figure 4.8 (a) presents experimental data obtained under the condi-

tion Ω ∼ σ, along with a fit obtained using a Bloch equation approach.

This fit allows us to extract both the π fidelity, by finding the maximum

population transfer of the fit, and the time after which the visibility has
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Figure 4.8: Electron spin Rabi oscillations (pink circles) alongside a two-level Bloch
equation model (solid black curve) in the presence of Gaussian Overhauser noise of stan-
dard deviation σ = 4.8 MHz. Alongside, we plot a fit of the form a cos(2πΩt)e−t/τ1/e

(black dashed lines). Rabi frequencies extracted from the Bloch equation model are (a)
5.25 MHz, (b) 9.75 MHz, (c) 15.25 MHz, (d) 18.5 MHz.

fallen to 1/e of its initial value. In addition, we plot a fit of the form

a cos(2πΩt)e−t/τ1/e , which illustrates the inability of this functional form to

capture the behaviour of the system in this regime. Figure 4.8 (b) presents

the corresponding measurement when Ω ∼ 2σ. Here, we see that whilst the

Bloch equation approach is still needed in order to correctly reproduce the

observed behaviour, the exponential fit has become more faithful to the data

than it was for Ω ∼ σ. As we increase Ω further (Fig. 4.8 [c,d]) the Bloch

equation model no longer includes the dominant decay processes and as a

result overestimates decay time.

For Rabi frequencies greater than those shown in Fig. 4.8 (a,b), we there-

92



Figure 4.9: (a) FFT of Rabi oscillations, for a set of different Rabi frequencies. (b)
Extracted inverse decay time, (c) resulting Q factor and (d) π fidelity, all plotted as a
function of extracted Rabi frequency.

fore fit with a exponentially decaying cosine. In this case, we extract the

decay rate and Rabi frequency simply from the fit; Q factor and π fidelity

follow using Q = 2Ωτ1/e and fπ = 1
2(1 + e−1/Q).

4.7.2 The three regimes of electron Rabi oscillations

We plot the FFT of the entire dataset in Fig. 4.9 (a) as a guide to the eye.

We then plot the extracted inverse decay time against Rabi frequency in

Fig. 4.9 (b), along with the resulting Q factor and π fidelity (Fig. 4.9 [c, d]

respectively). In these data we note three distinct regimes.

The first concerns the low Rabi frequency limit, where the response of

the system is governed by Overhauser noise. In this regime, we observe the
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smallest inverse decay times, but the smallest fidelities.

The second regime applies at high Rabi frequencies, exceeding 80 MHz.

Here, we expect the shielding of the system from Overhauser noise by the

drive to improve with increasing Rabi frequency. This is because in the limit

Ω� σ, the Rabi frequency can be approximated

√
Ω2 + σ2 ≈ Ω(1 +

σ2

2Ω2
). (4.11)

Meanwhile, the amplitude of Rabi oscillations depends on detuning ac-

cording to

Ω2

Ω2 + σ2
≈ (1− σ2

Ω2
). (4.12)

Fluctuations in both of these parameters are therefore suppressed by

increasing Ω. However, we observe that this regime is instead described by

a Q factor which is capped; varying Rabi frequency has no effect on Q. This

can equivalently be seen in the inverse decay time, which increases linearly

with Ω; this indicates that the drive power accelerates the decay rate of

our Rabi oscillations. Whilst the fidelity is capped, we nevertheless attain a

maximum value, at Ω = 154 MHz, of 98.86(4)% - the highest ever achieved

using optical control of an electron spin in a QD.

The third regime denotes the region from 20-80MHz, within which we

observe decay rates much larger than would be expected from the above

power-dephasing arguments, alongside a reduced Q factor and fidelity. In

this regime, a different mechanism is therefore responsible for the behaviour

which we observe.
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4.7.3 Hartmann-Hahn resonances in a QD

In order to understand the behaviour of our system in the intermediate

Rabi-frequency regime, we move into the dressed state picture. Here, we

consider our drive as redefining an eigenbasis for the system, indicated by∣∣∣↑̃〉 and
∣∣∣↓̃〉 - the dressed states, which are parallel and antiparallel to the

Rabi vector, respectively. In this picture, the dressed states are separated

in energy by h̄Ω, which is in direct correspondence with the “undressed”

picture where the drive induces spin precession around the Bloch sphere

at frequency Ω: Rabi rotations. We have previously seen that the QD is

described by an electro-nuclear state, which we can characterise by electron

spin polarisation, and nuclear polarisation Iz. In the dressed state picture,

for each value of Iz we obtain two electronic states (the dressed states), and

when Iz changes by one unit, the energy of both of these states shifts by

the nuclear Zeeman energy ωnz . Changing Iz by one unit also alters the

Rabi frequency, and so the dressed state splitting (i.e. the ladder is again

anharmonic). However, since the hyperfine shift of a single nuclear spin flip

(which is of order 1 MHz [238]) is much smaller than the Rabi frequency,

this can be neglected.

We depict the level scheme in Fig. 4.10 (a,b); in this picture, when the

Rabi frequency is different to the nuclear Zeeman energy, states of different

Iz are separated in energy, which impedes their coupling. However, when

the Rabi frequency matches the nuclear Zeeman energy, states of different Iz

are brought into resonance. This configuration allows states of different Iz

to couple together via the non-collinear hyperfine interaction. This type of

interaction, known as a Hartmann-Hahn resonance [239], corresponds to a

state transfer from the electron to the nuclear ensemble, and in our case leads
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Figure 4.10: Electro-nuclear level diagram schematic in the dressed state picture, when
(a) the Rabi frequency Ω is less than the nuclear Zeeman energy ωnz and (b) when they
are equal.

to an enhanced decay rate and reduced visibility under Rabi oscillations. In

this way we can tune the rate of electro-nuclear interaction with our drive.

In order to include these resonances in our model, we use the nuclear

spectral densities plotted in Fig. 4.11 (a). These represent the number of

transitions which exist at a given frequency; a depiction of their physical

origin is shown in Fig. 4.11 (b). Two families of transition are present,

corresponding to those that change nuclear spin projection by one (∆m = 1)

or two (∆m = 2) units. We include both spin I = 3/2 and I = 9/2 species,

since our QD includes both (gallium and arsenic for the former, indium for

the latter). In addition to the Zeeman splittings shown in Fig. 4.11 (b),

the nuclear levels are also subject to quadrupolar shifts. We previously

introduced the Hamiltonian in Eq. 2.30. Isolating the diagonal part, we

arrive at [176]:

ĤQ =
∑
j

Bj
Q

{
1

2

[
(

ˆ
Ijx)2 + (

ˆ
Ijy)2

]
sin2 θj + (

ˆ
Ijz )2 cos2 θj

}
. (4.13)
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Figure 4.11: (a) Spectral density of nuclear states for indium (purple) and arsenic (pink).
Transitions which change nuclear projection by 1 and 2 units are included. (b) Schematic
of quadrupolar transitions which give rise to the spectral densities plotted in (a). (c)
Detail of levels depicted in (b), for I = 3

2
. In addition to the nuclear Zeeman energy ωnz ,

levels acquire a relative quadrupolar shift ∆BQ.

Along the direction of the magnetic field, the j-th nucleus therefore acquires

a shift:

Bj
Q(

ˆ
Ijz )2 cos2 θj (4.14)

which amounts to a shift in the energy of a nuclear level, according to the

magnitude of its projection. In the simplest relevant case, where I = 3/2,

the four levels are shifted into the configuration depicted in Fig. 4.11 (c).

Here, the quadrupolar interaction alters the splitting between nuclear levels

by an amount

∆BQ = 2Bj
Q cos2 θj (4.15)

in the configuration depicted in Fig. 4.11 (c). This shift is the reason for the

multi-peak structure, even within each I and ∆m, seen in Fig. 4.11 (a).

These Hartmann-Hahn resonances correspond to coherent coupling be-

tween states of different nuclear projection. However, the presence of multi-
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Figure 4.12: Experimentally measured (pink circles) and modelled (black curves) (a)
visibility decay rate and (b) quality factor as a function of Rabi frequency.

ple nuclear species, alongside large strain inhomogeneities, mean that these

resonances present themselves as an enhanced decay rate of our Rabi oscil-

lations, as transitions to states with different nuclear projections are driven,

destabilising the lockpoint of the optical cooling.

Having calculated the spectral densities, we fit to the experimentally

measured decay rate by allowing the total number of nuclei, along with the

quadrupolar constants and angles for both indium and arsenic, to vary. Gal-

lium is neglected due to its significantly smaller spectral density [156]. Fur-

ther, we must convolve with the ESR lineshape (which corrects the spectral

selectivity of the ESR by including dephasing of the electron spin, alongside

power broadening) [224]. Simultaneously including the effects of Overhauser

noise, with a width constrained by an independent measurement, alongside

a laser-induced spin decay, we arrive at the theory curves presented in Fig.

4.12. These display close quantitative agreement with our experimental

data. We demonstrate that by tuning our Rabi frequency, we can selec-

tively couple or decouple the electron spin from its nuclear environment.

Selective coupling to nuclear modes will be explored in detail in Chapter

5. However, for the remainder of this Chapter, we will explore the conse-
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quences of decoupling on the electron spin.

4.8 Spin locking

So far in this Chapter, we have developed fast, high-fidelity, multi-axis elec-

tron spin control, and demonstrated that this can control the coupling be-

tween an electron spin and its environment of nuclear spins. This can be

done by driving Rabi oscillations, as we did in Section 4.7, but there exist

many other approaches. In this Section, we will utilise a continuous driving

scheme known as spin locking [208, 240]. In close analogy to the results of

Section 4.7, this scheme can be used both to enhance environmental coupling

(where it is known as “NOVEL” [241,242]) and to minimise environmental

coupling [243]. Here, we will work in the latter regime.

The pulse sequence is depicted in Fig. 4.13, and proceeds as follows.

After initialisation, the spin is rotated into the equatorial plane of the Bloch

sphere using a π
2 pulse. The phase of the driving field is then increased by

π
2 , placing the system into one of the eigenstates of the drive (which are

the dressed states). In this configuration, the spin is “locked” to be parallel

to the Rabi vector. After a locking time T , remaining coherence is probed

using a final π
2 pulse, whose phase φ is swept through 2π, followed by a

readout pulse.

In this picture, fluctuations in the ESR manifest themselves as a detuning

of the drive, which raises the Rabi vector out of the equatorial plane of the

Bloch sphere. If these fluctuations in detuning happen more slowly than the

Rabi frequency, the Bloch vector will remain parallel (i.e. locked) to the Rabi

vector (in analogy with the action of a Landau-Zener transition); conversely

if they are faster than the Rabi frequency, the Bloch and Rabi vectors will
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Figure 4.13: Spin locking pulse sequence. The locking pulse (at Rabi frequency Ω, and
lasting for time T ) is bookended by two projection pulses, the second of which has a
variable phase φ.

no longer be parallel, and the component of the Bloch vector perpendicular

to the Rabi vector will precess (i.e. this component is unlocked). Hence,

when Ω exceeds the frequencies of environmental dynamics, the system is

protected from dephasing.

4.8.1 The three regimes of spin locking

We begin with an experiment to characterise the performance of spin locking

with Rabi frequency. This is done using a simplified version of the sequence

shown in Fig. 4.13, where we read out using a phase φ = 0 (π) to probe

the length of the Bloch vector parallel (antiparallel) to the resonant Rabi

vector. We perform the initial and final projection π
2 pulses at high Rabi

frequency (> 100 MHz), where we previously found the highest fidelities.

We then vary the Rabi frequency of the locking pulse.

As we did in Section 4.7, we can again separate the parameter space of

Rabi frequency into three regimes, an example of each of which is presented

in Fig. 4.14. The first, in panel (a), concerns the low Rabi frequency limit,

where Ω is smaller than the nuclear Zeeman energies. Here, Ω is comparable

to the Overhauser width σ, meaning that we do not fully decouple from

Overhauser fluctuations. These lift the Rabi vector out of alignment with the
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Figure 4.14: Count rate following a spin locking pulse of variable length T , read out
using a phase of 0 (π) to produce the pink (purple) data points, and using a locking Rabi
frequency of (a) 10 MHz, (b) 62 MHz, (c) 125 MHz.
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Bloch vector, causing the Bloch vector to be driven. The resulting precession

of the Bloch vector around the Rabi vector includes oscillation along the

direction of the zero-detuning Rabi vector, at the (grand) Rabi frequency.

Both the amplitude and frequency of these oscillations are dependent on

the Overhauser fluctuation, but the phase is not. Our Overhauser-field-

averaged measurement therefore displays small oscillations, approximately

at the Rabi frequency. In addition to these, we observe that 60% of the

initial visibility remains after 800 ns of locking.

The second regime, presented in panel (b) of Fig. 4.14, refers to the case

where the Rabi frequency Ω is comparable to the nuclear Zeeman energies.

The electron spin is subject to transverse noise which evolves at these fre-

quencies as the nuclear spins undergo Larmor precession. As was previously

explained, when the spin-locking Rabi frequency is commensurate with the

noise frequency, the effects of the noise are enhanced. Here, the amplification

of environmental noise causes a fast decay of coherence in under 50 ns.

Figure 4.14 (c) presents data taken in the regime where the Rabi fre-

quency exceeds the nuclear Zeeman energies, where we expect the optimal

performance of spin locking for the reasons outlined above. However, in

stark contrast to expectation, the coherence of our quantum superposition

decays within 200 ns, significantly faster than under a weak locking pulse.

We will return to a discussion of this decay in Section 4.9.

4.8.2 State preservation using spin locking

The low-power regime is clearly the optimal for state preservation. To cap-

ture its behaviour, we use a simple model based on the optical Bloch equa-

tions, and average a Gaussian distribution of detunings with width fixed by
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Figure 4.15: Count rate after a spin locking pulse of length T , using a readout phase of 0
(π) (pink [purple] circles), along with a model (black curve). In addition, we plot modelled
Rabi oscillations at the same Rabi frequency (grey curve). Count rate is converted to
population by comparing to the model.

our measurement of T ∗2 (shown in Fig. 4.4). This model, presented in Fig.

4.15, closely agrees with our experimental data, using an Overhauser width

σ = 4.8 MHz and a Rabi frequency Ω = 11 MHz. Alongside, we plot the

corresponding Rabi curve, which demonstrates the superior performance of

spin locking in preserving the length of the Bloch vector.

Whilst the two models are fed identical Rabi frequencies, the oscilla-

tions which they exhibit have different frequencies. These models sum over

a Gaussian spread of detunings (representative of the Overhauser field dis-

tribution). In the Rabi model, the zero-detuning oscillations have the largest

amplitude, and the largest weight in the sum. Conversely, in the spin lock-

ing model, the most heavily weighted oscillations in the sum arise at finite

detuning, where the oscillation frequency is higher (at zero detuning, the

spin state is perfectly locked and does not oscillate). This explains the dif-
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Figure 4.16: Full spin-locking decay profile. (a) Normalised count rate after the spin
locking pulse sequence, as a function of the phase φ of the final π

2
pulse (pink circles).

From left to right, the locking time T is [1, 3, 5.5] µs. Alongside, we fit the data with
a sinusoid (black curves), and normalise the count rate by max(fit)+min(fit), allowing
direct extraction of the visibility. (b) Extracted visibilities for each locking time T (purple
circles). We fit these with an exponential decay (black curve), allowing extraction of the
spin locking decay time of 2.3(3)µs. Alongside, we plot the equivalent visibility under a
Rabi drive (grey shaded area).

ference in oscillation frequency between the two models, despite the same

inhomogeneous distribution of detunings.

Having confirmed the superior performance of spin locking to Rabi drive

at relatively short time delays and using a simplified readout scheme, we now

proceed to a full characterisation. Using the spin-locking sequence depicted

in Fig. 4.13, we perform tomography of the Bloch vector as a function of

locking time T , allowing us to extract a visibility; Fig. 4.16 (a) presents

three such datasets. We fit these visibilities to an exponential decay in Fig.
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4.16 (b), allowing us to extract a spin-locking decay time of 2.3(3)µs. The

short-delay visibility is limited by the ability of our microwave system to

change phase on a fast timescale (i.e. its bandwidth), since the spin-locking

sequence is made up of immediately consecutive pulses.

Alongside, we plot the corresponding visibility under a direct Rabi drive

at the same Rabi frequency of Ω = 16 MHz (grey curve in Fig. 4.16 [b]),

which exhibits decay on a 100-ns timescale. This decay is modulated at

the Rabi frequency, where decoherence due to nuclear inhomogeneities is

partially refocussed at integer multiples of a 2π rotation. This measurement

confirms our ability to preserve the quantum state for a longer time than

would be accessible under Rabi drive.

4.9 Laser-induced spin relaxation

Throughout the experiments presented in this Chapter we observe a visibility

decay rate which depends linearly on Rabi frequency, once nuclear effects

have been factored out. This places a hard limit on control fidelity and

restricts the decay time under both Rabi drive and spin locking. Here,

we probe this decay channel further. We initialise the electron spin, after

which we shine a single, far-detuned optical frequency onto the QD. After

this pulse, we read the electron spin out. Any electron spin population

revealed by the readout pulse must be present due to a spin relaxation (T1)

process, and varying the length T of the detuned pulse allows us to extract

the rate of spin relaxation which is induced by this pulse.

In Fig. 4.17 we perform precisely that measurement as a function of the

power P of the far-detuned laser pulse, and for detunings of 800 GHz and

1600 GHz from the optically excited states. We observe that the far-detuned
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Figure 4.17: Probing optically induced spin relaxation. (a) Level scheme and pulse
sequence. (b) Extracted relaxation rate as a function of detuned laser power, for a detuning
∆ = 800(1600) GHz from the optically excited states (purple [pink] circles).
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pulse does indeed induce a pure relaxation process, whose rate depends lin-

early on the power of the pulse. Further, we observe no dependence on

the detuning from the optical excited states. The insensitivity to detun-

ing necessitates a mechanism unrelated to the transitions of the QD itself.

The optical generation of charges which can then become trapped inside the

diode structure has been suggested as a mechanism to explain shifts in the

frequency of optical lines of a QD [113]. However, a sufficiently small dis-

tance between the QDs and the blocking barrier prevents charge trapping,

and our capping layer thickness of 10 nm satisfies this condition [244]. Nev-

ertheless, optical generation of charges can cause shifts of QD resonances

even in the absence of trapping [245].

This photocurrent could limit control fidelity by generating electrical

noise. This is consistent with the observation that hole spin control has a

lower fidelity than electron spin control, because hole spins are more sensitive

to electrical noise than electron spins [156, 157]. The physical origin of this

photocurrent is unclear, but minimising it is likely to be crucial for improving

our spin rotation fidelities.

4.10 Conclusions & Outlook

In this Chapter we have developed and demonstrated a novel technique for

electron spin control in QDs, combining high fidelities with multi-axis control

and arbitrary flexibility for the first time in this system. These important

capabilities allowed us to demonstrate the ability of this technique to tune

the coupling rate between an electron spin and its environment. Turning

this coupling off, we were able to show protection of a known quantum state

for a time an order of magnitude longer than it would otherwise survive,
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using a pulse sequence known as spin locking. In the next Chapter, we shall

expand the possibilities for turning environmental coupling on.
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Chapter 5

Quantum Correlations in a

Mesoscopic Ensemble

In the previous Chapters, we married an optical nuclear spin preparation

technique with an optical electron spin control technique, which enabled

multi-axis, high-fidelity electron spin control. By using this capability, we

saw the possibility of tuning the interactions between the electron and its

nuclear environment. In this Chapter, we will explore some of the many

interesting and important research directions made possible by these results.

In particular, our aim will be to use our well-controlled spin qubit to probe

the nuclear spin ensemble.

Here, rather than disabling environmental coupling, we drive it: we use

our optical electron spin control to bring the electron spin into resonance

with nuclear spin-flipping modes. We show that we can resolve these modes,

which correspond to single collective excitations distributed within the nu-

clear ensemble. Next, we show how the interaction strength of the electron
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with these modes can reveal intimate information about the nuclear spin

state populations, going beyond the mean-field treatment and allowing us

to fully reconstruct the nuclear population distribution. Finally, by tracking

these interaction strengths as a function of an imposed nuclear polarisation,

we reveal the presence of quantum correlations in the ensemble.

The data in this Chapter were taken with Clara Bachorz. Theoretical

analysis was performed by Leon Zaporski. The results of this Chapter have

been presented in a peer-reviewed journal article: [246].

5.1 A many-body system of nuclear spins

An isolated many-body system can play host to correlations underpinning

non-equilibrium, or quantum, phases of matter [247–250]. In some cases,

interactions between members of the system are sufficiently weak to be ne-

glected, and the system can be manipulated and measured via global controls

(such as NMR [208]). When interactions become important, this simpli-

fied picture is no longer accurate and the ensemble exhibits correlations to

which global measurements are blind. Measurements which are sensitive to

inter-particle correlations can be realised using tomography based on single-

particle measurements, possible in quantum gas microscopes [251, 252] (via

spatial resolution) and dilute central-spin systems [253–259] (where individ-

ual nuclei can be spectrally resolved and coherently addressed via a proxy

electronic spin). Another avenue to correlation-sensitive measurement is

by exploiting collective excitations of the ensemble [260] (of which polari-

tons [261] and magnons [262] are examples), which can be used to uncover

information about the state of the particles which together make up the

ensemble [263]. This measurement approach is particularly well-suited to
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dense ensembles, where single-particle resolution is not achievable; in this

case, coupling the system to a proxy qubit allows it to be conveniently ma-

nipulated and probed. This type of coupling is achieved in a number of

systems, including the interface of a superconducting qubit with an elec-

tronic [264] or a nuclear [265] spin ensemble, a single photon coupled to an

ensemble of artificial atoms via cavity quantum electrodynamics [266–268],

a Rydberg polariton in a cloud of atoms [269,270], and a single electron spin

coupled to a dense nuclear spin ensemble [30,163].

In their own right, nuclear spins constitute a fundamentally interesting

and attractive platform for studying quantum physics. Their intrinsically

long-lived coherence [161, 271–273] coupled with their potential for high-

fidelity quantum control [254, 255, 274, 275] means that they have been the

focus of a wide range of proposals, including for quantum information pro-

cessing [276–279], quantum error correction [253], quantum simulation [280],

and quantum memory [171,281–287].

As we previously described in detail in Section 2.6, in the particular case

of a semiconductor QD, the importance of interactions between the electron

spin and its environment of nuclear spins has been established by over a

decade of research [163, 288, 289]. The unique one-to-all coupling between

the electron spin and nuclear spins found in a QD makes it a system of

particular interest for studying many-body effects, and the interaction with

the central electron spin has been proposed as a platform for the generation

of entanglement and spin squeezing in the nuclear ensemble [159,290,291].

Experimentally, despite this enormous potential, nuclear spins in QDs

have hitherto manifested themselves as an obstacle to ideal quantum control

(as we saw in Chapters 3 & 4) and as a source of decoherence. Understanding

their dynamics is therefore foundational to exploiting the nuclear spins as a
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Figure 5.1: Nuclear spin distribution schematic. On an axis of nuclear polarisation
Iz, the nuclear distribution is described by a set of probabilities p(Iz) having a width
described by the Overhauser width, σOH. DNP shifts the centre of the distribution.

quantum resource.

The nuclear spins present themselves as a frustration to electron spin dy-

namics via two main channels. The first of these refers to fluctuations in the

nuclear spin polarisation, which give rise to a corresponding fluctuation on

the ESR via the Overhauser shift, placing a limit on electron spin coherence.

The second of these is dynamical nuclear polarisation (DNP), which causes

the Overhauser shift to change over the course of an experiment, frustrating

attempts to probe the undressed behaviour of the electron spin. Because the

electro-nuclear interaction is hyperfine, it depends on nuclear polarisation,

and the nuclear state is therefore typically described in polarisation space.

The distribution which describes the nuclear spin state, depicted schemat-

ically in Fig. 5.1, has a width - parametrised by the Overhauser width -

and a centre - the average polarisation. In this way, many of the effects

arising from a complex many-body interaction with ∼ 105 nuclear spins are

captured using just two parameters, describing their mean-field interaction

with the electron spin.

Mitigating the unfortunate consequences of the nuclear spin distribution

for the electron spin dynamics has followed a wide variety of routes. Firstly,
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the problem of a large Overhauser width can be sidestepped by protecting

the electron spin from its environment using decoupling control sequences

(as in Refs. [156, 157] and Section 4.8, for example). These approaches are

based on filtering the effects of low frequency environmental noise, leaving

the inhomogeneous dephasing time (T ∗2 ) untouched, but allowing the longer,

homogeneous dephasing time (T2) to be accessed. However, an alternative

approach is to reduce the Overhauser width itself, by addressing the nuclear

spins. These techniques, often referred to as “narrowing” or “cooling”, have

allowed the demonstration of a spin coherence extension by an order of

magnitude in QDs [176, 185, 229, 292, 293], and we previously exploited one

such technique to lead to the results of Chapter 4.

Secondly, and similarly, the effects of DNP can be minimised using a

broad range of techniques. Maintaining an average electron spin polarisation

close to zero largely prevents the build-up of nuclear polarisation (as we saw

in Section 3.9, and as used in Ref. [156]), and active stabilisation of the

average nuclear polarisation also prevents large changes in Overhauser shift.

The nuclear polarisation itself can also be manipulated, often by driving via

the electron [178, 294–301], and the generation of nuclear polarisation has

in turn been proposed as a technique for enhancing electron spin coherence

[302,303].

In semiconductor QDs, direct nuclear spin manipulation has also been

demonstrated, using global radio-frequency control fields to address nuclear

magnetic resonances [304–307]. This approach has allowed structural anal-

ysis of the QD [299,308], as well as direct probing [309] and extension [310]

of nuclear spin coherence in QDs. Beyond, NMR control has allowed the

nuclear spin distribution to be described not only in terms of the average

polarisation but using average populations of spin projections [311], and
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even the exploitation of the nuclear ensemble as a two-qubit quantum reg-

ister [207].

Despite this experimental tour de force, there remain several outstand-

ing challenges in the study of nuclear spins in QDs. To date, measurements

of the nuclear spin ensemble have relied on detecting shifts in the elec-

tron spin splitting - mean-field Overhauser shifts. This has given numer-

ous insights into electro-nuclear dynamics [163, 180, 312], including species-

resolved decomposition of the mean-field dynamics via Hahn-echo spec-

troscopy [156,189,313], and even resolution of quantum back-action of single

electron spins on the nuclei [314] and the Overhauser shift of a single nuclear

spin flip [238]. However, no QD nuclear spin probing technique which has

sensitivity to inter-particle correlations has been developed, and this leaves

a tantalising gap between experimental possibilities and the exciting pre-

dictions of correlated, or even entangled, many-body states which could be

generated via the QD electron. Tackling some of these challenges will be

the focus of this Chapter.

Throughout the work presented in this Chapter, we employ the nuclear

spin preparation technique described in Section 4.4. This technique has the

dual benefit of reducing the amplitude of quasi-static nuclear spin fluctu-

ations, enhancing the electron spin inhomogeneous dephasing time, and of

stabilising the nuclear polarisation to reduce the effects of DNP.

5.2 Nuclear magnons in quantum dots

Our nuclear spin preparation technique is based on a driven coupling be-

tween states of different nuclear polarisation, as we show in Fig. 5.2. We can
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Figure 5.2: Electro-nuclear ladder of states. From the starting state |↑, Iz〉 arrows
indicate allowed transitions which flip the electron spin alone (pink arrow), or accompanied
by a single (orange arrows) or double (purple arrows) nuclear spin flip. Nuclear spin-
flipping transitions are reduced in strength relative to the ESR by a factor of η.

express this coupling via the following correction term to the Hamiltonian:

V̂ ′′Q = −2ΩŜy
∑
j

AjBj
Q

(ωnz )2

[
1

2
(

ˆ
Ijx

ˆ
Ijy +

ˆ
Ijy

ˆ
Ijx) sin2 θj + (

ˆ
Ijz

ˆ
Ijy +

ˆ
Ijy

ˆ
Ijz ) sin 2θj

]
.

(5.1)

Terms proportional to sin 2θ allow single nuclear spin flips, and terms in

sin2 θ allow double nuclear spin flips.

Using this preparation technique, we realise an Overhauser width an

order of magnitude smaller than the bare, unprepared QD [176]; in fact,

this is comparable to those achieved previously using alternative narrowing

techniques [185]. The new, cooled, Overhauser distribution has a width of

a few MHz, which is exceeded by the nuclear Zeeman energies (which are

a few tens of MHz [156]). We have therefore entered the regime where the

watershed possibility of observing modes associated with single nuclear spin

flips becomes possible.
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The final piece in the puzzle is a method for driving these transitions.

In order to do this, we need a driving technique with spectral selectivity on

the scale of the ESR width (a few MHz). Whilst this could in principle be

effectuated by a sufficiently long train of ultrafast electron spin rotations,

precisely timed to coincide with the nuclear Zeeman frequencies, this is in

practice impossible for the reasons outlined at length in Section 3.1. We

therefore, again, rely on the virtues of our novel electron spin control tech-

nique, whose spectral selectivity makes such a measurement straightforward.

After preparing the nuclear spins and electron spin, we drive the system

with a pulse whose length and (two-photon) detuning we control. Since we

wish to resolve features separated by a few tens of MHz, we must work with

a small Rabi frequency in order to avoid power broadening. Following this

pulse, we track the response of the system by repumping the electron spin;

the resulting count rate constitutes our signal.

At a drive time close to the π time of the ESR, we reveal the data pre-

sented in Fig. 5.3 (a); the ESR lineshape is clear. Its width is a convolution

of the electron spin inhomogeneous dephasing rate and the Rabi frequency,

and here is fitted to 20(2) MHz, below the nuclear Zeeman energies (which

at our magnetic field of 3.5 T are 25.27 MHz for arsenic and 32.66 MHz for

indium). In addition, we guide the eye with dashed lines to mark these

energy scales relative to the ESR; the sufficiency of our resolution is again

apparent.

Performing the same measurement at a longer drive time reveals the data

shown in Fig. 5.3 (b). Alongside the principal ESR, we now resolve four

nuclear spin-flipping transitions, distinguished by their relative detuning

from the ESR; we find resonances detuned by single and double units of

the nuclear Zeeman energies. Figure 5.3 (c) displays the full dependence
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Figure 5.3: Count rate as a function of detuning δ from the ESR, at a drive time of (a)
50ns and (b) 1000ns. Dashed lines indicate ±1, 2 units of the arsenic (pink) and indium
(purple) Zeeman energy. Solid curves are fits, based on a single (quintuple) Lorentzian (a
[b]). (c) Count rate as a function of detuning and drive time.
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of the system on pulse length and detuning, from which linecuts are taken

and presented in panels (a,b). In addition to Rabi oscillations of the central

ESR, the emergence of well-resolved nuclear spin-flipping modes is apparent.

Crucial to this experimental observation is the fact that the electron

cannot distinguish individual nuclear spins; its Gaussian wavefunction cou-

ples close-to-homogeneously to N of O(100, 000) nuclei in the QD. For this

reason, these nuclei all partake in the nuclear spin-flipping mode, meaning

that the single (or double) nuclear spin flip is distributed across the ensem-

ble. This leads to a degeneracy factor ∼
√
N , collectively enhancing the

interaction strength and rendering these processes observable. This leads

to a prefactor of η ∼ ABQ
√
N

(ωnz )2 on the nuclear spin-flipping processes when

compared to the ESR; taking literature values, we find η ∼ 0.1 [176].

The collective nature of these spin excitations motivates our use of the

term “magnon” from hereon in. However, in contrast to magnons in fer-

romagnetic materials, our magnons are mediated by the central electron

spin. A collective nuclear spin excitation, before these results, had only

been observed via ensemble measurements of atomic gases [315] and mag-

netic materials [316,317].

The observation of a collective interface between the QD electron spin

and nuclear spins constitutes a landmark result for the study of QD spin

physics, as well as for the development of quantum technologies using QDs.

We have built on these results by demonstrating the coherent nature of in-

teractions between the electron spin and magnons [176,238], and by showing

that the electron spin can be deployed as a sensor to detect single magnons

via their Overhauser shift [238]. Of particular relevance to the remainder

of this Chapter, our observation of magnons opens a new window into the

state of the QD nuclear spins.
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Figure 5.4: (a) Nuclear population exists in a four-level space spanned by the four possi-
ble spin projections m of a spin-3/2 nucleus. Within this manifold, magnonic transitions
which increase or decrease m by one (pink arrows) or two (orange arrows) units are allowed
by the Φ operators, as depicted. (b) When starting from the same initial state, different
magnon modes are collectively enhanced by different subsections of the population distri-
bution.

5.3 Magnons as a measurement technique

As we saw in the introduction to this Chapter, single collective excita-

tions [260] can be used to reveal information about the state occupied by

the underlying particles [263]. Here, we will exploit our single-magnon tran-

sitions to do exactly that.

The nuclear ensemble of a QD is made up of indium, arsenic, and gallium,

all of which are spinful (I = 9/2 for indium, I = 3/2 for gallium and arsenic).

We parametrise each species using the populations of each of its Zeeman-

split spin-states: |~n〉 = (n3/2, n1/2, n−1/2, n−3/2) (Fig. 5.4).

From the electron’s indiscriminate view of the nuclei, the nuclei combine

to give the Overhauser shift:

δO =
3

2
AAsIAs

z + x
9

2
AInIIn

z + (1− x)
3

2
AGaIGa

z . (5.2)

119



Ijz ∈ [−1; 1] is the species-specific fraction of the maximum polarisa-

tion (which occurs when all spins of that species have projection m = I).

Aj indicates the hyperfine constant for species j (AAs = 11.1 GHz, AIn =

13.5 GHz, AGa = 9.2 GHz), and x is the concentration of indium. We use

Iz to refer to the ensemble polarisation, over all species. For the case of a

nuclear state which contains no coherences [156,178,208,232,294–298,300],

we can relate the interaction Rabi frequency of each of the four magnon

modes to the underlying single-particle spin-state populations |~n〉:

Ω+1 = α1
√
n−3/2 + n+1/2

Ω+2 = α2
√
n−3/2 + n−1/2

Ω−1 = α1
√
n+3/2 + n−1/2

Ω−2 = α2
√
n+3/2 + n+1/2.

(5.3)

As shown in Fig. 5.4 (b), these expressions apply when starting in a

given initial state.

It can be shown that, in the case of I = 3/2, the constants of propor-

tionality are:

α1 =
√

12NΩ sin 2θ
aBQ
2ω2

n

α2 =
√

12NΩ cos2 θ
aBQ
4ω2

n

(5.4)

for N nuclei participating, an ESR drive Rabi frequency Ω, quadrupolar

angle θ, hyperfine constant per nucleus a, quadrupolar constant BQ, and

nuclear Zeeman energy ωn [246]. Crucially, Ω+1 shares its constant with

Ω−1, and likewise for Ω±2.

Finally, we note that this treatment is not exact for the indium nuclei
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present in our QD, which have I = 9/2. We will discuss this in Section 5.8.

5.4 Polarising using Raman cooling

The thermal, unprepared state occupied by the nuclear spins is simply

|~n〉 = (0.25, 0.25, 0.25, 0.25). In order to probe the non-equilibrium nu-

clear dynamics, we again use our optical preparation step. Whilst in the

earlier discussion we drew the close analogy between our preparation tech-

nique and Raman cooling of atoms, there is a crucial difference between

these two systems: our system can be pictured as an anharmonic (rather

than a harmonic) ladder of states, where the hyperfine interaction between

the electron and the nuclei alters the electron spin splitting, as a function of

nuclear polarisation. This property gives us the ability to select the stable

lockpoint of our feedback, simply by changing the frequency of the drive:

the system is locked to the resonance condition of our drive laser, which we

are free to change.

This technique, which we term “Raman dragging”, is illustrated schemat-

ically in Fig. 5.5. We begin with Raman cooling at zero polarisation, where

the Raman frequency ωR matches the electron Zeeman splitting ωe. We then

increase ωR, which moves the stable lockpoint of the feedback function; we

drive a polarisation in the nuclear ensemble, in order to maintain the reso-

nance condition via the Overhauser shift. This effect is entirely analogous

to our previous description of dragging, except that the process is driven via

a microwave-frequency transition (the ESR) rather than an optical one.

In order for the system to follow the drive, we must alter ωR slowly for the

nuclei to stay locked to our feedback. We find experimentally the optimum

ramp rate for ωR as 0.04 GHz s−1, meaning that reaching our maximum
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Figure 5.5: Raman dragging schematic. Our Raman cooling technique generates a
feedback function (blue curves), which pump the nuclei towards a stable lockpoint defined
by its polarisation Iz (pink circles). Increasing the frequency of the Raman cooling, ωR,
moves the stable lockpoint, causing the generation of an Overhauser shift δO in order to
maintain the resonance condition.

Overhauser shift of 13.2 GHz takes 5.5 minutes. After this routine, we can

perform multiple measurements without losing the nuclear polarisation by

alternating a probe sequence (of a few µs) with a feedback sequence (which

is ten times the length of the probe sequence). Such an alternating cycle

ensures that we stay at the desired polarisation well beyond the intrinsic

nuclear spin relaxation time, and avoids backaction of our measurement on

the nuclear state. Further, we monitor the Raman fluorescence from the

feedback sequence during our experiment, only re-polarising from zero when

the lockpoint is lost i.e. when the Raman fluorescence disappears. In this

way, we can hold the system at finite polarisation for hours at a time.

The action of our Raman cooling is in competition to nuclear diffusion

processes. As we polarise the system, diffusion becomes directional: the

system prefers to return to its equilibrium configuration, at zero polarisation.

This causes the feedback function to become asymmetric when at non-zero
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Figure 5.6: (a) Polarisation pulse sequence. Raman cooling, during which the system
is driven with Raman (pink) and repump (purple) lasers (left panel), is used to polarise.
During this stage, the frequency of the Raman drive ωR is swept linearly from ωe up
ωe + δO. (b) Ramsey measurement sequence. The system is held at finite polarisation
by Raman cooling, and is probed using Ramsey interferometry in order to extract T ∗2 .
(c) Cooling performance, characterised using T ∗2 , as a function of Overhauser shift. The
black curve is a constant fit with a value of 39(4) ns. Error bars indicate 66% confidence
intervals.

polarisation, as depicted in Fig. 5.5. At some polarisation, the diffusion

rates exceed the Raman locking rates and the stable point disappears (a

bifurcation).

We first characterise the performance of Raman cooling over our range of

experimentally accessible polarisations, by measuring the electron spin T ∗2 .

The resulting data are presented in Fig. 5.6; we find roughly constant ESR

width, indicating that introducing a finite polarisation does not significantly

impede the performance of Raman cooling.

5.5 Probing magnon asymmetry

With this established, we proceed to measure the magnon spectrum over

our range of experimentally accessible polarisations. In order to do this,

we use the polarisation sequence described above to drag the system to a

finite polarisation. From there, we use a drive pulse of length 1µs and of
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Figure 5.7: (a) Electron |↓〉 population, read out following a polarisation sequence gen-
erating an Overhauser shift δO and a drive pulse of length 1µs and detuning δR rel-
ative to the end of the polarisation sequence. (b) Linecuts from data in (a) taken at
δO = 7.6 (−4.4) GHz (top [bottom]). The solid black curve is a fit to the spectrum at
δO = 0. In this panel, the shift in lockpoint evident in (a) has been subtracted i.e. our
detuning δ is referenced to the ESR, not the preparation.
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Raman detuning δR relative to the Raman frequency ωR used to hold the

system at polarisation. Reading the population after this drive pulse reveals

the data which we present in Fig. 5.7 (a). Indeed, we see that we remain

sideband-resolved throughout the range of Overhauser shifts probed here.

This allows two striking features to emerge.

The first is an offset, ε, of the centre of the spectrum, proportional to

the Overhauser shift. The origin of this offset is depicted in Fig. 5.5: at fi-

nite polarisation, the feedback curve becomes asymmetric, because diffusion

processes preferentially bring the system back to its thermal, unpolarised

state. This asymmetry causes the stable lockpoint of the system to be offset

away from the one defined precisely by the Raman frequency ωR, and here

amounts to a few-MHz correction when at a few-GHz Overhauser shift.

The second feature, which we highlight in Fig. 5.7 (b), is an asymme-

try in the spectrum. When at negative Overhauser shift, magnon modes

which increase polarisation appear more prominent in the spectrum, whilst

at positive Overhauser shift the opposite is true. This asymmetry arises due

to the imbalance in nuclear spin-state populations which is present at finite

polarisation.

In order to exploit the relations in Eq. 5.3, we must extract the interac-

tion Rabi frequencies from these data. We first verify explicitly that side-

band height can indeed be translated to Rabi frequency by probing magnonic

transitions in the coherent regime [176]. Here, we access that regime by in-

creasing our Rabi frequency in order to exceed inhomogeneities. We then

tune the detuning of the drive pulse to match the grand Rabi frequency with

the nuclear Zeeman energy. Figure 5.8 presents the time-dependent signal

which we obtain. When at positive polarisation (Fig. 5.8 [a]) the magnon

mode which corresponds to a more prominent peak in the spectrum (inset),
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Figure 5.8: Electron |↓〉 population as a function of drive time T for a pulse which is
resonant with the positive (negative) first sideband (purple [yellow] circles), as indicated by

the inset schematic. Solid curves are fits of the form
{
−a(1− x

b+x
) cos(2π[cx+ d]) + e

}
.

(a) δO > 0. (b) δO < 0.

reducing the polarisation, exhibits a faster exchange. Conversely, when at

negative polarisation (Fig. 5.8 [b]), the polarisation-increasing magnon mode

is preferred. This result demonstrates the qualitative correspondence of peak

height to Rabi frequency. Next, we will quantify this correspondence.

5.6 Species-resolved spin-state reconstruction

In Eq. 5.8, we gave an expression for fractional polarisation Iz in terms of

asymmetry. In fact, this expression is true for each species which exists in

our system - indium, gallium, and arsenic. If we can resolve magnon modes

for each species, we can infer species-specific fractional polarisations, which

then combine to give the total Overhauser shift according to Eq. 5.2.

Magnon modes for these species are split by a few MHz at our exter-

nal field (ωAs
z = 25.27 MHz, ωIn

z = 32.66 MHz, ωGa
z = 35.77/45.43 MHz). In
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Figure 5.9: (a) Magnon spectrum. Data points (purple circles) are fitted (black curve)
using a function consisting of five separate Lorentzians, for the ESR (pink curve), first
sidebands (orange curves) and second sidebands (purple curves). (b) Magnon spectrum,
after deconvolution using a Wiener filter. Data points (purple circles) are fitted (black
curve) using 9 independent two-level systems (coloured curves, colour coding as for [a]).

order to extract species-specific information by resolving these features, we

must include a further post-processing step. We have independently mea-

sured the Overhauser width using free induction decay (presented in Fig.

5.6) to be 7 MHz. This informs the construction of an optimised Wiener

filter [318] which removes faithfully the inhomogeneous broadening from the

spectrum. The result of this process is depicted in Fig. 5.9 (b): we reveal

doublet structures contained in each of the four magnon clusters seen so far

corresponding to species-specific magnon modes for indium and arsenic.

As we previously mentioned, in order to achieve this resolution, we must
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work in the regime of low Rabi frequency. Under this condition, magnon

transitions are overdamped by (electronic and nuclear) dephasing processes,

as is apparent from the data in Fig. 5.3. We treat each magnonic mode as a

two-level system with a fixed dephasing rate which is fixed by an independent

measurement (the data in Fig. 5.3), allowing us to fit a lineshape to each

mode independently; this process leads, as an example, to the model curves

shown in Fig. 5.9. In this way, we extract an exchange frequency Ω±k for

each of the eight magnonic modes present in the deconvolved spectrum.

We introduce a dimensionless parameter νk (for k = 1, 2) which we term

the asymmetry:

νk =
Ω2
−k − Ω2

+k

Ω2
−k + Ω2

+k

. (5.5)

The fortuitous combination of populations in Eq. 5.3 now becomes clear:

linear combinations of ν1 and ν2 correspond to population differences in the

nuclear ensemble:

n+3/2 − n−3/2 = −1

2
(ν2 + ν1)

n+1/2 − n−1/2 = −1

2
(ν2 − ν1).

(5.6)

Up to now, the nuclear ensemble has exclusively - with two notable ex-

ceptions [207, 311] - been described in terms of its fractional polarisation,

which we denoted Iz. We can make a straightforward connection to this

quantity by linearly combining these fractional populations, with the appro-

priate weights:

I?z =
2

3

[
3

2
(n+3/2 − n−3/2) +

1

2
(n+1/2 − n−1/2)

]
(5.7)
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and the rearrangement in terms of asymmetries follows naturally:

I?z = −1

3
(2ν2 + ν1). (5.8)

We use ? to highlight that this definition of I?z is reconstructed from

asymmetry; in the case of a thermal state, this definition is precisely equiv-

alent to the previous one (where Iz is the fraction of the maximum polari-

sation), I?z = Iz.

We therefore see that by measuring the interaction Rabi frequency of a

magnon, we can infer information about the nuclear ensemble which goes

beyond the mean-field treatment: we find I?z , but also the population im-

balances within the |m| = 3/2 and |m| = 1/2 manifolds.

Because gallium is not visible in our spectrum and because indium has

I = 9/2 and hence does not obey Eq. 5.3 exactly, we work with the arsenic

sub-ensemble for now. This results in a direct measurement of population

imbalances in the arsenic sub-ensemble, which we present in Fig. 5.10. Our

results indicate that the build-up of the mean field δO is accounted for by

an imbalance in the 3/2 subspace, with the 1/2 subspace remaining close to

unpolarised throughout. Alongside these data, we plot the corresponding

imbalances expected for a thermal distribution (dashed curves). Whilst this

accurately reproduces the data for the 3/2 subspace, the data for the 1/2

subspace deviates from this assumption and we must reconstruct the full

nuclear distribution in order to understand the relevant dynamics.
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Figure 5.10: Extracted population differences in (a) the 3/2 manifold and (b) the 1/2
manifold (purple data points), alongside corresponding quantities for a thermal (dashed
curves) and cooled (solid curves) nuclear state, as a function of the mean field δO. Error
bars indicate 66% confidence intervals.
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5.7 Full population reconstruction

Whilst our magnon modes allow extraction of fractional polarisation I?z ,

as well as the population differences (n+3/2 − n−3/2) and (n+1/2 − n−1/2),

they are blind to the populations ~n themselves. To understand this, picture

a polarisation-preserving population transfer from the 3/2 manifold to the

1/2 manifold e.g. |~n〉 = (α, β, γ, δ) → |~n′〉 = (α − ε, β + ε, γ + ε, δ − ε).

Under this operation, no change in the magnon-derived parameters oc-

curs, and the ensemble therefore contains further information which cannot

be extracted directly using magnons. In order to reconstruct the popula-

tions ~n, we must assemble a dynamical model which pits magnon excita-

tion rates against nuclear diffusion rates. In order to do this, we use the

Fokker-Planck formalism, and apply the population conservation constraint

n+3/2 + n+1/2 + n−1/2 + n−3/2 = 1. This reduces the problem to the three-

dimensional space ~n3D = (n+3/2, n+1/2, n−3/2) and allows us to obtain the

steady-state populations. The extracted population differences are shown in

Fig. 5.10, where we find good agreement with our experimental data. The

populations themselves are then plotted in Fig. 5.11, and compared with

the equivalent quantities for a thermal state. The populations prepared by

optical cooling are thermal-like only at the extrema (zero polarisation, and

maximum polarisation), deviating for all intermediate polarisations. In our

case, the selection rules dictated by the quadrupolar interaction (illustrated

in Fig. 5.4) mean that Φ±1 processes deplete the m = −3/2 and m = 1/2

levels when polarising to Iz > 0, giving rise to an imbalance (n+1/2 − n−1/2

which is negative, even at positive polarisations. A disagreement with the

behaviour of a thermal state is a universal feature of states prepared by

dragging.
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Figure 5.11: Spin-state populations in the arsenic sub-ensemble for a thermal (dashed
curves) and optically cooled (solid curves) state, as a function of asymmetry-commensurate
polarisation I?z . Colour relates to population according to the inset schematic.

Our model gives us access not only to the spin-state populations, but

also their widths, ∆~n3D. We project this three-dimensional distribution onto

three sets of two-dimensional axes, and plot the results in Fig. 5.12. In the

space spanned by ~n3D, our feedback mechanism pumps the nuclear state

strongly towards the plane of constant Iz, and weakly within this plane to-

wards a single stable point. For this reason, the (n+3/2, n−1/2) plane, which

is almost parallel to the constant-Iz plane, displays a projection which is

close to thermal. This is not true of the remaining two projections, which

house distributions which are squeezed and tilted relative to the thermal

case. This result is indicative of the spin-state correlations within our nu-

clear state, which therefore cannot be expressed using a separable, classical

distribution.
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Figure 5.12: Arsenic spin-state distributions (mean subtracted) taken from a Fokker-
Planck model, at an arsenic polarisation IAs,?

z = 0.2. The white curves represent one
standard deviation, for a thermal (dashed) and cooled (solid) state.

5.8 An entangled many-body state

Up to this point, our discussion - consistent with previous works on QD sys-

tems [156, 178, 208, 232, 294–298, 300] - explicitly assumed that the nuclear

state is classical. This assumption allowed the derivation of Eqs. 5.2, 5.3,

5.5, and led to intuitive relations between populations and asymmetry, via

collective enhancement. In the presence of coherences, however, these rela-

tions no longer hold. We consider the case where the spin angular momenta

are summed coherently such that the total angular momentum of the ensem-

ble is the same as that of a single spin: a dark state [260]. In this scenario,

the maximum mean-field would be that given by the maximal polarisation

of a single spin i.e. the fractional polarisation Iz = O
(

1
N

)
. In this config-

uration, no polarisation-increasing magnon transitions are possible, and we

would thus reach ν1,2 = 1 and I?z = 1 in spite of the small mean field. More

generally, I?z < Iz is a signature of a state with reduced total angular mo-

mentum (compared to a classical state). For I?z > Iz, the opposite applies:

this is caused by a state with increased total angular momentum.

We now cast this intuitive picture into more formal language. From
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Ref. [319] we take the following inequality:

〈∆Î2
x〉+ 〈∆Î2

y 〉+ 〈∆Î2
z 〉 ≥

N

2
, (5.9)

which applies to an ensemble of N spin-1/2 particles; 〈∆Î2
j 〉 is the variance

of the angular momentum projection along the direction j. The inequality

in Eq. 5.9 is satisfied by all separable states, and a violation thereof implies

entanglement.

Alongside, we massage the asymmetry parameter into a convenient form

for this discussion. We begin by noting that the magnon exchange frequen-

cies can be recast in terms of correlators of collective spin operators Î±:

Ω2
± ∝ 〈Î∓Î±〉. (5.10)

The asymmetry parameter can therefore be reassembled in terms of these

correlators in the following manner:

ν =
Ω2
− − Ω2

+

Ω2
− + Ω2

+

=
〈[Î+, Î−]〉
〈{Î+, Î−}〉

(5.11)

where [•, •] and {•, •} denote the commutator and anticommutator, respec-

tively. Both the numerator and denominator of Eq. 5.11 can be straightfor-

wardly written using the angular momentum commutation relations:

〈[Î+, Î−]〉 = 2〈Îz〉

〈{Î+, Î−}〉 = 2〈Î2
x + Î2

y 〉
(5.12)
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and the asymmetry parameter is then

ν =
〈Îz〉

〈Î2
x〉+ 〈Î2

y 〉
. (5.13)

From here, we can easily write the variances 〈∆Î2
x〉, 〈∆Î2

y 〉 in terms of

the asymmetry parameter:

〈∆Î2
x〉+ 〈∆Î2

y 〉 =
Îz
ν
− 〈Îx〉2 − 〈Îy〉2. (5.14)

Hence, using Eq. 5.9, we can use the asymmetry parameter as a formal

entanglement witness:

ν ≤ 〈Îz〉
N
2 − 〈∆Î2

z 〉+ 〈Îx〉2 + 〈Îy〉2
. (5.15)

Returning to the language of fractional polarisation Ij = 〈Îj〉/Izmax

(where Izmax = N/2 for a spin-1/2 system), we rewrite Eq. 5.15 in the fol-

lowing form:

I?z ≤
Iz

1− N
2 ∆2Iz + N

2 (I2
x + I2

y )
. (5.16)

Whilst Eq. 5.16 was derived for a spin-1/2 system, it has some important

features which are independent of the spin character of the ensemble and

depend only on fractional polarisations. Firstly, the denominator can only

be less than one (which is where the observation I?z > Iz does not imply

entanglement) in a state where fluctuations in Iz are O
(

1
N

)
. In our case,

these fluctuations are reduced by a factor ∼ 400 relative to the thermal case

i.e. we realise ∆2Iz � 1
N and we can safely neglect this term. In this case,

we can write a simple condition on I?z , whose violation in our measurement
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Figure 5.13: Fractional polarisation extracted from magnon asymmetry as a function of
mean field δO, for (a) arsenic and (b) indium. Solid diamonds are data points, and error
bars indicate a 66% confidence interval. Solid lines are calculated by passing the data
points through a first-order Savitsky-Golay filter with a 1.6-GHz window.

would necessarily imply entanglement:

I?z > Iz. (5.17)

In our system, since we have three nuclear species, it is expedient to

work with the mean field δO, which captures the relative importance of the

species-specific polarisations from the point of view of the electron (which

we previously expressed in Eq. 5.2).

At this point, we must give due consideration to indium’s spin-9/2 char-

acter, which means that it does not obey Eq. 5.8 exactly. In order to navigate

this, we use our definition that Iz = I?z in the case of a thermal state, inde-

pendent of total spin I. For a thermal state, it is straightforward to calculate

Iz and 1
3(2ν2 + ν1) (which equals I?z when I = 3/2). The relation between

these two quantities when I = 9/2 therefore gives the correction which we

should apply to I?z,I=3/2 in order to find I?z,I=9/2. The correction function is

at most a factor of 2 [246].

We have already directly extracted the magnon exchange frequencies for
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indium and arsenic. Therefore, and using the above procedure for indium,

we can straightforwardly calculate their asymmetry-commensurate polari-

sations I?z , which are shown in Fig. 5.13.

Whilst magnonic modes associated with gallium are not visible in the

spectrum, its contribution to the Overhauser shift cannot be neglected. We

estimate its polarisation using a two-species Fokker-Planck formalism, in-

cluding arsenic and gallium, and find the set of stable points (IAs
z , IGa

z ) [246].

The relation between these two quantities is set by the strength of the feed-

back which is experienced by each species, decided by their relative hyper-

fine constants and Zeeman energies A/ωz and included in our model via

species-specific scattering rates. Taking (IAs
z , IGa

z ) over our range of acces-

sible arsenic polarisations and performing linear fits to both, we find that

IGa
z = 0.46IAs

z . We use this relation to estimate IGa
z from the data in Fig.

5.13 (a).

We can then arrive at an asymmetry-commensurate Overhauser shift:

δ?O =
3

2
AAsIAs,?

z + x
9

2
AInIIn,?

z + (1− x)
3

2
AGaIGa,?

z . (5.18)

The hyperfine constants Aj are well known parameters, and the best fit for

the indium concentration x is 0.5 [156]; across all previous works, x has been

reported to range from 0.25-0.75 [320].

In direct parallel to Eq. 5.17, we compare δ?O with the mean field which

we impose experimentally, δO. The result is plotted in Fig. 5.14; we observe

a striking enhancement of δ?O, which exceeds δO by a factor of 2.9(1). Even if

we assume that the QD studied here is among the most gallium-rich InGaAs

QDs ever reported (i.e. x = 0.25), this enhancement factor is reduced only

to 1.9(1). This result therefore constitutes the fingerprint of entanglement

137



Figure 5.14: δ?O, extracted from asymmetry, vs. δO imposed experimentally (pink data
points). The solid pink curve is the data passed through a Savitsky-Golay filter with a 1.6-
GHz window. The solid black line is a fit to the data, with a gradient of 2.9(1). The dashed
black line is the one-to-one correspondence which would be displayed by a classical state.
The shaded coral area is the equivalent result for the full range of previously reported
indium concentrations, x = 0.25− 0.75.

within the nuclear ensemble.

We can glean further intuition from this result by recasting Eq. 5.13 in

terms of 〈Î〉 and 〈Îz〉:

ν =
〈Îz〉

〈Î2〉 − 〈Îz〉2
. (5.19)

An asymmetry which is enhanced compared to the thermal case (where
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ν = 〈Îz〉/Imax) is achieved when

〈Î2〉 ∼ 〈Îz〉(〈Îz〉+ 1); (5.20)

indeed, in this case the asymmetry is maximally enhanced to ν ∼ 1. The

condition in Eq. 5.20 corresponds to a sub-radiant, or dark, state. (By

a very similar argument, the opposite case where ν is reduced below its

classical value is a hallmark of a super-radiant, or bright, state.) Dark state

coherences, such as those whose fingerprint we uncover here, have been

predicted to manifest themselves in QDs [283,321–323].

5.9 Conclusions and Outlook

In this Chapter we have demonstrated polarisation of a QD nuclear spin

ensemble using a new technique, opening some important future avenues.

Firstly, we saw in the background to this Chapter that the attractive

properties of a QD nuclear spin ensemble has led to its proposition for a

wide range of technological applications, in particular as a quantum mem-

ory. In this protocol, a quantum state is transferred from an electron spin

confined to the QD onto the nuclear spin ensemble, and imprinted back onto

the electron spin at a later time. Because the coherence times of nuclear

spins are orders of magnitude longer than those of the electron spin [161],

this approach promises great improvement in the performance of QDs as

quantum network nodes.

The transfer step must perform an operation of the following form:

1√
2

(|↑〉+ |↓〉)⊗ |Iz〉 −→ |↑〉 ⊗
1√
2

(|Iz〉+ |Iz + 1〉) (5.21)
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The proposal of greatest relevance to our QD system, detailed in Ref.

[171], realises this operation - which corresponds to excitation of a single

magnon, conditional on the electron state - by an intrinsic asymmetry in

coupling rates. In other words, the scheme works by relying on the faster

excitation of magnons from |↓〉 than from |↑〉. This is precisely the asym-

metry which we presented in Fig. 5.8, which illustrates the feasibility of this

approach. In the proposal of Ref. [171], the principal limitation of memory

fidelity comes from an imperfect asymmetry, itself a consequence of incom-

plete polarisation. However, the results which we have presented in this

Chapter indicate that full asymmetry can be achieved even whilst operating

at low polarisation. This has the additional benefit of reducing the unwanted

effects of nuclear spin diffusion, whose rate increases with polarisation. Re-

alistic operation of such a scheme could reach the proof-of-principle level in

the current experimental setup.

Secondly, whilst our technique provides novel insight into the nuclear

state, it is restricted to the z projection of nuclear polarisation (along with

total angular momentum). Combining our approach with global controls

using NMR fields, we could perform a tomography of the entangled many-

body states which we generate, in the collective basis.

Finally, the long-awaited demonstration of entanglement within the nu-

clear ensemble illustrates the status of QDs as a realistic testbed for many-

body physics [291,324].

The most interesting of these outlooks rely on coherent interface between

the electron and magnon modes. As we have seen in this Chapter, in In-

GaAs QDs the operation fidelity achievable is low. The drastic variation of

the strain environment across the QD leads to inhomogeneous coupling to

different nuclear lattice sites. This fact of the system places an unavoidable
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limit on the coherence of the electro-nuclear interface which can be realised.

Unfortunately, this is so fundamental to the InGaAs QD that we can only

address it by moving to a different physical system. Chapter 6 will provide

further details on this outlook.
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Chapter 6

A Spin Confined to a GaAs

Quantum Dot

As we have seen in the preceding Chapters, semiconductor quantum dots

constitute a fascinating physical system, holding spectacular promise for the

development of quantum technological applications. The most interesting

features of this system result from the nuclear environment which constitutes

the QD. We have seen that this allowed the study of collective phenomena,

by exploiting the proxy qubit resident in the QD. Beyond, the nuclear en-

semble promises the long-term storage of a quantum state, allowing a QD

to be operated as a quantum repeater.

Reaching these goals with QDs requires a highly coherent interaction

between the electron and its nuclear ensemble. Whilst we have seen that

InGaAs QDs can support some electro-nuclear coherence, the facts of the

material and growth process place hard limitations on the possibilities with

these samples. If QDs are to develop as a viable platform for quantum
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technologies, a new generation of nanostructures will be necessary.

In this Chapter, we will detail work developing a new type of QD samples.

We show gate-controlled emission, coherent interaction between an optical

field and the QD excitons, and electron spin preparation. This allows us

to measure the spin lifetime, and we then perform coherent control of an

electron spin confined to a GaAs QD. These results demonstrate the future

potential of these QD samples.

The data in this Chapter were taken with Leon Zaporski. The samples

used in this Chapter were grown at the Johannes Kepler Universität in

Linz, Austria, in the group led by Armando Rastelli. They were processed

in Cambridge by John Jarman and Noah Shofer.

6.1 Background

Thus far, we have worked with self-assembled quantum dots of indium gal-

lium arsenide, formed via the Stranski-Krastanov (SK) growth process. In

this type of QD, the nuclear environment is made up of three elements,

all with different material constants. In addition, the formation process of

these QDs is fundamentally based on a lattice parameter mismatch between

the QDs and their surrounding GaAs matrix, which causes InAs to prefer

to cluster together into small islands which become our QDs. This leads to

a high degree of inhomogeneity of strain across the QD. This is important

because the degree of strain controls the strength of quadrupolar coupling

between the electron and the nuclei, which therefore also varies across the

QD. These material and environmental inhomogeneities are responsible for

both the limits on the electron spin coherence [156], and the weak coher-

ence between the electron spin and magnon modes measurable in InGaAs
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QDs [176]. These properties are fundamental to a QD formed by lattice pa-

rameter mismatch, which is the phenomenon underpinning the SK growth

process.

In order to circumvent these challenges, we must therefore take a dif-

ferent route, using a different platform. Fortunately, a natural alternative

exists: the GaAs quantum dot, embedded in an AlGaAs matrix. These

two structures have matched lattice parameters, meaning that the QDs are

strain free (if left to their own devices). Whilst this will have happy con-

sequences for the nuclear spin properties later on, it for now means that a

more deliberate approach must be taken in order to cause the formation of

QDs.

Instead of Stranski-Krastanov growth, the generation of QDs in this

material proceeds via a technique known as droplet epitaxy [325]. Starting

with a substrate of Al0.4Ga0.6As, droplets of aluminium are deposited on the

surface. Under carefully chosen conditions, these droplets cause deposition

of arsenic from the substrate immediately underneath, leaving empty space

behind: the droplets act as “nanodrills”, which etch “nanoholes” in the

substrate [326–332]. Within these nanoholes, GaAs is deposited, forming

lattice-matched, low-strain QDs [333,334].

In terms of optical properties, these QDs have been shown to be bright

and coherent single-photon sources [335–338]. In addition, they have a num-

ber of advantages over their Stranski-Krastanov-grown predecessors. Their

optical emission around 780nm is close to rubidium transitions, which could

allow the convenient formation of a hybrid quantum system [335, 339, 340].

The growth process gives a high degree of tunability over the density of

QDs on the wafer as well as their emission wavelength [341, 342]. Fur-

ther, the growth process allows them to have very high symmetry, which
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has led to their implementation as sources of entangled pairs of photons

[337, 339, 343–349]. Many of these works exploit the external application of

strain to the sample in order to enhance their entanglement fidelity [350],

a technique which also allows post-growth tuning of emission wavelength

[325,340,351–353].

With regards to their spin properties, studies have probed and exploited

the electro-nuclear (hyperfine) interaction in GaAs QDs [300,301,311,354].

The homogeneous nature of the nuclei of a GaAs QD has already been

exploited, allowing the implementation of an NMR quantum computing al-

gorithm [207]. Finally, resonance fluorescence has been performed on these

QDs, which allowed optical preparation of the electron spin and a measure-

ment of the spin lifetime in Faraday geometry [355].

These results constitute the foundational framework on which the study

of a homogeneous ensemble of nuclear spins could be built. The coherent

nature of both the optical interactions and the nuclear environment of GaAs

QDs has been confirmed. Further, the possibility of applying strain to the

samples, key to actuating electro-nuclear coupling, has been demonstrated.

Despite this progress, the study of these new samples remains in its infancy,

and we start from a basic characterisation of our samples, following the steps

outlined in Chapter 2.

6.2 Sample structure

Our samples are grown using the above method, and are very similar in

form to the InGaAs samples previously discussed in Section 2.1. The sample

structure is depicted schematically in Fig. 6.1; the principal difference is that

the QDs are housed inside a p-i-n diode. This requires a small change to
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the processing procedure, because the contact to the back gate must not

short with the p doped layer. In order to avoid this, we etch through the

p doping, making the back contact without contacting the p doped layer.

This can be seen in Fig. 6.1 (a), where our gate is placed in a region of the

sample which has been locally etched to remove the p doped layer. This is

also visible in Fig. 6.1 (b), a photo of our sample; the upper golden strip

is the back contact, and horizontal hairlines above and below this contact

indicate the etched region.

We again use a solid immersion lens (SIL) in order to enhance our col-

lection efficiency. We find experimentally that the SIL is extremely difficult

to attach to these samples, frequently detaching as the sample is cooled to

4.2 K. We avoid this by attaching the SIL to the sample using a mixture of

GE varnish and acetone, as illustrated in Fig. 6.1 (b). Combined with a slow

cool-down procedure (taking ∼ 12 hours), this gives reliable SIL attachment

at low temperatures.

Finally, these samples have a single pair of layers which constitute their

distributed Bragg reflector (DBR) (Fig. 6.1 [a]). To further increase our

collection efficiency, future generations of these samples will be grown with

more extensive DBRs.

6.3 Experimental setup

Here, we note briefly the small differences in setup when compared to pre-

vious Chapters. The only difference of significance for the experiments pre-

sented here is that the QDs emit around 780 nm, which necessitates a differ-

ent set of lasers and optical components. Here, we use a Toptica DL Pro and

a MogLabs diode laser, both at 780 nm. In addition, we use a different EOM:
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Figure 6.1: (a) Sample structure schematic. (b) Photo of sample, looking along the z
axis of (a). Golden strip on right of sample: back contact. Golden circular region on
left of sample: top gate. Central (superhemi-) spherical object: SIL. Surrounding brown
substance: GE varnish and acetone blend. Thin golden leads: external connections to
diode gates.
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a 20-GHz device supplied by IxBlue. Fibres, waveplates, and AOMs are also

wavelength dependent and we select new models appropriately. Otherwise,

the setup is unchanged.

6.4 Sample characterisation

Photoluminescence measurements of our sample reveal the data shown in

Fig. 6.2. Two classes of lines appear: those below 383 THz, which correspond

to optical emission via the electronic s-shell states, and those above, which

proceed via electronic p-shell states. We will use the s-shell states for the

rest of our experiments. We observe distinct charging plateaus, as we require

for both charge state selection and long spin lifetime. The lines appear close

to the transform limit, within the resolution of our spectrometer. They

are dimmer than equivalent InGaAs QD transitions measured under PL; we

attribute this to the lack of DBR on our sample, and the lack of wetting layer

in these structures. The wetting layer present in InGaAs samples facilitates

exciton recombination in PL by acting as an intermediary through which

excited charges in the structure can relax into the QD bound states [356].

Fortunately, the absence of this mechanism in GaAs QD samples does not

affect the strength of their coherent interactions with a resonant laser.

From here, we proceed to resonance fluorescence. We begin with the

neutral exciton, revealing the data in Fig. 6.3. Fitting this dataset allows

us to extract a fine structure splitting of 2.1 GHz, in close agreement with

literature [355]. Further, we measure FWHMs of 1.08 (1.62) GHz for the

low (high) energy transition. These values are close to the transform limit,

which is around 1 GHz [335], and indicate the low noise present in these

samples over the timescale of this measurement (2 seconds).
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Figure 6.2: PL of a GaAs QD at 0 T.

Figure 6.3: (a) Neutral exciton level diagram. (b) Count rate as a function of gate
voltage (pink circles) along with a bi-Lorentzian fit (black curve), taken at 10% of the
saturation power.
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Next, we turn our attention to the spin properties of the system, which

requires application of an external magnetic field. Here, ours is oriented to

place us in Voigt geometry, and has a magnitude of 6.5 T. A PL spectrum

taken under this condition is shown in Fig. 6.4, where several of the lines are

now Zeeman-split. Finer resolution of these split lines requires measurement

via resonance fluorescence, which we perform on the negative exciton on Fig.

6.5. Remarkably, we resolve all four transitions associated with X−, allowing

extraction of the magnitude of the electron and hole g factors. These can be

distinguished from one another using the measurements of Section 6.7. We

summarise these parameters, along with the corresponding ones extracted

from the neutral exciton, in the table below.

Exciton X0 X−

ge – -0.0253

gh – 0.131

ge − gh 0.0506 0.156

We have taken these g factors to have the same signs as measured in

Ref. [301]. The striking disagreement between the neutral and negative

exciton g factors has been observed elsewhere and attributed to the relatively

weak lateral confinement exerted by these QDs [357].

The data shown in Fig. 6.5 further displays a count rate which is highly

dependent on the gate voltage across the sample; at the edges of the region

of stability of X−, count rate is enhanced, whilst in the centre, count rate

is suppressed. This behaviour is a hallmark of spin-state preparation via

optical pumping: in the centre of the plateau, the electron spin lifetime T1

is extended, suppressing fluorescence. At the plateau edges, the electron

spin is rapidly re-set by tunnelling in and out of the QD, shortening T1
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Figure 6.4: PL of a GaAs QD at 6.5 T.

and enhancing fluorescence. This measurement allows us to identify the X−

stability plateau and cotunnelling regions.

6.5 Spin lifetime

We can now proceed to study the behaviour of our confined spin. The

measurements of this Section were performed on a different device, n-doped

and with a thicker tunnel barrier.

Spin pumping is a dynamic process, and a steady-state measurement

such as that depicted in Fig. 6.5 is therefore not able to extract its full

behaviour. In order to do this, we implement a time-resolved, pulsed mea-

surement, depicted schematically in Fig. 6.6. Two laser pulses, offset in

151



300 400 500 600

Gate voltage (mV)

350

400

450

La
se

r 
fr

eq
ue

nc
y 

(-
38

1T
H

z)
 (

G
H

z)

20

40

60

80

100

C
ou

nt
 r

at
e 

(k
H

z)

Figure 6.5: RF map of the X− plateau at a magnetic field of 6.5 T.

frequency by the sum of electron and hole Zeeman energies, drive the sys-

tem one after the other. Their action is to pump the electron spin backwards

and forwards between its ground states.

In Fig. 6.7 (a), we plot the count rate during one of these pulses i.e. we

zoom in on the purple pulse of Fig. 6.6 (b). In addition to laser background,

a transient behaviour is visible, testifying to the “pumping” nature of the

system in this regime. Performing the same measurement for increasing

pump pulse power P (as denoted in Fig. 6.6), we observe the acceleration of

the pumping process, as shown in Fig. 6.7 (b). This measurement bounds

the lifetime of the excited state to be shorter than the shortest pumping time

which we measure (8.96 ns). Given previous measurements of optical excited

state lifetimes of a few hundred picoseconds, this is an expected result [337].

These data show that we can readout and prepare the spin state to high

fidelity within a few tens of nanoseconds.
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Figure 6.6: (a) X− level diagram. Solid arrows are processes driven resonantly by a
laser. Wiggly arrows denote spontaneous decay. Colours mark the full pumping channel.
(b) Pulse sequence schematic. Two pulses of different frequencies interrogate the system
one after the other.

Figure 6.7: Spin pumping laser power. (a) Count rate during the pump pulse, for a set
of increasing laser powers (dark to light colour). (b) Spin pumping times extracted from
the data in (a), indicated by colour.
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Figure 6.8: Count rate as a function of delay between two pulses which are set to pump
the spin in opposite directions.

One important property to which we have access using these repump

pulses is the spin lifetime, T1. In order to measure this, we use the same

two-colour measurement, but now vary the separation τ of the two pulses.

Tracking the resulting count rate on the final pulse allows us to measure the

spin relaxation time. These data are presented in Fig. 6.8, where we observe

an unchanged count rate up to a pulse separation of 40µs. We can therefore

safely benchmark T1 as much longer than 40µs. The only other measurement

of this parameter in a GaAs QD was performed in Faraday geometry via

the weakly allowed diagonal transitions, yielding T1 = 48µs [355]. The

lifetime places a limit on spin coherence according to T2 ≤ 2T1. Since T2

has not been measured in a GaAs QD, we can only roughly estimate it from

the InGaAs QD T2 of a few microseconds [156]. The data presented here

therefore indicate that our spin lifetime is unlikely to limit spin coherence.

154



6.6 Spin control

Our spin manipulation operations have thus far operated via incoherent pro-

cesses (spontaneous scattering). In order to exploit the electron spin as a

qubit, we must develop coherent control. In order to do this, we use ul-

trashort laser pulses derived from a modelocked laser, in line with the first

demonstrations of coherent spin control in QDs [41–43]. The physical mech-

anism underpinning this approach has been described in detail in Section

2.5, and we therefore proceed directly to the experimental data, which is

presented in Fig. 6.9. We observe high-visibility oscillation up to a rotation

angle of 3π, confirming the coherent nature of the process. Alongside, the

rotation angle θ depends sublinearly on pulse power P ; by fitting the data

in Fig. 6.9 according to θ ∝ P β we extract an exponent β = 0.65(1). Whilst

the mechanism underpinning this sublinearity is unclear, our observations

are in close agreement with previous implementations of this spin control

technique [42]. This is the first demonstration of coherent spin control in an

optically active GaAs QD, and constitutes a key result in the study of spin

physics on this platform.

6.7 Spin coherence

6.7.1 Ramsey interferometry

From this point, it is straightforward to perform Ramsey interferometry,

a technique which was described in detail in Section 2.7. Free precession

of the electron spin allows information about the environmental noise to

be extracted by tracking the length of the Bloch vector. This reveals the

155



0 1 2 3 4 5 6 7 8

Pulse power (/P )

0

1

2

3

4

5

6
C

ou
nt

 r
at

e 
(k

H
z)

Figure 6.9: Count rate (pink circles) following an ultrashort pulse whose power, P , is
tuned. The x-axis quotes pulse power relative to the power required for a π rotation, Pπ.
A fit of the form a cos

(
π[P/Pπ]β

)
e−(P/κ) (black curve) yields β = 0.65(1).

Figure 6.10: Count rate following two π
2

pulses (solid pink line), as a function of their
temporal separation τ . Inset: FFT of data in main panel.

156



data shown in Fig. 6.10. We observe spin precession at the electron Zeeman

energy, in addition to a saw-tooth pattern characteristic of a measurement

affected by nuclear spin feedback [156].

In order to minimise nuclear spin feedback, we use the approach detailed

in Ref. [156] and Section 3.9: we alternate the initial electron spin state be-

tween |↑〉 and |↓〉 from one sequence to the next. In this way, we maintain an

average electron spin polarisation close to zero throughout the experiment,

which minimises electron-mediated feedback. The results of this experiment

are presented in Fig. 6.11 (a,b). We find that nuclear spin feedback persists;

the data are remarkably similar to those presented in Fig. 6.10. The effects

of our measurement on the nuclear spin environment are apparent when we

analyse the data in Fourier space in Fig. 6.11 (c,d). Here, we observe a

frequency offset of electron spin precession which depends on scan direction.

Together, these data suggest a feedback mechanism which is not electron-

mediated. We repump the electron spin via an excited state which carries a

hole spin, and since the noncollinear interaction of the hole is present even

in the absence of strain, this is a likely culprit.

Nevertheless, the data in Fig. 6.11 allow us to extract the electron spin

inhomogeneous dephasing time. As is evident in the Figure, alternating

the initial electron spin state results in two signals, whose contrast depends

on the remaining coherence despite the presence of nuclear spin feedback.

Here, we extract a Gaussian decay envelope with T ∗2 = 5.9(3) ns. This is a

threefold enhancement in coherence when compared to an InGaAs QD [156],

arising due to the larger size of a GaAs QD [357] and their lack of (high-spin)

indium nuclei.
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Figure 6.11: Ramsey interferometry, measured with (without) a π pulse immediately
before the sequence (purple [orange]) line. Data acquired for scan direction: (a) increasing
τ , (b) decreasing τ . Dashed curves are a Gaussian fit to the contrast envelope, with
T ∗2 = 5.9(3) ns. (c,d) FFT of data in (a,b) respectively, and indicated by colour. Dashed
lines at 3.7, 4.1 GHz guide the eye.
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Figure 6.12: Hahn-echo visibility as a function of the echo time T (pink circles). The
black curve is a fit of the form e−(T/T2)α , with α = 1.57(7) and T2 = 2277(48) ns. Error
bars indicate 66% confidence intervals. Inset: Count rate as a function of delay of the
central π pulse relative to the midpoint of the two π

2
pulses, for T = 2061.3 ns (purple

circles), along with a sinusoidal fit (black curve).

6.7.2 Hahn-echo spectroscopy

We can further probe the coherence of the electron spin using Hahn-echo

spectroscopy. This technique, which was previously discussed in Section 2.7

and depicted in Fig. 2.14 (a), proceeds as follows. A first π
2 pulse is followed

by a precession time of T
2 . The spin is then inverted by a π pulse, after

which it is allowed to evolve for another time T
2 before a final π

2 pulse. Any

perturbations to the ESR which are constant during the pulse sequence are

filtered out, resulting in an echo of coherence.

Experimentally, we measure the strength of the echo as a function of

the overall echo time T . We probe the coherence of the spin by tracking

the count rate as we scan the π pulse in time by an amount ε � T away

from the midpoint of the sequence (inset to Fig. 6.12), and extracting a

visibility from the resulting fringes. Fig. 6.12 plots these Hahn-echo visibil-
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ities as a function of T . Fitting with the functional form e−(T/T2)α yields

α = 1.57(7) and T2 = 2277(48) ns. This coherence time is comparable to

similar measurements in InGaAs QDs [156], but the exponent α is strikingly

different to the exponential decay previously observed. Under Hahn echo,

an exponential decay of coherence is symptomatic of a white noise source,

which effectively arises in InGaAs QDs due to the high degree of strain

inhomogeneity-induced broadening [156]. Here, α > 1 is a signature of a

more homogeneous nuclear environment, which no longer appears white to

the Hahn-echo sequence.

6.8 Line stability

Throughout the experiments of this Chapter, we have observed jumping of

lines under resonant driving. Figure 6.13 depicts the signal which we obtain

when at constant laser frequency and constant gate voltage, in the centre of

the charging plateaus of X0 and X−. The resonance fluorescence of the QD

is unstable, leading to a blinking which is particularly pronounced on X0.

Figure 6.13: Resonance fluorescence from a QD as a function of time, in the centre of
the (a) X0 and (b) X− plateaus. Power was 20% of saturation.

In order to investigate these effects further, we measure the lineshape
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of X0 by scanning our gate voltage at fixed laser frequency. We repeat

this measurement several times, over a timescale of tens of seconds, and

investigate how the result depends on laser power. Figure 6.14 presents

the experimental data. At low power, we observe good stability over the

40 s-timescale of the experiment. As the laser power is increased, spectral

jumps are induced and then accelerated, eventually occurring on a sub-

second timescale at the highest power we measure. These jumps are discrete,

suggestive of nearby charge traps which can be loaded or unloaded by driving

the QD. These jumps have been observed in previous works [335, 358], and

are very slow compared to the emission time of the QD.

Since we are here interested in the spin properties of the system, we can

proceed in spite of these observations. The jumping effect translates to a

reduced count rate and we simply increase our integration time accordingly.

This effect is evident in the y-axes of Figs. 6.9 and 6.10, when compared

to the count rates expected based on Fig. 6.5. Jumping is, of course, an

undesirable property and removing it will be a focus of future growth efforts.

This type of noise is not intrinsic to the choice of material, and GaAs QDs

which are free from it have been reported [355,359].

6.9 Conclusions and Outlook

In this Chapter we have introduced the strain-free, GaAs QD as a plat-

form for spin physics. We have demonstrated the optical quality, observing

linewidths very close to the transform limit. This allowed us to characterise

the spin properties of an electron confined by the QD, including its lifetime

and its coherence.

The sample quality presented an additional challenge in performing these
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Figure 6.14: X0 lineshape as a function of laser power, tracked over time. Laser power
is (a) 1%, (b) 2%, (c) 10%, (d) 20%, (e) 100%, (f) 200% relative to saturation.
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measurements. Reducing the noise originating from the solid-state environ-

ment of the QD is a major outstanding challenge for our collaborators in the

development of these QDs as a platform for quantum technologies. However,

these results illustrate the power of spins: despite significant electrical noise

in the sample, we have been able to perform coherent spin control.

Beyond, our measurements demonstrate the viability of GaAs QDs as

a host for a single electron spin. We have shown that we can confine and

coherently control a long-lived electron spin, and we have measured its in-

homogeneous dephasing to be comparable to those typically seen in InGaAs

QDs.

A key attraction of using these QDs is the homogeneity of their nuclear

environment, which we have already observed in the non-exponential decay

of our Hahn-echo visibility. This result motivates the implementation of

dynamical decoupling, which promises to improve the coherence time further

by offering more broadband filtering of environmental noise [193,360,361].

Next, these QDs are expected to be a fascinating host for the magnon

physics which we explored in Chapters 4 and 5. In order to make use of

the same noncollinear coupling which we previously exploited, strain is

necessary. In an InGaAs QD, this strain originates naturally due to the

growth process, but is unavoidably highly inhomogeneous [156]. In the case

of GaAs QDs, strain is expected to be largely absent thanks to lattice-

parameter matching, and we must therefore apply it externally. This has

the distinct advantage that the strain will be homogeneous across the QD,

meaning that coupling strengths will not vary across nuclear lattice sites (at

least, not because of strain), enhancing the coherence of the interface be-

tween the electron and magnon modes. So-called strain-tuning devices have

been implemented using these samples, primarily to allow tuning of emission
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wavelength [325,340,350–353], and showing that this approach can tune the

interaction strength with magnon modes would constitute a landmark result

for GaAs QDs.

The magnon modes of a GaAs QD are highly interesting because of their

expected coherence. They have been the subject of a proposal to operate

the system as a quantum memory [171], which predicts an operation fidelity

of over 90% under realistic experimental conditions.

In addition, nuclear state preparation in InGaAs QDs has thus far been

limited by the inhomogeneity of the ensemble, and it may therefore be pos-

sible to enhance the spin properties of a GaAs QD beyond this limit.
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Chapter 7

Conclusions and Outlook

The work presented in this dissertation has achieved three main ob-

jectives: flexible, high-fidelity manipulation of a single QD-confined spin;

measurement of quantum correlations in the many-body nuclear ensemble

of a QD by driving collective modes; and demonstration of the coherence

properties of the new generation of strain-free QD samples.

In Chapters 3 and 4 we implemented an arbitrarily flexible control tech-

nique for high-fidelity coherent manipulation of a single spin in a QD. The

technique allowed us to design pulse sequences at will, unconstrained by the

practical considerations which plagued the previous state of the art. Here,

we used that flexibility to decouple the electron spin from its environment

using spin locking. This technique has been vital to the research output of

our group, enabling the measurements presented in Refs. [176,224,238,246]

(which would have otherwise been impossible). It has been adopted by

other QD research groups [362–364], and we hope that more will follow.

More broadly, the technique has allowed the first demonstration of coherent
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control of the spin of a tin-vacancy centre in diamond [365].

In Chapter 5, we showed a coherent interface between an electron spin

and its nuclear environment. This result has led directly to proposals for

the exploitation of nuclear modes as a quantum memory [171, 366]. These

proposals lead towards the construction of a quantum network of QDs, each

with its own in-situ memory.

Further, we proposed a technique for reconstructing the state of a many-

body ensemble based on collective measurements. This technique can be

applied to any system which is in a classical state, and will be particularly

useful where single-particle, or single-site, resolution is not achievable. This

technique could be extended to account for the presence of coherences within

the ensemble if the degree of entanglement could be quantified. Since nuclear

spin cooling generates entanglement, we could measure the asymmetry for

a set of different cooling strengths in order to extract a correction factor

to account for the presence of entanglement. Unfortunately, the cooling

performance and therefore the degree of entanglement is intimately related

to the resolution of magnon modes: we cannot observe magnon modes in a

thermal nuclear state using our direct drive technique, because the ESR is

too broad. This could be bypassed by instead using a magnon drive which

is insensitive to the electron T ∗2 , such as PulsePol [242] or other tailor-made

pulse sequences.

In our case, the result of this technique was a direct measurement of

many-body entanglement in the nuclear environment. Quantum-correlated

states of the QD nuclei have been the subject of a number of theoretical stud-

ies [282, 283, 321, 367], and large entangled states in general have been sug-

gested as a tool for high-resolution spectroscopic measurements [368–370].

More immediately, the dark state which we generate lends itself to the imple-
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mentation of a high-fidelity quantum memory under the scheme proposed

in Ref. [171] but at low polarisation [283], thanks to the enhancement of

asymmetry.

Further, this demonstration opens the possibility of studying quantum

many-body dynamics in a QD nuclear ensemble [248–250]. This could in-

clude its use as a quantum simulator [371]. Whilst we show subradiance

here, the regime of superradiance remains unexplored and in principle allows

faster, and therefore more coherent, interaction with magnon modes [372].

In addition, showing the quantum nature of the QD nuclei motivates the

study of other collective phenomena, an example of which is the generation

of time crystals [324,373].

In Chapter 6, we demonstrated the first spin control experiments on the

new generation of homogeneous, strain-free QD samples. We showed that

we can coherently manipulate a QD spin, and measured its coherence time.

Immediate extensions of this work are to implement our flexible control

technique of Chapters 3 and 4 on this platform, which will likely require nu-

clear spin narrowing. In turn, such a driven nuclear spin interaction will be

based on externally applied strain, which would then combine with flexible

control to allow magnons to be driven on this platform. One consequence

of the externally applied, homogeneous strain is that the electro-nuclear in-

terface is expected to be highly coherent, and should allow the high-fidelity

functioning of a quantum memory [171].

As experimental work on InGaAs QDs has reached full maturity, the

technical expertise and physical hardware have likewise developed to allow

remarkably complex, atomic physics-style experiments on solid-state sys-

tems. Whilst we have begun to run into the hard limitations of the InGaAs

QD, the knowhow and setups are primed to carry the torch forward in the
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next generation of samples.
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Appendix A

Microwave system

Throughout this dissertation, we employed a system of microwave gen-

eration in order to manipulate a spin confined to our QD. During the nat-

ural course of the work, this system evolved in sophistication as the ex-

periments required. Here, we provide further details on these microwave

setups. Throughout, the signal is fed to an EOM (EOSpace) which is used

to modulate a laser (Toptica DL Pro).

A.1 Setup #1: Phase-disabled hole spin control

Figure A.1 shows a schematic diagram of our earliest microwave system,

used for the first section of Chapter 3. In this figure, we include a schematic

picture of the signal at each stage. The microwave source (Rohde & Schwarz

SMF100A) is multiplied with the output of a delay generator (SRS DG645)

on a switch (Mini-Circuits). The resulting microwave-frequency signal, which

is turned on and off by the DG645, is amplified (Picosecond Labs 5865,
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Figure A.1: Microwave setup #1 schematic.

12.5 Gbit/s). The DG645 also functions as the clock for our experiment.

This system generates microwave signals at the hole spin resonance (a few

GHz), with no control over the phase of the signal.

A.2 Setup #2: Phase-enabled hole spin control

For the second stage of the hole spin control experiment (Chapter 3), we re-

quired control over the phase of the microwave signal. In order to achieve this

we used the setup shown in Fig. A.2, with an Arbitrary Waveform Generator

(AWG, Tektronix AWG70002A) featuring a 12.5 GHz-bandwidth. Because

the hole spin resonance was around 9 GHz, the 4.5-GHz signal required is

well within the limits of the AWG. This allows the trivial construction of

waveforms electronically, with phase jumps encoded into the electrical signal

as desired. This also replaced the DG645 as the clock for the experiment.

Figure A.2: Microwave setup #2 schematic.
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A.3 Setup #3: Electron spin control

Figure A.3: Microwave setup #3 schematic.

The electron spin has a g factor larger than the hole spin, leading to Zee-

man splittings of a few tens of GHz. In addition, the electron spin coherence

is richly dependent on magnetic field, but in general improves with increas-

ing magnetic field [156]. In practice, we chose a magnetic field of 3.3 T which

was the maximum at which we could match the ESR with the microwave

system available. Under these conditions, the ESR was 25 GHz, requiring a

microwave signal of 12.5 GHz. Our AWG had a maximum sampling rate of

25 GSamples/s, which allows the minimal construction of a 12.5-GHz signal,

using two points per period (i.e. as a square wave). However, this does not

allow the encoding of phase, since the positions of the samples are fixed.

Our solution to this is shown in Fig. A.3. We mix the two output channels

of the AWG using a high-frequency splitter (Mini-Circuits). The AWG has

a very precisely tuneable (1ps precision) offset between the two channels,
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which we characterise by feeding the splitter output to a spectrum analyser

and maximising the resulting power vs. this offset. From there, we increase

the offset by a quarter of a period. Now with the channels having a relative

phase of π/2, we generate waveforms with a relative phase of π/2. The rel-

ative amplitude of these waveforms then controls the phase of the resulting

signal. This microwave system was used throughout Chapter 4.

A.4 Setup #4: Nuclear spin polarisation

For the experiment presented in Chapter 5, we wish to polarise the nuclear

spin environment of the electron spin. The previous microwave setup has

a maximum operation frequency of 12.5 GHz, and moreover does not allow

tuning of this frequency other than by changing the sampling rate of the

AWG, which cannot be done without (temporarily) disabling the outputs.

In order to circumvent these challenges, we use the setup depicted in Fig.

A.4.

We run the AWG at much lower frequency - 300 MHz - and upconvert

it with a 6 GHz microwave tone using a wideband upconverter (Analog Cir-

cuits ADRF6780). The upconverter is fed by a Rohde & Schwarz microwave

source operated initially at 6.4 GHz, which it frequency-doubles. The result-

ing 12.8 GHz tone is downshifted by the 300 MHz AWG signal, which sup-

plies the IQ inputs of the upconverter. The 4 IQ inputs are fed by the two

channels of the AWG (which play waveforms which are offset by π/4 from

each other), and by their inverses. This results in a 12.5 GHz signal, which is

amplified (by a Mini-Circuits ZVA-213-S+ wideband amp) and which gen-

erates sidebands separated by 25 GHz to match the ESR. Phase control is

achieved trivially since the AWG is operated well within its bandwidth - we
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Figure A.4: Microwave setup #4 schematic.

simply define a phase when electrically designing the waveforms.

In order to polarise the system, we must tune the microwave frequency.

This microwave setup allows continuous tuning from 5.4 GHz (limited by the

upconverter minimum local oscillator frequency) to beyond 9.8 GHz (this

was limited by the QD maximum polarisation). This is done by tuning the

frequency of the Rohde & Schwarz source.
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[138] Pryor, C. E. & Flatté, M. E. Predicted ultrafast single-qubit oper-
ations in semiconductor quantum dots. Applied Physics Letters 88,
233108 (2006).

[139] Schwan, A. et al. Anisotropy of electron and hole g-factors in
(In,Ga)As quantum dots. Applied Physics Letters 99, 221914 (2011).

[140] Rietjens, J. H. et al. Optical control over electron g factor and spin
decoherence in (In,Ga) AsGaAs quantum dots. Journal of Applied
Physics 103, 07B116 (2008).

[141] Koppens, F. H. L. et al. Driven coherent oscillations of a single electron
spin in a quantum dot. Nature 442, 766–771 (2006).

[142] Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L.
M. K. Coherent Control of a Single Electron Spin with Electric Fields.
Science 318, 1430–1433 (2007).

[143] Tokura, Y., van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent
Single Electron Spin Control in a Slanting Zeeman Field. Physical
Review Letters 96, 047202 (2006).

[144] Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin
Echo of a Single Electron Spin in a Quantum Dot. Physical Review
Letters 100, 236802 (2008).

[145] Chen, P., Piermarocchi, C., Sham, L. J., Gammon, D. & Steel, D. G.
Theory of quantum optical control of a single spin in a quantum dot.
Physical Review B 69, 075320 (2004).

[146] Clark, S. M., Fu, K.-M. C., Ladd, T. D. & Yamamoto, Y. Quan-
tum Computers Based on Electron Spins Controlled by Ultrafast Off-
Resonant Single Optical Pulses. Physical Review Letters 99, 040501
(2007).

186



[147] Carter, S. G., Chen, Z. & Cundiff, S. T. Ultrafast below-resonance
Raman rotation of electron spins in GaAs quantum wells. Physical
Review B 76, 201308 (2007).

[148] Imamoglu, A. et al. Quantum information processing using quan-
tum dot spins and cavity qed. Physical Review Letters 83, 4204–4207
(1999).

[149] Combescot, M. & Betbeder-Matibet, O. Theory of spin precession
monitored by laser pulse. Solid State Communications 132, 129–134
(2004).

[150] Economou, S. E., Sham, L. J., Wu, Y. & Steel, D. G. Proposal for opti-
cal U(1) rotations of electron spin trapped in a quantum dot. Physical
Review B 74, 205415 (2006).

[151] De Greve, K. et al. Ultrafast coherent control and suppressed nuclear
feedback of a single quantum dot hole qubit. Nature Physics 7, 872–
878 (2011).

[152] Foot, C. J. Atomic physics (Oxford University Press, 2005).

[153] Hahn, E. Spin Echoes. Physical Review 80, 580–594 (1950).

[154] Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in
nuclear magnetic resonance experiments. Physical Review 94, 630–638
(1954).

[155] Meiboom, S. & Gill, D. Modified spin-echo method for measuring
nuclear relaxation times. Review of Scientific Instruments 29, 688–
691 (1958).

[156] Stockill, R. et al. Quantum dot spin coherence governed by a strained
nuclear environment. Nature Communications 7, 12745 (2016).

[157] Huthmacher, L. et al. Coherence of a dynamically decoupled quantum-
dot hole spin. Physical Review B 97, 241413 (2018).

[158] Gaudin, M. Diagonalisation d’une classe d’hamiltoniens de spin. Jour-
nal de Physique 37, 1087–1098 (1976).

[159] Bortz, M. & Stolze, J. Spin and entanglement dynamics in the central-
spin model with homogeneous couplings. Journal of Statistical Me-
chanics: Theory and Experiment 2007, P06018–P06018 (2007).

187



[160] Schliemann, J., Khaetskii, A. & Loss, D. Electron spin dynamics in
quantum dots and related nanostructures due to hyperfine interaction
with nuclei. Journal of Physics: Condensed Matter 15, R1809–R1833
(2003).

[161] Kane, B. E. A silicon-based nuclear spin quantum computer. Nature
393, 133–137 (1998).

[162] Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation
by nuclei in semiconductor quantum dots. Physical Review B 65, 1–8
(2002).

[163] Urbaszek, B. et al. Nuclear spin physics in quantum dots: An optical
investigation. Reviews of Modern Physics 85, 79–133 (2013).

[164] Abragam, A. The principles of nuclear magnetism, vol. 28 (Clarendon
Press, 1961).

[165] Gammon, D. et al. Electron and Nuclear Spin Interactions in the Op-
tical Spectra of Single GaAs Quantum Dots. Physical Review Letters
86, 5176–5179 (2001).

[166] Testelin, C., Bernardot, F., Eble, B. & Chamarro, M. Hole–spin de-
phasing time associated with hyperfine interaction in quantum dots.
Physical Review B 79, 195440 (2009).

[167] Overhauser, A. W. Polarization of nuclei in metals. Physical Review
92, 411–415 (1953).

[168] Paget, D., Lampel, G., Sapoval, B. & Safarov, V. I. Low field electron-
nuclear spin coupling in gallium arsenide under optical pumping con-
ditions. Physical Review B 15, 5780–5796 (1977).

[169] Fischer, J., Coish, W. A., Bulaev, D. V. & Loss, D. Spin decoherence
of a heavy hole coupled to nuclear spins in a quantum dot. Physical
Review B 78, 155329 (2008).

[170] Fallahi, P., Yılmaz, S. T. & Imamoğlu, A. Measurement of a Heavy-
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