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Abstract

This thesis presents the results of a study measuring and improving the quality

of neutrino interaction vertex reconstruction and particle identification (PID) in the

MicroBooNE detector. The detector comprises a liquid argon time-projection cham-

ber (LArTPC) with a light-collection system, permitting precise tracking of neutrino

interaction final states. MicroBooNE’s primary physics goal is to resolve the low-

energy electron neutrino appearance anomalies observed at MiniBooNE and LSND.

The experiment therefore requires high-quality neutrino interaction vertex recon-

struction and PID, which together strongly influence event reconstruction quality

and energy/momentum estimation. Improvements to the vertex reconstruction are

made through the development of powerful new variables and the application of

machine learning techniques; these algorithms are now the default used at Mi-

croBooNE and have enabled new studies of neutrino interactions with up to six

charged particles in the final state. A robust PID method (FOMA) is developed

using a novel analytic approximation to the mode of the dE/dx distribution. A

deep learning PID method (PidNet) is also proposed, based on convolutional neural

networks (CNNs) and a semi-supervised representation learning method. The per-

formance of the two approaches is compared and contrasted with PIDA, the default

PID algorithm used at MicroBooNE. This work concludes by assessing the impact

of the tools and methods developed in this work on particle energy estimation in

MicroBooNE.
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Chapter 1

Introduction

Since the existence of the Higgs boson was confirmed at the LHC in 2012, all particles of

the Standard Model (SM) have now been observed [1]. However, a number of physical

phenomena remain unexplained; for instance, the theory is widely considered to be

irreconcilable with general relativity [2] and lacks any viable dark matter candidate [3].

Whilst the SM is thought to be self-consistent and has provided a number of since-

confirmed predictions1 [1, 4–8], it is certainly an incomplete theory.

Of particular relevance to this thesis is the problem posed by neutrinos: the discovery

of neutrino oscillations by the Super-Kamiokande and SNO experiments near the turn

of the century implies that neutrinos have nonzero mass, contrary to the SM prediction

[9, 10]. The Higgs mechanism does not endow left-handed neutrinos with mass if they

have no right-handed counterpart. Even if we include Dirac mass terms for neutrinos

in the SM Lagrangian, they must be of a size much smaller than for other fermions, at

least five orders of magnitude based on current experimental constraints, which similarly

has no confirmed theoretical justification. One elegant explanation of both the origin

and scale of neutrino masses is the seesaw mechanism, which predicts the existence of

a heavy, right-handed, sterile2 partner to the neutrino that can be used to invoke the

Higgs mechanism and justify a large mass difference between the left- and right-handed

states [11, 12]. Such a particle has yet to be observed but experiments are already

1The W and Z bosons, the gluon, the Higgs boson, and the top and charm quarks were all predicted
by the Standard Model before they were experimentally observed.

2I.e. one that does not interact weakly but does interact gravitationally.
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ruling out mass regions [13] while anomalous results at LSND and MiniBooNE are

being considered as possible evidence of such a particle [14, 15].

Building and instrumenting detectors capable of accurately reconstructing neutrino

interactions is a challenge, but recent developments in neutrino detector technologies

are making it possible to identify final state particles with increasing accuracy [16, 17].

Studies of long baseline neutrino oscillations hope to determine the mass hierarchy and

probe CP violation in the neutrino sector, while short baseline oscillation analyses will

be able to further constrain or rule out sterile neutrino oscillations [18, 19]. The short-

and long-baseline neutrino programmes at the Fermi National Accelerator Laboratory

(Fermilab) in Illinois make use of liquid argon time-projection chambers (LArTPCs) to

address these questions [20]. LArTPCs provide bubble-chamber-like spatial resolution

and accurate calorimetry throughout the active detector medium. This allows unprece-

dentedly high-quality particle tracking, energy estimation and particle identification,

including electron-photon discrimination. This thesis had the privilege of analyzing

data from one such detector, MicroBooNE, whose main goal is to shed light on the

anomalies observed at LSND and MiniBooNE [21]. Improvements presented in this

thesis are already contributing towards this effort.

The structure of this work is as follows. Chapter 2 summarizes the theory of

neutrino physics, the theoretical motivation for sterile neutrinos, neutrino detection

methods, and a selection of recent and ongoing experiments. In Chapter 3, the Micro-

BooNE experiment is described, including its detector and neutrino sources. Chapter

4 outlines the Pandora pattern recognition framework, a software package used for event

reconstruction at experiments including MicroBooNE. A new algorithm for neutrino in-

teraction vertex selection using a machine learning technique, now the default vertex

reconstruction at MicroBooNE, is introduced and validated in Chapter 5. Chapter

6 outlines the theory of energy losses in LArTPCs at MicroBooNE-like energies and

derives novel low-energy approximations for dE/dx. Using one of the low-energy ap-

proximations developed in the previous chapter, Chapter 7 describes and evaluates

a new robust PID technique called FOMA. A second, deep learning PID technique is

introduced and validated in Chapter 8, based on semi-supervised and representation

learning paradigms. Chapter 9 presents an assessment of the impact of the work in this

2



thesis on particle energy reconstruction at MicroBooNE. Finally, Chapter 10 provides

concluding remarks and discusses future work.

3



Chapter 2

Neutrino physics

This chapter provides a brief overview of the theory of neutrino physics and current

efforts to understand the neutrino. A short description of the Standard Model is given,

including notes on the Higgs mechanism, the origin of neutrino mass and the theoretical

motivation for sterile neutrinos. The theory of neutrino oscillations is described. The

chapter ends with a brief summary of six modern neutrino experiments and a list of

open questions in neutrino physics.

2.1 Introduction

Often cited as a historical example of serendipity, Henri Becquerel ‘accidentally’ discov-

ered radioactivity in 1896 when using uranium to study phosphorescence. He observed

that uranium salts were able to blacken a photographic plate, even when wrapped in

black paper [22]. A similar observation had been made by Wilhelm Röntgen a few

months previously, albeit with an inaccurate explanation [23]. By 1899, Ernest Ruther-

ford had separated these emissions into two categories, alpha and beta, characterized

by the differing extents to which they penetrate objects and cause ionization [24].

Beta-decay, however, presented a problem. By 1914, there was strong evidence

that the electrons emitted during beta-decay were not monoenergetic as predicted, but

rather had a broad, continuous energy spectrum [25]; this apparent two-body problem

therefore seemed to violate conservation of energy. It was not until 1930 that Wolfgang

Pauli solved the puzzle. In a now-famous letter beginning “Liebe Radioaktive Damen
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Figure 2.1: Left: a four-fermion point interaction, as used in Fermi’s theory of the
weak interaction. β− decay is modelled by a neutron decaying at a single vertex into a
proton, electron and electron antineutrino. Right: a modern Feynman diagram for β−

decay via exchange of a W− boson. β− decay is modelled by a down-quark decaying
to an up-quark and W− boson, which in turn decays to an electron and an electron
antineutrino.

und Herren” (“Dear radioactive ladies and gentlemen”), he theorized the existence of

an unseen, neutral, spin-1
2 particle that could be used to satisfy conservation of energy,

momentum and angular momentum: a particle later christened by Enrico Fermi as the

neutrino [26]. What was being observed is today known as β− decay, process that is

now well-understood:

(Z,N)→ (Z + 1, N − 1) + e− + ν̄e, (2.1)

or, on a lower level,

n→ p+ e− + ν̄e, (2.2)

where (Z,N) denotes a nucleus comprising Z protons and N neutrons. This discovery

was followed by the discovery of the neutron in 1932 [27] and β+ decay in 1934 [28].

To explain beta-decay, Fermi proposed his theory of the weak interaction in 1934.

In this theory, beta decays are modelled as four-fermion point interactions (see Figure

2.1) with an effective Lagrangian

LFermi =
GF√

2

(
ψ̄pγ

µψn
) (
ψ̄eγµψν

)
, (2.3)

where GF is the Fermi constant, ψα is the field of particle α and γµ are the gamma

matrices [29]. This theory allowed the scattering cross-section for neutrinos incident on

neutrons to be calculated; this was found by Rudolf Peierls and Hans Bethe in 1934 for
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a neutrino of energy Eν to be

σ(n+ ν → e− + p) ∼ Eν [MeV]× 10−43 cm2. (2.4)

With such small cross-sections, Peierls and Bethe note in [30] that there is “no practically

possible way of observing the neutrino” via this process. Luckily, it turns out neutrinos

are ubiquitous thanks to solar and atmospheric neutrino spectra, and can be made

in vast quantities using nuclear reactors and particle accelerators. Tiny cross-sections

have therefore not halted the study of the neutrino: the first experimental observation

occurred in 1956 at the Savannah River Site in South Carolina, where Cowan and Reines

used a nearby nuclear reactor as a neutrino source for a scintillation detector of cadmium

chloride dissolved in water [31]. They observed prompt and delayed scintillation light

due to inverse beta decay (ν̄e+p→ n+e+) and subsequent cadmium neutron absorption

(n + 108Cd → 109mCd → 109Cd + γ), respectively, a result that won Reines the Nobel

Prize in 1995.

Since then, some key experimental results in neutrino physics have included:

• Violation of P-symmetry by the weak interaction: In 1956, Chien-Shiung

Wu demonstrated through an experiment involving beta-decay that the weak in-

teraction violated conservation of parity [32], a result that was unexpected at the

time.

• Discovery of the muon-neutrino: In 1962, Leon M. Lederman, Melvin

Schwartz and Jack Steinberger demonstrated the existence of a new flavour of

neutrino, the neutretto (now known as the muon-neutrino) [33].

• Discovery of the tau-neutrino: The tau-neutrino was hypothesized to exist

since the discovery of the tau lepton at the Stanford Linear Accelerator Center in

1975 [34]. The first observations of tau-neutrino interactions were announced by

the DONUT collaboration in 2000 [35].

• Discovery of weak neutral currents: Weak neutral currents allow elastic

scattering of neutrinos in matter via exchange of the neutral Z boson. Abdus

Salam, Sheldon Glashow and Steven Weinberg predicted neutral currents in the
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mid-1960s [36–38] and their existence in neutrino interactions was confirmed in

1973 by the Gargamelle bubble chamber at CERN [4, 5].

• Discovery of the W and Z bosons: Whilst other experiments had provided

evidence for the existence of the W and Z bosons, they were not directly de-

tected until experiments led by Carlo Rubbia and Simon van der Meer provided

unambiguous evidence in 1983 [39, 40].

• Observation of neutrino oscillations: A significant (∼ 2/3) deficit of electron

neutrinos in the solar neutrino spectrum was first observed by the Homestake ex-

periment around 1970 [41]. Clear evidence that this was due to neutrino flavour

oscillations, implying a nonzero neutrino mass, was provided by the Sudbury Neu-

trino Observatory in 2001 [42]. Similar effects were observed for atmospheric

neutrinos by Super-Kamiokande in 1998 [10]. Multiple experiments have since ob-

served flavour oscillations in solar, atmospheric, reactor and beam neutrino spectra

and measured oscillation parameters.

2.2 The Standard Model

The Standard Model (SM) of particle physics is a non-abelian gauge theory that de-

scribes three of the four fundamental forces of nature: the electromagnetic, weak and

strong interactions. Its gauge group is

GSM = SU(3)× SU(2)L ×U(1), (2.5)

where the SU(3) symmetry gives rise to QCD, and the SU(2)L × U(1) symmetry to

electroweak interactions. The model contains 24 fermion fields: six quark flavours, each

with three distinct colours, plus six leptons flavours. These are summarized in Table

2.1. A fermion field ψ obeys the Dirac equation

(
i/∂ −m

)
ψ = 0, (2.6)

where /∂ := γµ∂µ, γµ are the gamma matrices and ∂µ :=
(
∂
∂t ,

∂
∂x ,

∂
∂y ,

∂
∂z

)
is the four-

vector of partial derivatives. A gauge transformation in the SM is represented by a
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Table 2.1: The fermions of the Standard Model, along with their mass and electric
charge Q as a multiple of e. All have spin 1

2 and each quark represents three fields (with
colour charge red, green or blue) due to QCD’s SU(3) gauge group. The quoted top
mass corresponds to direct measurements only. Data from [13].

Mass (MeV) Q

quarks

u 2.16+0.49
−0.26 +2

3

d 4.67+0.48
−0.17 −1

3

s 93+11
−5 −1

3

c (1.27± 0.02)× 103 +2
3

b (4.18+0.03
−0.02)× 103 −1

3

t (172.76± 0.30)× 103 +2
3

leptons

e− 0.5109989461± 0.0000000031 −1

νe < 1.1× 10−6 (90% CL; assuming mν̄e = mνe) 0

µ− 105.6583745± 0.0000024 −1

νµ < 0.19 (90% CL) 0

τ− 1, 776.86± 0.12 −1

ντ < 18.2 (95% CL) 0

unitary operator U that transforms a fermion field ψ via

ψ → ψ′ := Uψ. (2.7)

We may split a fermion field ψ into its left- and right-handed chiral components such

that ψ = ψL + ψR, where

ψL :=
1

2
(1− γ5)ψ, (2.8)

ψR :=
1

2
(1 + γ5)ψ. (2.9)

Due to the SU(2)L symmetry of the SM, these two components transform differently.

To construct a theory that satisfies the required symmetries given by Equation 2.5,

we define a Lagrangian density that is invariant under the SU(3), SU(2)L and U(1)

gauge transformations. This can be done by modifying the operator in Equation 2.6

to include a number of gauge fields. We require one gauge field for each generator of

the symmetry group. A SU(n) group requires n2 − 1 generators; a U(n) group requires
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n2 generators. We therefore introduce (32 − 1) + (22 − 1) + 12 = 12 gauge fields via

definition of a covariant derivative

∂µ → Dµ := ∂µ + ig1Y B
µ + ig2T ·W µ + ig3X ·Gµ, (2.10)

where

• Bµ is the field of the U(1) group, part of the electroweak interaction;

• Wµ
k , k = 1, 2, 3 are the three fields of the SU(2) group, part of the electroweak

interaction;

• Gµk , k = 1, 2, . . . , 8 are eight fields of the SU(3) group, corresponding to the eight

gluons;

• T is the SU(2) group generator, usually chosen as Tk = 1
2τk, where τk are the

Pauli matrices;

• X is the SU(3) group generator, usually chosen as Xk = 1
2λk, where λk are the

Gell-Mann matrices;

• Y is the weak hypercharge of the particle, (see below); and,

• g1, g2 and g3 are coupling constants.

The weak hypercharge of a particle is a quantum number that represents the strength

with which it couples to electroweak interactions. It is related to the electric charge

via Y = Q − IW3 , where IW3 is the third component of the weak isospin. For right-

chiral neutrino fields, Q = IW3 = Y = 0, such that right-handed neutrinos are entirely

decoupled from the SM.

Due to spontaneous symmetry breaking1, the Wµ
3 and Bµ fields mix to create the

Z boson (with field Zµ) and the photon (with field Aµ):Aµ
Zµ

 =

 cos θW sin θW

− sin θW cos θW

Bµ

Wµ
3

 , (2.11)

1Spontaneous symmetry breaking refers to the apparent loss of a symmetry of a system in a particular
state. The symmetries of a system present in its Lagrangian may be clear at higher energies whilst
particular solutions at lower energies appear asymmetric.
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Table 2.2: The gauge bosons of the Standard Model, along with their spin, mass and
charge Q as a multiple of e. Exact values in the table are theoretical. Data from [13].

Gauge boson Mass (GeV) Q Spin

electromagnetic γ < 1× 10−18 < 1× 10−35 1

weak
W± 80.379± 0.012 ±1 1

Z 91.1876± 0.0021 0 1

strong g (×8) 0 0 1

Higgs H 125.10± 0.14 0 0

where

cos θW =
g2√
g2

1 + g2
2

, (2.12)

sin θW =
g1√
g2

1 + g2
2

, (2.13)

and θW is known as the Weinberg angle. The coupling constants must further satisfy

g1 cos θW = g2 sin θW = e, (2.14)

where e is the elementary charge. The W1 and W2 bosons similarly mix to create the

W+ and W− bosons:

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
. (2.15)

The twelve gauge bosons (photon/γ, W±, Z0 plus the eight gluons) are summarized in

Table 2.2.

Under a gauge transformation U , a gauge field Kµ transforms via

Kµ → K ′µ := UKµU
† +

i

g
(∂µU)U †, (2.16)

where Kµ may be any of Bµ, Wµ or Gµ and g is the relevant coupling constant. Since

these are spin-1 fields, each of Bµ, Wµ and Gµ contributes a term to the overall La-

grangian of the form

L = −1

4
Fµνi Fµνi +

1

2
m2
KKiµK

µ
i , (2.17)

where

Fµνi = ∂µKν
i − ∂νK

µ
i − gfijkK

µ
kK

ν
k , (2.18)
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mK is the mass of the gauge boson, Kµ
i is the ith gauge field of the group, and fijk are

the structure constants of the group. The fijk are defined via commutation relations

between the generators of a given group:

[Ti, Tj ] = ifijkTk. (2.19)

For U(1), the structure constant is 0. SU(2) and SU(3) have nonzero structure constants;

for SU(2), the structure constants are given by the Levi-Civita tensor εijk [43]. Nonzero

structure constants allow self-interactions, which are possible for gluons, W± bosons

and Z bosons but not photons.

2.2.1 The Higgs mechanism

We introduce mass terms into the SM Lagrangian via the Higgs mechanism: the addition

of a universal field (the Higgs field) that undergoes spontaneous symmetry breaking,

allowing electroweak gauge bosons to interact with it and gain mass. We require that

this happen in such a way as to produce three massive gauge bosons (W±, Z) and one

massless gauge boson (γ). Consider a field H that contributes a Lagrangian density

LH :=
(
D′µH

)†
D′µH − V (H), (2.20)

where the potential V (H) is defined as

V (H) := −µ2H†H + λ
(
H†H

)2
, (2.21)

D′µ is the electroweak part of the covariant derivative defined in Equation 2.10, viz.

D′µ := ∂µ + ig1Y B
µ + ig2T ·W µ, (2.22)

and λ > 0 and µ2 > 0 are constants. We can ‘break’ the symmetry of the Higgs

Lagrangian by expanding its field about a nonzero vacuum expectation value. Doing so

generates two gauge boson mass terms:

(g1v)2

4
W+
µ W

−µ +

(
g2

1 + g2
2

)
v2

8
ZµZ

µ, (2.23)

which lead to electroweak boson masses

mW =
gv

2
, (2.24)
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mZ =
v
√
g2

1 + g2
2

2
=

mW

cos θW
, (2.25)

mA = 0, (2.26)

i.e. three massive bosons and one massless boson, as required. The prediction that ρ :=

m2
W /m

2
Z cos2 θW should equal 1 has been experimentally tested; ρ has been measured

to be 1.00040± 0.00024.

Fermions similarly gain mass through the Higgs mechanism. The direct inclusion of

a Dirac mass term like mψ̄ψ is not possible as it violates gauge invariance; however, it

is possible to include gauge-invariant terms that, after spontaneous symmetry breaking,

result in mass terms. One possibility is a Yukawa coupling between a fermion field ψ

and the Higgs field with some coupling constant GY , resulting in a Lagrangian density

like

Lfermion = ψ̄γµDµψ +GY ψ̄Hψ. (2.27)

The mass generation then follows the same process as for the gauge bosons. The mech-

anism has been successful in explaining the masses of fundamental particles and won

Peter Higgs and François Englert the Nobel Prize in 2013, following the discovery of

the theory’s predicted Higgs boson at the Large Hadron Collider at CERN in the same

year.

2.2.2 Neutrino mass

Before the observation of neutrino oscillations (see Section 2.3), neutrinos in the SM

were assumed to be massless. Neutrinos, being fermions, could be expected to gain

mass through a Yukawa coupling like GY ψ̄Hψ. After spontaneous symmetry breaking,

we would then expect to see a Dirac mass term:

L = mψ̄ψ

= m(ψL + ψR) (ψL + ψR)

= m
(
ψ̄LψR + ψ̄RψL

)
,

where we have used the result ψ̄LψL = ψ̄RψR = 0. As mentioned before, right-handed

neutrinos do not otherwise appear in the SM; if right-handed neutrinos do not exist,

this mass term vanishes and SM neutrinos are rendered massless. One way around this
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is to assume that neutrinos are Majorana particles (i.e. their own antiparticle). In this

case, the right-handed component becomes ψCL := Cψ̄TL , where C is the charge conjuga-

tion operator, and the mass term does not vanish. However, this would mean that the

electroweak interaction violates conservation of lepton number. We could alternatively

assume the existence of a right-handed sterile neutrino, i.e. one that does not inter-

act weakly but may interact gravitationally. This idea is theoretically well-motivated

and there is some experimental evidence for it, notably at MiniBooNE and LSND (see

Chapter 3).

Allowing for the possibility of right-handed neutrinos, and ignoring the issues above

for now, we can construct four different mass terms: a left-handed Majorana mass term

with mass mL

LML :=
1

2
mLψ̄

C
LψL + h.c., (2.28)

a right-handed Majorana mass term with mass mR

LMR :=
1

2
mRψ̄

C
RψR + h.c., (2.29)

a Dirac mass term with mass mD

LDL := mDψ̄RψL + h.c., (2.30)

and a Dirac mass term made from the charge-conjugate fields (corresponding to the

same mass mD)

LDR := mDψ̄
C
Rψ

C
L + h.c., (2.31)

where ‘h.c.’ denotes the Hermitian conjugate. So the most general expression we can

write down for the mass term is

2Lmass = LDL + LDR + LML + LMR + h.c., (2.32)

which can be written as a matrix equation

Lmass ∼
(
ψ̄CL ψ̄R

)mL mD

mD mR

ψL
ψCR

+ h.c.. (2.33)

Clearly these are not mass eigenstates, as evidenced by the off-diagonal terms in the mass

matrix M . To find the mass eigenstates, we look for a unitary matrix U that transforms
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these chiral eigenstates into left-handed field components with definite mass:ψL
ψCR

 = U

ψ1,L

ψ2,L

 , (2.34)

and

M ′ := U †MU. (2.35)

U is guaranteed to exist. The only 2 × 2 unitary matrix is the rotation matrix, so we

have

U =

cos θ − sin θ

sin θ cos θ

 , (2.36)

therefore

ψL = cos θψ1,L − sin θψ2,L, (2.37)

ψL = sin θψ1,L + cos θψ2,L. (2.38)

We choose the rotation angle θ such that U diagonalizes M ; from Equation 2.35,

M ′ =

m1 0

0 m2

 . (2.39)

The result is

m1,2 =
1

2

[
(mL +mR)±

√
(mL −mR)2 + 4m2

D

]
. (2.40)

Different values for mL, mR and mD will yield different physical masses m1 and m2 but

the case mL = 0, mR � mD is particularly interesting.2 In this case,

m1 =
m2
D

mR
, (2.41)

m2 = mR

(
1 +

m2
D

m2
R

)
' mR, (2.42)

i.e. m2 becomes very large compared with m1. In terms of the mass eigenstates, we

then have

ψ1 ∼
(
ψL + ψCL

)
− mD

m2
R

(
ψR + ψCR

)
, (2.43)

ψ2 ∼
(
ψR + ψCR

)
+
mD

m2
R

(
ψL + ψCL

)
, (2.44)

2Note that the SM explicitly requires mL = 0.
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such that the particle ψ1 is mostly the familiar left-handed neutrino and the particle ψ2

is mostly its much heavier, sterile, right-handed partner. This class of theories are known

as seesaw mechanisms and can explain why the neutrino masses are substantially smaller

than those of the charged leptons [44]. This mechanism assumes that the neutrino is a

Majorana particle and there exists a yet-unobserved heavy, sterile neutrino.

For a more in-depth review of the SM, including the Higgs mechanism and neutrino

mass, see [45] or [46].

2.3 Neutrino oscillations

This section outlines some standard theory results in the context of a modern under-

standing of neutrino oscillation phenomena. For a deeper review of the theory, see [47];

for a comprehensive review of the current experimental status of neutrino oscillations,

see [13].

Thanks to neutrino experiments such as Daya Bay and T2K (see Section 2.6), it

has been understood since about 2011 that all three known neutrino types undergo

flavour oscillation, implying that all three types have nonzero mass. This means that

there exists a set of mass eigenstates3 ν1, ν2, ν3 that may be a mixture of the flavour

eigenstates νe, νµ, ντ . The mass eigenstates diagonalize the free Hamiltonian of the

neutrino field and therefore describe a neutrino propagating in a vacuum.

This is made mathematically concrete by defining a unitary transformation U that

relates the flavour eigenstates να to the mass eigenstates νi via
νe

νµ

ντ

 = U


ν1

ν2

ν3

 , (2.45)

where U in this case takes the form of a 3× 3 matrix assuming a three-neutrino model.

Since the mass eigenstates are eigenvectors of the free Hamiltonian, a neutrino mass

eigenstate νi with position four-vector x and four-momentum pi evolves according to

νi(x) = e−pi·xνi, (2.46)
3These objects are spinors representing neutrino fields, like ψ in the previous section. In the context

of neutrino oscillations, bra-ket notation is often used: ν → |ν〉 and ν† → 〈ν| etc.
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and the flavour eigenstates therefore evolve as
νe(x)

νµ(x)

ντ (x)

 = e−pi·xU


ν1

ν2

ν3

 , (2.47)

which we can write compactly for a single flavour eigenstate να using Einstein notation:

να = e−pi·xUαiν
i, (2.48)

noting the implicit sum over i. To get the evolution of a flavour eigenstate, we then use

the unitarity property of U to invert Equation 2.45:

να(x) = e−pi·xUα
iU∗βiν

β. (2.49)

This mixing of flavour eigenstates leads to neutrino oscillation phenomena: if neu-

trinos have mass and the off-diagonal elements of U are nonzero, then we expect there

to be a nonzero probability that a neutrino observed as a particular flavour at time t is

observed as a different flavour at a later time t′. To make this more concrete, consider

a neutrino propagating with E � mi:

pi =
√
E2 −m2

i = E − m2
i

2E
+O

(
m4

E3

)
. (2.50)

If we neglect terms O
(
m4/E3

)
and higher and assume that all mass eigenstates have

the same energy E then, at a distance L, the phase in Equation 2.49 becomes

pi · x = Et− piL '
m2
iL

2E
, (2.51)

where we are using natural units and have assumed the relativistic limit such that L ' t.

The same result can be derived more rigorously, see e.g. [48]. Equation 2.49 therefore

becomes

να(x) = e−m
2
iL/2EUα

iU∗βiν
β. (2.52)

The dependence of the phase on mi means the probability of observing each flavour is

not necessarily constant if the neutrinos have distinct masses. We can calculate this

probability directly using

P (να → νβ) =
∣∣∣ν†βνα(x)

∣∣∣2 . (2.53)

16



From Equation 2.52,

P (να → νβ) = δαβ − 4
∑
i>j

Re
(
U∗αiUβiUαjU

∗
βj

)
sin2

(
∆m2

ijL

4E

)
+

+ 2
∑
i>j

Im
(
U∗αiUβiUαjU

∗
βj

)
sin

(
∆m2

ijL

2E

)
, (2.54)

where ∆m2
ij := m2

i −m2
j and δαβ is the Kronecker delta. The periodicity in L/E is now

apparent.

The magnitude of the mixing depends on the entries in the U matrix, which is known

as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix in the neutrino sector [49].

Without loss of generality, we may write U as the product of three matrices that satisfy

the unitarity condition by construction:

U :=


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ

Uτ1 Uτ2 Uτ3



=


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13



c12 s12 0

−s12 c12 0

0 0 1

 , (2.55)

where cij := cos θij and sij := sin θij . The mixing therefore can be expressed as the

three mixing angles (θ12, θ23 and θ13) and the Dirac phase δ. The size of δ controls

the extent to which neutrinos violate CP-symmetry. If neutrinos are indeed Majorana

particles (see Section 2.2.2), then two more phases must be added to the PMNS matrix.

These phases do not affect neutrino oscillations so can be omitted here.

Calculations can be simplified by considering two sets of two-flavour oscillations

(νe ↔ νµ/ντ and νµ ↔ ντ ) separately. This is justified by the experimental observation

that θ12 and θ23 are large, and θ13 is small. νe ↔ νµ/ντ oscillations correspond to the

first matrix in the decomposed PMNS matrix equation (Equation 2.55) and νµ ↔ ντ to

the third matrix. There is experimental evidence that
∣∣∆m2

32

∣∣ � ∣∣∆m2
21

∣∣ (though the

ordering of the hierarchy is yet to be determined), meaning that these oscillations also

occur on different length scales. Over a long range (i.e. L ∼ E/∆m2
21), the oscillation

17



Mass ordering Value

sin2 θ12 - 0.307+0.013
−0.012

sin2 θ23 normal 0.545± 0.021

sin2 θ23 inverted 0.547± 0.021

sin2 θ13 - (2.18± 0.07)× 10−2

∆m2
21 - (7.53± 0.18)× 10−5 eV2

∆m2
32 normal (2.453± 0.034)× 10−3 eV2

∆m2
32 inverted (−2.546+0.034

−0.040)× 10−3 eV2

δ/π - 1.36± 0.17

Table 2.3: Current best estimates of neutrino mixing parameters. ‘Normal’ mass
ordering refers to the ordering m1 < m2 < m3; ‘inverted’ refers to m3 < m1 < m2.
Data from [13].

probability can be approximated as

P (νe → νµ/ντ ) ' sin2(2θ12) sin2

(
∆m2

21L

4E

)
, (2.56)

which can be used to explain νe disappearance in solar neutrino spectra. Over a short

range (i.e. L ∼ E/∆m2
32),

P (νµ → ντ ) ' sin2(2θ23) sin2

(
∆m2

32L

4E

)
, (2.57)

which can be used to explain νµ disappearance in atmospheric neutrino spectra. Given

a particular mass splitting ∆m2, the apparent disappearance is maximized when L/E ∼

π/∆m2.

A summary of current oscillation parameters is provided in Table 2.3. Measurement

of oscillation phenomena is of great interest for understanding neutrinos. Experimental

evidence for neutrino oscillations led to a modification of the SM to account for nonzero

neutrino masses, providing a theoretical motivation for sterile neutrinos (see Section

2.2.2). Further, CP violation in the neutrino sector could account for a significant part of

baryogenesis in the early universe [50, 51]. Alternative or complementary explanations of

neutrino disappearance phenomena include quantum decoherence [52, 53] and neutrino

decay [54, 55].

18



2.4 Neutrino sources

Neutrinos can be studied using natural sources, such as solar, atmospheric and supernova

[58] spectra, or using manmade sources, such as from nuclear reactors and particle

accelerators. Other neutrino sources include the cosmic neutrino background (a relic of

the Big Bang) [59] and geoneutrinos from radionuclide decay occurring naturally in the

Earth [60]. A comparison of the spectra of different neutrino sources is given in Figure

2.2.

Most solar neutrinos come from the initial deuterium production process p+p→ 2H+

e+ + νe. These neutrinos are low energy (< 0.42 MeV) and solar neutrino experiments

are usually not sensitive to these, but are sensitive to higher-energy neutrinos produced

by other fusion processes. A review of solar neutrinos can be found in [61]. Atmospheric

neutrinos come from high-energy cosmic rays incident on the Earth’s atmosphere, which

create hadronic showers whose decay products include neutrinos. Cosmic rays mostly

comprise protons, helium nuclei and electrons [62], though those arriving at the surface

of the Earth are primarily muons. This process is illustrated in Figure 2.3.

Fission reactors, which break down heavy isotopes like 235U to produce energy,

induce chains of beta-decays through radioactive decay that generate copious numbers

of electron antineutrinos. These processes are well-understood and can be used to create

an intense neutrino flux with a well-defined spectrum [63]. Particle accelerators can also

be used to create neutrino beams with well-defined spectra. To facilitate study of the

beam composition and to measure neutrino oscillations, such experiments typically have

both near and far detectors, such that the near detector can be used to characterize the

beam. To create a neutrino beam, hadronic showers can be induced through high-

energy collisions of protons with a target typically made of graphite, and the neutrinos

generated by decays of the pions and kaons contained in the shower can be efficiently

isolated from the charged particles [64] to create a very pure beam. A schematic of

the NuMI beamline at Fermilab is shown in Figure 2.4 and described in more detail in

Section 3.2.
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Figure 2.2: A comparison of the neutrino energy spectra provided by a range of
different natural/manmade sources. Figure from [56].

Figure 2.3: Illustration of one process by which neutrinos are generated via interactions
of cosmic rays with the Earth’s atmosphere. Figure from [57].
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Figure 2.4: A schematic of the NuMI beamline at Fermilab, which provides neutrinos
for MINOS, MiniBooNE and ArgoNeuT experiments. Figure from [64].

νµ

n

µ−

p

W

νµ

N

νµ

N

Z

Figure 2.5: Left: a typical charged-current (CC) neutrino interaction, mediated by
exchange of a W boson. Right: a typical neutral-current (NC) neutrino interaction,
mediated by exchange of a Z boson. N here represents an atomic nucleus.

2.5 Detecting neutrinos

Neutrinos only couple to gravity and the weak interaction. Due to small interaction

cross-sections, large detector media and intense fluxes are required to study neutrinos.

Since they have no electric charge, they are usually detected indirectly – via the products

of their weak interactions with electrons and nuclei. Such interactions can either be

charged current (mediated by exchange of a W boson) or neutral current (mediated by

exchange of a Z boson), as shown in Figure 2.5. There are a number of possible modes

of interaction with different topological and calorimetric signatures, three of which are

shown in Figure 2.6.

Intense neutrino sources used for experimentation include nuclear reactors, the Sun,

and neutrino beams created using particle accelerators. As discussed in Section 2.3, the

source-to-detector distance also affects observations. In the case of beamline experiments
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Figure 2.6: Examples of νµ interaction modes: quasi-elastic (top left), resonant (top
right) and deep inelastic scattering (bottom). Note that the ∆++ baryon decays quickly
to p and π+ via the strong force, which is not shown here.

studying oscillation phenomena, the initial composition of the beam needs to be well-

understood. There are several techniques for detecting neutrinos, including:

• Scintillators: β+ decay can be studied using scintillation detectors. Protons

in the detector medium are converted to neutrons, neutrinos and positrons; the

positrons annihilate with electrons in the medium and produce detectable scintil-

lation light. Energy thresholds tend to be low but isotropic light emission means

information about particle direction is lost. KamLAND, described in Section 2.6,

is one example of a scintillation neutrino detector [65].

• Radiochemical methods: Charged-current neutrino interactions can be used

22



to convert some stable atomic isotopes into unstable ones. For example, the sta-

ble isotope 37Cl can be converted into the unstable 37Ar, which has a half-life of

about 37 days. Radioactive decays can then be used to count neutrino interac-

tions. Experiments using this technique include the liquid gallium solar neutrino

experiments SAGE and GALLEX/GNO [66, 67].

• Bubble chambers: Charged particles incident on an active detector volume of

superheated liquid leave a trail of ionization electrons that cause the liquid to

vaporize, leading to small bubbles [68]. These bubble tracks can then be optically

photographed. Bubble chambers are typically subject to a magnetic field such

that particle tracks curve with a radius proportional to their electric charge. One

example of this was the Gargamelle bubble chamber at CERN, a freon-filled de-

tector that operated between 1970 and 1979 and led to the discovery of neutral

currents [4, 5].

• Cherenkov detectors: Charged particles travelling at greater than the local

speed of light in a dielectric medium can produce Cherenkov light [69]. Photo-

multiplier tubes (PMTs) surrounding large detector volumes of suitable media

(including water, ice or mineral oil) can be used to detect Cherenkov light emitted

by charged leptons following neutrino interactions. Each particle creates a char-

acteristic ring of light that can be used to infer direction and energy. Examples of

neutrino Cherenkov detectors include SNO (heavy water), MiniBooNE (mineral

oil), Super-Kamiokande (water) and IceCube (ice) [70–73].

• Tracking calorimeters: Layers of target material are interspersed with active

material, allowing particles to be tracked, often with a magnetic field to mea-

sure momentum. The active material allows hadronic showers to be sampled

and their energy measured. One example is the MINOS detector, comprised of

steel/scintillator sampling calorimeters which collected data at Fermilab between

2005 and 2016 [74].

• Liquid argon time-projection chambers (LArTPCs): LArTPCs are fully-

active detectors that detect ionization trails left by charged particles passing
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Figure 2.7: Left: a schematic of the KamLAND detector. Right: origin of prompt and
delayed scintillation light from the inverse beta-decay process. Figures from [65, 78].

through the detector medium. An electric field is applied that drifts the ion-

ization electrons towards a series of wire planes, where they are collected and

measured. MicroBooNE, ICARUS and ProtoDUNE are all examples of (single-

phase) LArTPCs [75–77]. An outline of the MicroBooNE detector will be given

in Chapter 3.

2.6 Neutrino experiments

A number of modern neutrino experiments with various detector technologies have suc-

cessfully constrained neutrino masses, measuring oscillation parameters and estimating

interaction cross-sections. A selection of such experiments will be outlined here. Two

future experiments, Hyper-Kamiokande and DUNE, will be described in Chapter 10 in

the context of future work.

KamLAND

The Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) is an electron

antineutrino detector at the Kamioka Observatory near Toyama, Japan, that started

collecting data in 2002. KamLAND was an oscillation experiment that studies ν̄e spectra

from distant nuclear reactors to constrain oscillations parameters.

The experiment comprises a 1 kt liquid scintillator medium of paraffin oil and pseu-

documene inside in a balloon-shaped container, surrounded by non-scintillating oil and
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Figure 2.8: An example event display from KamLAND showing the delayed signal
from a ν̄e candidate. Each dot represents the response of a PMT; the colour indicates
the time at which the signal was received. Figure from [78].

Figure 2.9: KamLAND results from 2011 showing ν̄e survival probabilities as a func-
tion of the L/E (see Equation 2.56). Survival probability here corresponds approxi-
mately to 1 − P (νe → νµ/ντ ). This provides clear evidence for neutrino oscillations as
an explanation for ν̄e disappearance. Figure from [79].
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1,879 PMTs (see Figure 2.7). Incident electron antineutrinos produce prompt and de-

layed light through inverse beta-decay, also illustrated in Figure 2.7 (right):

ν̄e + p→ e+ + n, (2.58)

whereafter e++e− → γ+γ produces the prompt light and neutron capture (n+p→ d+γ)

produces the delayed light. PMTs detect this light (see Figure 2.8) and use it to estimate

the energy of the incident neutrino: Eν = Ee + En. A total of 53 nuclear reactors are

distributed around KamLAND, all approximately 180 km away. Since the reactors emit

neutrinos isotropically, the flux from each reactor at a radius R decreases as 1/R2.

KamLAND has provided clear evidence of electron antineutrino oscillations that are

consistent with solar neutrino experiments (see Figure 2.9) [79, 80].

Super-Kamiokande and T2K

Atmospheric neutrino results from the Super-Kamioka Neutrino Detection Experiment

(Super-Kamiokande) under Mount Ikeno, Japan, provide compelling evidence of short

range νµ disappearance, corresponding to νµ ↔ ντ oscillations. Super-Kamiokande is a

50 kt water Cherenkov detector comprising a large cylindrical tank of ultrapure water

surrounded by around 11,000 PMTs. An example event display is shown in Figure 2.10.

The expected ratio of νe to νµ in atmospheric neutrino spectra is fairly well-

constrained. Super-Kamiokande can discriminate between electron and muon candidates

by looking at the ‘fuzziness’ of the rings of Cherenkov light produced and therefore es-

timate this ratio. Differences between upward- and downward-going neutrinos can then

provide evidence of oscillations over different ranges. Results from Kamiokande strongly

suggest that deficits of νµ in atmospheric neutrino spectra are due to neutrino oscilla-

tions (see Figure 2.11) and provide strong constraints for the oscillation parameters

∆m2
32 and sin2 θ23 [82].

Tokai to Kamioka (T2K) is a long-baseline oscillation experiment that uses Super-

Kamiokande as its far detector at a distance of ∼ 295 km (see Figure 2.12). The near

detector complex (comprising the off-axis ND280 and on-axis INGRID detectors), at a

distance of ∼ 280m, is a tracking calorimeter with several subdetectors for characterizing

the neutrino beam. T2K has observed νµ ↔ νe oscillations and has more recently
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Figure 2.10: An example νµ event from Super-Kamiokande showing the characteristic,
sharp ring of Cherenkov light produced by a muon. Figure from [81].

Figure 2.11: Results from Super-Kamiokande showing angular electron and muon
distributions consistent with short-range νµ ↔ ντ neutrino oscillations. Figure adapted
from [13] and created in 2018 by the Super-Kamiokande Collaboration for the Particle
Data Group.
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Figure 2.12: The T2K near and far (Super-Kamiokande) detectors. Figure from [83].

Figure 2.13: A schematic of the MINOS near detector. Figure from [86].

provided evidence at the three-sigma level that these oscillations violate CP-symmetry

[84, 85].

MINOS

The Main Injector Neutrino Oscillation Search (MINOS) experiment was a long-baseline

neutrino oscillation experiment in the NuMI beamline at Fermilab (described in Section

3.2). The near and far detectors were both steel/scintillator sampling calorimeters

(Figure 2.13), with the 1 kt near detector at ∼ 1 km along the beamline and the 5.4 kt

far detector at ∼ 735 km in the Soudan mine, Minnesota. Strips of active medium were
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Figure 2.14: MINOS/MINOS+ oscillation results from 2017 showing clear evidence
for νµ disappearance. Figure from [87].

placed in layers with alternating directions to allow three-dimensional reconstruction

of trajectories. Topological and calorimetric signatures could then be used to identify

interaction modes.

MINOS was able to further constrain the oscillation parameters ∆m2
23 and sin2 θ23

by studying the νµ disappearance and νe appearance (Figure 2.14) and perform neutrino

time-of-flight calculations. In 2015, MINOS time-of-flight studies provided a value of

vν − c
c

= (1.0± 1.1)× 10−6 (2.59)

for neutrinos in the NuMI beamline. Measuring the speed of neutrinos is an important

exercise for testing special relativity and determining the mass of the neutrino. The

MINOS results are consistent with both massless neutrinos and subluminal neutrinos

with a small mass [88]. MINOS has also recently provided constraints on sterile neutrino

mixing parameters [89, 90].

SNO

The Sudbury Neutrino Observatory (SNO) was an imaging Cherenkov detector con-

sisting of a 1 kt container of heavy water surrounded by 9,456 PMTs (Figure 2.15) in

Canada. SNO provided evidence of solar neutrino oscillations by measuring rates of
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Figure 2.15: Left: a drawing of the SNO detector. Right: diagram of a typical
charged-current interaction at SNO. Figures from [57].

three different interactions:

να + e− → να + e− (elastic scattering),

νe + d→ p+ p+ e− (charged current), (2.60)

να + d→ p+ n+ να (neutral current).

Rings consistent with different charged leptons can be used to infer the properties of

incident neutrinos and cosmic ray muons (Figure 2.16). A nonzero flux of νµ and ντ was

observed in the solar neutrino spectrum, along with a νe deficit. The flux measurements

are consistent with the standard solar model (SSM), see Figure 2.17. The experiment’s

contribution to the discovery of neutrino oscillations was recognised by the receipt of

the 2015 Nobel Prize for its director, Art McDonald. SNO is currently being upgraded

to SNO+, which will search for neutrinoless double beta decay [92].

Daya Bay

The Daya Bay Reactor Neutrino Experiment is a neutrino oscillation experiment in

the Guangdong province of China. The experiment targets the subdominant νe ↔ ντ

oscillation signature using eight identically-designed liquid scintillator detectors. Its
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Figure 2.16: An example SNO event display. In this unusual double-ring event, a
muon enterered near the top of the detector and produced the pink Cherenkov ring,
then produced a secondary electron that created the lower ring. Colour represents the
amount of light picked up by each PMT. Figure from [91].

Figure 2.17: Results from the SNO experiment comparing φµ,τ (the flux of νµ and
ντ ) and φe (the flux of νe). The bands each represent the ±1σ interval for a different
interaction in Equation 2.60. Also shown is the standard solar model (SSM) prediction.
Figure from [9].
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Figure 2.18: Results from the Daya Bay experiment, providing strong evidence for νe
disappearance due to subdominant νe ↔ ντ oscillations. Figure from [93].

sources are the nearby Daya Bay Nuclear Power Plant and Ling Ao Nuclear Power

Plant, which primarily produce electron antineutrinos.

In 2012, the Daya Bay collaboration announced a 5.2σ discovery that θ23 6= 0,

much more significant than similar contemporary results at T2K, MINOS and Double

Chooz and providing strong evidence for the subdominant oscillation signature (Figure

2.18). The experiment has since further constrained the ∆m2
32 and sin2 θ13 oscillation

parameters and excluded some mass regions in the search for sterile neutrinos [94, 95],

along with providing with RENO the current best measurement of the mixing angle θ13.

2.7 Open questions

Despite neutrinos having been studied for many decades, there are some significant open

questions in the field of neutrino physics, motivating a rich field of active research and

more powerful experiments than ever before. Some of the most important questions are

listed below.

• Neutrino masses: Whilst the squared mass differences between the neutrino

mass eigenstates can be measured using existing experiments, the ordering of the

masses (i.e. whether we have a ‘normal hierarchy’ or an ‘inverted hierarchy’) is still

not known. T2K has provided some evidence for the normal hierarchy preference.
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Oscillation experiments with significant matter effects, such as DUNE and Hyper-

Kamiokande, may be able to address this question further. The absolute mass scale

of the neutrinos can be constrained to some degree by existing measurements (see

Table 2.1) but is still relatively unknown. Measurements from the cosmic neutrino

background and beta-decay spectra may be able to further constrain the masses

in the near future, for example through the recently-begun KATRIN experiment

[96].

• Oscillation parameters: Measurement of the oscillation parameter values in

Table 2.3 comes from a number of solar, atmospheric, reactor and beam neutrino

experiments, including KamLAND, MINOS, SNO, T2K and Daya Bay. However,

tighter constraints on these values will allow for better discrimination between

theoretical models.

• CP-violation in the leptonic sector: To a 3σ level, no value of the CP-

violating phase δ can currently be excluded (see Table 2.3). A nonzero value of δ

would imply that neutrino oscillations violate CP symmetry. If |δ| is significantly

larger than 0, this would be evidence in favour of the leptogenesis theory as an

explanation of the matter/antimatter imbalance. Results from T2K suggest that

δ is near the maximally CP-violating value −π/2 [85].

• Cross-section measurements: Neutrino experiment analyses rely on an ac-

curate understanding of the neutrino interaction cross-sections. Better measure-

ments of neutrino cross-sections in e.g. argon, carbon and water will allow ex-

periments to reduce systematic uncertainties and place tighter bounds on other

parameter measurements.

• Majorana neutrinos: The resolution of whether neutrinos are Dirac particles

or Majorana particles is crucial for understanding the origin of neutrino mass

(see Section 2.2.2). Observation of neutrinoless double-beta decay would provide

strong evidence that neutrinos are Majorana particles. A number of current and

future experiments aim to observe this process, including SNO+, SuperNEMO

and NEXT [97–99].
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• Sterile neutrinos: The existence of a sterile right-handed neutrino is

theoretically-motivated and could help to explain nonzero neutrino mass (Sec-

tion 2.2.2). Sterile neutrinos are also a candidate for dark matter. Some evidence

for sterile neutrinos has been provided by LSND and MiniBooNE; MicroBooNE’s

main goal is to investigate these anomalies (see Section 3).

• New physics: Many of the current and future neutrino experiments could provide

evidence for more exotic theories, such as extra dimensions and Lorentz-violating

neutrino oscillations. Such new physics searches are now considered core studies

in modern neutrino experiments.
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Chapter 3

The MicroBooNE experiment

This chapter provides a description of the MicroBooNE experiment. It begins with

an overview of its physical motivation and associated goals, followed by a summary

of its neutrino sources. The MicroBooNE detector and relevant technologies are then

described, including the liquid-argon time-projection chamber (LArTPC), along with a

summary of signal processing techniques used to detect and reconstruct signals. The

chapter ends with an overview of the techniques and software used to simulate events

at MicroBooNE.

3.1 Motivation

3.1.1 The LSND and MiniBooNE anomalies

The Liquid Scintillator Neutrino Detector (LSND) was a scintillation counter exper-

iment at the Los Alamos National Laboratory that collected data between 1993 and

1998, designed to look for evidence of neutrino oscillations. The experiment detected

ν̄e interactions produced by a ∼ 800 MeV ν̄µ beam incident upon a detector medium

comprising 167t of mineral oil doped with organic scintillation material. Inverse β-decay

of the ν̄e produced Cherenkov and scintillation light, the timing of which (relative to

subsequent neutron capture scintillation light) was used was used to detect interactions.

LSND observed a 3.8σ excess of ν̄e interactions [100]. Assuming this is the result

of ν̄e ↔ ν̄µ oscillations would imply a large mass splitting that is incompatible with
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Figure 3.1: L/Eν distribution for electron antineutrinos at LSND (left), showing the
yet-unexplained excess. A theory that could explain this is the existence of a fourth
neutrino, the mixing angle and mass splitting of which are constrained by the LSND
observations (right). Blue and yellow regions indicate the 90% and 99% CL exclusion
limits from LSND, and red lines limits from other experiments. Figures from [100].

results from other oscillation experiments. An alternative explanation that has gained

traction suggests the existence of a fourth neutrino state that mixes with the three

standard neutrinos in a (3 + 1) model. Assuming that this state exists and combining

LSND results with other experiments, the (∆m2, sin2 2θ) region for these oscillations is

constrained as shown in Figure 3.1.

Designed to resolve the anomaly observed at LSND, MiniBooNE is an 800t mineral

oil Cherenkov detector in the BNB beamline at Fermilab (see Section 3.2) that started

collecting data in 2002 [71, 101]. The experiment looks for oscillations in a similar L/E

region as LSND but at a much higher beam energy (∼ 8 GeV) by observing νe charged-

current quasi-elastic (CCQE) interactions. Particle interactions in the detector medium

produce Cherenkov light that is measured and characterized by the photomultiplier

tubes (PMTs) that surround the medium. Disambiguation of particles is performed by

the pattern of light produced: heavier particles, for instance, produce sharper Cherenkov

rings, whereas neutral pion decay into a pair of photons will produce two overlapping

rings. Critically, the experiment is unable to distinguish a single photon from an electron

using this detection method.

The MiniBooNE Collaboration continues to analyze data. The latest result demon-
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Figure 3.2: The low-energy excess of electron neutrino events observed at MiniBooNE
for CCQE interactions (left). The stacked histogram represents the results expected
from simulation and the points indicate the actual observations. The implied appearance
probability as a function of L/E is consistent with data from LSND (right). Figures
from [14].

strates a 4.7σ excess of events in a combined νe and ν̄e analysis [14] that is consistent

with the result observed at LSND, the energy dependence of which and the combined

appearance probability are shown in Figure 3.2.

There are a number of proposed explanations of the anomaly observed by LSND

and MiniBooNE, including the existence of sterile neutrino states [102–104], neutrino

decay [105], Lorentz/CPT violation [106] and the neutrino-photon coupling [107]. Such

explanations predict either a single electron track or a single photon produced at the

neutrino interaction vertex. An excess of true electrons produced from charged-current

νe interactions could suggest BSM physics; sterile neutrino (3+1) oscillation models have

found particular interest here. A detector capable of electron/photon discrimination,

unlike a Cherenkov detector, is necessary to understand where the excess comes from

and perhaps resolve the anomaly. Indeed, rejection of the sterile neutrino hypothesis

would also be an interesting result in its own right since sterile neutrinos are one of the

leading explanations of neutrino mass.

3.1.2 Physics goals

The LSND and MiniBooNE results motivated the design of MicroBooNE, the detector

technology of which offers high-quality electron/photon discrimination. The physics
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goals of MicroBooNE are:

• MiniBooNE low-energy excess: MicroBooNE’s primary physics goal is to un-

derstand the source of the MiniBooNE low-energy excess. MicroBooNE therefore

operates at a similar baseline distance, employs LArTPC technology (see Section

3.3) to provide electron/photon discrimination and will run for enough time to be

sensitive to a MiniBooNE-type signal at a 3-5σ confidence level.

• Cross-section measurements: Using a liquid argon detector medium (see Sec-

tion 3.3), MicroBooNE will be able to make the first measurements of exclusive

final states cross-sections from neutrino scattering on argon. There is particular

interest in measuring cross-sections for elastic neutrino-proton scattering, coherent

pion production, and kaon and photon production in low-energy neutrino scatter-

ing.

• Supernova detection and proton decay: MicroBooNE primarily focuses on

accelerator neutrino physics. However, it may be possible to detect supernova

events in our galaxy through a short pulse of neutrino interactions measurable in

the detector. Furthermore, MicroBooNE will be able to characterize the inter-

actions of charged kaons in liquid argon, which are an important background to

future proton decay searches that will take place at DUNE.

• Testbed for DUNE technology: DUNE makes use of similar LArTPC tech-

nology to MicroBooNE but at a much larger scale (see Chapter 10), so the much of

the hardware, software and know-how developed at MicroBooNE can be translated

across.

3.2 Neutrino sources

3.2.1 The Booster Neutrino Beam

The accelerator complex at Fermilab comprises four accelerators (see Figure 3.3): the

Main Injector (Ep ≈ 120 GeV), the Linear Accelerator (Linac; Ep ≈ 400 MeV), the

Booster (Ep ≈ 8 GeV) and the Recycler (Ep ≈ 8 GeV), together providing neutrinos
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Figure 3.3: Schematic of the FNAL accelerator complex. Figure from [108].

for a range of experiments. At MicroBooNE and the wider Short Baseline Neutrino

program, the main neutrino beam is the Booster Neutrino Beam (BNB) [20].

To supply the BNB, a proton beam is first created by accelerating H− ions in

the linear accelerator and stripping the electrons using a carbon foil. The Booster

synchrotron accelerates these protons further and releases them as a beam spill of ∼

4× 1012 protons every 1.6µs. The beam target is a beryllium cylinder of radius 0.51 cm

and length 71.1 cm (about 1.7 interaction lengths). The number of protons-on-target

(POT) is measured by two upstream toroids, which measure POT to within a 2%

uncertainty.

A range of hadrons are produced in the proton-beryllium interactions, which are

focused using a 1.5T toroidal electromagnet called the horn. The BNB can operate in

either neutrino or antineutrino mode. In the neutrino case, the horn focuses π+ and

K+ particles, which decay into νµ; in the antineutrino case, π− and K− particles are

focused. Once the desired particles have been focused, they travel through an air-filled

decay pipe, then an absorber to attenuate the hadrons, leaving a highly pure beam

of (anti)neutrinos, which travel through the ground before reaching the MicroBooNE

detector. This is illustrated in Figure 3.4.

The BNB in neutrino/antineutrino mode primarily comprises νµ/ν̄µ with a secondary
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Figure 3.4: Schematic of the BNB beamline at FNAL leading up to the MicroBooNE
detector. Figure from [109].

Figure 3.5: Predicted BNB neutrino flux at the position of the MicroBooNE detector
in neutrino mode. Figure from [110].

contribution from νe/ν̄e, which result from the same muon and kaon decays. The pre-

dicted neutrino fluxes are shown in Figure 3.5. In this work, data was collected when

the beam was in neutrino mode. Various decay modes lead to this flux spectrum, in-

cluding the dominant π+ → µ+ +νµ mode producing the desired νµ, as well as µ+ decay

(µ+ → e+ + νe + ν̄µ) and µ− decay (µ− → e− + ν̄e + νµ). The flux above ∼ 2.5 GeV

is almost exclusively due to K±, K0 and K0
L decays. In total, the composition of the

BNB is approximately 93.57% νµ, 5.86% ν̄µ, 0.52% νe and 0.05% ν̄e.

3.2.2 The NuMI beamline

Neutrinos from the BNB are the focus of the analysis in this thesis. However, Micro-

BooNE also sits ∼ 8◦off-axis in the NuMI beamline and receives about 2, 500 NuMI νe
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Figure 3.6: Predicted NuMI neutrino flux at the position of the MicroBooNE detector
in neutrino mode. Figure from [112].

per year. The NuMI beamline operates in a similar way to the is BNB, except it is

created from protons of energy ∼ 120 GeV incident upon a carbon target [111]. The

composition of the beam is substantially different to the BNB; its flux prediction at

MicroBooNE is shown in Figure 3.6.

3.3 The MicroBooNE detector

The MicroBooNE detector comprises a rectangular cuboid LArTPC of width 256 cm,

height 233 cm and length 1, 037 cm set in a cylindrical cryostat and 470 m downstream

of the BNB target. This is shown in Figure 3.7. This section summarises the main

detector components; a fuller description can be found in [21].

3.3.1 Liquid argon time-projection chamber

A LArTPC comprises a physical volume filled with liquid argon and bounded by a

cathode, an anode and a field cage. The field cage creates a uniform electric field of

273 V/cm between the cathode and the anode, which are located on two opposite long

edges of the detector. The cathode consists of nine 2.3 mm-thick stainless steel sheets

held at−70 kV. The anode plane, however, is a set of three offset and skewed wire planes:

the induction planes U and V at ±60◦ to vertical and the collection plane Y at 0◦ to the

vertical. The induction planes are each formed of 2,400 wires and the collection plane
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Figure 3.7: Diagram of the MicroBooNE cryostat. The wire cage can be seen as a
cuboid set within the cylindrical cryostat. The Figure from [21].

Figure 3.8: Illustration of the canonical MicroBooNE coordinate system. The cuboid
indicates the boundaries of the TPC. Figure from [113].

of 3,456 wires, all separated by a pitch of 3 mm. The wires are attached to application-

specific integrated circuits (ASICs) for detecting electric signals, designed to operate

under cryostat conditions. Each wire plane is held at a different voltage to avoid charge

being collected by the induction planes. Table 3.1 summarizes key statistics about the

MicroBooNE LArTPC. The coordinate system used to describe locations within the

LArTPC is shown in Figure 3.8.

Figure 3.9 illustrates how LArTPC technology detects neutrino interactions.

Charged particles in the final state of the neutrino interaction leave trails of ionization

electrons, which drift towards the anode plane due to the electric field. As electrons
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Table 3.1: An excerpt from the MicroBooNE technical design report summarizing
some key design parameters. Adapted from [21].

Key MicroBooNE design parameters

Number of anode planes 3
Wire pitch and plane spacing 3 mm

Nominal cathode voltage −70 kV
Nominal drift electric field 273 V/cm

Maximum drift time (nominal) 1.6 ms

Number of U wires 2,400
Number of V wires 2,400
Number of W wires 2,456

Total number of wires 8,256

U wire orientation from vertical +60◦

V wire orientation from vertical −60◦

W wire orientation from vertical 0◦

U wire bias voltage −200 V
V wire bias voltage 0 V
W wire bias voltage +440 V

are collected on the collection (Y) plane, a unipolar signal is recorded. As they drift

past the induction planes (U, V), a bipolar signal is recorded. These signals create

three two-dimensional (wire number and drift time) views of an event, which are later

combined to create a three-dimensional representation of the interaction.

An example of an event at MicroBooNE is shown in Figure 3.10. This display

shows the view in the collection plane of a charged-current π0 production, evidenced

by two showers caused by its decay into a pair of photons. A number of muons from

the cosmic ray background are similarly evident. Automatically reconstructing such an

event, including taking into account information from the other two views, identifying

background particles, identifying the neutrino interaction vertex, excluding noise, recon-

structing particle energies and separating overlapping tracks and showers, is a significant

technical challenge.

3.3.2 Light collection system

To help with both reconstruction and event selection, MicroBooNE uses a light collection

system comprising 32 PMTs behind the anode plane, as shown in Figure 3.11, which is
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Figure 3.9: Detecting neutrino interactions with a LArTPC. The (unobserved) inci-
dent electron interacts to provide two charged particles, which leave trails of ionization
electrons. These drift towards the anode plane and register signals on the collection
(red) and induction (blue, green) planes. Figure from [21].

about 86% transparent to the incident light.

Light is produced in the detector via both scintillation and Cherenkov radiation.

Argon is transparent to its own scintillation light, which is emitted isotropically in both

prompt and delayed components during electron de-excitation, with a wavelength of

about 128 nm. This wavelength is modulated to ∼ 425 nm using a wavelength shifter

so it can be more efficiently measured by the PMTs. Coincidence of light pulses with

beam spills is used for triggering, since only about 1 in 600 spills produce a neutrino

interaction. This provides a significant reduction in background events.

3.3.3 Cryogenics system

The liquid argon in MicroBooNE’s cryostats must be kept at a constant temperature,

purity and pressure since these parameters affect the electron drift velocity and absorp-

tion length, which impacts the reconstruction of the drift time coordinate. Constancy in
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Figure 3.10: MicroBooNE event display from the Run 1 dataset, showing a candidate
νµ charged-current (CC) π0 interaction, along with a number of cosmic rays. The colour
scale indicates the size of charge depositions at each hit. Figure from [114].

Figure 3.11: Diagram (left) and photograph (right) of the photomultiplier optical
units used at MicroBooNE. Figure from [21].

time and detector position are both therefore critical. The temperature in the cryostat

is monitored by 12 probes in different locations. Purification is performed using pumps

and filters that circulate the detector material and remove impurities such as water and

O2 molecules.
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Figure 3.12: Measurements of the QA/QC ratio between February and April 2016.
Variations in QA/QC stem from changes argon purity and other detector conditions.
Blue bands indicate periods of missing data. The data is shown with and without space
charge correction (see Section 6.4). Figure from [113].

The purity of the argon is measured via theQA/QC ratio, i.e. the fraction of electrons

generated at the cathode purity monitor that reach the anode purity monitor at drift

time t. This ratio is directly related to the electron lifetime τ via QA/QC = exp(−t/τ).

Multiple such monitors are placed in different positions in the detector. Variation in

the QA/QC ratio is shown over a 70-day period in Figure 3.12.

3.3.4 Electronics and readout

Readout electronics at MicroBooNE can be split between those recording signals from

the TPC wires and those recording signals from the PMTs, as shown in Figure 3.13.

Within the TPC electronics, there exist ‘cold’ electronics within the cryostat that pre-

amplify and shape the signal (the aforementioned ASICs) and warm electronics out-

side the cryostat that digitize the signal using analogue-to-digital converters (ADC) at

16 MHz before down-sampling it to 2 MHz. The outputs from each trigger are signal

waveform corresponding to 9,600 ticks, equivalent to 4.8 ms. For the PMT electronics,

PMT signals are amplified and digitised at 64 MHz for the software trigger and stored

for later analysis. The signals are recorded over a time-window of 1,500 ticks (∼ 23.4µs),
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Figure 3.13: High-level schematic of the readout electronics and flow of information
at MicroBooNE. Figure from [21].

starting 1.6µs before the beam gate time.

3.3.5 Cosmic ray background and the trigger system

Being a surface detector, the rate of cosmic rays impinging upon the detector active

volume is about 5.5 kHz, meaning that each drift-time window of 2.3 ms registers ap-

proximately 13 cosmic rays [115]. A cosmic-ray tagger (CRT) borders the cryostat on

four sides, allowing cosmic rays to be reconstructed and tagged [116]; see Figure 3.14 for

a description of the geometry and a simulation of cosmic rays. This system was installed

partway through this work and therefore data making use of this tagging system was

unavailable.

In order to store data parsimoniously, MicroBooNE uses both hardware and software

triggers to reject windows unlikely to contain a neutrino interaction, which is the vast

majority of them. Firstly, each BNB and NuMI spill triggers the hardware trigger,

beginning the 4.8 ms TPC window and 23.4µs PMT window described in described in

Section 3.3.4. The BNB trigger has an efficiency of 99.8%.

Recording every such event at a 5 Hz beam spill rate would require storing ∼ 13 TB
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Figure 3.14: Diagram of the components (left) of the MicroBooNE muon tagging
system, along with a simulation of cosmic background events interacting with the com-
ponents (right). Brown line indicates simulated cosmic ray tracks. Figure from [117].

of data per day. Since so few spills produce a neutrino interaction in the detector, a

software trigger is used to only record data when there is a coincident PMT trigger.

This trigger allows about 3% of spills to be recorded. An additional trigger called

EXT behaves similarly to the PMT trigger but only outside of the beam spill windows,

ensuring that events selected by this trigger contain only background, allowing better

characterization of the background.

3.4 Signal processing

Section 3.3.1 described the signals recorded by the wires in the two induction and

single collection plane and induced by the drifting ionization electrons. These signals

are subject to various sources of noise, which are described more fully in [118] but

significant sources include ∼ 30 kHz noise across all channels due to the ASICs’ low-

voltage regulator, noise at ∼ 36 kHz and ∼ 108 kHz due to the cathode high-voltage

power supply, and position-dependent bursts of noise at ∼ 900 kHz of unknown origin.

These sources, amongst others, are deconvolved during the noise filtering process, which

improves the peak signal-to-noise ratio by a factor of 3 in the induction planes and 2

in the collection planes [119]. An example of the signal on one of the induction planes
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Figure 3.15: Illustration the noise removal on an induction plane (V) at MicroBooNE
for a data event. The vertical axis is the drift time coordinate (x). The colour scale
indicates the recorded charge depositions compared with baseline in units of ADC.
Figure from [118].

before and after noise removal is given in Figure 3.15.

Finally, Gaussian fits are applied to the resulting signal to reconstruct hits, which

correspond to physical regions of the detector in which charge was deposited, projected

onto one of the 2D wire planes. The mean of the Gaussian corresponds to the drift time
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Figure 3.16: Data event display illustrating the signal recorded on one wire as a
function of time. The vertical axis in the event display and the horizontal axis in the
bottom figure correspond to the drift-time coordinate (x) measured in 500 ns ticks. The
white box in the event display indicates the chosen wire. Figure from [112].

coordinate of the hit and its RMS to the hit width in the drift time dimension. The

integral under the curve corresponds to the total charge associated with the hit. Figure

3.16 illustrates the hit reconstruction process on one wire in the collection plane.

3.5 Simulation

To facilitate physics analyses and develop reconstruction algorithms, detailed simula-

tions of the BNB and MicroBooNE detector are under constant development. These

simulations are based on Monte Carlo (MC) sampling methods. BNB flux is simulated

using work done at MiniBooNE [101, 110], and events are simulated using the GENIE

neutrino event generator [120] which models the neutrino interaction, including nuclear

effects, branching probabilities, particle propagation through the detector and scatter-

ing of final state particles. The MicroBooNE detector is simulated using the GEANT4
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software [121], which simulates particle propagation through the detector medium, the

creation and motion of ionization electrons, the induction of signals on the wires, and

the creation and measurement of scintillation light. The CORSIKA event generator

[122] is used to simulate cosmic ray interactions.

Various GENIE, GEANT4 and CORSIKA configurations can be used to model dif-

ferent effects and test detector systematics; in this work, only the default MicroBooNE

configurations are used. In particular, the software versions used were GENIE version

2.8.6 [120], the CORSIKA version 7.4003 [122], GEANT version 4.9.6 [123] and LArSoft

version 6.26.01.10 [124].
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Chapter 4

The Pandora pattern-recognition

framework

This chapter introduces the Pandora pattern-recognition framework and its use at Mi-

croBooNE. The chapter begins by outlining Pandora’s motivation, philosophies and

event data model, before describing the particular algorithm chains employed to re-

construct cosmic ray and neutrino interactions at MicroBooNE. The metrics used to

characterize reconstruction quality and inform algorithm development are introduced,

along with a summary of the Pandora reconstruction quality at MicroBooNE.

4.1 Introduction

Following the signal processing stage described in Section 3.4, three sets of 2D hits

with associated positions, extents in the wire-number and drift-time coordinates, and

associated integrated ADC counts (relating to the amount of charge deposited in the

detector at that position) are available for a given event. To perform physics analyses,

these products must first be transformed into physically meaningful 3D tracks and

showers; a process known as reconstruction. Solving this pattern-recognition problem

is the remit of Pandora [125].

The Pandora software is divided into a software development kit (SDK) and

experiment-specific libraries. The SDK defines the experiment-agnostic functionality
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for performing reconstruction, including the event data model (EDM), application pro-

gramming interfaces (APIs) of general use across experiments, and a C++ framework for

object lifetime management and for developing chains of algorithms that conform to the

Pandora algorithm paradigms. The experiment-specific libraries define specific chains

of algorithms that reconstruct events at a given experiment, including the definition of

experiment-specific objects.

Pandora is developed under the multi-algorithm philosophy; in other words, that a

reconstruction chain should consist of a large number of relatively simple algorithms,

each of which addresses a specific event topology or performs a parsimonious task to

assist with the reconstruction. Layers of such algorithms slowly build up a full picture

of the event, rather than relying on one complex, monolithic algorithm that attempts

to cover all topologies at once. Decisions made within each algorithm are conservative

to avoid making mistakes early in the reconstruction that are difficult to undo. This

allows for a highly complex reconstruction process to be reduced to a set of digestible,

maintainable and reusable algorithms.

4.2 Event data model

Pandora’s event data model (EDM) is a hierarchical framework of objects with parent-

daughter relationships and associations, designed in such a way that each object con-

tains all the information required to fully specify its relationship and interaction with

all other objects in the EDM without repetition. Pandora considers input objects to be

immutable, whereas algorithm objects are created within and iterated on through algo-

rithms. Algorithm objects may be associated with the immutable input objects, but the

Pandora SDK’s object lifetime management framework ensures that such a relationship

is unique, such that input objects are not double-counted by algorithm objects. The

Pandora EDM is illustrated in Figure 4.1. The Pandora input objects are:

• CaloHit: The 2D hits, each from one of the three wire planes, that form the

primary input to Pandora. Each one has a physical position, spatial extent (in

the wire-number and shared drift-time dimensions) and an associated charge-like

measurement, recorded as the integrated ADC count.
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Figure 4.1: The Pandora event data model (EDM). These are the outputs of the
pattern-recognition process. Solid lines indicate associations between objects; dash lines
indicate the navigable particle hierarchy (see main text). Figure from [109].

• Monte Carlo particle: A set of information produced by the particle generator

that, following detector simulation, led to the observed hits. This includes the

particle type, hierarchy and kinematic properties. These objects are used to help

debug and develop reconstruction algorithms and are only available for simulated

events.

Some of the Pandora algorithm objects are:

• Cluster: A collection of CaloHits, typically used as intermediate products in the

process of creating tracks or showers. There is a 2D version of this object, which

can contain CaloHits only from one view, and a 3D version, which can contain 2D

clusters from multiple views.

• Vertex: A spatial position in the detector indicating a place where an interaction

or decay occurred. This object can be 2D, in which case it can be considered the

projection of a spatial position onto a wire plane, or 3D, in which case it fully

specifies a point in space.

• Track/shower: A 3D object containing one or more clusters that should corre-

spond to a whole particle or electromagnetic shower.
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• Particle flow object: A hierarchical object that can contain clusters, vertices

and tracks/showers, allowing navigation through the parent-daughter hierarchy

that encodes the temporal order of interactions. These form the complete final

output of Pandora, fully and parsimoniously defining the relationship between

objects in the Pandora EDM.

Modular algorithms are run in a predetermined order which can create, modify, associate

and destroy the algorithm objects described above. These algorithm chains are not

hard-coded, but instead defined externally using XML settings files, which also define

the algorithm configuration if required. More detail about the Pandora SDK and EDM

can be found in [125].

4.3 Reconstruction at MicroBooNE

Pandora is the default software used for pattern recognition at MicroBooNE, where the

fine spatial resolution requires the reconstruction of complex, often overlapping topolo-

gies in the presence of significant noise. Pandora integrates with Fermilab’s liquid argon

reconstruction software LArSoft [124] via a module that translates between the Pandora

EDM and the LArSoft EDM. The previously described input objects are passed and

translated from LArSoft into Pandora, along with detector geometry (the dimensions of

the active volume, information about wire plane angles and pitches, and dead detector

regions). The output PFO hierarchy is translated into LArSoft tracks and showers and

additional processing such as Kalman filtering is performed inside LArSoft.

Reconstruction at MicroBooNE is twofold: the first reconstruction chain is

PandoraCosmic, which is optimized to reconstruct cosmic ray muons. One such op-

timization is that the vertex of each particle can reliably be taken to be the hit with

the highest y coordinate. Following this chain, a cosmic ray tagging module is run on

the reconstructed output and tags particles which are highly likely to be cosmic rays,

based on the track trajectory and beam trigger timing. The hits corresponding to these

cosmic rays are removed before running a second algorithm chain, PandoraNu, on the

remaining hits, which comprise ambiguous cosmic rays and potentially a neutrino in-

teraction. This chain is optimized for reconstructing neutrino interactions, such as first
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Figure 4.2: The Pandora algorithm chains for cosmic rays reconstruction and neutrino
reconstruction, as performed at MicroBooNE. Orange-bordered boxes indicate inputs
and outputs of Pandora. Figure from [109].

‘slicing’ the event into cosmic ray and neutrino interaction candidates and employing

more sophisticated algorithms for selecting the interaction vertex. Every slice is recon-

structed under both cosmic and neutrino hypotheses, i.e. using each algorithm chain.

The twofold reconstruction chain is illustrated in Figure 4.2.

4.4 Pandora algorithm chain

This section will describe some of the reconstruction algorithms that are used at Micro-

BooNE and elsewhere. We will exclude the crucial neutrino interaction vertex recon-

struction algorithms, which are described in detail in Chapter 5.

4.4.1 Two-dimensional clustering

Figure 4.3 illustrates part of the 2D clustering process. First, clusters are created by

grouping hits together based on their physical proximity and linearity of the fit passing
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Figure 4.3: Illustration of the 2D hit clustering process for two crossing tracks in
the presence of simulated unresponsive channels, indicated by empty detector regions
bordered by grey lines. Different colours indicate different clusters before the gap infor-
mation is used to merge the clusters (left) and afterwards (right). Figure from [126].

through them. Any ambiguity here prompts the end of a cluster, resulting in a large

number of small clusters. This process is error-averse, resulting in high-purity but low-

completeness clusters, in the sense that the hits corresponding to each true particle are

typically split into many distinct clusters but ones with low contamination from other

particles.

Following this, clusters are merged by considering their spatial proximity and the

alignment of their principal axes, extrapolating cluster trajectories through detector

gaps. These algorithms operate only on 2D hits, such that it is independently performed

three times for each event (once for each wire plane). The output is a set of 2D clusters,

each containing a set of hits ideally the complete set of induced by a different particle

for each cluster.

4.4.2 Track reconstruction

The purpose of the track reconstruction algorithm set is to reconcile the 2D clusters

in each view that correspond to track-like particles by splitting, merging and matching

them to produce 3D tracks. There are various distinct topological cases with different

signatures in each view; in concordance with the Pandora multi-algorithm philosophy,
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each class of topology is addressed by a different track reconstruction algorithm that

targets only that class without disrupting the others.

A metric quantifying the goodness of match between each cluster in each of the

three views is stored in a 3D tensor, representing every possible cluster combination.

Clusters, which form the indices of the tensor, can be merged or split by algorithms,

resulting in an updated tensor. The tensor with the minimum matching ambiguity can

then be selected as the final set of matches. To construct the matching metric, the

shared x (drift-time) coordinate in each view is exploited by projecting a set of common

x-sampling points from every pair of views to each third view following a sliding least-

squares local linear fit. For a given set of matched clusters, repeating this process for

each pair and comparing the projected positions with the observed positions yields a

χ2-like parameter which is used to quantify the match quality, along with the x-overlap

span and the number of consistent sampling points.

Some of the track reconstruction algorithms1 that address different topological pat-

terns are listed below. During track reconstruction, these are run in the order listed

below; if any of the algorithms makes a change to the tensor, then the entire chain is

run again. This process is iterated until the whole chain is run with no changes being

made to the tensor. Illustrations of some particular cases are given in Figure 4.4.

• Clear tracks: An unambiguous topology in which there is exactly one cluster

captured in the given x-extend in each view. This is shown in the top left in Figure

4.4.

• Long tracks: A topology in which small clusters that present matching ambi-

guities are rejected in favour of longer tracks. This is shown in the top right in

Figure 4.4.

• Overshoot tracks: A topology in which two views present two clusters and one

view presents one cluster, typically when the projection in one view taken alone

makes the pair of clusters look like a single cluster. The resolution here is to split

the cluster in the single-cluster view. This is shown in the bottom left in Figure

4.4.
1These are in fact algorithm tools under the Pandora SDK definition, since they are reusable

algorithm-like objects that can be called from Pandora algorithms.
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• Undershoot tracks: A topology in which two views present one cluster and one

view presents two clusters, for instance when missing hits lead to a cluster being

erroneously split. This is shown in the bottom right in Figure 4.4.

• Missing tracks: If a cluster is entirely missing from one view, which is possible

for example due to detector gaps, missing hits or overlapping particles in a given

projection, tracks can be made from clusters in only two views.

• Track splitting and missing track segment: These algorithms address topolo-

gies in which hits at the end or in the middle of clusters are missing, or where

clusters need to be split for better matching.

• Long tracks (reduced threshold): This algorithm is run again with an easier-

to-achieve matching threshold in an attempt to match clusters that remain out-

standing.

Clusters that end this process unmatched are dissolved and re-clustered; frequently

these correspond to fragments of δ-ray showers. Following this, 3D hits are reconstructed

in a topology-dependent way through techniques to select the y and z coordinates that

minimize χ2.

4.4.3 Shower reconstruction

The PandoraNu pass looks to reconstruct electromagnetic showers which may be pro-

duced downstream of the neutrino interaction due to electrons and photons. An ex-

ample of such a simulated event is given in Figure 4.5. This process begins in 2D,

where shower-like clusters are identified using a support vector machine (SVM) trained

on MC simulation to classify track versus shower clusters. Long 2D clusters identified

are shower-like, especially those that point back to the neutrino interaction vertex, are

considered to be shower spines. Full 2D showers are then recursively ‘grown’ from the

spines by incorporating ‘branch’ clusters based on their proximity and relation to the

existing shower.

Following 2D shower reconstruction, 3D showers are created by matching the 2D

showers between views using a tensor method similar to the track reconstruction algo-

rithm. In this case, edges of the 2D envelopes fitted to the showers are projected rather
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Figure 4.4: Illustration of the ‘matching’ process between 2D planes to create 3D
tracks in four different cases. Note that the drift-time coordinate (x) is common to all
planes. Top left: an unambiguous single cluster in each plane. Top right: the presence
of a δ ray is inferred from the V and W planes despite it being missing in the U plane.
Bottom left: information from the V and W planes is used to split an erroneously merged
cluster pair in the U plane. Bottom right: information from the U and W planes is used
to merge and erroneously split cluster in the V plane. Figure from [126].

60



Figure 4.5: The electromagnetic shower reconstruction process in the W plane. The
red track-like clusters are protected from alteration at this stage. The blue clusters are
tagged as candidate shower spines and the green clusters as candidate shower branches.
The branches are iteratively added to the spines to ‘grow’ high-quality showers. Figure
from [126].

than sliding linear fits to the hits themselves. The metric of goodness of fit is then the

proportion of hits in the third view that are contained within the projected envelope,

as well as the x-overlap details.

Finally, an SVM-based algorithm is used to classify every particle as either track-

like or shower-like based on topological and calorimetric properties; this flag is not used

during reconstruction but is made available downstream for analysis.

4.4.4 Particle refinement and hierarchy building

The final broad step in the reconstruction chain is refinement of reconstructed parti-

cles and hierarchy building. This includes further growing of shower-like particles using

unassociated clusters through extrapolating cone fits in both 2D and 3D, and by con-

sidering the proximity of unassigned hits to existing showers. The results is a set of

track-like and shower-like particles for each detector slice. This is used to create the

particle hierarchy: a set of parent-daughter relations between particles with the (unob-

served) neutrino particle as the root node. Based on the proximity of a particle’s 3D

hits to the current interaction vertex, the hierarchy is grown from the neutrino inter-
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Figure 4.6: Example particle hierarchy for a CC νµ event with a muon (red), pro-
ton (blue) and charged pion (magenta) in its final state. The final-state particles are
considered to be daughters of the (unseen) neutrino, and objects downstream of each
final-state particle are considered daughters of that particle; e.g. the shower (dark pur-
ple) at the end of the charged pion track becomes a daughter of the charged pion. Figure
from [126].

action vertex outwards. Unassigned particles are assigned as daughters of the primary

daughters of the neutrino, using a number of algorithms that each address a different

topology. An example of such a hierarchy is shown in Figure 4.6.

4.5 Performance

Quantification of reconstruction quality is crucial for algorithm development. In Pan-

dora, a set of reconstruction metrics have been developed based on the matching of hits

into ‘true’ particles using MC information. Each hit is tagged by the particle which

contributed most of its charge; for each MC particle i, this forms the set of ‘true hits’

Ti. Similarly, the actual hits associated with some reconstructed particle j form a set
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Table 4.1: Pandora reconstruction performance for three selected channels, as mea-
sured by the number of reconstructed particles matched to each true (MC simulated)
particle. The correct value of 1 reconstructed particle per true particle is indicated in
bold. Adapted from [126].

Number of matched particles

Channel Particle 0 (%) 1 (%) 2 (%) 3+ (%)

CCQE νµ + Ar→ µ+ p
µ 1.3 95.8 2.9 0.1
p 8.9 87.3 3.6 0.2

CCRES νµ + Ar→ µ+ π+ + p
µ 3.5 95.1 1.4 0.0
π+ 9.0 86.8 4.0 0.3
p 6.9 80.9 11.4 0.8

CCRES νµ + Ar→ µ+ π0 + p

µ 3.7 94.8 1.5 0.0
p 9.9 85.5 4.3 0.3
γ1 6.8 88.0 4.8 0.4
γ2 29.9 66.4 3.6 0.2

Rj . A detailed account of the performance metrics and performance at MicroBooNE

can be found in [126]; this will be summarized here.

Only particles deemed ‘reconstructable’ by a specific definition are included in per-

formance metrics so that particles that are too small to be reliably reconstructed, as well

as sparse cloud of hits caused by neutrons, do not unfairly influence the metrics. The

definition excludes hits downstream of a far-travelling primary photon, downstream of a

far-travelling neutron, particles producing fewer than 15 high-quality hits (where high-

quality here means that at least 90% of the energy recorded by the hit was deposited

by the particle under consideration), and those which have fewer than six high-quality

hits in at least two views.

To be able to construct meaningful metrics, reconstructable true particles then need

to be matched to reconstructed particles. This process is performed by first uniquely

matching each MC particle to the reconstructed particle with which it shares the most

hits; once every MC particle that shares hits is uniquely matched, the remaining re-

constructed particles are assigned to the MC particle with which they share the most

hits. This means that each MC particle may be matched with no, one or more than one

reconstructed particle. The metrics used to evaluate reconstruction quality are listed

below:
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• Purity Pi := |Ti ∩Ri| / |Ri|: For a given match, the fraction of shared hits that

come from the true particle.

• Completeness Ci := |Ti ∩Ri| / |Ti|: For a given match, the fraction of true hits

that are present in the shared hits.

• Efficiency η: For a given true particle type, the fraction of such particles with

at least one reconstructed particles matched to it.

• Correct event fraction: The fraction of events for which each true (recon-

structable) primary particle has exactly one reconstructed particle matched to it.

The results displayed for three channels in Table 4.1 illustrate this process.

Per-particle reconstruction metrics are typically reported only for each primary particle

in the final state of the neutrino interaction (i.e. each primary daughter of the neutrino)

since these are most important to physics analyses and Pandora folds daughters hier-

archically back to primary particle, though it is possible to construct these metrics for

any particles in the event. Reconstruction efficiency for three channels as a function of

kinematic and reconstruction parameters is shown in Figure 4.7.
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Figure 4.7: Per-particle Pandora reconstruction efficiencies as a function of the number
of reconstructed 3D hits for each particle (left column), the true momentum of each
particle (middle column) and the opening angle between the particles (right column)
for three channels. The top row shows the νµ + Ar → µ− + p channel, the middle row
the νµ + Ar → µ− + p + π+ channel and the bottom row the νµ + Ar → µ− + p + π0

channel. Figure from [126].
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Chapter 5

Neutrino interaction vertex

reconstruction

This chapter presents a new algorithm for neutrino interaction vertex reconstruction,

which is now the default algorithm used at MicroBooNE and has enabled a number of

new physics results. The features and models that are used in the new algorithm are

described, along with the previous vertex algorithm used in Pandora. The performance

of the algorithm and its effect on reconstruction quality is evaluated on per-beam and

-channel bases.

5.1 Introduction

Overall neutrino event reconstruction quality is tightly coupled to the quality of the

vertex reconstruction. As described in Chapter 4, vertex reconstruction occurs early in

the 2D reconstruction and its result is used to split/merge 2D clusters and inform the

structure of the resulting particle hierarchy. The placement of the vertex has far-reaching

consequences both to downstream reconstruction and to physics analyses making use

of these vertices. Misplaced vertices can lead to inappropriate track/shower splitting

or merging, which in turn lead to misconfigured particle hierarchies, backwards-going

particles, poor particle identification (due to altered calorimetric profiles) and poor

energy reconstruction. Establishing the neutrino interaction vertex is therefore one of
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Figure 5.1: Illustration of a typical configuration of candidates in a simple simulated
event. The figure shows 2D clusters and projected 3D vertex candidates in the W view.
The w direction is equivalent to the z (roughly beamline) direction at MicroBooNE,
and x is the drift time coordinate common to all 2D views. Figure from [126].

the most important tasks performed during reconstruction.

In Pandora, vertex reconstruction is split into two distinct tasks:

• Vertex candidate generation: The creation of a large number of 3D vertex

candidates based on features of the event, typically a few hundred. In practice,

this is achieved by identifying interesting event features in one or more 2D planes,

such as ends of tracks/showers and kinks in tracks, and matching them in other

views. The goal is to ensure that a good candidate is very likely to exist amongst

the many. Vertex candidates must correspond to reconstructed hit positions in at

least one 2D plane. Note that the vertex candidate may lie in an unresponsive

region of the detector in some planes. This is illustrated in Figure 5.1.

• Vertex selection: The ranking of all vertex candidates based on their plausibil-

ity and selection of the most likely one. The information available to make the

selection at this point in the reconstruction includes: the list of 3D vertex candi-

dates (which can be projected into any 2D view); preliminary 2D clusters, which
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Figure 5.2: Illustration of the RPhi algorithm. The position of each nearby hit is
represented in 2D polar coordinates and the peakiness of this distribution with respect
to the φ axis is characterised to make a score, with more distant (i.e. higher r) hits’
contributions deweighted.

are labelled as track-like or shower-like;1 charge depositions associated with each

2D hit in each cluster; and, 2D positions of each hit in relation to the detector

geometry.

This chapter concerns a new algorithm developed for the vertex selection process, im-

proving upon the previous algorithm by adding new features inspired both by physical

intuition and issues noted at MicroBooNE. The resulting feature set is then used as

input to a machine learning (ML) model, the first of a number of ML models now em-

ployed inside Pandora. The algorithm described here has enabled a number of physics

results at MicroBooNE, including a track multiplicity study [127] that examined events

with up to 6 particles in the neutrino interaction final state.

5.1.1 The RPhi algorithm

The previous algorithm used for vertex selection in Pandora is the RPhi algorithm,

which assesses vertex quality using the implied geometry of the hit positions local to

each candidate. The score considers 2D polar coordinates centered on the candidate and

characterizes the straightness of the pattern of emerging hits. Algorithmically, the 2D

histogram shown in Figure 5.2 is projected onto the φ axis with each hit’s contribution

1Note that this cluster labelling is used internally in Pandora to assist with the reconstruction. A
version tailored for downstream analysis that takes into account the information available at the end of
the reconstruction has been developed, based on the work presented in this chapter.
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Figure 5.3: Illustrative simulated intrinsic νe (e− + p) event. The true vertex (which
need not lie on a hit) is indicated in each view by a green circle and a reconstructed
vertex by a red circle.

weighted by 1/r to create a 1D histogram. This histogram is then turned into a single

scalar score by characterizing the peakiness of the distribution, where a more peaky

distribution indicates a better candidate. There are three ways in which the peakiness

can be calculated; in the simplest version, the histogram is normalized and the score is

the sum of the squares of the values in each bin. Physically, more plausible candidates

are more likely to be ‘pointed to’ by downstream clusters, especially by clusters in

the vertex’s immediate vicinity as their particles are less likely to have scattered or

undergone secondary interactions. The resulting score is then modified by the ‘beam

deweighting’ factor fdeweight, which takes into account the fact that candidates at lower

values of z, the coordinate roughly aligned with the beam direction, are more probable

due to final state products being more likely to travel closer to the beam direction than
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backwards:

fdeweight := e−z
′/ζ , (5.1)

where

• z′ := (z − zmin)/(zmax − zmin) is the modified beamline coordinate;

• z is the candidate coordinate along the longitudinal detector axis (roughly aligned

with the beam direction);

• zmin and zmax are the minimum and maximum longitudinal coordinates of the

vertex candidates; and,

• ζ is a tunable constant.

Figure 5.1 shows an example where maximizing the beam deweighting factor alone

would lead to the optimal vertex choice; Figure 5.3 shows an example where it would

not. This process is repeated in each 2D plane and the candidates receive an averaged

overall score, which is used to rank the candidates and select the best one. Note that

the algorithm takes into account only geometric information, neglecting calorimetric

information. This will be used as the baseline algorithm for assessing the performance

of the new vertex algorithm developed in this chapter.

5.2 Feature building

We improve on the algorithm presented in the last section by incorporating a variety of

new pieces of information into a model, including calorimetric data, event-level features

and additional geometric context. We take the beam deweighting score and the score

from the RPhi algorithm, which we now call the ‘r-φ score’. We additionally add a

number of new features, which are described below.

Energy kick score

In order to incorporate calorimetric information into the vertex selection process, we

introduced the energy kick score. The energy kick score is akin to the summed transverse
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Figure 5.4: Illustration of the energy kick score, which resembles the ‘transverse charge’
of each cluster with respect to the candidate such that candidates with a high energy
kick score should be suppressed. The basis of this intuition is that candidates which
seem to require a larger amount/number of visible energy ‘kicks’ to explain the observed
direction of downstream particles are less likely to be the correct candidate.

energies of the clusters with respect to the vertex candidate. Physically, particles in the

neutrino interaction final state are likely to point back towards the true neutrino vertex

and, whilst particles in the final state of downstream interactions are less likely to do

so, they also tend to be less energetic. In practice, we use charge rather than energy to

avoid performing calibration; at this stage, 2D clusters are not particularly well defined.

The score is defined as

Skick :=
∑

view i

∑
cluster j

Qj(xij + δx)

dij + δd
, (5.2)

where

• Qj is the summed charge of the hits of cluster j;

• xij is the transverse impact parameter between the candidate and a linear sliding

fit to cluster j in view i, extrapolating linearly from the end of the cluster if need

be;

• dij is the closest approach between the candidate and cluster j in view i; and

• δx and δd are empirical, tunable constants that control the behaviour of the score,

particularly for very close clusters; we set them as 10 cm and 0.06 cm, respectively.
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We note that setting δx and δd to 0 corresponds to a true ‘transverse charge’ measure-

ment but behaviour when dij = 0 is then undefined, which is not an uncommon case

since each candidate must lie on a hit in at least one view. This calculation is illustrated

in Figure 5.4.

Local asymmetry score

The local asymmetry score measures whether the energy deposited locally to the can-

didate falls more isotropically or more on one side. A high degree of local asymmetry

makes it less likely that the candidate has been placed in the middle of a track, a com-

mon case when the track is broken in one view or has undergone a secondary interaction

(e.g. muon δ-rays or proton scattering). We only consider the case of one or two local

clusters and otherwise issue the maximum asymmetry score of 1. This is because there

is no local asymmetry information in a view where there are no local clusters and, when

there are 3 or more local clusters, the axis about which the asymmetry is defined can

become less meaningful and lead to spurious results. We also note that observing three

or more clusters close to a vertex often indicates a favourable candidate anyway. The

steps to calculate the local asymmetry score are outlined below:

1. Consider the candidate in the U projection.

2. Find all the track-like 2D clusters with at least one hit within 5 cm of the candidate.

If there are 0 or more than 2 clusters, return the maximum allowed score of 1 (i.e.

no suppression). Perform a sliding linear fit to these local clusters.

3. Calculate the ‘local event axis’ by performing a charge-weighted sum of the cluster

directions at the hit closest to the candidate. If there are two clusters, consider the

local cluster direction opening angle θ12; if cos θ12 < −0.9962, then rotate one of

the directions by 180◦ before performing the sum. This is to ensure a meaningful

local event axis in the common case of candidates lying in the middle of straight

tracks.

4. Project each hit from the local clusters onto the local event axis.
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5. Sum the charge of the hits whose projections fall on the left side EL and the

right side ER of the candidate. Calculate the local asymmetry score in this view:

SLA := |EL − ER|/(EL + ER).

6. Repeat this procedure in the V and W projections, and return the sum the results.

This score provides useful information but it cannot provide a high-quality vertex se-

lection in isolation due to invisible products, the 2D projection and calorimetric re-

construction quality. In Figure 5.1, for instance, candidates A, D and C will receive

asymmetry scores near 1 as they are close to the ends of clusters. Candidate E will

receive a score of 1 as it lies at the intersection of more than two tracks. The candidate

partway down the magenta track is likely to have a lower asymmetry score based on the

magenta and possibly the blue track being captured in the asymmetry calculation.

Global asymmetry score

The global asymmetry score is similar to the local asymmetry score but considers calori-

metric contributions from all clusters in the event. A higher degree of global asymmetry

can imply a more likely candidate as the combined momentum of the products (includ-

ing invisible products) of the neutrino interaction should point close to the beamline

direction to conserve momentum.

The global asymmetry score is calculated on a per-view basis and then resulting

scores are then summed. The calculation of the local event axis is identical to the local

asymmetry score (including the 5 cm search radius) but, following this, all the hits in

the view are projected onto the axis and the asymmetry of their charge distribution

about the candidate is calculated. In Figure 5.1, for instance, candidates near A, D and

E are likely to be favoured based on the projections of all hits onto the local event axis,

whereas candidates near B and C are likely to be disfavoured.

Shower asymmetry score

The shower asymmetry score considers all showers with at least one hit within 4 cm of

the vertex candidate. The logic is identical to the local asymmetry score calculation

except only the closest shower (if any) will be considered in each view. Consider Figure
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5.3; vertices placed in the middle of the electron will receive a lower score if constituent

2D clusters are correctly identified as shower-like.

Event modifiers

We additionally consider a number of event-level features that are the same for every

candidate in a given event but serve to modify the importance or interpretation of

the candidate-level features. For example, events which are energetically sparse or

dense may alter the relative importance of geometric features, and ‘showeryness’ and

longitudinality alter the prior probabilities of different neutrino final states, which in

turn affect the best vertex selection strategy. The event modifiers are:

• Event charge: The total charge deposited in the event across all views.

• Event volume: The volume of the smallest 3D bounding box that envelops all

the clusters whose axes are aligned with the detector x, y and z axes.

• Event longitudinality: Considering the event volume bounding box, the ratio

of the z length to the perimeter of the x-y rectangular cross-section: ∝ z/(x+ y).

• Event showeryness: The proportion of hits associated with shower-like clusters

across all views.

• Number of hits: The total number of 2D hits in the event across all views.

• Number of clusters: The total number of 2D clusters in the event across all

views.

5.3 Model building

The features defined in the last section describe a 12-dimensional space that captures a

variety of pieces of information about the event and the vertex candidate. To select the

best candidate requires mapping points in this space to scalar scores. The features are

not naturally probabilistic and exhibit nontrivial interdependence, so a simple weighted

sum is unlikely to give the best solution, not to mention introducing at least 11 tunable

constants. The task is suited to a supervised ML approach. Ranking a list of arbitrary
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size is not immediately a classification or regression task. Machine-learned ranking

(MLR) is itself an active field of research and MLR algorithms can be split into three

categories:

• Pointwise: The problem is condensed into a regression problem; for each sample,

we train a regressor to predict the final score. This assumes that good scores can

be estimated for ground truth.

• Pairwise: The problem is condensed into a binary classification problem; for each

pair of samples, we train a classifier to identify the better one. This assumes that

good pairwise orderings can be estimated for ground truth.

• Listwise: We directly try to optimize a ranking evaluation metric such Spear-

man’s rank correlation coefficient. This assumes that a good ranking can be

estimated for ground truth.

In our case, we must consider what information is available to us as ground truth. We

have the list of vertex candidates and the spatial position of the true vertex. Distance

from the true vertex is a poor vertex quality metric for training, since a vertex at the

wrong end of a muon, for example, is arguably higher quality than one in the middle

of it, despite being further away from the true vertex. Scores calculated by previous

algorithms are similarly not ideal if the goal is to perform significantly better. Instead,

we take the N vertex candidates and label the one closest to the true vertex position

as correct if it lies within 1 cm of the true vertex position. The N − 1 remaining

candidates are labelled as incorrect. This is sufficient information to adopt a pairwise

MLR approach: each event generates N−1 pairwise comparisons comprising the unique

correct candidate versus each incorrect candidate.

The pairwise comparison can be performed using any binary classifier. We note that

this was the first time that an ML algorithm was incorporated inside Pandora, a C++

project where development is encouraged to be dependency-light, highly performant

and CPU-only. We therefore choose to use a simple SVM with a radial basis function

kernel. We train external to Pandora using the Python library sklearn; inference inside

Pandora is done using a custom C++ implementation ported from sklearn. In practice,

we found that this setup tended to get the vertex roughly correct (i.e. within the correct
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Figure 5.5: The performance of the region classifier: the confusion matrix (left) and
ROC curve (right) across the simulated BNB νµ spectrum.

∼ 2 cm region) but otherwise performed worse than the RPhi algorithm at finding the

single best vertex. In response to this, we split vertex selection into two distinct tasks:

1. Region selection: Optimized for selecting the best candidate from a set of can-

didates corresponding to the centres of non-overlapping circular regions of radius

5 cm.

2. Single vertex selection: Optimized for selecting the best single vertex candidate

from a number of candidates with in a region of radius 2 cm.

We train a different SVM for each task. The intuition here is that region selection is

more dependent on e.g. beam deweighting and asymmetry scores, whereas single vertex

selection may depend more on r-φ and energy kick scores. Following a feature selection

process, we drop the r-φ score from the region SVM.

5.3.1 Region model

The training data for the region model is constructed by first scoring every candidate

using the RPhi algorithm, then using this list to create regions of vertices separated

by at least 10 cm, using higher-ranked candidates to preferentially define and represent

each region. Consider Figure 5.1; this view shows at least 12 vertex candidates but likely

only four or five regions, depending on the distance between B and C. We train the SVM
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classifier pairwise, as described in the previous section, where the region containing the

true vertex position is taken as the correct region, if one exists.

SVM hyperparameters are optimized via k-fold cross-validation. The distribution

of the candidate features used during training is shown in Figure 5.6; The distributions

differ significantly for the correct region and the other regions. This is reflected in the

confusion matrix2 and receiver operating characteristic (ROC) curve shown in Figure

5.5. This simple feature model achieves an area under the ROC curve (AUC) of 0.981

and an overall accuracy of 94.4% compared with a baseline of 50.1%. Accuracy baselines

in this chapter are defined by the classifier that always chooses the most likely class;

due to class imbalance, this is not always 50%.

5.3.2 Vertex model

Let there be N vertex candidates within a 2 cm radius of the central hit of the true

best region. The training data for the single vertex selection model comprises the N −1

pairwise comparisons between the candidate closest to the true vertex and each of the

other candidates within a 2 cm radius of the central hit. Take again Figure 5.1; assuming

E is chosen as the best region, it looks like at least 5 vertices (and therefore 4 pairwise

comparisons) would be generated based on this region.

This model is trained entirely separately from the region model and SVM hyperpa-

rameters are optimized independently. The distribution of the candidate features used

during training are given in Appendix A. The distributions here are much more similar

but vary in the expected way: the true vertex tends to have higher beam deweighting,

asymmetry and r-φ scores and a lower energy kick score. The similarity of these dis-

tributions is apparent in the performance, with an AUC of 0.699. The overall accuracy

is 62.7% compared with a baseline of 50.6%. Full performance details can similarly be

found in Appendix A. Based on these features, picking the true best vertex from gen-

erated candidates with 2 cm of each other appears more challenging that choosing the

best region, though this is a function of the similarity and density of candidates within

2The columns of a confusion matrix represent the true labels while the rows represent the (equiv-
alently ordered) predicted labels. The diagonal elements therefore represent correct predictions and
the off-diagonal elements incorrect predictions. The percentages are produced by normalizing by each
column (the true label).
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Figure 5.6: The distributions of features used in the region selection algorithm for the
correct and incorrect region candidates across the simulated BNB νµ spectrum.
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Table 5.1: Comparison of the SVM and RPhi vertex selection algorithms. We consider
the performance for simulated BNB νµ events, simulated BNB intrinsic νe events and a
small number of selected channels from each dataset. We use the proportion of events
with a reconstructed neutrino interaction vertex within 5 cm of the true vertex position
(∆RPhi < 5 cm) to characterize performance.

Simulation Channel ∆RRPhi < 5 cm (%) ∆RSVM < 5 cm (%)

BNB νµ

All 59.2 63.9
CCQEL MU 49.0 45.9
CCQEL MU P 80.8 85.2

CCRES MU PIZERO 56.3 71.2

BNB intrinsic νe

All 53.6 59.3
CCQEL E 47.0 39.0
CCQEL E P 70.4 74.6

CCRES E PIZERO 45.1 60.9

the region.

5.4 Results and discussion

Classifier performance is a proxy for actual improvements to the vertex reconstruction

quality, which we characterize using the distribution of the absolute error in the spatial

position of the chosen vertex: ∆x, ∆y, ∆z and ∆R =
√

∆x2 + ∆y2 + ∆z2. We wish for

these errors to be as peaky and close to 0 as possible, and we compare them with those

of the RPhi algorithm. We also assess the proportion of events that achieve ∆R < 5 cm

and the fraction of correctly reconstructed events (as per the definition in 4), both as a

function of true neutrino energy.

The spatial error metrics, fraction of good vertices and fraction of correct events are

shown in Figure 5.7 for simulated BNB νµ events and in Figure 5.8 for simulated BNB

intrinsic νe events, both considering all channels. A summary of key results for some

selected channels is given in Table 5.1. For simulated BNB νµ events, the proportion

of vertices within 5 cm of the true vertex increases from 59.2% to 63.9%; for intrinsic

νe, it increases from 53.6% to 59.3%. This benefit is consistent across a broad energy

spectrum and seems to address the drop-off in performance of the RPhi algorithm at

higher energies. The fraction of correct events improves slightly at low energies but

79



otherwise does not change significantly, suggesting other error modes may be dominant

when considering events across all channels.

We note an improvement across almost all channels, including significant improve-

ment for more complex topologies such as CC resonant µ+π0 interactions, and a slight

decrease in performance for single muons and single electrons. Despite overall improved

performance, channels involving muons (µ, µ + p, µ + π0) experience a slight drop-off

at high energies compared with the RPhi algorithm. These are due to the trade-off

introduced by the introduction of richer information; the simpler RPhi algorithm relies

heavily on the beam deweighting factor, boosting its performance for single particles

and events with long tracks but making it less suitable for more complex topologies.

For the SVM algorithm, δ-rays in the middle of muons can lead to misplaced vertices,

an effect which is more likely for longer muons, hence the drop-off at higher energies.

Likewise, single electrons often begin track-like before producing electromagnetic show-

ers (see Figure 5.3), which can lead to two distinct clusters, one tagged as shower-like

and one as track-like. This can lead the SVM algorithm to consider the point where

the clusters meet as an appealing vertex position; the asymmetry scores do not protect

against this as it is in the middle of neither a track nor a shower.

More detailed results, including feature distributions and performance metrics on a

per-channel basis for selected channels, can be found in Appendix A. The quality of ver-

tex reconstruction affects analysis not just through reconstruction correctness but also

through direct effects on energy reconstruction due to effects on particle identification

and range estimation. This will be studied in Chapter 9.

This has been the default vertex reconstruction algorithm at MicroBooNE since

2017. The dramatic improvement in the reconstruction of complex topologies has en-

abled new analyses with up to six visible particles in the final state [127]. Particle

identification and especially electron/photon discrimination, crucial to MicroBooNE’s

physics goals (see Section 3.1.2), require fine-resolution vertex reconstruction to preserve

event topology and enable high-quality calorimetry. The improvements presented in this

chapter directly contribute to this goal, as well as representing a proof-of-concept for

applying machine-learned ranking to neutrino interaction vertex reconstruction. Future

work in this vein, combining more expressive deep learning methods with better topo-
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logical/calorimetric representations of the event and thoughtful inductive biases, will

likely perform even better.
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Figure 5.7: Vertex reconstruction quality for the two algorithms across the simulated
BNB νµ spectrum. The top two rows show the effect of the new algorithm on ∆x, ∆y,
∆z and ∆R compared with the true vertex. The bottom left and right plots show the
fraction of vertices within 5 cm of the true vertex and the fraction of correct events,
respectively.
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Figure 5.8: Vertex reconstruction quality for the two algorithms across the simulated
BNB intrinsic νe spectrum. The top two rows show the effect of the new algorithm on
∆x, ∆y, ∆z and ∆R compared with the true vertex. The bottom left plot shows the
fraction of vertices within 5 cm of the true vertex and the bottom right plot the fraction
of correct events, both as a function of true neutrino energy.
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Chapter 6

Modelling dQ/dx at low energies

This chapter introduces the theory of energy losses by charged particles traversing de-

tectors and derives mathematical models for dE/dx and dQ/dx at low energies, i.e.

T � mc2. Two models of electron-ion recombination, Birks’ law and the modified box

model, are compared and incorporated into the approximation. Two novel, analytic ap-

proximations of modal dQ/dx models are derived, with potential application to particle

identification.

6.1 Introduction

As charged particles traverse a detector medium, they lose energy. The ability to model

this effect as a function of the distance traversed by a particle is critical both to particle

identification and energy estimation, of crucial importance to any experiment. A sta-

tistical distribution for such energy losses was first described by Landau in 1944 [128],

and later generalized by Vavilov [129] in 1957. These distributions, after the inclusion

of modern corrections, still form the foundations of our understanding of energy losses

by charged particles in detectors.

In a liquid argon time-projection chamber (LArTPC) such as the MicroBooNE de-

tector, the kinetic energy of the incident particles is primarily transferred to bound

electrons in the medium, leading to an ionization trail observed as a channel- and time-

dependent current. This process is subject to various effects, including electron diffusion,

electron attenuation, and hardware issues such as quiet or noisy channels. After undoing
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Figure 6.1: Reconstructed dE/dx as a function of 3D track coordinate for a simulated
muon (left) and a simulated proton (right) at MicroBooNE.

Figure 6.2: Mass stopping power (proportional to dE/dx in this chapter) for positive
muons in copper as a function of βγ = p/Mc. Domains of applicability of different
approximations is indicated by vertical bands. The solid curves indicate the overall
mass stopping power. Figure from [13].

these effects to the extent possible, we are left with charge depositions in discretized

‘hits’ with widths and positions in the appropriate wire plane, as described in Chap-

ter 3. After reconstruction, it is then possible to infer approximate 3D locations and

extents of these depositions (as demonstrated in Chapter 7), thus enabling estimation

of the behaviour of dQ/dx along the track, which can then be transformed to form an

85



Figure 6.3: Simulated energy distributions for muons, charged pions and protons
from a MicroBooNE study of charged particle multiplicity. This includes only particles
which passed an event selection designed to select high-quality tracks and reduce cosmic
background. The red dotted lines indicate a particle range cut later used in that study.
Figure from [127].

estimate of dE/dx. Examples of observed dE/dx along the tracks of a simulation muon

and proton in MicroBooNE are shown in Figure 6.1.

The character of this observed ionization pattern is a function of both particle and

detector properties and, as such, different particles have different calorimetric signatures

in a given detector. The observed energy losses and their relationship with the distance

traversed by the particle can therefore be exploited for particle identification and energy

estimation. Our approach in this chapter is to model mean/modal energy losses with a

view to aiding particle identification. A particle identification technique based on this

work is presented in Chapter 7. A complementary deep learning approach is developed

in Chapter 8.

We restrict our discussion to electronic and radiative energy losses by heavy track-

like particles of moderate energies passing through matter. “Moderate” means 0.1 .

βγ . 1000 for the particles we will consider, such that mean losses are adequately

described by the Bethe equation (see Figure 6.2. For muons, this amounts to kinetic

energy in the range 10 MeV . T . 100 GeV; for protons, 100 MeV . T . 1000 GeV. In

particular, we will neglect nuclear losses (dominant at energies below the MicroBooNE

detection threshold) and large radiative losses (dominant at very high energies). Energy

distributions for muons, charged pions and protons from a charge multiplicity study are

shown in Figure 6.3; this condition is well-satisfied for the majority of particles at

MicroBooNE. With application to LArTPCs, we will focus on modelling energy losses

by muons, protons, charged pions and charged kaons through ionization, and include a
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discussion of radiative losses by muons.

6.2 Energy losses by charged particles

6.2.1 The Bethe formula

Fast-moving charged particles in a moderate energy range primarily lose their energy

through single collisions with electrons in the medium [13]. For detectors of sufficient

thickness (including LArTPCs), such collisions are frequent but exchange relatively

small amounts of energy, permitting accurate description by continuous statistical dis-

tributions. For a particle of mass M , the maximum transfer of energy possible in a

single collision can be shown to be [13]

Wmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
. (6.1)

By applying a correction to the Rutherford cross-section, which describes collisions

with free electrons, Bethe derived a model for collisions with electrons bound in nuclei.

The ‘Bethe formula’ accurately models the stopping power (i.e. the mean rate of energy

loss) of charged particles in the mass-energy region 0.1 . βγ . 1000 traversing media

with intermediate values of atomic number Z [130]:

−
〈

dE

dx

〉
= ρKz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
, (6.2)

where

• −dE/dx is the rate of energy loss of the particle per unit distance traversed1 in

MeV/cm;

• ρ is the density of the medium in g/cm3;

• K = 4πNAr
2
emec

2 ≈ 0.307075 MeV mol−1 cm2 is a constant (where NA is the

Avogadro constant and re the classical electron radius);

• Z is the atomic number of the absorber;

1Note that the Bethe formula here differs from its statement in [13] by a factor of ρ due to our
preferred units, i.e. preferring the ‘linear stopping power’ to the ‘mass stopping power’.
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• A is the atomic mass of the absorber in g mol−1;

• z is the charge number of the incident particle;

• I is the mean excitation energy of the absorber in e.g. MeV, to match the units

of Wmax (as defined in Equation 6.1) and the electron mass mec
2; and,

• δ(βγ) is the density effect correction term2, whose meaning and form will be

discussed in 6.2.5.

An example of the Bethe mean energy loss is plotted in Figure 6.4 for a 1 GeV muon

in a LArTPC, along with the kinetic energy profile of the particle. This figure, along

with all other calorimetric simulations in this chapter, was produced using our C++

library bethe-faster [132], a framework for particle identification and energy estima-

tion using a sequential Monte Carlo method. A few important features may be noticed:

a roughly constant amount of ionization at high energies, a sharp rise at the end of the

track (known as the Bragg peak), and a minimum preceding the sharp rise. These fea-

tures are common to all charged particles in similar conditions, though their magnitude

is a function of particle and detector parameters. The dependence on particle mass,

in this case, is the key to performing particle identification using calorimetric data.

The minimum mean energy loss attained by a muon can be seen to be approximately

2.2 MeV/cm. A particle travelling with this energy loss is called a minimum ionizing

particle (MIP).

For tracks at MicroBooNE, we observe these kinds of calorimetric signatures but

superposed with correlated high-dE/dx noise to the distribution, as per Figure 6.1,

which shows the simulated dE/dx profile of a muon and a proton along their track

length. The origin of some of this noise is the shape of the Landau-Vavilov distribution,

whilst some is the result of small δ-rays: secondary electrons emitted by the incident

particle whose charge deposition was subsumed by the parent particle’s hits. This

renders the measured charge too high compared with the 3D path measurement. For the

MC simulation, it is possible to remove this effect by weighting each charge deposition

by its proportion induced by the desired MC particle.

2This is a more modern (1952) addition by Sternheimer, not originally included by Bethe; see [131].
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Figure 6.4: Simulated evolution of the Bethe mean energy loss (top left) and resulting
kinetic energy (top right) of a muon in a LArTPC with initial kinetic energy of 1 GeV.
Note that the particle is only rendered in the Bethe range of applicability 0.1 . βγ .
1000. The kinetic energy is calculated under the continuous slowing-down approximation
(see main text) and the numerical integration is performed using bethe-faster [132].
Bottom-row plots are the equivalent plots from an independent study [109].

6.2.2 Continuous slowing-down approximation

In order to model the kinetic energy of the particle or the energy deposition of a particle

in a detector using the Bethe formula, it must be integrated:

∆EBethe(x0 → x1) =

− ρKz2Z

A

∫ x1

x0

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
dx, (6.3)

noting that β, γ and δ all have a nontrivial dependence on x. This equation permits

no analytical solution3 but may be evaluated numerically. Numerical integration of the

Bethe formula was used to produce the plot of kinetic energy in Figure 6.4, in which

we also compare equivalent plots from an independent study. Both top and bottom row

plots agree that the range of a 700 MeV muon is ∼ 310 cm, giving confidence in the

3This is true whether we use the Sternheimer parametrization for the density effect correction term
or omit it entirely.
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method presented. These calculations (usually stored a lookup tables) are extensively

used in particle physics for calculating particle energy from range.

In reality, the energy lost by the particle over a given range follows a statistical

distribution, of which Equation 6.3 describes the mean. Using this equation to model

the dynamics of the particle is known as the continuous slowing-down approximation

(CSDA) [133]: we neglect fluctuations and assign the same energy loss to every point

in the track. In practice, this can provide a reasonable estimate of a stopping particle’s

range, as will be demonstrated in Section 6.2.3.

6.2.3 Most probable energy loss

In [13], the authors complain of the misuse of the Bethe equation in high-energy physics.

The basis of their complaint is that the energy loss distribution is skewed by rare but

often very large losses, such that the mean loss is significantly higher than the most

probable loss. Observations of single events (or even hundreds of events) can, then, be

better-described by the most probable loss.

An expression for the most probable energy loss for detectors of thickness l in a

moderate range can be derived from the Landau-Vavilov model [129]:

−∆Emp = ξ

[
ln

2mec
2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]
(6.4)

where

ξ := z2K

2

〈
Z

A

〉
lρ

β2
, (6.5)

l is the detector thickness4 in cm, and j is a constant of value ∼ 0.2000. All other pa-

rameters are as described for Equation 6.2. Whilst the mean energy loss is independent

of detector thickness l, the modal energy loss in an increasing function of l.

It should also be noted that, in the high-energy limit, the behaviour of the density

effect correction term δ(βγ) is such that −∆Emp reaches a Fermi plateau [131]:

−∆Emp −−−−−→
βγ&100

−∆EFermi = ξ

[
ln

2mec
2ξ

(~ωp)2
+ j

]
, (6.6)

4The statement of ξ here differs from its statement in [13] by a factor of ρ since we express l in units
of cm instead of g cm−2.
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Figure 6.5: Simulated evolution of the linear stopping power for muons, charged pions,
charged kaons and protons, using the mean stopping power (left) or the modal stopping
power (right) as a function of the residual range. Note that the modal stopping power
is significantly lower than the mean stopping power, including at minimum ionization.

since

δ −−−−−→
βγ&100

δFermi = 2 ln
~ωpβγ
I
− 1, (6.7)

where

~ωp :=
mec

2

α

√
4πNer3

e ≈

√
ρ

〈
Z

A

〉
× 28.816 eV (6.8)

is the plasma energy [13], α is the fine-structure constant e2/4πε0~c, and Ne is the

electron density of the medium. The canonical parametrization of the density effect

correction will be given in Section 6.2.5.

Figure 6.5 demonstrates the significant difference between the mean and modal stop-

ping power for a variety of particles in MicroBooNE as a function of the residual range

(i.e. the coordinate subtracted from the maximum range). While the minimum mean

ionization of a muon is at ∼ 2.1 MeV/cm, the minimum modal ionization of a muon

is at the much lower value of ∼ 1.4 MeV/cm. The plots show the stopping power as

a function of the residual range rather than the coordinate itself to facilitate compari-

son between different particles. Figure 6.6 similarly shows the difference between mean

and modal stopping power against the backdrop of a simulated LArTPC energy loss

distribution. The modal stopping power predicts a much longer range than both the

mean and stochastic stopping powers due to the skew of the distribution. The simu-
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lated stochastic stopping power takes into account other effects that truncate very large

energy losses, so tends to have a larger range than the mean (CSDA) estimate.

Further, at high energies far from the Bragg peak, the modal loss (unlike the mean

loss) provides little discriminatory power between particle masses. The modal loss as a

function of kinetic energy is shown in Figure 6.7. For non-stopping particles5, we may

never reach low enough energies to observe a Bragg peak and so particle identification

based on calorimetric information alone could be difficult or infeasible. Note that the

modal calorimetric behaviours of muons and pions are almost indistinguishable, even in

this idealized setting.

We wish to use observations derived from the energy loss distributions of single

particles to perform particle identification, which may only comprise a handful of data

points. Since estimating the mean stopping power reliably requires a large amount of

data, a method based on the estimated mode will likely be more fruitful. In particular,

the behaviour of the estimated mode at low energies has particular discriminatory power,

as will be demonstrated.

6.2.4 Dependence of most probable energy loss on l

Equation 6.2 suggests that the mean energy loss −〈dE/dx〉 is independent of the cell

size l. This must be the case to ensure that the expected loss over two layers of width

L is the same as the expected loss over a single layer of width 2L; i.e. the length at

which we effectively sample the particle should not affect the rate at which it loses

energy. However, the expression for the modal loss given in Equation 6.4 suggests that

−∆Emp/l ∝ a ln l + b; i.e. the modal loss over a layer of width 2L is larger than the

modal loss over two layers of width L. This somewhat unintuitive result is a sampling

effect present in both theory and practice [13, 134]. This is illustrated in Figure 6.8.

This sampling effect does not mean that the actual behaviour of a particle changes

based on the cell width. A measurement of the modal dE/dx along a track is dependent

on l (which is a function of the track direction) but a measurement of the total ∆E is

unchanged. A plot of modal dE/dx does not represent real losses (see Figure 6.6) but

5I.e. those that decay in-detector, leave the detector or interact in a way other than to produce
ionization electrons before reaching an energy low enough for us to observe a significant Bragg peak.
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Figure 6.6: Comparison of the simulated modal (solid), mean (dashed) and stochastic
(points) energy losses for 1 GeV muons, charged pions, charged kaons and protons in
a MicroBooNE-like detector. Note that the modal loss well-characterizes the observed
distribution but provides a poor range estimate in this case; the range implied by the
mean loss (corresponding to the CSDA) is closer to the truth.
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Figure 6.7: Simulated evolution of the modal linear stopping power for muons, charged
pions, charged kaons and protons as a function of the instantaneous kinetic energy of
the particle. Made using bethe-faster [132].

Figure 6.8: Distribution of ∆E/l (here denoted ∆E/d) for a MIP in silicon with a
thickness d, following the Landau distribution. The dependence of the mode on d but
the invariance of the mean is indicated. Figure from [134].

can be used as a distribution characterization tool to perform particle ID.
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6.2.5 Density effect correction

The functional form used for the density effect correction δ is Sternheimer’s parametri-

sation [131]:

δStern =



2 (ln 10) s− C̄ if s ≥ s1

2 (ln 10) s− C̄ + a(s1 − s)k if s0 ≤ s < s1

0 if s < s0 (nonconductors)

δ0102(s−s0) if s < s0 (conductors)

(6.9)

where s := log10(p/mc) = log10(βγ), and C̄ is chosen to correspond to the high-energy

(s ≥ s1) limit in 6.7, viz.

C̄ = 2 ln
I

~ωp
+ 1. (6.10)

The dimensionless parameters s0, s1, a and δ0 are to be derived experimentally for

different media. A reference for these values is given in [135]; for liquid argon, the

authors give best values of

• a = 0.19559,

• k = 3.0000,

• s0 = 0.2000,

• s1 = 3.0000, and

• δ0 = 0.00 (since liquid argon is not a conductor).

Note that, for liquid argon, the kinetic energy below which Sternheimer’s δ is 0 for a

particle of mass m is ∼ 0.87mc2 (∼ 90 MeV for a muon or ∼ 820 MeV for a proton).

We note that protons at MicroBooNE are often below this threshold (Figure 6.3). The

kinetic energy above which Sternheimer’s δ has reached the Fermi plateau is 999mc2

(∼ 105 GeV for a muon or ∼ 940 GeV for a proton, far above MicroBooNE energies).

In practice, the density effect correction is usually negligible for T < mc2 and appears

roughly linear long before we reach the Fermi plateau. The relative magnitude R0(T )
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Figure 6.9: The fractional error in the modal −dE/dx from assuming no density effect
correction (left) or the high-energy limit of the density effect correction (right). The
error is shown as a function of the instantaneous kinetic energy for a set of particles in
a LArTPC. Neglecting density effect corrections in the regime T ≤ mc2 would yield an
error . 1% for all particles. T = mc2 is indicated with a dashed line for each particle.

of the density effect correction compared with other terms in Equation 6.4 is shown as

a function of kinetic energy in Figure 6.9:

R0(T ) :=

∣∣∣∣ δ(βγ)

ln(2mec2β2γ2/I) + ln(ξ/I) + j − β2 − δ(βγ)

∣∣∣∣ . (6.11)

This is the fractional error incurred by ignoring density corrections for a given particle

as a function of kinetic energy. We may similarly derive from Equations 6.4 and 6.6 the

fractional error RF (T ) incurred by assuming the Fermi plateau:

RF (T ) :=

∣∣∣∣ δ(βγ)− 2 ln(βγ~ωp/I) + β2

ln(2mec2β2γ2/I) + ln(ξ/I) + j − β2 − δ(βγ)

∣∣∣∣ . (6.12)

This is also shown in Figure 6.9. We will use these fractional errors to inform good

approximations to Equation 6.4 in the low-energy limit.

6.3 Modelling dE/dx

6.3.1 Modal behaviour

The response of the detector to energy deposition is subject to various detector ef-

fects (including electron-ion recombination), so we will first try to develop a model for

−dE/dx from the theory described in Section 6.2, before using it to model the observed

dQ/dx. We wish to discover whether a fast, analytic function exists of adequate quality

to model particles in MicroBooNE in a useful regime of energy for particle identification.
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Starting from Equation 6.4, we identify the most probable energy loss over a cell of

thickness l:

−
(

dE

dx

)
mp

∼ −∆Emp

l
(6.13)

as per [13]. Understanding −dE/dx to mean our approximation to the most probable

loss, we then have

− dE

dx
=
ξ

l

[
ln

2mec
2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]
. (6.14)

We relate β2 to the kinetic energy T for a particle of mass m via

T = (γ − 1)mc2 =

(
1√

1− β2
− 1

)
mc2 (6.15)

∴ β2 = 1− 1(
T
mc2

+ 1
)2 , (6.16)

and, using 6.15, γ to T via

γ = 1 +
T

mc2
. (6.17)

To make the dependence of the equation on β2 and l explicit, we also define

ξ′ :=
β2

l
ξ = z2K

2

〈
Z

A

〉
ρ (6.18)

from 6.5. We note that ξ′ is a detector constant and has value ∼ 0.0969 MeV/cm for

MicroBooNE assuming:

• liquid argon density ρ = 1.40 g cm−3 ;

• atomic number of argon Z = 18;

• charge of incident particle z = 1; and,

• atomic mass of argon A = 39.95 g mol−1.

Using6 −dE/dx = −dT/dx, we may substitute 6.16, 6.17 and 6.18 to rewrite 6.14 as

the first-order nonlinear ordinary differential equation(
1− 1(

T
mc2

+ 1
)2
)(

1− 1

ξ′
dT

dx

)
−2 ln

(
1 +

T

mc2

)
+δ(T )− ln

2mec
2ξ′l

I2
−j = 0, (6.19)

6The energy and the kinetic energy differ only by a constant offset: the rest mass.
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where we are now expressing the density correction term δ as a function of T but

note that it is also parametrized by the particle mass m. A solution to this equation

T (x;m,T0) describes the modal energy estimate as a function of x for a particle of mass

m with T (x = 0) = T0, which could then be used in conjunction with the ODE to model

modal −dE/dx along a track. The modal T value used here hugely underestimates the

true kinetic energy; this is evidenced by the implied range measurement using the solid

lines in Figure 6.6. Instead, the mode is is a tool for characterizing the distribution for

particle ID purposes. Whether using the Sternheimer parametrization for δ or neglecting

it altogether, Equation 6.19 is not analytically soluble, though it is feasible to find

numerical solutions.

For brevity, we introduce the unitless, scaled, modal kinetic energy T ′ := T/mc2

such that Equation 6.19 becomes(
1− 1

(T ′ + 1)2

)(
1− mc2

ξ′
dT ′

dx

)
− 2 ln

(
1 + T ′

)
+ δ(T ′)− χ = 0, (6.20)

where we have defined the T ′-independent dimensionless parameter

χ ≡ χ(l) := ln
2mec

2ξ′l

I2
+ j, (6.21)

which we note has value & 13.84 for MicroBooNE, assuming [13, 21, 133]:

• mean excitation energy of argon I = 188.0 eV;

• detector thickness l ≥ 0.3 cm (the wire separation); and,

• ξ′ ≈ 0.0969 MeV/cm (using Equation 6.18),

in addition to the parameters defined for Equation 6.18. For LArTPCs, the effective

detector thickness l (i.e. the 3D ∆x traversed per observed 2D hit) is a function of

the hit width and the track direction, both of which may be functions of x. We note

that l ≥ 0.3 cm at MicroBooNE and assume that the piece of track considered is short

enough for changes in direction (and therefore l) to be negligible.

6.3.2 Low-energy approximation

We demonstrated in Section 6.2 that particles of different masses are most distinguish-

able near the Bragg peak, which means at lower energies as illustrated in Figure 6.5. It
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follows, then, that taking a low-energy limit could be fruitful for particle identification.

Taking Taylor expansions about T ′ = 0 under the low-energy approximation T ′ � 1,

1− 1

(T ′ + 1)2 = 2T ′ − 3T ′2 +O
(
T ′3
)

(6.22)

and

ln
(
1 + T ′

)
= T ′ − 1

2
T ′2 +O

(
T ′3
)
. (6.23)

Substituting these into 6.19 and neglecting terms O
(
T ′3
)

and above yields

T ′
(
3T ′ − 2

) mc2

ξ′
dT ′

dx
− 2T ′2 + δ(T ′)− χ = 0. (6.24)

Omitting δ(T ′) in the regime T ′ <= 1 leads to a fractional error in −dE/dx of . 1%

for all track-like particles we will consider at MicroBooNE (see Figure 6.9), so we will

neglect it. We may then express 6.24 as

T ′
(
3T ′ − 2

) mc2

ξ′
dT ′

dx
− 2T ′2 − χ = 0. (6.25)

Rearranging and taking partial fractions yields(
3χ

χ+ 2T ′2
+

4T ′

χ+ 2T ′2
− 3

)
dT ′

dx
= − 2ξ′

mc2
. (6.26)

This may now be integrated directly:

x(T ′) = k − 3mc2

2ξ′

[
1

3
ln
(
χ+ 2T ′2

)
+

√
χ

2
arctan

(√
2

χ
T ′
)
− T ′

]
, (6.27)

where k is the constant of integration. Applying the boundary condition x(T ′ = 0) = R,

where R is the range of the particle,

x(T ′;R,m) = R− 3mc2

2ξ′

[
1

3
ln

(
1 +

2T ′2

χ

)
+

√
χ

2
arctan

(√
2

χ
T ′
)
− T ′

]
, (6.28)

which is valid in the domain 0 ≤ x ≤ R, T ′ � 1.We note that this expression also

provides a surjective7 map from the initial scaled modal kinetic energy T ′0 to the particle

range R, since x(T ′ = T ′0) = 0 by construction:

R =
3mc2

2ξ′

[
1

3
ln

(
1 +

2T ′20

χ

)
+

√
χ

2
arctan

(√
2

χ
T ′0

)
− T ′0

]
. (6.29)

7The lack of bijectivity in generality (even given T ′ ≥ 0) stems from the low-energy approximation;
in its domain of applicability, we expect the map to be bijective.
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We cannot invert Equation 6.28 analytically but it is possible to construct the func-

tion T ′ ≡ T ′(x) efficiently using Newton’s method, obviating the need for numerical

integration:

0 = f(T ′;R,m, x) :=

x−R+
3mc2

2ξ′

[
1

3
ln

(
1 +

2T ′2

χ

)
+

√
χ

2
arctan

(√
2

χ
T ′
)
− T ′

]
, (6.30)

∴
∂f

∂T ′
=
mc2

2ξ′

(
3χ+ 4T ′

χ+ 2T ′2
− 3

)
. (6.31)

Care must be taken to choose an initial T ′ estimate that robustly converges to the

positive root. Given T ′, we can then calculate −dE/dx using Equation 6.25 and the

fact that −dE/dx = −dT/dx = −mc2 · dT ′/dx:

− dE

dx
= ξ′

2T ′2 + χ

T ′(2− 3T ′)
. (6.32)

However, greater accuracy (including avoidance of the unphysical pole at T ′ = 2/3; see

Figure 6.10) can be achieved by using the exact form for −dE/dx from Equation 6.14

in the absence of density effect corrections. Noting γ = T ′+ 1 and β2 = 1− 1/(T ′+ 1)2,

− dE

dx
= ξ′

(
(T ′ + 1)2

T ′(T ′ + 2)

[
2 ln

(
1 + T ′

)
+ χ

]
− 1

)
. (6.33)

A comparison of these two expressions is shown in Figure 6.10. Note that Equation

6.31 is still used in both cases to calculate T ′; the exact form in Equation 6.33 is only

applied in the final step to map T ′ → −dE/dx.

By taking a less precise T ′ � 1 expansion during the above derivation, it is also

possible to derive an alternative, explicit expression for −dE/dx in terms of x:

− dE

dx
' 1

2

√
ξ′χmc2

R− x
. (6.34)

A derivation of this is given in subappendix B.

Any method designed to exploit these models will likely apply it over some predeter-

mined range R from the end of the particle. R must be chosen such that we are in the

domain of our approximation for all track-like particles we expect to encounter. The

relationship between the scaled modal kinetic energy T ′ and the residual range is shown

in Figure 6.11 at different masses. The true kinetic energy is not a function of l but
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Figure 6.10: Comparison of the ‘exact’ modal −dE/dx in the absence of density
effect corrections (Equation 6.33) and its implied second-order T ′ � 1 approximation
(Equation 6.32). We will use the exact expression for greater accuracy.

this modal proxy is, as described in Section 6.2.3. The domain of applicability of our

approximation is similarly a function of l. The approximate modal residual ranges at a

selection of T ′ values are given in Table 6.1 for a variety of particles. For this study, we

choose 0.3 cm ≤ l < 1 cm (which is satisfied by the vast majority of hits observed) and

R = 10 cm to balance minimizing T ′ with maximizing the amount of data to fit.

6.3.3 Validating the dE/dx models

These models are validated on MicroBooNE simulation in Chapter 7, using a model

for recovering −dE/dx from observed charge depositions. Here we use the exact form

for the mode given in Equation 6.4 to estimate the error accrued by neglecting density

corrections and taking the expansion about T ′ = 0. The results for the explicit expres-

sion for −dE/dx given by Equation 6.34 (the first-order approximation in T ′) and the

implicit expression given by Equations 6.28 and 6.33 (the second-order approximation

in T ′) are shown in Figure 6.12 for effective detector thickness l = 0.3 cm, and Figure

6.13 for effective detector thickness l = 1 cm. As expected, the second-order approx-

imation provides a closer approximation to the true value of the mode. Whilst both

methods are fast, whether the extra computational burden of using Newton’s method is

warranted depends to what degree this improvement in accuracy maps to a concomitant
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Figure 6.11: The scaled modal kinetic energy T ′ as a function of residual range for sim-
ulated modal particles at MicroBooNE, with l = 0.3 cm (solid) and l = 1 cm (dashed).
The Bethe applicability requirement 0.1 . βγ . 1000 means we cannot model particles
below a certain T ′, leading to a small offset compared with the true residual range.

Table 6.1: Estimated modal residual ranges in cm at various values of scaled modal
kinetic energy T ′ and effective detector thickness l under MicroBooNE conditions. Note
that the values are discretized by l and the true kinetic energy is not a function of l.

Scaled modal kinetic energy T ′

l (cm) 0.1 0.25 0.5 0.75 1

0.03

µ 0.3 3.3 12.3 24.3 37.8
π± 0.6 4.8 16.5 32.4 50.1
K± 2.1 17.1 59.4 114.9 178.2
p 4.8 33.3 114.0 219.6 339.6

0.3

µ 1.0 3.0 11.0 22.0 34.0
π± 1.0 4.0 15.0 29.0 46.0
K± 2.0 16.0 54.0 106.0 164.0
p 5.0 30.0 105.0 202.0 313.0
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Figure 6.12: A comparison between the modal −dE/dx and the first- and second-
order approximations described in the main text. Shown are simulated muons (top
left), charged pions (top right), charged kaons (bottom left) and proton (bottom right)
in a LArTPC with l = 0.3 cm.

improvement in mass estimation performance. This will be explored in Section 7.6.

6.4 Modelling dQ/dx

For a particle losing energy solely through ionization, the magnitude of the charge

deposition over some ∆x is proportional to the amount of energy deposited by the

particle over that distance:

∆Q =
C

Wion
∆E, (6.35)

where

• ∆Q is the deposited charge in units ADC;

• ∆E is the deposited energy in MeV;
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Figure 6.13: A comparison between the modal −dE/dx and the first- and second-
order approximations described in the main text. Shown are simulated muons (top
left), charged pions (top right), charged kaons (bottom left) and proton (bottom right)
in a LArTPC with l = 1 cm.

• Wion is the ionization energy of liquid argon, which is approximately 23.6× 10−6

MeV/electron; and,

• C is the charge calibration constant at MicroBooNE, which has value of approxi-

mately (5.076± 0.001)× 10−3 ADC/e.

In the continuous limit, we may then write8

dQ

dx
=

C

Wion

dE

dx
. (6.36)

However, the magnitude ∆Q and location x of the observed charge is subject to a variety

of physical effects that characterise the calorimetric signature observed in the detector

8For the sake of consistency with the references, dE/dx in this section refers to the rate of energy
deposition in the detector, rather than the rate of change of particle energy; the two are related by a
minus sign. Note that therefore dE/dx ≥ 0.

104



for an incident particle. Below is a list of these effects, detailed studies of which can be

found in [136] and [137].

• Electron-ion recombination: Ionization electrons recombining with their as-

sociated argon ions leads to a suppression of observed charge. The magnitude

of this effect is sensitive to the amount of charge deposited, the size of the drift

electric field, and the density of the detector medium.

• Space charge effect: A significant number of cosmic rays (of the order of 10) are

observed in the detector during every event readout window. The accumulation

of argon ions leads to position-dependent drift electric field distortion which, in

turn, affects the magnitude of the recombination effect as described above. This

leads to ionization electrons being pulled towards the middle of the detector and

a resultant offset in observed hit positions. This effect has been well studied by

MicroBooNE; see [138] for a detailed account.

• Diffusion: Diffusive processes lead the cloud of ionization electrons to spread

out longitudinally and transversely to the drift direction. Longitudinal diffusion

leads to a wider signal for longer drift distances and transverse diffusion can cause

‘leaking’ of charge to neighbouring wires.

• Electron attenuation: Electrons drifting for a longer time are more likely to

be captured by electronegative contaminants in the argon (such as H2O and O2).

This means that hits nearer the cathode (i.e. larger drift-time-coordinate) will

induce a relatively smaller amount of charge on the collection wire. Due to the

purity of argon at MicroBooNE, this effect is relatively small [139].

• Hardware issues: ASIC misconfiguration and cross-connected/touching wires

distort the electric field between wire planes, leading to a position-dependent re-

sponse to charge deposition [118].

• Temporal changes: Running conditions, such as temperature and argon purity,

change over time. These changes affect the detector response to incident charge,

the most significant effect being argon purity variation.
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Figure 6.14: The charge calibration values as a function of the drift-time (x) coordinate
(left) and of the y-z coordinates. The white area in the right plots shows regions
of the detector with unresponsive wires, whereas the redder regions shows areas with
misconfigured or cross-connected wires. Figure from [136].

• Unresponsive wires: Unresponsive wires in MicroBooNE make parts of the 2D

planes insensitive to ionization electrons, which can lead to lost hits if information

is missing or ambiguous in corresponding positions in the other 2D planes. This

is taken into account in the definition of MicroBooNE fiducial region, which aims

to avoid the worst-affected areas.

These corrections form a map that allows us to infer dE/dx from observed dQ/dx. The

space charge effect correction is described in Chapter 3. We will consider the recombina-

tion correction in particular detail, and term the remaining effects ‘charge calibration’.

Extensive calorimetric calibration work has been carried out at MicroBooNE [136, 137]

to understand and correct for these effects. The resulting charge correction factors as

a function of position in the detector are shown in Figure 6.14. Following [109], we

use an analytic approximation to the drift-time coordinate correction factor and, for

the y-z plane correction factor, a 2D step function in which the region demarcated by

green dash lines is corrected by a factor equal to the mean factor in this region, and 1

elsewhere (i.e. no correction).

6.4.1 Modelling recombination

Charge depositions associated with track-like particles in MicroBooNE experience sig-

nificant suppression due to electron-ion recombination. The size of the suppression is a

function of the local charge density, as well as detector parameters. To keep the treat-
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ment clear, we will compare the observed charge deposition rate dQ/dx with the true

energy deposition rate dE/dx. In the absence of recombination, Equation 6.36 then

holds true.

To make this more concrete, we define the charge suppression factor

R :=
Wion

C

dQ/dx

dE/dx
(6.37)

such that R = 1 corresponds to the no-recombination case of equation 6.36. In the

models we consider, R can be expressed as a function of either dQ/dx or dE/dx.

The factor C
Wion

dE
dx can be seen to correspond to the ‘expected’ charge deposition in the

absence of recombination. The map from stopping power to observed charge depositions

dQ

dx
= R

(
dE

dx

)
C

Wion

dE

dx
(6.38)

is therefore of interest when generating particles; during reconstruction, we are more

interested in the inverse map (from observed charge depositions to stopping power)

dE

dx
=

1

R (dQ/dx)

Wion

C

dQ

dx
, (6.39)

where we are now expressing R as as function of the observed charge deposition rate

dQ/dx.

To model this effect, there are two canonical options:

1. Birks’ law: An empirical formula modelling the recombination effect and de-

veloped for organic scintillators:

RBirks

(
dE

dx

)
=

A

1 + k
ρE

dE
dx

, (6.40)

where

• A is a fit parameter, measured at ICARUS to be 0.800± 0.003;

• k is another fit parameter, measured at ICARUS to be (0.0468 ± 0.0006)
g/cm2

MeV ·
kV
cm ;

• ρ is the density, as defined for Equation 6.2 (and taking value ∼ 1.4 g cm−3

for MicroBooNE); and,
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• E is the electric field strength in the MicroBooNE detector, which is approx-

imately 0.273 keV/cm.

The map from dQ/dx to dE/dx can then be calculated using Equation 6.39:(
dE

dx

)
Birks

=
Wion
C

dQ
dx

A− k
ρE ·

Wion
C

dQ
dx

, (6.41)

which exhibits an unphysical pole at dQ/dx = AρEC/kWion ≈ 1405 ADC/cm for

MicroBooNE.

2. Modified box model9: A model of recombination developed at ArgoNeuT (a

smaller LArTPC) [140] that is tuned to resemble Birks’ law in a useful dE/dx

domain but does not exhibit a pole in the resulting inverse map:

RModBox

(
dE

dx

)
=

ln
(
A+ B

ρE
dE
dx

)
B
ρE

dE
dx

, (6.42)

where:

• A = 0.930 and B = 0.212 g/cm2

MeV ·
kV
cm are fit parameters whose fit parameters

measured at ArgoNeuT under an electric field of 0.481 kV/cm [140], and

• ρ and E are as defined for Equation 6.40.

We note that the Birks’ law and modified box model parameters have recently

been refit for MicroBooNE [141]. Using Equation 6.39, the map from dQ/dx to

dE/dx is then (
dE

dx

)
ModBox

=
ρE
B

[
exp

(
B

ρE
· Wion

C

dQ

dx

)
−A

]
. (6.43)

The models are compared in Figure 6.15. Both models exhibit physically-aberrant

behaviour at large dE/dx values. Birks’ law implies a constant amount of charge depo-

sition in the limit of large dE/dx (corresponding to a pole in the inverse map), whereas

the modified box model exhibits a unphysical suppression of charge deposition at large

dE/dx (leading to exponential increase in the inverse map). The difference between the

9An alternative version of the modified box model where E → E sin θ to account for angular depen-
dence is also used but is not the default implementation at MicroBooNE. θ here is the angle between
the electric field and the particle’s direction of motion.
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Figure 6.15: Comparison of the suppression factors (left) and the maps from observed
dQ/dx to true dE/dx (right) for Birks’ model and the modified box model as a function
of the true deposited energy dE/dx in a MicroBooNE-like detector (i.e. a LArTPC with
MicroBooNE fits for Birks’ law/ModBox parameters). Note the pole in Birks’ model
map at dQ/dx ≈ 1405 ADC/cm.

two models in the region 40 MeV/cm . dE/dx . 100 MeV/cm is significant, and this

is a region in which we have some interest (see e.g. Figure 6.10). The pole in Birks’

model is manifestly unphysical, as is the exponential increase suggested by the modified

box model at large energies. Another study suggests a correction to Birks’ law leading

to linear behaviour at large dE/dx values [142].

The upper limit of dE/dx at which each of these two models become unphysical is

as yet unclear. The liquid argon community seems to prefer the modified box model

so, in the absence of further information, we will use it too. However, in light of the

uncertainty of the models’ relative accuracies, we will require 150 ADC/cm ≤ dQ/dx ≤

1200 ADC/cm such that the two models only deviate minimally. Any hits with dQ/dx

values outside this range will be considered outliers and not be used to fit dE/dx.

Combining the modified box model (Equation 6.42) with our first-order model for

dE/dx (Equation 6.32, noting the dE/dx sign change), yields the first-order model for

dQ/dx:

dQ

dx
=

ρEC
BWion

ln

(
A+

B

2ρE

√
ξ′χmc2

R− x

)
. (6.44)

Similarly, combining the modified box model with the second-order dE/dx model (Equa-
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Figure 6.16: Left: comparison of the exact (solid, Equation 6.4), second-order (dashed,
Equations 6.45 and 6.28), first-order (dotted, Equation 6.44) modal dQ/dx expressions
using the modified box model. The 10 cm range is as discussed in Section 6.3.2. Right:
the exact modal dQ/dx for muons, charged pions, charged kaons and protons using the
modified box model over a larger residual range, as per Figure 6.5.

tion 6.33) yields

dQ

dx
=

ρEC
BWion

ln

[
A+

Bξ′

ρE

(
(T ′ + 1)2

T ′(T ′ + 2)

[
2 ln

(
1 + T ′

)
+ χ

]
− 1

)]
, (6.45)

where the scaled modal kinetic energy values T ′ ≡ T ′(x) are calculated via the method

proposed in Section 6.3.2.

6.4.2 Application to particle identification

The existence of a low-error closed-form expression for dQ/dx (Equation 6.45) with an

implicit dependence on particle mass has direct application to particle identification.

Working with the mode, rather than mean, of the energy loss rate distributions was the

key insight that enabled the derivation, but this requires being able to robustly estimate

the mode from the real data. This will be explored in Chapter 7, where we develop a

robust new method for performing particle identification using the derivations from this

chapter.
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Chapter 7

Particle identification using

modal dQ/dx

This chapter introduces a new theoretically motivated particle identification method

(FOMA) based on a first-order modal approximation to low-energy dQ/dx developed

in the previous chapter. The new method and an algorithm to reconstruct three-

dimensional dE/dx are described and compared with PIDA, a standard PID method

used in MicroBooNE. The MIP/proton discrimination ability of FOMA is shown to be

superior to that of PIDA despite requiring no parameter tuning. The robustness of both

FOMA and PIDA to MC/data disagreement is explored.

7.1 Introduction

High-quality particle identification (PID) is necessary for accurate energy reconstruc-

tion, which in turn feeds directly into MicroBooNE’s primary goals. This is usually sepa-

rated into two distinct tasks: track/shower classification and track PID. The former has

a strong bearing on the reconstruction, as showers produce more disperse distributions

of hits that require different clustering methods to the well-defined trails produced by

tracks. Track/shower classification is therefore a feature internal to Pandora, where it

is performed using machine learning techniques with a set of physics-inspired features.

In this study, ‘showers’ refers to electromagnetic showers produced by electrons and
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photons, and ‘tracks’ to all other charged particles. At MicroBooNE, tracks primarily

comprise muons, charged pions, protons and (less frequently) kaons. Additionally, low-

energy electrons can appear track-like if they do not have enough energy to produce an

electromagnetic shower, and are often misclassified as such.

PID does not currently feature inside Pandora as it lies outside the remit of the

pattern recognition stage. Only a few examples of Pandora reconstruction for LArTPCs

use calorimetric information, one of them being the vertex selection algorithm (see

Chapter 5) and another the 3D track/shower identification algorithm. Beyond pattern

recognition, both track/shower classification and track PID are critical to reconstructing

particle (including neutrino) energies; shower energies are commonly reconstructed by

calibrating their total charge, whereas track energies require hit-level correction for

recombination effects and are preferably reconstructed from range rather than on a per-

hit basis. This necessitates accurate knowledge of the particle mass and therefore the

particle ID.

Improving track PID at MicroBooNE, which we will refer to as simply PID, is the

subject of the next two chapters. The most common variable used to assist PID is PIDA,

a scalar variable derived from a phenomenological model tuned on MC simulation. In

this chapter, we present a more theoretically rigorous but equally flexible approach called

FOMA and demonstrate that it generally performs better than PIDA in distinguishing

MIPs and protons. Both models require good three-dimensional dE/dx reconstruction

to be effective, so we begin by developing an algorithm for that task.

7.2 Measuring dQ/dx

Accurately measuring dQ/dx and ascribing a 3D position to each measurement is non-

trivial. We consider for each 2D hit i an inferred 3D position xi, a 3D path length

∆xi and a charge deposition ∆Qi, such that the rate of charge deposition at hit i is

approximately ∆Qi/∆xi. These tuples of values for every 2D hit along a track in a

given plane together form a data set X := {xi,∆Qi,∆xi}i∈[1,N ] which can be used to

reconstruct 3D dQ/dx or dE/dx using the method described in Section 6.4.
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Figure 7.1: The geometry of the 2D-to-3D hit projection. A 3D track fit axis (green
dotted line) is projected into the collection plane. The 2D hit (orange circle) in the
collection plane is first projected onto the 2D projected track axis, then onto the 3D
track fit axis, then onto the 3D track fit. The inferred 3D hit position can then be
projected back into the collection plane and its error measured. n̂ in the unit normal
to the collection plane.

7.2.1 Charge deposition

The charge deposition value we will use for Qi is integrated ADC count, a measure of

the response of the detector to deposited charge. This is provided on a per-hit basis by

the hit-finding algorithm for each 2D hit. We choose to use the collection plane (W )

hits, which provide the best calorimetric resolution (see Chapter 4); improved signal

processing methods in the future will enable incorporation of induction plane charge.

7.2.2 3D hit position

Calculating the 3D hit position xi and the 3D path length ∆xi is less straightforward.

As already mentioned, these are 2D collection plane hits, so we must infer their 3D

position using properties of the full 3D reconstruction.

We may calculate xi in two distinct ways and compare the results:
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1. Most collection plane hits will have an associated 3D hit, whose position is ob-

tained via a process of matching 2D hits from different views and 3D trajectory-

smoothing. We then map from the 2D to the 3D hit (if one exists) to obtain its

3D position vector. 2D hits that cannot be matched in other views will not be

reconstructed into a 3D hit (see Chapter 4).

2. Even if a 2D hit has no corresponding 3D hit, we may perform a sliding linear fit to

the associated PFO’s 3D hits, project the fit axis into the collection plane, find the

closest approach between the 2D hit and the projected fit, and use the equivalent

point on the 3D fit to obtain an approximate position. This is demonstrated in

Figure 7.1.

A convenient aspect of this process is that the inferred 3D hit position may be projected

back into the collection plane, allowing for an positional error to be calculated for

both simulation and data. Further, hits whose projection error is large (say > 5cm in

2D-projected distance) can be considered spurious and excluded from certain kinds of

analysis, including the PID methods developed in this thesis. The cause of such outliers

can include, for instance, a δ-ray hit mis-clustered into a track. This calculation is

subject to the space charge effect correction described in Section 6.4.

7.2.3 3D path length

Finally, to calculate ∆xi we need to use properties of both the 2D hit and its associated

3D fit. We will first calculate for hit i the 2D projected distance in the wire plane,

Lxz,i then extend this to the true 3D path length, ∆xi. We begin with two assumptions

which are empirically well-satisfied:

1. Collection plane hits are mostly contiguous in their wire plane if they represent a

continuous piece of well-reconstructed track, i.e. they do not consistently overlap

or have gaps between them. Detector gaps or otherwise missing hits are not an

issue here as we are not able to reconstruct the lost hits in any case.

2. The widths of adjacent hits are similar. This is mostly a function of the track

angle at the position of a given hit and satisfied by the largely linear nature of

tracks at MicroBooNE.
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Figure 7.2: Top: the geometry of two top-to-bottom contiguous hits in the collection
plane. Their inter-centroid distance Lpxz,i is a function of the angle φi and the wire pitch
p. Bottom: the geometry of two side-to-side contiguous hits in the collection plane.
Their inter-centroid distance Lwxz,i is a function of the angle φi and the hit width wi.

Each 2D hit i has a variable width wi, determined by the width of the signal processed by

the hit-finder, and a fixed height p, corresponding to the wire pitch. The width therefore

extends in the drift time coordinate axis (the x-direction) and, in the collection plane,

the pitch extends in the z-direction. We consider two adjacent hits, i and i+ 1, in the

collection plane and define an angle φi to be the acute angle between the vector between

the hits’ centroids and the z-axis.

Due to the rectangular shape of the hits, there are two geometrically distinct cases

of two hits just touching:

1. Top-to-bottom: As shown at the top of Figure 7.2. From trigonometry:

Lpxz,i =
p

cosφi
(7.1)

2. Side-to-side: As shown at the bottom of Figure 7.2. From trigonometry:

Lwxz,i =
wi

sinφi
(7.2)
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Figure 7.3: The geometry of two corner-to-corner contiguous hits in the collection
plane. This forms a boundary case between the geometries in Figure 7.2.

There is a boundary condition between these solutions: they must yield the same

value of Lxz,i when the hits are corner-to-corner (Figure 7.3). This occurs when

tanφi =
wi
p
. (7.3)

Then, from 7.1:

Lpxz,i

∣∣∣
tanφi=

wi
p

=
p

cos
[
arctan

(
wi
p

)]
=
√
w2
i + p2, (7.4)

where we have made use of the result cos (arctanx) = 1√
x2+1

. This value can

be confirmed using Pythagoras’ theorem. Similarly, from 7.2 and using the result

sin (arctanx) = x√
x2+1

,

Lwxz,i
∣∣
tanφ=

wi
p

=
wi

sin
[
arctan

(
wi
p

)]
=
√
w2
i + p2 (7.5)

∴ Lpxz,i

∣∣∣
tanφi=

wi
p

= Lwxz,i
∣∣
tanφi=

wi
p

(7.6)

as required.

We can derive a rule for choosing between the two schema by considering dp, i, the

component of the inter-hit-centroid distance parallel to the z-axis for hit i, and dw, i,

the its component parallel to the x-axis for hit i (see Figure 7.4). The simplest rule for

choosing the correct measurement is

Lxz,i =

L
w
xz,i, if 0 ≤ dp, i ≤ p

Lpxz,i, if 0 ≤ dw, i ≤ wi.
(7.7)
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Figure 7.4: The behaviour of the 2D path length function defined in Equation 7.10
as a function of the azimuthal angle φi, along with its two component functions. For
illustrative purposes, we have chosen p = 0.03 cm and wi = 0.06 cm; the behaviour
therefore changes at φi = arctan(wi/p) ≈ 1.11 rad.

Using tanφi = dw,i
dp,i

and substituting the definitions of Lwxz,i and Lpxz,i leads to the more

useful rule:

Lxz,i =


p

cosφi
, if tanφi <

wi
p

wi
sinφi

, otherwise.
(7.8)

This gives the projected 2D distance of the piece of track in the azimuthal (x-z) plane.

The agreement of the rule with our boundary condition at tanφi = wi
p is now manifest.

Since we defined φi such φi ∈
[
0, π2

]
, the domain of tanφi is given by

tanφi ∈ [0,∞] . (7.9)

We may relax the definition of φi for practical purposes such that φi ∈ [−π, π] (no

longer requiring an acute or positive angle by construction), in which case Equation 7.8

becomes

Lxz,i =


p

| cosφi| , if | tanφi| < wi
p

wi
| sinφi| , otherwise.

(7.10)
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This is represented graphically in Figure 7.4. As the figure makes clear, we can equiva-

lently write this as

Lxz,i = min

{
p

| cosφi|
,

wi
| sinφi|

}
. (7.11)

We now extend this to the true 3D length, ∆xi. Let the 3D track locally to hit i

make an angle θi with respect to the polar (y) axis. We add the assumption that the

particle travels all the way across each hit, which is a good assumption if the number

of hits in the azimuthal (collection) plane � 1. More concretely, we require

∆xi sin θi ≥

p, if | tanφi| < wi
p

wi, otherwise,
(7.12)

where θi ∈
[
0, π2

]
as per the polar angle of a canonical spherical coordinate system.

Then ∆xi sin θi = Lxz,i, so

∆xi =
Lxz,i
sin θi

(7.13)

=


p

| cosφi| sin θi , if | tanφi| < wi
p

wi
| sinφi| sin θi , otherwise.

(7.14)

Analogously to before, allowing θi ∈
[
−π

2 ,+
π
2

]
and rewriting as a minimum yields the

final result:

∆xi = min

{
p

| cosφi sin θi|
,

wi
| sin θi sinφi|

}
. (7.15)

The poles1 at θi = nπ, n ∈ Z are avoided using the condition of applicability in

Equation 7.12. We will use Equations 7.12 and 7.15 to obtain values of ∆xi for 2D

collection plane hits where possible.

7.2.4 Calculating dQ/dx and dE/dx

This calculation is subject to a number of corrections, which are described in detail in

6.4. After correcting for the space charge effect and the charge calibration, we arrive

at 3D dQ/dx. By further applying the recombination correction, we reconstruct 3D

dE/dx. A demonstration of {(dE/dx)i ,∆xi, wi}0≤i<N (which we call the ‘calorimetric

triplet’) is shown in Figure 7.5.
1When a particle moves near-parallel to a wire in a given plane, charge is only received in one wire

position it is possible only one or a small number of hits are created. This makes 3D reconstruction
difficult or impossible.
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Figure 7.5: A visual representation of the calorimetric triplet
{(dE/dx)i ,∆xi, wi}0≤i<N for four particles, randomly chosen from the a high-
purity and -completeness data subset. The cumulative sum of the ∆xi values leads to
the 3D coordinate represented on the x-axis. The x-extent of the boxes represents the
hit width wi and the y-extent is arbitrary. Hits with no x-gap nor x-overlap suggest
good 3D hit reconstruction, which is largely what is observed here. Detector gaps are
visible in some plots. Bragg peaks are clear in all four cases, along with noise due to
shared or poorly reconstructed hits.

7.3 PIDA

PIDA is a phenomenological model for characterizing the Bragg peak to perform particle

identification [140], widely used at MicroBooNE. The derivation begins by noting that

the Bethe-Bloch equation suggests that dE/dx is an approximate power law in R, the

residual range, at low energies (see Figure 7.6). The creators therefore model dE/dx as

dE

dx
= ARb. (7.16)
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Figure 7.6: A demonstration of the power law dependence of simulated track particles
in an ICARUS-like detector at low energies as suggested by the Bethe-Bloch equation,
which leads to the definition of the PIDA variable. Figure from [140].

for arbitrary constants A and b in the last ∼ 11 cm of track. Integrating yields Trange,

the kinetic energy deposited over the range, noting that Trange(R = 0) = 0:

Trange =
A

b+ 1
Rb+1. (7.17)

Performing a fit to protons, pions, muons and kaons reveals that the optimal value of b

varies over a small range whereas A varies more substantially. b was therefore set as a

number within this range (0.42) and define PIDA as

PIDA :=
1

N

N∑
i=1

(
dE

dx

)
hiti

R0.42
i . (7.18)

Appealingly, particle identification using PIDA is performed graphically by plotting

the values in a histogram and looking for peaks directly in the data distribution, as

shown in Figure 7.7. From the MC simulation, we know the order of the peaks and the

expected position of each particle. Though the b = 0.42 decision was tuned using MC

simulation, the method now becomes somewhat decoupled from MC/data disagreement.

Cuts can be chosen by eye or through a 1D unsupervised clustering method; in practice,

PIDA is usually used as just one variable among many in multivariate analyses.

For characterizing the performance of PID methods in this work, we evaluate their

performance on primary particles (i.e. the first visible daughters of the neutrino) using

simulated BNB events with MC neutrinos generated by GENIE and MC cosmic rays
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Figure 7.7: Left: an ideal PIDA histogram based on MC truth information and neglect-
ing detector effects, showing almost perfect discriminatory power amongst all particles
(including muons and pions). Right: a PIDA histogram based on a real data selection
from ICARUS during exposure of 1.35 × 1020 protons-on-target in the NuMI neutrino
beam, showing distinguishable peaks but greatly blurred in comparison with the MC
truth. Figure from [140].

generated by CORSIKA. See Chapter 3 for details about the procedure for simulating

events. We form two subsets of the primary particles in these events: MC RECO TRACKS

and MC CLEAN TRACKS. The MC RECO TRACKS data set uses the following criteria:

• the particle was reconstructed by Pandora but not necessarily correctly (see Chap-

ter 4 for a definition of reconstruction correctness);

• the particle has at least 3 collection plane hits whose dQ/dx and 3D position can

be reconstructed with an error of less than 5 cm compared with the 2D collection

plane position (note that this error can be calculated for data too, see Section

7.2.3); and,

• the particle is classified as a track by Pandora.

Together these form a loose set of criteria requiring no MC truth information that place

no requirements on the nature of the particle besides it being reconstructed as a track

and having enough hits to calculate PIDA/FOMA. Such cuts can therefore be applied

to data as well as simulation. The MC CLEAN TRACKS set additionally makes use of the

following criteria:
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• the particle has no reconstructed daughters;

• the particle is well-matched to an MC particle (with hit-matching purity and

completeness both at least 0.9);

• the particle is a track, based on truth information from the matched MC particle;

and,

• at least 90% of the energy-weighted number of particles below this particle in the

daughter hierarchy are fully contained within the fiducial volume of the detector,

based on truth information from the matched MC particle.

The purpose of these is to create a ‘clean’ set on which PID should be easier and

that can be used for validating PIDA/FOMA, selecting for fully contained, stopping

particles with high-quality MC truth information. Before performing the study, we

randomly divide each dataset into a training set and a test set, such that no particles

from the same event occur in both the test and train set. The same training and test set

divisions are used in Chapters 8 and 9 to facilitate unbiased results and a fair comparison

of methods. The training set is used to optimize the cut value above which we classify

particle as protons, and the test set is only used for validation.

Performance of PIDA on the binary classification task of distinguishing MIPs from

protons is shown in Figure 7.8. Optimization of the PIDA MIP/proton cut value is

performed using logistic regression, which returns the probabilities used to construct

the ROC curve. For the purposes of evaluating PID, we ignore other particles; this

condition is relaxed in Chapter 9 in the context of applying these methods in practice.

We additionally consider performance on the MC RECO TRACKS set where the true kinetic

energy of the particle is less than 200 MeV and the PID task is more challenging. We

refer to this subset of MC RECO TRACKS as MC RECO TRACKS LE. We contrast the perfor-

mance of classifiers with the baseline classifier, which is defined as the classifier that

always chooses the most common particle in the training set. The quality of prediction

is highest on the MC CLEAN TRACKS set (AUC = 0.916) and, as expected, degrades on

the MC RECO TRACKS set (AUC = 0.883) and again on the low-energy MC RECO TRACKS

low-energy data (AUC = 0.849).

122



Figure 7.8: Performance of PIDA on the binary classification task distinguishing MIPs
(µ−/π±) from protons on the MC CLEAN TRACKS set (top row), MC RECO TRACKS set (mid-
dle row) and MC RECO TRACKS LE set (bottom row), based on MicroBooNE simulation.
The left column shows the distribution of PIDA for muons, charged pions and protons.
The right column shows confusion matrices for 1D logistic regression classifiers trained
to distinguish MIPs from protons using PIDA in each case. Accuracies as a function of
particle energy are given in the FOMA comparison plots, Figures 7.10, 7.11 and 7.12.
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7.4 Measuring the dE/dx mode

To implement methods based on the models derived in chapter 6, we must first estimate

the mode of the observed dE/dx distribution. Two common ways of doing this are

kernel density estimation (KDE) or a histogram-based approach. Both require choosing

extra parameters: the kernel function and e.g. bandwidth for KDE, or the bin width for

the histogram method. The quality of the mode found is dependent on this choice. To

avoid the introduction of model parameters that may necessitate tuning, we instead opt

for using the repeated median estimator : a nonparametric, robust method for straight

line fitting, designed to tolerate samples from skewed and heteroskedastic distributions.

In repeated median regression, we fit the data {xi, yi} for i = 1, 2, . . . , N to the

regression line y = A+Bx, where A and B are scalars, using the estimators

Â := median
i

median
j 6=i

xjyi − xiyj
xj − xi

, (7.19)

B̂ := median
i

median
j 6=i

yj − yi
xj − xi

, (7.20)

where the median over j 6= i produces a set of size N , and the median over i reduces it

to a single scalar. This method has a breakdown point of 50%; i.e. up to 50% of the

samples can be ‘noise’ before the accuracy of the estimator begins to degrade, where

‘noise’ for us means samples from the upper tail of the dE/dx distribution (see Chapter

6) or real noise from poor reconstruction or detector effects.

7.5 FOMA

Using the first-order approximation of the dQ/dx model developed in Chapter 6, we

can construct a method that is robust to unmodelled effects and inaccuracies in the

parameters ξ′ and χ. Rearranging Equation 6.44,

ρE
B

[
exp

(
BWion

ρEC
dQ

dx

)
−A

]
= M(m, l)

1√
R− x

, (7.21)

where

M(m, l) :=
1

2

√
ξ′χ(l)mc2 (7.22)

=
1

2

√
ξ′mc2

(
ln

2mec2ξ′l

I2
+ j

)
.
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That is, a plot of the LHS of Equation 7.21 (which is dE/dx under the modified box

model of recombination; see Section 6.4.1) against 1/
√
R− x for a Bragg peak (R−x <

10 cm, as per Section 6.3.2) should yield an approximately straight line passing through

the origin with gradient M(m, l). Using the dependence of M on mass m and the

known l, we can then identify regions of a parameter space that correspond to different

particles in the detector. We note that, in practice, including l as a dimension adds

little discriminatory power but introduces the complexity of classifying/clustering in an

additional dimension, so we ignore this dependence.

Following Section 7.4, we can estimate this gradient as B̂ from the repeated median

estimator, and we expect that the intercept estimator Â should be close to 0. In practice,

we find that the intercept frequently deviates from 0. This observation likely has two

main causes: offset particle end positions due to finite hit sizes and/or poor reconstruc-

tion leading to a constant offset in the residual range R−x, and error caused by taking

the first-order approximation. To account for this, we consider classification within a 2D

parameter space comprising the estimated gradient and estimated intercept, in contrast

with the 1D space used by PIDA. Some examples of this are given in Figure 7.9. We

call this variable construction method FOMA (first-order modal approximation).

7.6 Results and discussion

To permit direct comparison with the PIDA results shown in Figure 7.8, we classify

in a supervised way by linearly separating the two groups using logistic regression. In

practice, however, the classification is to be performed by unsupervised clustering in

2D (using a method such as k-means clustering) and identification of the clusters with

particle types based on their position in this space, by analogy with PIDA. This makes

the method less sensitive to data/MC disagreement. The performance is illustrated and

compared with PIDA on the MC CLEAN TRACKS, MC RECO TRACKS and MC RECO TRACKS LE

sets in Figures 7.10, 7.11 and 7.12, respectively. The comparison is summarized in Table

7.1. Despite not relying on tuning using MC information, FOMA performance generally

outperforms PIDA, with an AUC of 0.915 on the MC RECO TRACKS set compared with

0.887 for PIDA. The performance gain is most significant in the MC RECO TRACKS LE set,

corresponding to lower energy particles. This could be due to poorer reconstruction
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Table 7.1: Comparison of the PID methods PIDA and FOMA on the MIP/proton
classification task. The table shows the baseline accuracy, and the accuracy and AUC
attained by the classifier. A classifier that simply chooses the most common particle
type in the test set has an expected accuracy equal to the baseline accuracy and an
expected AUC of 0.5. AUC is less sensitive to class imbalance so we use this statistic
to identify the best classifier, which is displayed in bold. FOMA modestly outperforms
PIDA on all test sets. Small variations in the baseline accuracies on the same test set
are possible due to failed jobs, wherein only a random subset of the full test set was
processed.

Test set Method Baseline acc. (%) Accuracy (%) AUC

MC CLEAN TRACKS
PIDA 68.0 89.2 0.917
FOMA 68.0 90.8 0.947

MC RECO TRACKS
PIDA 65.5 87.0 0.887
FOMA 65.5 88.5 0.915

MC RECO TRACKS LE
PIDA 61.8 84.2 0.853
FOMA 61.8 86.7 0.901

quality for low-energy events leading to anomalous hits; PIDA’s use of the mean makes

it susceptible to outliers, where FOMA’s repeated median estimator affords it greater

resilience.

7.6.1 Application to data

Since claims of decoupling from data/MC disagreement are features of both PIDA and

FOMA, in this section we verify this on real data at MicroBooNE by comparing distri-

butions on simulation and data. In MC simulated events, every event contains exactly

one true neutrino, whereas only around 1 in 600 real BNB spills lead to a recorded

neutrino interaction at MicroBooNE. This is partially corrected by the software trigger,

which filters events based on PMT activity. To facilitate a fair comparison of MC and

data distributions, we must further correct the distribution of simulated events to match

the data. First consider the following datasets:

• MC BNB COSMIC: The set of simulated BNB events, including simulated cosmic

background, using GENIE to generate neutrinos and CORSIKA to generate cosmic

rays. Each event in this set corresponds to exactly one neutrino interaction.
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Figure 7.9: FOMA construction for hits in a random selection of muons, pions and
protons. The line of best fit is given by the repeated median estimator, demonstrating
the robustness of the fit. The leftmost hit in each plot corresponds to first hit within
10 cm of the end of the track, and the rightmost hit the last hit in the track. The greatest
deviation from a straight line appears at the end of the track, where we would expect
the first-order approximation to hold strongest. This could be due to errors stemming
from the recombination correction at high dE/dx and/or reconstruction effects at track
boundaries.

• BNB Run1: A real data sample taken during Run 1 at MicroBooNE. See Chapter 3

for a chronology of the runs. Each event corresponds to one BNB spill and is sub-

ject to the software trigger. A minority of events contains a neutrino interaction,

so most events record only the cosmic background.

• EXTBNB Run1: A real data sample taken during Run 1 at MicroBooNE, during a

period when the BNB was switched off. Each event therefore records only cosmic

background, with no BNB neutrinos.
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Figure 7.10: Performance of FOMA on the binary classification task distinguishing
MIPs (µ−/π±) from protons on the MC CLEAN TRACKS set. The cut shown in the top
right plot is tuned on the training set via 2D logistic regression and performance on
the test set is shown here. The accuracy baseline in the bottom plot is defined as the
classifier that always chooses the most common particle type (here, protons).
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Figure 7.11: Performance of FOMA on the binary classification task distinguishing
MIPs (µ−/π±) from protons on the MC RECO TRACKS set. The cut shown in the top right
plot is tuned on the training set via 2D logistic regression and performance on the test
set is shown here. The accuracy baseline in the bottom plot is defined as the classifier
that always chooses the most common particle type (here, muons).
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Figure 7.12: Performance of FOMA on the binary classification task distinguishing
MIPs (µ−/π±) from protons on the MC RECO TRACKS LE set (T < 200 MeV). The cut
shown in the top right plot is tuned on the training set via 2D logistic regression and
performance on the test set is shown here. The accuracy baseline in the bottom plot
is defined as the classifier that always chooses the most common particle type (here,
muons).
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The procedure for comparing data with simulation for a given analysis follows the pro-

cedure laid out in [109] and is as follows:

1. Scale charge values in the MC BNB COSMIC and BNB Run1 samples by 4.113/5.076 ≈

0.810. This accounts for the ADC-to-electron calibration factor being (5.076 ±

0.001)× 103 in simulation and (4.113± 0.011)× 103 in data [136].

2. Run the analysis over the MC BNB COSMIC, BNB Run1 and EXTBNB Run1 datasets,

producing distributions for the variables of interest.

3. Rescale the MC BNB COSMIC distributions by α := POTBNB Run1/POTMC BNB COSMIC,

where POTBNB Run1 is the number of protons-on-target (POT) represented by

the BNB Run1 set and POTMC BNB COSMIC the number of POT represented by the

MC BNB COSMIC set. This normalizes the exposure of the simulation to match that

of the on-beam data sample.

4. Rescale the EXTBNB Run1 distributions by β := TRIGBNB Run1/TRIGEXTBNB Run1,

where BNB Run1 is the number of BNB triggers and TRIGEXTBNB Run1 is the number

of external triggers. This normalizes the number of spills/triggers of the off-beam

data sample to match the on-beam data sample.

5. Rescale the MC BNB COSMIC distributions by γ := (470/463.6)2 ≈ 1.028. This

corrects for a discrepancy between the simulated TPC z start position and the

true position [143].

6. Add the scaled MC BNB COSMIC distributions to the scaled EXTBNB Run1 and com-

pare these with the BNB Run1 distributions.

To isolate the case of MIP/proton separation, we wish to create high-purity samples of

protons and MIPs, with completeness being less of a concern. We do this by introducing

cuts on particle range R and angle to the beam direction φ. We consider fully-contained

tracks that meet the MC RECO TRACKS cut described in Section 7.3, which can be applied

to both data and simulation. This cut is dominated by the charged current (CC) µ+Np

channels.
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Figure 7.13: Selecting protons based on range R and beam opening angle φ. On the
left hand side are unnormalised histograms showing the distributions of these parameters
for protons and background. On the right hand side are shown purity and completeness
plots for the proton selection taking each cut in isolation.

Proton selection

Figure 7.13 shows the distributions of R and cosφ for protons and all other particles

reconstructed as neutrino daughters in the BNB simulation, along with the purity and

completeness resulting from maximum R and minimum cosφ cuts taken in isolation.

We roughly optimize them independently to get a high-purity sample without trading

off too much completeness for practical purposes. This leads to cuts of Rmax = 30 cm

and cosφmax = 0.5 (so φmax = 60◦) with a purity of 85.2% and a completeness of 13.3%.

Purity and completeness are defined as

purity(α) :=
|C(α) ∩ P |
|C(α)|

,
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Figure 7.14: Selecting MIPs based on range R and beam opening angle φ. The top
rows shows stacked histograms with the distributions of these parameters for MIPs
and background. The bottom row shows purity and completeness plots for the muon
selection taking each cut in isolation.

and

completeness(α) :=
|C(α) ∩ P |
|P |

where

• C(α) is the set of particles passing the cut at threshold α, and

• P is the set of particles of interest that the cut is selecting for (here either the

true set of protons or the true set of muons and charged pions).

The overlay shows reasonable agreement between data and simulation across the con-

sidered range and cosφ spectra.
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MIP selection

Figure 7.14 shows the distributions of R and cosφ for MIPs and all other particles

reconstructed as neutrino daughters in the BNB simulation, along with the purity and

completeness resulting from minimum R and minimum cosφ cuts taken in isolation. As

for the proton selection, we roughly optimize them independently to get a high-purity

sample without trading off too much completeness for practical purposes. This leads to

cuts of Rmin = 300 cm and cosφmax = 0.5 (so φmax = 60◦) with a purity of 99.9% and a

completeness of 10.0%. Again we see reasonable data/simulation agreement across the

range and cosφ spectra.

Results of comparison

The PIDA and FOMA distributions for simulation and data are shown in Figures 7.15

and 7.16, respectively. PIDA offers easy comparison between data and simulation using

a histogram to represent both the 1D PIDA value, whereas FOMA must be visualized

in 2D to capture both variables. In both cases, the classifier response is 1D and can

be studied using a histogram. Both PIDA and FOMA are able to distinguish between

protons and muons in real data; this is evidenced by comparing the clear difference

in distributions for the MIP cut and the proton cut in each case. In terms of a finer

data/simulation agreement, the data peaks appear significantly smeared compared with

simulation. There are a number of known reasons for data/MC disagreement in these

samples:

• For tracks which are nearly orthogonal to wire planes, their ionization electrons

induce signals that cause destructive interference on the induction planes and can

lead to missing hits [119]. This effect, known as dynamic-induced charged (DIC), is

unmodelled in simulation. In practice, the dependence of this unmodelled effect on

track direction would lead to a smearing of distributions compared with simulation.

This could help to explain the PIDA/FOMA peak smearing. This is now being

modelled in MC simulation and taken into account in recent deconvolution work

[119, 144].

• It has been demonstrated that CORSIKA underestimates the cosmic ray back-
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Figure 7.15: The distribution of PIDA for the proton cut (left column) and the muon
cut (right column). The PIDA cut here is the one trained on the MC RECO TRACKS data
subset illustrated in Figure 7.8. The bottom row shows the PIDA classifier response.

ground in the energy range E < 100 MeV [145]. Due to the minimum range cut

that forms part of the MIP cuts, the scope of this effect is likely limited to the

data/simulation balance in the proton plots.

• Simulated charged particle multiplicities have similarly been demonstrated to be

overestimated by GENIE relative to data for the configuration used in this study.

Events with greater charged particle multiplicities are usually more difficult to

reconstruct due to a greater scope for hit merging and other reconstruction errors

[127].

Overall, the data/simulation agreement is similar for PIDA and FOMA, which is

not surprising given that they use of the same information (the 3D positions and charge
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Figure 7.16: The distributions of the FOMA intercept and gradient for the proton cut
(left column) and the muon cut (right column). The top row shows the distributions
in simulation and the middle row in data. The cut here is the one trained on the
MC RECO TRACKS data subset illustrated in Figure 7.11. The bottom row shows the
FOMA classifier response.

136



depositions of the last ∼ 10 cm of hits in each track). Finally, we note that the intended

use of both PIDA and FOMA is not to use the MC cuts shown in these plots but instead

to use the peaks/clusters observed in data to inform better cuts. The existence of peaks

in PIDA and the existence of clusters in FOMA were indeed preserved, demonstrating

that this procedure is possible. The peak smearing, however, could be a significant

source of PID error. A promising improvement to PID analysis would be a method

which can abstract a representation of the data that is less coupled to data/simulation

disagreement, or actively learn to adapt based on real data.
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Chapter 8

Representation learning for

semi-supervised particle

identification

This chapter proposes a novel semi-supervised particle identification (PID) method

called PidNet based on representation learning. Following the domain adaptation phi-

losophy of PIDA and FOMA, this method limits the extent to which data/simulation

disagreement can affect the performance of a PID classifier trained on simulation but

deployed on real data, in addition to facilitating interpretability. The dE/dx profile

of a particle is fed as a time-varying signal to a convolutional autoencoder, taking the

latent state as an N -dimensional representation. By analogy with PIDA, the represen-

tation clusters can be labelled with particle types with reference with those produced

by simulated (labelled) data. We demonstrate the superiority of this method to both

PIDA and FOMA for distinguishing MIPs from protons.

8.1 Introduction

Development of the PIDA method can be considered an instance of representation learn-

ing : the 2N -dimensional dQ/dx profile of a track segment with N considered hits (com-

prising (dQ/dx)i, xi for 0 ≤ i < N) is mapped onto a one-dimensional variable. This
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R2N → R map is chosen such that different particles tend to occupy different regions in

the new space. Whilst parameters of the map are tuned on simulated data, cut thresh-

olds are chosen based on the distribution of the real (mapped) data, taking advantage

of the fact that we can look at particles at a distribution level. Relying on simulated

data only to define the map, rather than the cuts too, is an appealing solution as it par-

tially protects against the impact of data/MC disagreement; such disagreement would

result in a suboptimal map tuning for discrimination on real data. However, the method

overall becomes less tightly coupled to distributional shifts.

In the case of PIDA, physical approximations are used to constrain the map optimiza-

tion problem to two-dimensions, and the output space is chosen to be one-dimensional.

The output space itself could be of any dimensionality: particles that occupy a higher-

dimensional output space can analogously be grouped and labelled using unsupervised

clustering techniques such as k-means clustering. A higher-dimensional output space

allows richer information to be encoded but both the map optimization problem and

downstream clustering tasks become more complex, entailing the possibility of greater

error. A method able to generalize this concept to a higher number of dimensions

requires adoption of modern techniques that can learn these higher-dimensional data

representations.

A data-driven approach for learning these representations could take a number of

forms, each with varying levels of parametrization. The first- and second-order methods

developed in Chapter 7 represent an approximate but well-constrained approach driven

by theoretical considerations, leading to one- and two-dimensional output spaces, re-

spectively. Another approach for modelling sequential data is the Kalman filter, an

algorithm for estimating the joint distribution of the variables of the hidden internal

state of a linear stochastic dynamical system. It is underpinned by a hidden Markov

model1 (HMM) that assumes the state space of the latent variables is continuous and

that all variables are normally distributed. Extensions that generalize Kalman filters to

nonlinear systems include the extended Kalman filter and the unscented Kalman filter.

1A stochastic system based on a Markov chain, a sequence of events whose probability depends
only on the state achieved by the previous event, which additionally contains unobservable states.
HMMs have broad application to temporal pattern recognition problems such as speech recognition and
handwriting recognition.
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Figure 8.1: A toy example of an autoencoder, an unsupervised representation learning
paradigm in which the network tries to learn to reconstruct its input despite a smaller
hidden layer in the middle often called a bottleneck layer. This bottleneck layer can
therefore be trained to encode an efficient compressed representation of the data z that
preserves its salient features, such that x ≈ x′. A real autoencoder typically has a more
elaborate encoder and decoder both before and after the bottleneck layer.

These are used at MicroBooNE to assist with track reconstruction: before analysis,

Pandora tracks are smoothed by Kalman filters passed forwards and backwards along

the track. Assuming straight line propagation with some uncertainty, the algorithm

iteratively takes into account ‘new’ information presented by each successive hit.

The use of machine learning and even deep learning in particle physics is not new

[146–148]. Representation learning is an alternative to hand-crafting features that al-

lows a model to automatically learn a feature space. This process can be supervised,

self-supervised, semi-supervised or entirely unsupervised. In the supervised and semi-

/self-supervised cases, internal representations are extracted from a network that is

trained to perform one or more classification/regression tasks. In the unsupervised

case, representations are extracted from an unsupervised model such as an autoencoder

(see Figure 8.1). In this case, a fixed- and lower-dimensional encoding of the possibly

time-dependent input is learnt without using labelled data.
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Figure 8.2: A visual representation of the calorimetric pair {(dE/dx)i ,∆xi}0≤i<N for
a simulated muon. Without explicitly including the hit width, the existence of detector
gaps can only be inferred.

8.2 Particle identification as signal classification

In this chapter, we will cast the problem of particle identification (PID) for tracks

as a multidimensional binary/multi-class signal classification problem. To make

this casting, we first consider the calorimetric triplet described in Chapter 7:

{(dE/dx)i ,∆xi, wi}0≤i<N for a track with N 3D hits. We ultimately wish to classify

the particle type y ∈ {µ−, π±, p,K±, . . .} based on this information or a subset thereof.

This problem is visually represented in Figure 7.5. Each component of the triplet can be

considered a one-dimensional time-varying signal in which the ‘time’ dimension is the

discrete hit sequence i ∈ [0, N). The dE/dx signal, even taken alone, has clear discrim-

inatory power. We additionally include the ∆x signal as it encodes relevant information

about detector gaps and, indirectly, reconstruction quality and track longitudinality.

To establish parity with PIDA/FOMA and limit complexity, we neglect the hit width

and consider two-dimensional signal classification using {(dE/dx)i ,∆xi}0≤i<N . An

illustration of the model input is illustrated in Figure 8.2.

Figure 7.5 illustrates the discriminative patterns a model could exploit, along with

others which are irrelevant. Due to their similar masses, muons and pions are difficult

to separate. We will therefore consider them together as MIPs, though the ability to
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distinguish between them will be probed in detail. Sharper but smaller Braggs peak

tend to suggest MIPs, whereas broader, higher peaks indicate protons. Even in the

absence of a Bragg peak, the modal baseline for a proton is significantly higher than

the ∼ 1.4 MeV/cm MIP level (see Chapter 6 for a full explanation). If a model is able

to exploit track length2, a shorter track increases the likelihood of a particle being a

proton. Obvious but irrelevant features that should be ignored include detector gaps,

poorly reconstructed/overlapping hits and high-dE/dx ‘noise’ either from the tail of the

Landau-Vavilov distribution (Chapter 6) or due to reconstruction pathologies.

A common problem in signal/image processing is a discrepancy between the dis-

tributions of real data and training data, leading to poor performance that often goes

undetected. In particle physics, this can occur when a classification model is trained on

simulated samples but deployed on real data that is subtly or significantly different in

character. Tackling this problem requires adopting domain adaptation methods. PIDA

and FOMA constitute two examples of this: the training data need not closely match

the test data, as long as they are similar enough that the peak/cluster structure is

largely preserved. Another method involves transforming the simulation so that it looks

more like the data, which can be performed via calibration or using generative models

[148].

8.3 Model architecture

8.3.1 Convolutional autoencoders

Deep learning can be employed for signal processing using a number of different neu-

ral network architectures, most commonly RNNs and convolutional neural networks

(CNNs). CNNs are highly expressive models that deconstruct their input into hierar-

chical patterns, which are then progressively analyzed by each layer. This pattern of

connectivity is inspired by the organization of neurons in the visual cortices of animals

and, due to their translational invariance properties, they are most often applied to

2Architectural constraints may necessitate a fixed-length input, such that sequences shorter than
this are padded and the model can therefore infer something about the track length. Whether this
is desirable behaviour is arguable; this will be explored further in this chapter, along with ways of
mitigating this dependence.
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Figure 8.3: Example architecture for a one-dimensional convolutional autoencoder
with two channels. The encoder comprises alternating convolutional layers and max
pooling layers (see main text), culminating in a small, fully-connected (‘dense’) layer
whose output is the vector representation. The decoder architecture mirrors the encoder
and learns to reconstruct the input signal from this representation.

image analysis.

Each method presents limitations: RNN architectures suffer from the inability to

learn long-range correlations [149], whereas CNNs can be computationally intensive.

In this study, we opt for a CNN-based architecture to ensure that long sequences of

hits can be analyzed with ease. Experimentation with alternative architectures is left

to future work (Section 8.5.2). We combine a CNN with an autoencoder to make a

convolutional autoencoder that can learn representations, as depicted in Figure 8.3. An

autoencoder, once trained, takes a signal as input and produces a lower dimensional

vector that preserves the most important information for reconstructing that signal; it

can be considered a compression or dimensionality reduction method. The dimensions of

the representation vector taken in isolation need not be physically meaningful, though

it is possible to encourage this using disentanglement techniques [150, 151]. Such a

model comprises an encoder and a decoder, which mirror one another in their structure

so that the input and output dimensionalities are consistent. In the encoder, layers

alternate convolutional layers, which consist of a set of filters that learn to activate

when they detect a certain feature in their receptive field, and max pooling layers,

which reduce dimensionality by replacing multiple non-overlapping regions across one

or more dimensions with their maxima. The decoder substitutes max pooling layers for
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upsampling layers, which duplicate each sample along the relevant axis/axes to undo

the change in dimensionality caused by a pooling layer. For a more thorough description

of CNNs, see [152].

8.3.2 PidNet architecture

The input to the autoencoder model, which we call PidNet, will be the calorimetric

pair {(dE/dx)i ,∆xi}0≤i<N following min-max scaling to assist training, i.e. two 1D

signals. We therefore choose a 1D convolutional autoencoder with two channels. The

details of the chosen architecture can be found in Appendix C. The architecture was

inspired by those used in [153]. Since CNNs require fixed-size inputs, we pad/truncate

the input hit sequence to be consistently 64 hits long.3 Calorimetric pairs shorter than

this are padded with zeroes. The sequence length is chosen to comprise enough hits to

be able to characterize the Bragg peak, without becoming too complex to model or too

computationally burdensome. The autoencoder is encouraged to encode the number of

track hits if this number is less than 64, as it is important for accurate reconstruction of

the input. Unlike PIDA and FOMA, PidNet is thus not necessarily invariant to particle

length. This will be explored in Section 8.5. The dimensionality of the input space is

2 × 64 = 128. The size of the latent space (i.e. representation) is 16, so the network

must learn to compress the information by a factor of 8. In practice, what information

the network considers salient is guided by the loss function. In this case, we use binary

cross entropy, which performs well for autoencoders with normalised input.

8.3.3 Classification

For every track, the autoencoder produces a 16-dimensional vector which can then be

used for downstream tasks such as particle identification or energy estimation. We

choose a standard neural network architecture for the final PID classification (see full

architecture in Appendix C). The classifier is trained separately from the autoencoder

in a supervised fashion on either the binary MIPs/proton classification task or the

three-class muon/charged pion/proton classification task, using binary cross entropy

3The power of 2 facilitates a straightforward encoder/decoder mirroring that results in an output
with the same dimensionality as the input.
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or categorical cross entropy losses, respectively. The training and test sets are as in

Chapter 7, with the exception that a random subsample of the training set has been

selected as the validation set for optimization purposes.

An alternative to this two-step learning process (representation learning followed by

classification) is to feed the signal straight into a CNN trained to perform the classifi-

cation task, effectively replacing the decoder with the classification network. However,

the two-step process offers greater robustness to MC fluctuations, the ability to train

the autoencoder partially or entirely on real data, and greater scope for explainability

(e.g. through qualitative interpretation of the representation space). In particular, the

application of deep learning techniques to particle physics is complicated by the neces-

sity of training on simulation and deploying on data, as the network is encouraged to

exploit minute and potentially unrealistic features of the simulation to achieve the high-

est accuracy.4 More concretely, we can imagine a network trained to perform PID on a

dataset where dQ/dx ∈ [1, 10] MeV/cm, which then makes predictions on data where

dQ/dx ∈ [0.7, 12] MeV/cm, related to the simulation through some stochastic nonlinear

mapping. A deep learning classifier offers no guarantee that its response to such out-

of-distribution samples varies smoothly or in any physically meaningful way, especially

given the high dimensionality and noisiness of the input space. In the case of particle

physics, these issues can also occur silently since we do not have access to true particle

labels for real data. By performing a data-driven dimensionality reduction technique

such as an autoencoder, the scope for this is drastically reduced since a well-trained au-

toencoder is forced to extract a small number of higher-level features (e.g. distribution

shape parameters) due to the bottleneck layer. The resulting classifier is made robust

by the smoother, lower-dimensional nature of its input, and data/simulation disagree-

ment is straightforwardly studied by comparing representations at a distribution level.

Furthermore, the learnt representations are agnostic to the task of PID and could be

equally well suited to tasks such as data-driven energy estimation, particle directional-

ity prediction and reconstruction error detection. The representation learning approach

lays the groundwork for extensive future work, including actively addressing domain

shift (see Section 8.5.2).

4This is known as overfitting.
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8.4 Model training

The evolution of the representations can be tracked during training, both at a particle

level and a distribution level. Figure 8.4 shows this evolution on a particle level for a

proton. The reconstruction typically resembles a denoised version of the input signal,

demonstrating the loss of information due to the bottleneck layer in the autoencoder.

Figure 8.5 shows this on a distribution level. As the encoder learns, the representa-

tions become more able to distinguish between MIPs and protons, demonstrating that

the representation is indeed preserving the information we need for PID, despite being

unaware of the task. The representations are visualized using a t-stochastic neighbour

embedding (t-SNE) plot [154], in this case a 2D projection of each 16-dimensional rep-

resentation that tries to preserve the relationship between the data points. t-SNEs are

stochastic and the axes are arbitrary, so each time one is created it may look superfi-

cially different. Furthermore, it is not generally possible to preserve all the information

from 16 dimensions in 2 dimensions; the ability to identify clusters in a 2D t-SNE is

therefore a sufficient but not necessary condition of being able to identify them in 16

dimensions.

8.4.1 Interpreting representations

To investigate the significance of clusters in the t-SNE space, we consider some correct

and incorrect examples. The correct examples are given in Figure 8.6. The two more

circular clusters correspond to (and separate) MIPs and protons that occupy the full 64

hits that the network can detect. The longer cluster represents particles with fewer than

64 hits, arranged along a sliding scale of particle range. While we did not intend the

network to preserve this information, it has done so since it is useful for reconstructing

the input.

The poor separation of MIPs and protons in the long cluster may be an artefact

of the t-SNE projection and does not necessarily imply that they are inseparable in 16

dimensions. This hypothesis could be tested by investigating classification performance

for particles with fewer than 64 hits. Range is a strong predictor of PID and there-

fore could unfairly boost the performance of this method, which is no longer merely
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Figure 8.4: Evolution of a proton representation during training with snapshots at
epochs 0, 10, 190 (top, middle and bottom rows, respectively). The preprocessed and
reconstructed signals are shown in the left column along with a heatmap of the normal-
ized values of the latent 16-dimensional representation in the right column. The heatmap
represents the fixed-length encoding of the variable-length calorimetric signal. Its en-
coding is learnt by the encoder and its interpretation is learnt by the decoder/classifier
during training. Its values are otherwise largely arbitrary, so its inclusion here is merely
illustrative.
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Figure 8.5: Evolution of the intermediate representations during training with snap-
shots at epochs 0, 10, 190 (top, middle and bottom rows, respectively). The 16-
dimensional representations are represented here in two dimensions using a t-SNE (see
main text).
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characterising the shape of the Bragg peak. The claim that this method is superior to

both PIDA and FOMA even in the absence of range information is substantiated in

Section 8.5 and methods for constructing range-invariant representations are discussed

in Section 8.5.2.

Examples of representations that lead to incorrect PID classification are shown in

Figure 8.7. In these cases, the patterns of dE/dx values near the Bragg peaks appear

proton-like for the muon and MIP-like for the protons. This is a reassuring error and one

that a human annotator could similarly have made in the absence of other information

such as the nature of the other particles in the event. Such information could be taken

into account in a downstream multivariate PID analysis.

8.5 Results and discussion

The validation procedure follows that of Chapter 7, including the definitions of the

MC CLEAN TRACKS, MC RECO TRACKS, and MC RECO TRACKS LE datasets. In this case, we

also investigate whether we can distinguish muons from charged pions, something that

was impossible for PIDA and FOMA. An example 2D t-SNE of the 16-dimensional

representations fed into the classifier is shown in Figure 8.8 for both the two- and three-

class cases.

PidNet performance on the MC CLEAN TRACKS, MC RECO TRACKS and

MC RECO TRACKS LE sets is examined in Figures 8.9, 8.10 and 8.11, respectively.

The key results for the binary (MIP/proton) classification are summarized in Table

8.1 and the three-class (muon/charged pion/proton) classification in Table 8.2. The

performance gain over both classical approaches is significant across almost the entire

energy spectrum. Notably, we also achieve distinction between muons and charged

pions with reasonable accuracy, though the subtle differences between these particles

are likely to be blurred by data/simulation disagreement in practice. The performance

gain is most evident on the MC RECO TRACKS set, where the AUC on the binary task is

0.979, compared with 0.914 for FOMA and 0.886 for PIDA. This performance gain can

be explained through a number of factors:

• the network can easily approximate non-analytic functions such as an approxima-
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Figure 8.6: Examples of correctly-classified true signals and their reconstructions in
different regions of the representation space. The top left plot shows an annotated
2D t-SNE of the 16-dimensional representation space. Three particles, indicated with
black crosses, are selected and their true and reconstructed signals are displayed in the
remaining three panels, correspondingly labelled as A, B or C.

tion to the Landau-Vavilov distribution;

• the network can learn to be robust to arbitrary noise, including common recon-

struction errors and uncorrected detector effects such as gaps;

• the network has access to particle range for particles with less than 64 hits; and,

• the network does not need to assume the existence of a Bragg peak and may be

able to classify non-stopping, backwards-going or poorly reconstructed particles

using their dE/dx distribution (see Chapter 6).
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Figure 8.7: Examples of incorrectly-classified true signals and their reconstructions
in different regions of the representation space. The top left plot shows an annotated
2D t-SNE of the 16-dimensional representation space. Three particles, indicated with
black crosses, are selected and their true and reconstructed signals are displayed in the
remaining three panels, correspondingly labelled as D, E or F.

All of these are desirable features, except for the particle range dependence. It would

be desirable for a PID method to specialize in characterising the dE/dx distribution

alone, then particle range can be taken into account through a downstream multivariate

analysis. This prevents a classifier5 from learning a range prior for each particle type,

e.g. that most short tracks are protons. While this might be a good rule for minimizing

the loss function, it may perform poorly for certain kinds of analysis. To investigate

5Recall that the autoencoder itself does not know anything about the range prior for each particle
type since it is trained in an unsupervised way, so this concern does not apply to the representations
themselves.
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Figure 8.8: An example 2D t-SNE of the 16-dimensional representations fed into the
downstream PID classifier for the three-class muon/charged pion/proton classification
(left) and the binary MIP/proton classification (right). In this case, we represent a
selection of particles from the MC RECO TRACKS set.

how much of the performance boost over PIDA/FOMA is due to range sensitivity, we

study the performance of the classifier as a function of number of hits. This is shown

in Figure 8.12 for the MC CLEAN TRACKS set and Figure 8.13 for the MC RECO TRACKS

set. It is clear that, in both Nhits < 64 and Nhits ≥ 64 regimes, PidNet maintains its

superiority, suggesting that the range sensitivity does not play a major role.

8.5.1 Application to real data

Figure 8.14 illustrates the application of PidNet to real data using the same cuts and

strategy employed in Section 7.6.1. The requirement that the number of track hits ≥ 64

simplifies the comparison and makes it fairer; for these particles, PidNet is invariant

to particle length. These particles now predictably form two clusters without the long

tail observed in Figure 8.8. As expected, the MIP cut consists of almost entirely MIPs

and the proton cut a combination of MIPs and protons. To facilitate this comparison,

we visualize representations using an isomap6 instead of a t-SNE, which enables us to

project new data into the space following the fit. In this case, we define the isomap

space using MC particles that meet the non-range and -angle cuts, and then project the

data representations into this space. The agreement between expectation and reality

6Both isomaps and t-SNEs are nonlinear dimensionality reduction techniques; isomaps are an ex-
tension of the isometric mapping method called multidimensional scaling (MDS), taking into account
geodesic distances along the learnt manifold. Unlike t-SNE, new data can be projected onto the manifold
after it has been fit.
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Table 8.1: Comparison of the PID methods PIDA, FOMA and PidNet on the
MIP/proton classification task. The table shows the baseline accuracy, and the ac-
curacy and AUC attained by the classifier. A classifier that simply chooses the most
common particle type in the test set has an expected accuracy equal to the baseline
accuracy and an expected AUC of 0.5. AUC is less sensitive to class imbalance so we
use this statistic to identify the best classifier, which is displayed in bold. PidNet sig-
nificantly outperforms both PIDA and FOMA on all test sets. Small variations in the
baseline accuracies on the same test set are due to failed jobs, wherein only a random
subset of the full test set was processed.

Test set Method Baseline acc. (%) Accuracy (%) AUC

MC CLEAN TRACKS

PIDA 68.0 89.2 0.917
FOMA 68.0 90.8 0.947
PidNet 67.9 96.9 0.993

MC RECO TRACKS

PIDA 65.5 87.0 0.886
FOMA 65.5 88.5 0.914
PidNet 65.5 93.4 0.979

MC RECO TRACKS LE

PIDA 61.8 84.2 0.850
FOMA 61.8 86.7 0.899
PidNet 61.8 90.4 0.966

Table 8.2: Performance of PidNet on the three-class (µ−/π± /p) classification task.
PIDA and FOMA are unable to distinguish between muons and pions so they are ex-
cluded from this study. The table shows the AUC for distinguishing each particle
from all other particles, along with the overall baseline accuracy and classifier accuracy.
Baseline accuracies and accuracies on a per-particle basis are omitted. A classifier that
simply chooses the most common particle type in the test set has an expected overall
accuracy equal to the overall baseline accuracy and all AUCs equal to 0.5.

µ− π± p Overall

Test set AUC AUC AUC Baseline acc. (%) Accuracy (%)

MC CLEAN TRACKS 0.979 0.879 0.990 67.9 86.6
MC RECO TRACKS 0.943 0.790 0.976 55.8 80.7

MC RECO TRACKS LE 0.925 0.830 0.963 61.8 76.7
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Figure 8.9: Performance of PidNet on the three-class classification task distinguishing
muons, charged pions and protons, and binary classification task distinguishing MIPs
(µ−/π±) from protons on the MC CLEAN TRACKS set. The top row shows confusion ma-
trices for the three-class (left) and binary (right) classification tasks. The middle row
shows ROC curves for the three-class (left) and binary (right) classification tasks. The
bottom row shows the accuracy as a function of particle kinetic energy; the baseline
is defined as the classifier that always chooses the most common particle type (here,
protons).
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Figure 8.10: Performance of PidNet on the three-class classification task distinguishing
muons, charged pions and protons, and binary classification task distinguishing MIPs
(µ−/π±) from protons on the MC RECO TRACKS set. The top row shows confusion ma-
trices for the three-class (left) and binary (right) classification tasks. The middle row
shows ROC curves for the three-class (left) and binary (right) classification tasks. The
bottom row shows the accuracy as a function of particle kinetic energy; the baseline
is defined as the classifier that always chooses the most common particle type (here,
muons).
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Figure 8.11: Performance of PidNet on the three-class classification task distinguish-
ing muons, charged pions and protons, and binary classification task distinguishing
MIPs (µ−/π±) from protons on the MC RECO TRACKS LE set (T < 200 MeV). The top
row shows confusion matrices for the three-class (left) and binary (right) classification
tasks. The middle row shows ROC curves for the three-class (left) and binary (right)
classification tasks. The bottom row shows the accuracy as a function of particle kinetic
energy; the baseline is defined as the classifier that always chooses the most common
particle type (here, muons).
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Figure 8.12: Performance of PidNet on the binary classification task distinguishing
MIPs (µ−/π±) from protons on the MC CLEAN TRACKS data set as a function of number
of calorimetric hits. The top plot shows particles with numbers of hits in the range
[0, 1000]; the bottom plot zooms into the range [0, 100]. The accuracy baseline is defined
as the classifier that always chooses the most common particle type (here, protons). The
superiority to PIDA and FOMA is maintained above and below the 64 hit threshold
described in the main text.

in these plots gives us confidence that the information retained in the 16-dimensional

representations is indeed meaningful and generalizable, rather than exploiting unrealistic

aspects of the simulation. This is perhaps a surprising result as the expressiveness of

the models gave great scope for overfitting to simulation. Requiring that the network

compress this information into the low-dimensional representation has had the desired

effect of retaining only the most salient information. If there had been more significant

data/simulation disagreement, the performance of this method could suffer to a greater
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Figure 8.13: Performance of PidNet on the binary classification task distinguishing
MIPs (µ−/π±) from protons on the MC RECO TRACKS set as a function of number of hits.
The top plot shows particles with numbers of hits in the range [0, 1000]; the bottom
plot zooms into the range [0, 100]. The accuracy baseline is defined as the classifier that
always chooses the most common particle type (here, muons). The superiority to PIDA
and FOMA is maintained above and below the 64 hit threshold described in the main
text.

extent. Future work that could solve this potential issue is discussed in Section 8.5.2.

8.5.2 Discussion

Improvements to the classification presented in this chapter can only be fairly minimal

in terms of absolute performance gains, given the high accuracies demonstrated in the

results. Regardless, there are a number of future developments that could improve its

performance and/or generalizability.
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Figure 8.14: The application of PidNet to real data for the proton cut (left column)
and the MIP cut (right column). At the top, simulation under the cuts described in
Section 7.6.1 but without the R or cosφ cuts is used to define an isomap space (coloured
circles). The MC+EXTBNB sample is projected into this space (top row) along with the BNB
sample (middle row). In all cases, we only consider tracks with at least 64 calorimetric
hit reconstructed (see main text). The bottom row shows the PidNet classifier response.
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Alternative autoencoder strategies

In this study, we considered the same autoencoder trained on the MC RECO TRACKS set

and retrained the classifier for each new task. Since the autoencoder is trained in an

unsupervised way, it could equally have been trained on real data, other MC simulation

datasets or a combination thereof. This leads to two viable alternative strategies:

• training the autoencoder entirely on real data, then labelling the resulting repre-

sentation clusters by performing inference on the MC simulation, optimizing the

learnt representations for characterising data; or,

• training the autoencoder on a mixture of real data and MC simulation, then

labelling the resulting data representation clusters by promixity to MC simulation

clusters.

The latter is problematic as it is likely that any data/simulation disagreement will be

exploited by the autoencoder to assist reconstruction, thus amplifying discrepancies.

This could be mitigated through adversarial training, i.e. adding an additional output

to the autoencoder that seeks to classify whether the example came from data or MC

simulation, then backpropagating negative gradients.

Alternative architectures

The CNN autoencoder architecture employed for PidNet is a simple example in a

vast landscape of possible architectures, and one that has presented issues relating to

data/MC domain adaptation and particle range sensitivity. We can consider these two

issues to be two sides of the same problem: the dependence of the learnt representations

on undesirable covariates. Some architectures that may address these problems include:

• LSTM/GRU autoencoders: RNN-based transducers7 such as these accept

variable-length input and relatedly will not be encouraged to encode the sequence

length, making them an obvious candidate for this problem. However, these tend

to be poor at picking up on long-range correlations [149], which could be an issue

7That is, a sequence-to-sequence models that output one time step per input time step.
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for long tracks. They also necessitate sequential computation (as opposed to the

parallel computation possible with CNNs) making them less appealing.

• Transformers: The Transformer [155] architecture comprises chains of encoders

and decoders using attention mechanisms and arranged in a particular way that

permits modelling of long-range correlations and parallelization. Instances of

Transformer-based architectures such as BERT [156] and GPT-2 [157] have re-

placed LSTM-based architectures as the state-of-the-art in a number of natural

language processing tasks.

• CPC: Contrastive predictive coding [158] is an unsupervised representation learn-

ing paradigm that predicts the future in the latent space using autoregressive

models and a probabilistic contrastive loss. CPC has been shown to be generally

strong in tasks across speech, image, text and reinforcement learning.

• VAEs: Variational autoencoders [159] resemble normal autoencoders at a high

level but are actually generative models that model their latent variables prob-

abilistically to understand the underlying causal relations. The nature of their

loss permits the injection of undesirable covariates into the latent space in such a

way that encourages the learnt representation to be invariant to these parameters.

This makes a compelling case for use in domain-adaptive and range-invariant PID.
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Chapter 9

Impact of improved particle

identification and vertex

reconstruction on energy

estimation

The impact on energy estimation of the improvements to neutrino interaction vertex

reconstruction and PID is presented in this chapter. Methods for estimating the energy

of showers and stopping tracks are described. A comparison of the vertex and PID

algorithms demonstrates the improvements achieved by the new methods in this the-

sis. This comparison is performed using a nonparametric proxy for calorimetric energy

resolution appropriate for skewed fractional energy difference distributions.

9.1 Introduction

Accurate measurement of the energy deposited in the TPC by the visible particles in the

final state of the neutrino interaction is of great importance to MicroBooNE’s physics

goals. Indeed, investigating the low-energy excess of events originally observed at Mini-

BooNE relies directly on achieving high-quality track and shower energy reconstruction

at low energies. The quality of this reconstruction is tightly coupled with a number of
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factors:

• Neutrino interaction vertex reconstruction: The neutrino vertex is critical

for accurate downstream reconstruction (see Chapter 4) and for accurate calori-

metric profiling of particles, which is jeopardised if the vertex is placed e.g. in the

middle of or at the wrong end of a particle. Improvements to this are developed

in Chapter 5 in this thesis.

• Particle range estimation: Energy estimation based on particle range, given

accurate PID, is typically robust. The algorithms developed in Chapter 7 to

calculate the calorimetric triplet (dE/dx,∆x, x) directly impact the estimation of

the 3D particle range. Likewise, the theoretical groundwork for estimating energy

from particle range in a LArTPC is laid out in Chapter 6.

• Track/shower identification: The method of particle energy reconstruction

chosen depends on whether the particle is track-like, in which case we can calcu-

late energy from range or by integrating the corrected and calibrated dE/dx mea-

surements along the track, or shower-like, in which case we sum, scale and correct

the measured charge. Pandora uses a combination of geometric and calorimetric

information to perform track/shower identification on 3D particles, as described

in Chapter 4.

• 2D/3D hit reconstruction: For both showers and tracks, the clustering of

hits in 2D and their subsequent reconstruction in 3D is critical for reconstructing

3D paths and calorimetric information. The quality of this procedure is strongly

affected by the accuracy of the neutrino vertex, which is significantly improved in

Chapter 5.

• Particle identification: Calculating track energy from range requires accurate

knowledge of the particle mass as well as the 3D path length. Development of

new algorithms for identifying muons, pions and protons based on calorimetric

information is the subject of Chapters 7 and 8.

All of these factors, except for track/shower identification, have been studied in the

course of this thesis. We therefore wish to quantify the effect on the estimation of particle
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energies of the two main subjects of this thesis: improvements to the neutrino interaction

vertex reconstruction (detailed in Chapter 5) and the two new PID algorithms, PidNet

and FOMA (detailed in Chapters 7 and 8).

In this chapter, we consider estimation of track and shower energies for fully con-

tained, well-reconstructed particles with correct track/shower labels in order to help

disentangle effects. For tracks, we use simulated charged current (CC) interactions

from BNB νµ simulation with at least three reconstructed calorimetric hits; for showers,

we use simulated CC interactions from BNB intrinsic νe simulation. The track valida-

tion is therefore dominated by the CC µ+ p channel and the shower validation by the

CC e+ p channel.

9.1.1 PID in practice

Estimation of track energy from range, which depends on the particle mass, is the pre-

ferred method in this chapter. Accurate distinction of MIPs and protons is therefore

of great importance for the energy estimator. Chapters 7 and 8 compared and con-

trasted the performance of PIDA, FOMA and PidNet from the perspective of building

binary/three-class classifiers in the idealized setting of only MIPs and protons. We wish

to characterize our ability to accurately select MIPs and protons based on the classifier

response. The results of this study for fully contained, well-reconstructed tracks from

BNB simulation are shown in Figures 9.1, 9.2 and 9.3 for PIDA, FOMA and PidNet,

respectively. Purity, efficiency and significance are defined as

purity(α) :=
|C(α) ∩ P |
|C(α)|

,

efficiency(α) :=
|C(α) ∩ P |
|P |

and

significance(α) :=
S(α)√

S(α) +B(α)
,

where

• C(α) is the set of particles passing the cut at threshold α;

• P is the set of particles of interest that the cut is selecting for (here either the

true set of protons or the true set of muons and charged pions);
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• S(α) := |C(α) ∩ P | is the number of signal events at threshold α; and,

• B(α) := |C(α) \ P | is the number of background events at threshold α.

In all cases, a cut at the default value of 0.5 achieves near-optimum performance.

As expected from the results in Chapter 8, PidNet is able to select MIPs and protons

considerably better than PIDA and FOMA. The shape of the classifier response is

markedly different between the classifiers; PIDA and FOMA are explicitly trained to

have probability-like outputs, whereas PidNet’s output is encouraged to be polarized by

its loss function.1 Contributions from track-like particles that are not MIPs or protons

are minimal. For the remainder of this chapter, PID is performed using these classifiers

by thresholding the output at 0.5; an output above this threshold identifies protons,

below identifies MIPs. All calorimetric work is performed using the collection plane

alone, as justified in Chapter 7.

9.2 Estimating shower energy

Following the procedure developed by the ArgoNeuT collaboration, shower energy is

estimated by converting the observed hit charge (e−reco) induced by electrons and photons

into energy depositions and summing them [160]. The conversion to energy depositions

requires multiplying the charge deposition by the following calibration constant [161]:

E
e/γ
reco(MeV)

e−reco
= 1.01

e−

e−reco
× 23.6eV

e−
× 10−6 MeV

eV
× 1

R
= 3.85× 10−5, (9.1)

where

• e− is the charge on an electron;

• 1.01e−/e−reco is an empirical factor that corrects the underestimation of the true

number of electrons collected on the wires; its value is obtained by measuring the

number of collected electrons using a sample of stopping muons and performing a

fit to the dE/dx profile expected from reference data [13];

• 23.6 eV/e− is the work function of liquid argon [162]; and,

1It is possible to encourage a neural network to have a more probabilistically meaningful output
through Bayesian machine learning or, more recently, normalizing flows.

165



Figure 9.1: Performance of the PIDA classifier described and trained in Chapter 7 on
well-reconstructed, fully contained tracks from BNB simulation. The PIDA classifier
output, which is probability-like, is shown in the top plot as a stacked histogram for
true MIPs and true protons. The efficiency, purity and significance of the cut for proton
and muon selection is given in the middle and bottom plots, respectively. The default
cut at 0.5 is indicated.
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Figure 9.2: Performance of the FOMA classifier described and trained in Chapter 7 on
well-reconstructed, fully contained tracks from BNB simulation. The FOMA classifier
output, which is probability-like, is shown in the top plot as a stacked histogram for
true MIPs and true protons. The efficiency, purity and significance of the cut for proton
and muon selection is given in the middle and bottom plots, respectively. The default
cut at 0.5 is indicated.

167



Figure 9.3: Performance of the PidNet classifier described and trained in Chapter 8 on
well-reconstructed, fully contained tracks from BNB simulation. The PidNet classifier
output, which is influenced by the shape of the loss function, is shown in the top plot
as a stacked histogram for true MIPs and true protons. The efficiency, purity and
significance of the cut for proton and muon selection is given in the middle and bottom
plots, respectively. The default cut at 0.5 is indicated.
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• R = 0.62 is the recombination correction for a MIP in a MicroBooNE-like detector

using the Modified Box model (see Section 6.4.1) [140].

Linear calibration of the shower energy estimation is performed by dividing the true

energy spectrum into 10 equally sized bins in the range 30 MeV to 2, 030 MeV, chosen

such that they are all well-populated, and comparing the observed (asymmetric) distri-

bution with the bin centre, as shown in Figure 9.4. There are two common fits used to

model lossy processes like this: the Crystal Ball function and its simpler variant, the

GaussExp function [163]. The (unnormalized) Crystal Ball function is defined as

fCB(x;α, n, x̄, σ) :=

exp
(
− (x−x̄)2

2σ2

)
, for x−x̄

σ > −α(
n
|α|

)n
exp

(
−α2

2

)(
n
|α| − |α| −

x−x̄
σ

)−n
, for x−x̄

σ ≤ −α

where α, n, x̄ and σ are fit parameters. The (unnormalized) GaussExp function is

defined as

fGE(x; x̄, σ, k) :=

exp
(

(x−x̄)2

2σ2

)
, for x−x̄

σ > −k

exp
(
k2

2 + k
(
x−x̄
σ

))
, for x−x̄

σ ≤ −k

where x̄, σ and k are fit parameters. The Crystal Ball function stitches together a power

law distribution with a Gaussian, whereas GaussExp uses an exponential decay in lieu

of the power law, which leads to more robust fitting procedure [164]. Having tested

both, we opted for the Crystal Ball function, which is able to provide a significantly

better fit to the data. The most likely value of this fit in each bin is used to create the

calibration curve, which is shown in Figure 9.5, yielding

Ee/γreco = 0.75E
e/γ
true − 0.21 MeV. (9.2)

The calibrated shower energy is therefore given by

E
e/γ
calib =

(
Ee/γreco + 0.21 MeV

)
/0.75. (9.3)

The calibrated shower energy measurements can then be used to estimate the calori-

metric energy resolution as a function of the true shower energy. We define the fractional

energy difference as

Efrac :=
Ecalib − Etrue

Etrue
. (9.4)
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Figure 9.4: True and reconstructed shower energy in 10 equally spaced true energy
bins for showers from the validation dataset, along with a Crystal Ball function fit. The
FWHM of the fit is indicated by dotted lines.
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Figure 9.5: The shower energy calibration curve for showers from the validation
dataset, given the most probable values of the Crystal Ball fit shown in Figure 9.4.
The y error bars here come from the FWHM of the fitted distribution; the x error bars
indicate the true energy bin width. The pink line shows a linear fit to the most probable
values.

The distribution of Efrac can be characterized in each energy bin, as shown in Figure

9.6, again with a Crystal Ball fit. The typical way to proceed would be to plot the

standard deviation σ from the Gaussian RHS of the Crystal Ball function. However,

this fails to capture any information about the power law part of the distribution, which

is where most of the uncertainty originates and indeed where most of the benefit of the

algorithms evaluated in this chapter are found. We therefore propose a nonparametric

alternative: we take the median absolute deviation (MAD) for the distribution, which

is defined as

MAD := median (|Xi −median(X)|) (9.5)

for some univariate data set X1, X2, · · ·Xn. The MAD of Efrac constitutes the energy

resolution measurement and the plot of MAD versus E for some true track or shower

energy E is used to compare algorithms. For a normal distribution with standard

deviation σ, MAD = Φ−1(3/4)σ ≈ 0.674σ, where Φ−1 is the quantile function for the

standard normal distribution [165].
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Figure 9.6: The fractional energy differences for showers from the validation dataset
following calibration in each of the 10 true energy bins, along with a Crystal Ball fit.
The FWHM is indicated by dotted lines.
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Figure 9.7: Theoretical calculation of kinetic energy from range in a MicroBooNE-like
LArTPC for muons, charged pions, charged kaons and protons. This is based on the
theory developed in Chapter 6, namely numerical integration of Equation 6.4 using our
package bethe-faster [132].

9.3 Estimating track energy

The procedure used in this section follows that in [112]. Properties of the MicroBooNE

LArTPC can be used to generate an estimate of a track-like particle’s energy given its

range. This is done via numerical integration of the Bethe-Bloch equation (see Equation

6.2) incorporating relevant detector effects.2 In practice, we generate lookup tables using

our bethe-faster [132] to obviate the need for repeated numerical integration, which

can be computationally expensive. The resulting energies from range are shown in

Figure 9.7 for a variety of track-like particles under MicroBooNE conditions.

The resulting energy is clearly a function of the particle mass, so the accuracy of PID

has a direct bearing on the energy reconstruction quality. The similarity between the

two particles termed MIPs (µ− and π±) is manifest. Kaons are excluded from analysis as

they are relatively rare in MicroBooNE compared with other tracks. After performing

the energy-from-range calculation, an analogous calibration process is performed as

described for showers, this time split into 5 buckets. For each vertex/PID algorithm,

2For a full treatment of this, see Chapter 6.
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Figure 9.8: The calorimetric energy resolution plot for showers from the validation
dataset using the SVM or RPhi neutrino interaction vertex selection algorithms.

all the steps of the track/shower calibration process are repeated to facilitate a fair

comparison.

9.4 Results and discussion

9.4.1 Effect of neutrino interaction vertex selection algorithm

The shower energy resolution plot of MAD(Efrac) versus E is given in Figure 9.8 for the

SVM and RPhi neutrino interaction vertex selection algorithms. For ease of comparison,

we also fit an calorimetric energy resolution equation:

MAD(Efrac) =
a√
E
⊕ b

E
⊕ c, (9.6)

where

• a, b and c are fit parameters representing the stochastic, noise and constant error

term, respectively; and,

• ⊕ represents addition in quadrature.
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Figure 9.9: Fractional energy differences for showers from the validation dataset using
the SVM or RPhi neutrino interaction vertex selection algorithms.
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Figure 9.10: The calorimetric energy resolution plot for tracks from the validation
dataset using the SVM or RPhi neutrino interaction vertex selection algorithms.

Figure 9.11: SVM/RPhi vertex algorithm comparison using the calorimetric energy
resolution plot for tracks from the validation dataset. This is further split into quasi-
elastic charged current BNB simulation with a single muon in the final state (SINGLE MU,
left) and all other channels (EX SINGLE MU, right).

The fractional energy differences in each bin are given in Figure 9.9. There appears

to be significant improvement to the energy resolution for showers at lower energies

when using SVM algorithm rather than RPhi, which equalizes as the energy increases

to above ∼ 1GeV. This tallies with improvements to the CC e− + p channel seen for

E < 1GeV in Chapter 5.

The effect of the vertex algorithm on track energy resolution is illustrated in Figure

9.10, along with the fractional energy differences in Figure 9.12. Track energy resolution
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is mostly unaffected by the choice of vertex algorithm at low energies, with degradation

due to the SVM algorithm apparent for E > 0.5 GeV. Degradation at high energies

can again be expected given the results in Chapter 5, though the improvement to low-

energy track reconstruction does not appear to have a significant effect on the energy

resolution. This is potentially due to the dominance of other sources of error, such as

poor calorimetric reconstruction for short tracks. To probe this further, we subdivide

Figure 9.10 into single muons (SINGLE MU) and all other channels (EX SINGLE MU). From

Chapter 5, we would expect reduced performance for SINGLE MU at high energies, along

with an overall improvement for EX SINGLE MU channels. This expectation is confirmed

by Figure 9.11. For single muons, the likely source of performance degradation at high

energies is the presence of δ-rays in the middle of tracks (see Chapter 5).

9.4.2 Effect of PID algorithm

The effect of the PID algorithm choice on track energy resolution is illustrated in Figure

9.13, along with the fractional energy differences in Figure 9.14.

Consistent with results in Chapters 7 and 8, improvements to PID quality across the

energy spectrum translate into finer energy resolution. PidNet consistently outperforms

PIDA and FOMA, with FOMA performing slightly better than PIDA. The relatively

small scale of the changes may reflect the dominance of other modes of calorimetric

error that contribute to the smearing of the distribution, such as split/merged tracks,

poor 3D length reconstruction and hit-finding issues.

9.5 Conclusions

The impact of improved neutrino interaction vertex reconstruction and particle identi-

fication on particle energy estimation was one of the motivations for the work presented

in this thesis, along with the intrinsic benefits of high-quality neutrino vertices and more

accurate particle tagging. As expected from Chapter 5 vertex results, we observed an

improvement to energy resolution at low energies for shower and tracks excluding sin-

gle muons. For single muons, we observe a degradation in performance, tallying with

the decreased vertex quality for this topology, which constituted part of a performance
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Figure 9.12: Fractional energy differences for tracks from the validation dataset using
the SVM or RPhi neutrino interaction vertex selection algorithms.

tradeoff with more complex topologies. The significant increase in PID quality offered

by PidNet in Chapter 8, however, translated into only modest gains in energy resolution,

likely due to other reconstruction errors dominating the resolution width.
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Figure 9.13: The calorimetric energy resolution plot for tracks from the validation
dataset using the PID, FOMA or PidNet PID algorithms.

Figure 9.14: Fractional energy differences for tracks from the validation dataset using
the PID, FOMA or PidNet PID algorithms.
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Chapter 10

Conclusions

The primary goal of the MicroBooNE experiment is to resolve the low-energy excess of

electron-like events observed at the LSND and MiniBooNE experiment, an effort which

remains ongoing. Achieving this goal will represent the culmination of a vast body of

research spanning the design and construction of LArTPCs, signal processing, event

reconstruction and the development of novel techniques for particle identification, elec-

tron/photon discrimination and cosmic background rejection, to name a few. Beyond

this flagship analysis, the same research feeds into a number of other studies, such as

providing more accurate estimates of interaction cross-sections and designing algorithms

for reconstructing events in LArTPCs.

We developed a new machine-learned ranking algorithm for selecting the most plau-

sible neutrino interaction vertex candidate, the first instance of a machine learning (ML)

approach used in Pandora pattern recognition. The performance benefit, particularly

for more complex topologies, was demonstrated to be significant. For simulated BNB νµ

events, the number of events with the neutrino interaction vertex reconstructed within

5 cm of the true vertex increased from 59.2% to 63.9% compared with the previous ap-

proach. For simulated intrinsic BNB νe events it increased from 53.6% to 59.3%. For CC

resonant µ+π0 events, it increased from 56.3% to 71.2%; for CC resonant e+π0 events,

it increased from 45.1% to 60.9%. We noted, however, a slight decrease in vertex qual-

ity for single muons, single electrons and high-energy µ+Np events due to δ-rays and

track-like/shower-like electron transitions, coupled with less reliance on simple beam
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deweighting. There is scope for such issues to be corrected for at the analysis level.

Applying the theory of charged particle energy losses in liquid argon, we developed

novel first- and second-order analytic low-energy approximations to modal dQ/dx and

studied their error in a LArTPC. We established that modal, rather than mean, energy

losses are the most statistically justifiable in this setting and used the low-energy approx-

imations to develop a robust track PID method called the first-order modal approxima-

tion (FOMA), employing the technique of repeated median regression. Despite requiring

no tuning and being agnostic to detector parameters, the two variables produced by the

model are demonstrated to have modestly superior MIP/proton discriminative power

than comparable method PIDA. Without MC quality cuts, FOMA achieved a classifi-

cation accuracy of 88.8% against a baseline of 66.0%, compared with 87.1% against a

baseline of 65.8% for PIDA on simulated BNB νµ events. We performed a study on real

data and observe reasonable FOMA data/MC agreement, comparable to that of PIDA.

To address the decrease in performance observed in simulated events without MC

cuts using the classical PIDA/FOMA approaches, we developed a data-driven method

for track PID called PidNet using deep learning. Inspired by the PIDA/FOMA data/MC

domain adaptation philosophy, we drew on developments in representation learning by

training a two-channel 1D convolutional autoencoder to learn 16-dimensional represen-

tations of the input calorimetric signal. We demonstrated that the method performs

significantly better than both PIDA and FOMA on MIP/proton classification across a

broad energy spectrum, achieving an accuracy of 93.4% against a baseline of 65.5%.

We carried out a study comparing real data with simulation which showed encouraging

agreement, confirming that the representations had successfully abstracted generalizable

information from the calorimetric profiles.

Finally, we considered the effect of the improvements to neutrino vertex reconstruc-

tion and PID on track and shower energy estimation using standard calibration and

energy-from-range methods performed in MicroBooNE analyses. We demonstrated that

the new vertex selection algorithm improves shower energy resolution compared with

the previous algorithm, particularly at low energies. Track energy resolution, however,

appears to deteriorate somewhat in the highest considered energy range 990 MeV ≤ E <

1, 230 MeV for µ + Np events but improve for other events in this energy range. This
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tallies with the slight decrease in vertex quality observed in single-muon and high-energy

µ+Np events, which are abundant in the final state of νµ interactions. We found that

PidNet offers an advantage to track energy resolution over FOMA (and FOMA over

PIDA) across the energy spectrum and especially so at lower energies.

Status and next steps

Since 2017, the vertex selection algorithm presented in Chapter 5 has been the default

used at MicroBooNE. This has enabled novel studies of neutrino interactions with up to

six visible particles in the final state, as well as contributing directly to MicroBooNE’s

low-energy excess analysis. This has inspired a multitude of machine-learning-based

Pandora improvements, including a SVM-based track/shower identification algorithm,

a neutrino slice selection algorithm and a retrained vertex selection algorithm for recon-

struction at ProtoDUNE/DUNE [166]. As a fundamental part of the reconstruction pro-

cess, the vertex has far-reaching consequences for both downstream reconstruction and

physics analyses, including PID and energy estimation. Future vertexing work should

focus on the introduction of new features to improve predictions, such as those taking

into account topological information from Pandora’s particle hierarchy, and extending

this work using deep learning techniques that can be made robust to data-simulation

disagreement and perhaps even domain shift between experiments.

The two PID algorithms presented in Chapters 7 and 8 were finalized at the end of

this thesis and have yet to be incorporated into mainstream analysis at MicroBooNE.

Future work should consider the introduction of stronger physically motivated inductive

biases into the architecture or objective of the deep learning algorithm, and the use of

techniques that encourage robustness to data-simulation disagreement, such as adver-

sarial domain adaptation. More broadly, all machine learning algorithms in this thesis

can be tuned for analyses, topologies or experiments; the ability for users to choose from

a library of trained models or fine-tune them could be low-hanging fruit for improving

the quality of analyses.
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Figure 10.1: Artist’s illustration of the SBN Program at Fermilab, Illinois. The BNB
travels from right to left, first passing through SBND (“SBN Near Detector”), then
MicroBooNE, then ICARUS T600 (“SBN Far Detector”). Figure from [20].

Figure 10.2: The DUNE beamline, beginning at Fermilab, Illinois, before travelling
1, 300 km to a 70 kt LArTPC-based detector in the former gold mines of the Sanford
Lab, South Dakota. Figure from [167].

Outlook

MicroBooNE exists as the first step in the Short-Baseline Neutrino (SBN) Program at

Fermilab (see Figure 10.1) [20], preceding the Short-Baseline Far Detector (ICARUS

T600) [16] and the Short-Baseline Near Detector (SBND) [17]. All three detectors em-

ploy similar LArTPC technologies and sit at different places along the BNB: SBND has

an active LAr mass of 12 tons1 and sits 100m from the BNB target; MicroBooNE 87

tons and 470m from the target; and, ICARUS T600 476 tons and 600m from the target.

11 ton = 2,000 lb here, following the US definition.
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Together, these experiments offer an unprecedented opportunity to study short-baseline

neutrino oscillations and constrain BNB flux measurements, interaction cross-sections

and detector effects, as well as facilitating knowledge-sharing at the signal processing, re-

construction and analysis levels. The next stage in our understanding of neutrino physics

will stem from the long-baseline Deep Underground Neutrino Experiment (DUNE; see

Figure 10.2) [166] at Fermilab and the Hyper-Kamiokande (HK) experiment in Japan

[18]. Both DUNE and HK hope to observe and measure CP violation in the leptonic

sector [19], determine the ordering of the neutrino masses, observe cosmic neutrinos

and search for signals of proton decay. Knowledge and techniques developed at Mi-

croBooNE, such as event reconstruction and PID in LArTPCs, will feed directly into

reconstruction and analysis at DUNE. Algorithms developed in this thesis are already

being used to reconstruct real ProtoDUNE events and simulated DUNE events.
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Appendix A

Further vertex selection

algorithm validation

A.1 Vertex SVM performance

Figure A.1 shows a summary of the performance of the vertex-level classifier; that is,

the performance of the classifier that tries to select the true vertex from vertices in the

same (best) region. See Chapter 5 for full details. Figure A.2 shows the distribution

of features used in the vertex selection SVM for the true best vertex and for the other

vertices in the region.

Figure A.1: The performance of the vertex classifier: the confusion matrix (left) and
ROC curve (right) across the simulated BNB νµ spectrum.
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Figure A.2: The distributions of features used in the single vertex selection algorithm
for the correct and incorrect vertex candidates across the simulated BNB νµ spectrum.
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A.2 Detailed results

This section explores the performance of the vertex-level and region-level classifiers

in greater detail. This includes MC matching purity and completeness for the BNB νµ

spectrum (Figure A.3), MC matching purity and completeness for the BNB νe spectrum

(Figure A.4), comparing the two vertex algorithms. The remaining plots in this section

show channel-specific performance and feature distributions for channels of general in-

terest at MicroBooNE (CCQEL MU, CCQEL MU P, CCRES MU PIZERO, CCQEL E, CCQEL E P

and CCRES E PIZERO). For a detailed description of each plot, refer to the captions.

Figure A.3: The purity and completeness of the MC matches for the two vertex
algorithms as a function of true neutrino energy across the simulated BNB νµ spectrum.
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Figure A.4: The purity and completeness of the MC matches for the two vertex
algorithms as a function of true neutrino energy across the simulated BNB intrinsic νe
spectrum.
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Figure A.5: The distributions of features used in the region selection algorithm for
the correct and correct vertex candidates for the simulated BNB νµ CC quasi-elastic
µ+ 0p channel.
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Figure A.6: The distributions of features used in the region selection algorithm for
the correct and correct vertex candidates for the simulated BNB νµ CC quasi-elastic
µ+ 1p channel.
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Figure A.7: The distributions of features used in the region selection algorithm for
the correct and correct vertex candidates for the simulated BNB νµ CC resonant µ+π0

channel.
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Figure A.8: The distributions of features used in the region selection algorithm for the
correct and correct vertex candidates for the simulated BNB intrinsic νe CC quasi-elastic
e+ 0p channel.
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Figure A.9: The distributions of features used in the region selection algorithm for the
correct and correct vertex candidates for the simulated BNB intrinsic νe CC quasi-elastic
e+ 1p channel.
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Figure A.10: The distributions of features used in the region selection algorithm for
the correct and correct vertex candidates for the simulated BNB intrinsic νe CC resonant
e+ π0 channel.
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Figure A.11: The distributions of features used in the vertex selection algorithm for
the correct and correct vertex candidates for the simulated BNB νµ CC quasi-elastic
µ+ 0p channel.
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Figure A.12: The distributions of features used in the vertex selection algorithm for
the correct and correct vertex candidates for the simulated BNB νµ CC quasi-elastic
µ+ 1p channel.
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Figure A.13: The distributions of features used in the vertex selection algorithm for
the correct and correct vertex candidates for the simulated BNB νµ CC resonant µ+π0

channel.
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Figure A.14: The distributions of features used in the vertex selection algorithm for
the correct and correct vertex candidates for the simulated BNB intrinsic νe CC quasi-
elastic e+ 0p channel.
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Figure A.15: The distributions of features used in the vertex selection algorithm for
the correct and correct vertex candidates for the simulated BNB intrinsic νe CC quasi-
elastic e+ 1p channel.
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Figure A.16: The distributions of features used in the vertex selection algorithm for
the correct and correct vertex candidates for the simulated BNB intrinsic νe CC resonant
e+ π0 channel.
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Figure A.17: Vertex reconstruction quality for the two algorithms for the BNB νµ CC
quasi-elastic µ+ 0p channel.
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Figure A.18: MC particle matching quality for the two algorithms for the BNB νµ
CC quasi-elastic µ+ 0p channel.
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Figure A.19: Vertex reconstruction quality for the two algorithms for the BNB νµ CC
quasi-elastic µ+ 1p channel.
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Figure A.20: MC particle matching quality for the two algorithms for the BNB νµ
CC quasi-elastic µ+ 1p channel.
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Figure A.21: Vertex reconstruction quality for the two algorithms for the BNB νµ CC
resonant µ+ π0 channel.
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Figure A.22: MC particle matching quality for the two algorithms for the BNB νµ
CC resonant µ+ π0 channel.
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Figure A.23: Vertex reconstruction quality for the two algorithms for the BNB intrin-
sic νe CC quasi-elastic e+ 0p channel.
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Figure A.24: MC particle matching quality for the two algorithms for the BNB in-
trinsic νe CC quasi-elastic e+ 0p channel.
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Figure A.25: Vertex reconstruction quality for the two algorithms for the BNB intrin-
sic νe CC quasi-elastic e+ 1p channel.
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Figure A.26: MC particle matching quality for the two algorithms for the BNB in-
trinsic νe CC quasi-elastic e+ 1p channel.
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Figure A.27: Vertex reconstruction quality for the two algorithms for the BNB intrin-
sic νe CC resonant e+ π0 channel.
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Figure A.28: MC particle matching quality for the two algorithms for the BNB in-
trinsic νe CC resonant e+ π0 channel.
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Appendix B

FOMA-related mathematical

derivations

B.1 Derivation of Equation 6.34

We begin by hijacking the derivation of Equation 6.28 at 6.24. Neglecting density effect

corrections (for reasons discussed in the main text) and terms O(T ′2) and above yields

T ′
dT ′

dx
= − ξ′χ

2mc2
. (B.1)

This can be integrated directly, noting that the scaled modal kinetic energy T ′(x =

R) = 0 by definition of the particle range R, so∫ T ′

0
tdt = − ξ′χ

2mc2

∫ x

R
dx′ (B.2)

∴ T ′2 =
ξ′χ

mc2
(R− x) (B.3)

T ′ = ±
√
ξ′χ(R− x)

mc2
. (B.4)

Physically, we require T ′ ∈ [0,∞). This gives us the final expression for T ′:

T ′(x;R,m) =

√
ξ′χ(R− x)

mc2
. (B.5)

Differentiating with respect to x yields

− dT ′

dx
=

1

2

√
ξ′χ

mc2(R− x)
. (B.6)
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Finally, using −dE/dx = −dT/dx = −mc2 · dT ′/dx (see Section 6.3.1),

− dE

dx
=

1

2

√
ξ′χmc2

R− x
. (B.7)

B.2 Second-order approximation to the mode

A justifiable extension to this work would be developing a method based on the equiv-

alent second-order approximation to the mode. The second-order model is specified by

Equations 6.28 and 6.45 and requires Newton’s method to solve (see Section 6.3). To

loosen the dependence of the method on ξ′ and χ, we wish to proceed in analogy with

the first-order method described in Section 7.5. However, due to the parametrization of

the system by T ′ and its complex dependence on ξ′ and χ, it is not possible to condense

the parameters in the same way for the second-order approximation. Whatever method

is chosen must require numerical inversion of either Equation 6.28 or Equation 6.3, and

a straight line fit to estimate the mode as per Section 7.4. The method should then lead

to the definition of a low-dimensional parameter space that can be used to separate the

particles by mass.

One way to satisfy these requirements is to begin by inverting Equation 6.33 using

Newton’s method and the best estimate of the detector parameters:

0 = f

(
T ′; ξ′, χ,

dE

dx

)
:=

dE

dx
+ ξ′

(
(T ′ + 1)2

T ′(T ′ + 2)

[
2 ln

(
1 + T ′

)
+ χ

]
− 1

)
(B.8)

∴
∂f

∂T ′
= −2ξ′(T ′ + 1) [χ− T ′(T ′ + 2) + 2 ln(1 + T ′)]

T ′2(T ′ + 2)2
. (B.9)

This can be solved numerically for T ′ at each hit in the Bragg peak (R − x < 10 cm,

as per Section 6.3.2) using Newton’s method and the Modified Box model (Equation

6.43). Then, from Equation 6.28,

1

3
ln

(
1 +

2T ′2

χ

)
+

√
χ

2
arctan

(√
2

χ
T ′
)
− T ′ = M ′(m)(R− x), (B.10)

where

M ′(m) :=
2ξ′

3mc2
. (B.11)

So a plot of the LHS (again using the best estimate for χ) against (R−x) using repeated

median regression should yield a straight line passing through the origin with gradient
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M ′(m). However, in choosing inexact values for ξ′ and χ, it is likely that the dependence

on l is not completely accounted for – and also likely that discrepancies in the parameters

and in the model will lead to a distortion and blurring of the predicted relationship.

We therefore define a 2D parameter space of the gradient and residual intercept (as per

our method in first order case) or a 3D parameter space also incorporating l. Similarly

to the first-order method, training would be performed by populating the a graph with

stopping particles of various types and identifying regions with each particle ID, either

manually or using a clustering algorithm, on simulation or data. Once trained, the

values of M and l for a given particle can then be mapped to a particle label.
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Appendix C

PidNet architecture

The architectures of the two- and three-class classifiers used in Chapter 8, based on

the autoencoder-learnt representation are described in Figure C.1 using the typical

TensorFlow convention. The architecture of the autoencoder itself is given in Figure

C.2.

Figure C.1: The architectures of the binary (left) and three-class (right) classifiers
used in this chapter.
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Figure C.2: The architecture of the convolutional autoencoder used in this chapter.
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