
REVIEW ARTICLE OPEN

Biological basis for novel mesothelioma therapies
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Mesothelioma is an aggressive cancer that is associated with exposure to asbestos. Although asbestos is banned in several
countries, including the UK, an epidemic of mesothelioma is predicted to affect middle-income countries during this century owing
to their heavy consumption of asbestos. The prognosis for patients with mesothelioma is poor, reflecting a failure of conventional
chemotherapy that has ultimately resulted from an inadequate understanding of its biology. However, recent work has
revolutionised the study of mesothelioma, identifying genetic and pathophysiological vulnerabilities, including the loss of tumour
suppressors, epigenetic dysregulation and susceptibility to nutrient stress. We discuss how this knowledge, combined with
advances in immunotherapy, is enabling the development of novel targeted therapies.

British Journal of Cancer (2021) 125:1039–1055; https://doi.org/10.1038/s41416-021-01462-2

BACKGROUND
Mesothelioma is a malignancy primarily of the thoracic and
abdominal linings that affects 2600 individuals in the UK annually
with a median survival of about 1-year post-diagnosis [1]. It
develops from cells of the mesothelium, a serous membrane that
lines the coelomic cavities (Box 1), frequently as a result of
asbestos exposure, although other potential triggers of mesothe-
lioma include engineered long, straight, carbon nanotubes,
genetic predisposition and radiation therapy. In the case of
asbestos, inhaled microscopic fibres migrate through the lung to
the pleural space where they can persist for decades, activating
mitogenic and inflammatory pathways. Local generation of
reactive oxygen species by the asbestos fibres appears to cause
DNA damage, triggering malignant transformation.
Malignant pleural mesothelioma accounts for around 80% of

reported cases of mesothelioma, followed by peritoneal (∼20%
cases) and tunica vaginalis (∼1% cases) mesotheliomas. This
review focuses on the most common pleural mesothelioma. The
three main histological subtypes are epithelioid (50–70% of
cases), sarcomatoid (10–20% of cases) and mixed or biphasic
(30% of cases) [2] [Fig. 1]. Epithelioid mesothelioma cells often
resemble benign, reactive mesothelial cells—which exist as flat
or cuboidal forms—with varying degrees of atypia. By contrast,
sarcomatoid mesothelioma consists of spindle cells, while
biphasic mesothelioma has both epithelioid and sarcomatoid
elements. Typically, stroma is abundant and often comprises the
majority of the tumour mass. The subtypes represent a spectrum
of trans-differentiation with the sarcomatoid phenotype being
driven by epithelial–mesenchymal transition (EMT); while
epithelioid mesothelioma involves mesenchymal–epithelial
transition (MET) [3]. Although EMT is not routinely used for

diagnosis, it might be relevant to histological subtyping, with
downregulation of EMT markers (e.g. cadherin, c-MYC and
vascular endothelial growth factor receptor (VEGFR2)) and
upregulation of EMT transcription factors (e.g. Slug, Twist,
ZEB1 and ZEB2) observed in sarcomatoid mesothelioma [4, 5].
Accordingly, epithelial markers E-cadherin, β-catenin and
cytokeratins 5/6 are abundantly expressed in epithelioid
mesothelioma and progressively lost in biphasic and sarcoma-
toid subtypes [5].
The histological subtypes remain the main prognostic para-

meter for mesothelioma patients [6]: sarcomatoid mesothelioma
has the worst prognosis, with a median survival of 4 months,
compared with 13.1 months and 8.4 months for epithelioid and
biphasic mesotheliomas, respectively [1, 5]. Histology can be
combined with age, gender, probability of diagnosis and
leukocyte count in the validated European Organisation for
Research and Treatment of Cancer (EORTC) composite score to
help predict survival [7, 8]. Other potential prognostic markers
arising from studies of cohorts of patients with mesothelioma
include the ER stress marker CHOP (C/EBP homologous protein)
[8], monocarboxylate transporter 4 (MCT4) [9], CD31 (a stromal
marker) [10], periostin and phosphatase and tensin homologue
(PTEN) (EMT-related molecules) [11].
Owing to its insidious presentation, only a minority of patients

are diagnosed with early stage 1A or 1B mesothelioma that is
amenable to surgery. Although cytoreduction by pleurectomy-
decortication or radical extra-pleural pneumonectomy (EPP) has
been advocated [2], the results have been disappointing [12].
For inoperable cases, palliative chemotherapy is the current
standard of care in Europe [13], with a combination of
pemetrexed and cisplatin increasing median survival by
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3 months [13]. The development of resistance to chemotherapy
is a major problem, with almost 50% of mesotheliomas showing
resistance to the treatment [13]. An important unmet need
therefore exists for effective therapy for this cancer. Under-
standing the biology of mesothelioma could identify new
therapeutic approaches.
Here, we discuss the genetic and cellular vulnerabilities

identified in mesothelioma, and the tumour immune landscape,
which together provide a rational for the development of novel
treatments. We provide a comprehensive summary of previous
and current clinical trials.

HALLMARKS OF MESOTHELIOMA OF POTENTIAL
THERAPEUTIC RELEVANCE
Targeting intrinsic features of cancer, such as genetic instability,
unchecked growth, aberrant energetics, enhanced angiogenesis,
and immune evasion, suggest a variety of therapeutic options in
mesothelioma. We therefore begin by assessing this biology.

Genetic alterations in mesothelioma
Mesothelioma has a modest mutational burden compared with
other cancers [14–16]. Nevertheless, a number of key tumour
suppressor genes are frequently affected, including those encod-
ing cyclin-dependent kinase inhibitor 2A (CDKN2A), BRCA1-
associated protein 1 (BAP1) and neurofibromin 2 (NF2) [17–19]
[Fig. 2]. The importance of alterations in these genes is supported
by whole-exome sequencing and somatic copy number alteration
(SCNA) analyses [15, 16, 20, 21].

BAP1. The importance of BAP1 genetics in the development
and prognosis of mesothelioma has been extensively reviewed
elsewhere [22–24]. In humans, germline mutations in BAP1
predispose to malignant mesothelioma [25], and together with
other pathogenic mutations linked to cancer accounts for 12%
of all cases [26]. Remarkably, however, patients with mesothe-
lioma who carry germline mutations of BAP1 have a significantly
better prognosis compared with those with sporadic disease,
although the mechanism of this is unknown [26, 27]. BAP1 is an
important regulator of interactions between genes and the
environment [28], and loss of BAP1 enhances the susceptibility
of fibroblasts and mesothelial cells to ionising or UV irradiation,
and to asbestos [29], which contributes to the development of
asbestos-induced mesothelioma in vivo [30, 31]. The BAP1 gene
product is a deubiquitinating enzyme that plays a key role in the
nucleus in the cell cycle, cell death and the DNA damage
response [22, 23]; while in the cytoplasm, it triggers apoptosis by
regulating the release of calcium ions from the endoplasmic
reticulum through its interaction with the receptor for inositol
1,4,5-trisphosphate, IP3R3 [29]. BAP1 is also involved in the
epigenetic regulation of many genes via polycomb repressor
complex 2 (PRC2), which has potential therapeutic relevance
[22], as the loss of BAP1 promotes sensitivity to PRC2 inhibitors,
which block tumour growth and invasion [32]. One such drug,
tazemetostat, is currently in phase II clinical trials for mesothe-
lioma (NCT02860286).

NF2. NF2 encodes Merlin, which negatively regulates receptor-
dependent mitogenic signalling, and downstream phosphati-
dylinositol 3-kinase (PI3K)–AKT activity, and activates Hippo
pathway [33]. Although the loss of NF2 has been suggested to
drive mesothelioma carcinogenesis [34], additional mutations
are necessary as demonstrated by murine models that require
combined deletions such as NF2;INK4a/ARF or NF2;p53 [35].
Merlin controls the expression of oncogenic genes by inhibiting
the E3 ubiquitin ligase CRL4DCAF1, to stabilise large tumour
suppressor kinase 1/2 (LATS1/2), which in turn inhibits the
transcriptional co-activators YAP and TAZ, two downstream

Box 1. Biology of healthy mesothelium

The mesothelium is a serous membrane that lines the coelomic cavities. It is
derived from embryonic mesoderm and comprises the pleura, pericardium,
peritoneum, tunica vaginalis testis and tunica serosa uteri. During development,
the lateral plate mesoderm divides into layers, one of which combines with
ectoderm to become the somatopleure, which forms the body wall and parietal
pleura; another combines with endoderm to become the splanchnopleure, giving
rise to the coelomic organs and visceral pleura.
Chimera experiments using chick embryos have revealed that most mesothe-

lium derives from an organ-intrinsic mesothelial precursor [215]. In humans, the
pleura forms between the fifth and sixth embryonic weeks, before the
submesothelial connective tissue. Lineage tagging suggests that mesothelial
precursors migrate into the mesenchyme, where they undergo
mesothelial–mesenchymal transition (MMT) contributing to bronchial smooth
muscle, vascular smooth muscle and fibroblasts [216, 217]. Wilms’ tumour 1 (WT1)
is a transcription factor that serves as a mesothelial marker owing to its relatively
limited expression in healthy adult tissues. WT1–Cre marks cells of pleural
mesothelial origin in mice and has revealed that WT1+ cells co-localise with α-
smooth muscle actin (SMA)+ cells in pulmonary vessels. Migration of WT1+ cells
into the parenchyma was imaged by time-lapse microscopy in fetal murine lung
[216]. In healthy adults, WT1 appears to control the integrity of pleural
membranes by preventing MMT [218].
The pleural cavity is the potential space between adjacent visceral and parietal

pleurae, which contains a thin layer of fluid and allows low friction sliding
between the two serous membranes [Figure 4]. The pleura itself is only 40 μm
thick and consists of five layers: a monolayer of mesothelial cells on a basal
lamina; a superficial elastic layer; a collagen-rich layer containing vessels, nerves
and immune cells; and a deep fibroelastic layer. The deep layer is tightly adherent
to the underlying structures e.g. muscle, rib or lung parenchyma. Kampmeier foci
on the mediastinal pleura contain aggregates of macrophages and lymphocytes,
which are involved in immune surveillance and phagocytosis of irritants and
pathogens.
Mesothelial cells can exist in flat or cuboidal forms. Cell–cell contacts towards

their apical surfaces regulate pleural permeability and maintain cell polarity; N-
cadherin rather than epithelial E-cadherin is found in mesothelial adherens
junctions. Mesothelin is a 40-kDa glycoprotein expressed on mesothelial cells,
which mediates cell adhesion partially through its interaction with mucin CA125/
MUC16 [219]. Its purpose remains ambiguous as no abnormalities were detected in
mesothelin-knockout mice [220].
Pleural fluid is secreted predominantly from the apical zones of the parietal

pleura by filtration from capillaries. Numerous microvilli provide a large surface area
for secretion and absorption. In addition, primary cilia detect friction and
inflammatory cytokines, and so are important in mesothelial repair. When these
roles in lubrication and inflammation are perturbed, fibrosis and adhesions
can occur.

Normal parietal pleura Epithelioid mesothelioma

Biphasic mesothelioma Sarcomatoid mesothelioma

Fig. 1 The histopathological classification of malignant mesothe-
lioma. Images of haematoxylin and eosin (H&E) stained normal
pleura (×100), epithelioid (×100), sarcomatoid (×100) and biphasic
(×100) mesothelioma subtypes, indicating the presence of flat,
cuboidal cells in epithelioid mesothelioma as well as spindle cells
and abundant stroma in sarcomatoid mesothelioma. Scale bar=
200 µm. The images were provided by Royal Papworth Hospital
Research Tissue Bank.
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effectors of the Hippo pathway [36]. Mutations of Hippo
pathway components, such as LATS1 and LATS2, have been
observed in many mesothelioma specimens with aberrant YAP
activation [16, 21]. Furthermore, co-inactivation of LATS2 and
NF2 in mesothelioma cell lines triggers the loss of cell–cell
contact inhibition, dysregulation of Hippo and mammalian
target of rapamycin (mTOR) signalling, and correlates with
higher sensitivity to inhibitors of the PI3K–AKT–mTOR pathway
[37]. Targeting the activation of YAP commonly observed in
mesothelioma [38] either by inhibiting Rho-associated kinase
(ROCK), a downstream target of YAP, or by disrupting the
interaction of YAP with TEA domain (TEAD) transcription factors
using verteporfin—impedes mesothelioma cell proliferation
and invasion in vitro [39]. Interestingly, Hippo signalling appears
to stabilise growth arrest and DNA damage 34 (GADD34)
protein, resulting in increased YAP phosphorylation and
retention in the cytoplasm, as GADD34 directs protein
phosphatase 1 (PP1) away from YAP [40]. This might be
particularly relevant to mesothelioma, as GADD34 expression
correlates with mesothelial cell differentiation and is lost in
more aggressive subtypes [8].

CDKN2A. CDKN2A encodes two cell-cycle regulators, p16INK4a

and p14ARF [17, 41]. p16 INK4a inhibits cyclin-dependent kinase
(CDK)4 and CDK6-dependent phosphorylation of retinoblas-
toma protein (RB), whereas p14ARF prevents p53 degradation by
Mdm2 [41]. Mutations in TP53 occur in less than 10% of
mesotheliomas [15, 21] but correlate with worse survival [16].
Given that CDKN2A is deleted in approximately 45% of
mesothelioma cases [15], palbociclib, a CDK4/6 kinase inhibitor,
has been tested for its ability to induce cell-cycle arrest and
senescence in mesothelioma [42]. Treatment with palbociclib
led to AKT phosphorylation, but was shown to induce

synergistic inhibition of cell proliferation when combined with
PI3K/AKT/mTOR inhibitors.

Additional alterations. The majority of studies have focused on
the more common epithelioid mesothelioma, with relatively few
reports pertaining to the rarer, but more aggressive, sarcomatoid
subtype. A report in 2020 showed that loss of PTEN or TP53
promotes the development of non-epithelioid mesotheliomas,
with activation of PI3K and MEK–ERK/MAPK [43]. Accordingly,
combined pharmacological inhibition of MEK using selumetinib
and PI3K using AZD8186 inhibited tumour growth and increased
survival in mice [43], pointing towards a potential novel targeted
strategy for sarcomatoid mesothelioma. Other profiling studies
have identified potential therapeutic vulnerabilities in this rare
subset of mesotheliomas [44–46]. For instance, LOXL2 (an
EMT marker) and VISTA (an immune checkpoint) were found
to be overexpressed in tumours with sarcomatoid-like
characteristics [16, 44], while differential expression of EMT-
related genes identified a subgroup of mesothelioma patients
with poor prognosis [45]. Another molecular subgroup displaying
sarcomatoid features appears to be more sensitive to drugs
inhibiting Wee1, a component of the G2/M cell-cycle checkpoint,
and ROCK [44].

Epigenetic dysregulation in mesothelioma. Post-translational
modification of histones and methylation of DNA are often
altered in cancers [47] and, in mesothelioma, hypermethylation
of tumour suppressor gene (CDK2NA, APC, CCND2 and RASSF1)
promoters and upregulation of DNA methyltransferases
(DNMTs) have been reported [48], while mutations in histone
methyltransferases (SETDB1 and SETD2) are often found in
patient samples [16, 21, 49]. These observations provided a
rationale for targeting histone deacetylases (HDACs) using
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specific inhibitors (HDACi), which have multiple anticancer
effects: they antagonise the cell-cycle and angiogenesis,
promote apoptosis and exert anti-inflammatory activity
[50, 51]. A phase I trial of vorinostat (an inhibitor of HDAC1,2,3
and 6) [52] in 13 patients with mesothelioma showed a partial
response in two patients [53]. Unfortunately, a subsequent
phase III trial in 650 patients with mesothelioma demonstrated
no improvement in overall survival (OS) [54]. Newer HDACi, such
as trichostatin A and its analogues, show promising activity in
combination with the DNMT inhibitor decitabine plus immu-
notherapy [55]. In vitro studies suggest that the loss of BAP1
affects the sensitivity of mesothelioma cells to HDACi [56],
indicating that stratification of patients might help to identify a
responsive subgroup. Furthermore, decitabine might also prove
anti-proliferative in mesothelioma through the upregulation of
p21, independent of its effect on DNMTs [57].
Loss of tumour suppressive microRNAs that control cell

growth, migration and apoptosis is often observed in mesothe-
lioma [58]. Several preclinical studies have reported that
restoring such microRNAs using synthetic mimics can confer
anti-tumour activity; examples include miR-15/16 [59] and miR-
34 [60] family members, as well as miR-1 [61], miR-31 [62] and
miR-145 [63]. Moreover, miR-16-based mimics that target
epidermal growth factor receptor (EGFR) have shown acceptable
safety and preliminary activity in a phase I study in 26
mesothelioma patients [64].

Mesothelioma cell proliferation and motility
Focal adhesion kinase. Focal adhesion kinase (FAK) is a tyrosine
kinase that regulates cancer cell survival, proliferation, migration
and invasiveness [65]. In vitro studies have shown the upregula-
tion of FAK in many mesothelioma cell lines, whereas FAK
inhibition suppresses cell proliferation and the ability to form
anchorage-independent colonies [66]. Accordingly, the FAK
inhibitor BI853520 abrogates the growth of orthotopic tumours
in vivo [67]. As mentioned above, the tumour suppressor Merlin is
frequently inactivated in mesothelioma. Since Merlin can inhibit
cell migration and invasiveness by attenuating FAK phosphoryla-
tion [68], low Merlin expression was predicted to increase
sensitivity to FAK inhibitors [69] and, indeed, a phase I clinical
trial of the FAK inhibitor GSK2256098 improved the median
progression-free survival (PFS) of patients lacking detectable
Merlin [70]. This result was supported by data from a phase Ib
study of 34 patients treated with GSK2256098 plus the MEK
inhibitor trametinib (to target probable mitogen-activated protein
kinase pathway (MAPK) activation), in which longer PFS was
reported for Merlin-negative tumours compared with Merlin-
positive tumours [71]. Based on these data, a phase II trial of
defactinib, an orally bioavailable FAK inhibitor, recruited 344
patients with mesothelioma and low levels of Merlin but,
unfortunately, no improvement in disease outcome was observed
[72]. Of note, GSK2256098 is selective for FAK while defactinib
targets FAK and Pyk2, and so target specificity might have been a
confounder.

c-MET. c-MET, a receptor tyrosine kinase important in cell
proliferation and motility, is also overexpressed in mesothelioma
[73]. In vitro and in vivo studies have revealed that targeting c-
MET with tivantinib (ARQ 197) together with PI3K inhibition
suppresses cell motility, growth and the development of tumours
[74]. A phase I/II clinical trial of tivantinib in combination with
pemetrexed and carboplatin/cisplatin is underway in patients with
mesothelioma or non-small cell lung cancer (NCT02049060).

Tumour nutrient availability
Angiogenesis. Most solid cancers promote angiogenesis to
support their growth [75]. Angiogenic signalling is important for
mesothelioma growth [76], and high expression levels of pro-

angiogenic signalling molecules, such as VEGF, fibroblast growth
factor (FGF)-1, transforming growth factor-β (TGF-β), platelet-
derived growth factor (PDGF) and PDGF receptor-β, have been
reported in mesothelioma tissue and many cell lines [76–78].
Furthermore, a high density of tumour microvessels predicts poor
survival in patients with malignant mesothelioma [79]. Conse-
quently, inhibitors of angiogenesis have been investigated for
potential treatment in patients with mesothelioma [80–82].
Thalidomide, a potent inhibitor of angiogenesis in other cancers
[83, 84], unfortunately provided no benefit in a phase III trial in
mesothelioma [85]. Cediranib, a tyrosine kinase inhibitor targeting
VEGFR 1–3, c-Kit and PDGFR-β [86], seemed effective as a second-
line agent in one phase II trial [82] and, when combined with
chemotherapy, appeared to improve survival in treatment-naïve
patients, but significant toxicity precluded its further development
[87]. Another tyrosine kinase inhibitor, nintedanib, which targets
VEGFR 1–3, FGFR 1–3, PDGFR α/β and Src-family members,
increased PFS and OS when combined with pemetrexed/cisplatin
in a phase II trial [81] but, unfortunately, this promising result
failed to be validated in a subsequent phase III study [80]. More
encouraging results have been achieved using bevacizumab
(Avastin), a humanised anti-VEGFA monoclonal antibody, which
demonstrated efficacy in combination with standard of care in
many cancers [88, 89] including mesothelioma [90]. In a large
phase III trial (Mesothelioma Avastin Cisplatin Pemetrexed Study,
MAPS) of 448 patients, median OS was increased from 16.1 to
18.8 months [90], which resulted in bevacizumab being listed in
the American National Comprehensive Cancer Network guidelines
as a potential first-line treatment for unresectable mesothelioma
[91]; however, at the time of writing, the manufacturer appears
not to be pursuing its licensing for bevacizumab for the treatment
of mesothelioma in Europe.

ER stress and nutrient stress. Mesothelial cells produce high
quantities of cell-surface glycoproteins, most likely to help
lubricate the pleural cavities, and therefore depend on the
presence of a functional endoplasmic reticulum (ER) in which to
fold these proteins. Increased protein misfolding, which might
well occur in response to increased demands for protein secretion,
is known to cause ER stress signalling, which has emerged as a key
adaptive mechanism supporting cancer progression and resis-
tance to treatment [92]. The expression of ER-stress-responsive
GADD34 is lower in sarcomatoid mesothelioma than in epithelioid
mesothelioma, while high levels of ER-stress-dependent transcrip-
tion factor C/EBP homologous protein (CHOP) predict poor
prognosis [8]. Increased expression of the ER chaperone BiP
(GRP78) was reported in mesothelioma cell lines [93] and in
patient samples [94]. Consequently, modulation of the ER stress
response has been investigated in mesothelioma in preclinical
models. For instance, bortezomib, a proteasome inhibitor, and
epigallocatechin-3-gallate, a green tea polyphenol, trigger ER-
stress-dependent cell death in mesothelioma cell lines [93, 95].
Moreover, HA15, an ER stress inducer that specifically targets BiP
[96], exacerbates pre-existing high ER stress levels in mesothe-
lioma cells to induce cell death and impairs mesothelioma cell
growth in patient-derived xenografts in a CHOP-dependent
manner [94].
Nutrient stress can also affect mesothelioma growth. For

example, inhibition of a key component of the glycolytic pathway,
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3),
results in anti-tumour activity in mesothelioma, with death
occurring at least in part via the induction of ER stress [97].
Mesothelioma cells are often arginine auxotrophic owing to the
loss of argininosuccinate synthetase 1 (ASS-1) [98], a phenomenon
that led to a phase II trial of the arginine-degrading agent
PEGylated arginine deiminase (ADI-PEG20). ADI-PEG20 treatment
resulted in depletion of circulating arginine and improved PFS in
mesothelioma patients [99]. Encouragingly, the TRAP phase I trial
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of ADI-PEG20 combined with pemetrexed/cisplatin chemotherapy
revealed 94% disease control in biphasic and sarcomatoid
subtypes [100]. The subsequent phase II/III ATOMIC-Meso global
trial of 386 patients with non-epithelioid mesothelioma is
recruiting, with a completion date of June 2022 (NCT02709512).

The immune landscape of mesothelioma
Tumour-infiltrating lymphocytes (TILs), macrophages and natural
killer (NK) cells are detectable in mesothelioma tissue [101, 102],
while mesothelioma can promote an immunosuppressive envir-
onment through regulatory T (TREG) cells [102] and M2 polarised
macrophages [103]. Whereas infiltration with cytotoxic CD8+

lymphocytes correlates with better patient prognosis [101, 104],
high levels of ‘tumour promoting’ M2 macrophages predict
shorter patient survival in patients with pleural mesothelioma
[105]. Interestingly, as reported for peritoneal mesothelioma, the
histological subtypes might show distinct immune signatures,
with TILs and Th-1 polarised T cells predominantly present in
epithelioid mesothelioma, and myeloid cell infiltrating all subtypes
[106]. In pleural mesothelioma, increased expression of immune
checkpoint programmed death ligand-1 (PD-L1) and the presence
of sarcomatoid components is associated with increased stromal
TILs, which, if characterised by high CD8+ and low CD4+, predict
poor prognosis [107]. Such knowledge is driving the development
of immunomodulatory therapies for mesothelioma.

IMMUNOTHERAPEUTIC STRATEGIES FOR MESOTHELIOMA
Rare cases of spontaneous regression of mesothelioma have been
attributed to immune responses [108], suggesting that immu-
notherapy might be efficacious in this cancer type, similar to the
case in several other cancers [109–111].

Immune checkpoint inhibitors
The tumour-killing immune response can be inhibited by cancer
cells that express regulators of immune checkpoints such as
cytotoxic T-lymphocyte antigen 4 (CTLA-4), T cell immunoglobulin
mucin-3 (TIM-3) and PD-L1 [112]. PD-L1, for example, is expressed
in up to 29% of mesotheliomas [113] and is associated with poor
survival [114]. Inhibition of these checkpoints has proved useful in
many cancers and trials have already investigated the use of
immune checkpoint inhibitors in mesothelioma [Table 1]. Overall,
the results have not been strongly successful, but several large
studies have yet to report their data.
CTLA-4 appears not to be a useful target in mesothelioma. In an

early trial, the anti-CTLA-4 monoclonal antibody (mAb) tremeli-
mumab showed a limited response rate [115], whereas in a
subsequent, more intensified, regimen, a partial response was
seen in 1 of 29 patients enrolled in the study [116]. In a phase IIb
trial, tremelimumab had no effect on OS [117]. Anti-PD-L1
approaches have yielded mixed results. In phase Ib and II trials,
pembrolizumab, which targets the PD-1 receptor, appeared to
improve overall response rate [118, 119], while increased PD-L1
expression was associated with a more durable PFS in the phase II
study [119]. However, in a retrospective analysis, PD-L1 positivity
was only a weak predictor of survival in pembrolizumab-treated
cases [120]. In a phase III trial, pembrolizumab appears not to have
improved overall survival (OS) compared with single-agent
chemotherapy (ESMO 2019 conference, unpublished). Nivolumab,
another anti-PD-1 mAb, slightly improved the overall response
rate, with PD-L1 expression levels inconsistently predicting the
response [121, 122]. A double-blind placebo-controlled trial
(CONFIRM) to assess the effect of nivolumab on OS stopped
recruitment last year but has yet to report results [123]. Other anti-
PD-L1 agents including durvalumab and avelumab have also
shown some promising activities [124, 125]. Theoretically,
combining anti-CTLA4 with anti-PD-L1 treatment might be
synergistic and avoid any potential emerging resistance. In a

phase II trial, 40 mesothelioma patients given dual
tremelimumab–durvalumab therapy showed a 28% partial
response [126]. Likewise, combinations of ipilimumab plus
nivolumab have been investigated in phase II trials; one trial
failed to meet its primary endpoint [127], while another showed a
29% partial response [128]. In a randomised, open-label trial
comparing nivolumab with nivolumab–ipilimumab dual therapy,
the overall response rate was 19% with single and 29% with dual
agents, but 5% of patients in the combination arm died from
toxicity [129, 130]. The Checkmate743 phase III trial has now
evaluated dual immunotherapy (nivolumab–ipilimumab) versus
standard of care chemotherapy for patients with unresectable
mesothelioma. Nivolumab plus ipilimumab significantly improved
OS, predominantly in non-epithelioid disease (18.1 months versus
14.1 months for chemotherapy) [131]. The 2-year overall survival
was 41% for nivolumab plus ipilimumab, but only 27% in the
chemotherapy group.
Compared to other malignancies, mesothelioma is not highly

immunogenic, which might explain its poor response to existing
immune checkpoint inhibitors. Nevertheless, a number of proteins
expressed by mesothelioma cells could serve as antigens for
alternative immunotherapies, such as vaccines and CAR T cell
therapy.

Cancer vaccines
In 1982, immunotherapy for mesothelioma using the Bacillus
Calmette–Guérin (BCG) vaccine was described in 30 patients, and
resulted in apparent increased survival in a group of patients with
low tumour burden. [132]. The implication was that the vaccine
might stimulate the immune system to destroy tumour cells. The
BCG vaccine is currently used to treat bladder cancer; it induces
multiple cell types and cytokines including interleukins (IL-2, IL-4,
IL-5, IL-6, IL-10, IL-12 and IL-17) and interferon (IFN)-γ [133]. IFN-β
has anti-proliferative effects on mesothelioma cell lines in vitro
[134] and, in patients, recombinant IFN-α triggered a partial
response in 12% of recipients [135], while intrapleural IFN-γ
showed a 20–45% response rate [136]. Anecdotal evidence has
suggested that lymphokine-activated killer cells and IL-2 might
reduce the formation of pleural effusions [137], and an early trial
with IL-2 suggested survival benefit [138], with a subsequent
phase II trial reporting tumour responses in 22% of patients with
malignant mesothelioma [139]. These results have encouraged
efforts to develop cancer vaccines and other immunotherapies
that are more targeted to mesothelioma antigens.

Mesothelin as a target. Mesothelin is a 40-kDa cell surface
glycoprotein expressed by all epithelioid, but not by sarcomatoid
or the spindle component of biphasic mesotheliomas [140]. High
levels of soluble mesothelin predict a poor prognosis, perhaps as a
marker of tumour load [141]. Mesothelin-targeted therapies are
under development. For instance, amatuximab, a mAb targeting
mesothelin, showed acceptable safety profiles in early phase I
trials [142] and triggered a partial response of 40% when
combined with chemotherapy, improving overall survival in a
phase II study [143]. CRS-207, a live attenuated form of Listeria
monocytogenes engineered to express human mesothelin, stimu-
lated a tumour-specific CD8+ T cell response in 60% of subjects
with advanced cancer, including two patients with mesothelioma
[144]. An early phase Ib trial of CRS-207 in combination with
chemotherapy suggested an increased overall response rate, a
reduction in tumour size, and the expansion of TILs and circulating
immune cells [145]. However, a phase II trial of combined CRS-207
and pembrolizumab failed to show patient benefit [146]. SS1P, a
recombinant protein that contains bacterial Pseudomonas exo-
toxin A fused to a high-affinity anti-mesothelin antibody, showed
limited efficacy in phase I trials, possibly due to the development
of neutralising antibodies, which occurred in most patients after a
single treatment cycle [147]. A subsequent trial using concomitant
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cyclophosphamide and pentostatin to reduce antibody formation
resulted in a response in 3 out of 10 patients [148]. Another anti-
mesothelin immunotoxin, LMB-100, showed in vitro activity when
additionally carrying a paclitaxel payload but has yet to be tested
in patients [149].

WT1 as a target. As overexpression of the Wilms’ tumour 1 (WT1)
transcription factor occurs in several malignancies, including
mesothelioma [150], WT1 peptide analogue vaccines have been
developed to elicit CD4+ and CD8+ T cell responses [151]. A
favourable safety profile and potential therapeutic effect has been
reported in patients randomised to receive a WT1-peptide vaccine
(galinpepimut-S) with immunologic adjuvants (montanide and
GM-CSF) compared with adjuvants alone [152].

Using tumour lysates. Following the success of the approach in
murine models [153], dendritic cells pulsed with autologous
tumour lysate were administered by vaccination to patients with
mesothelioma in human trials [154]. This therapeutic approach
was well-tolerated and induced cytotoxic activity in a subset of
patients. In a subsequent trial, tumour-pulsed dendritic cells were
combined with cyclophosphamide to enhance the immune
response by inhibiting TREG cells [155]. Only one patient achieved
a complete response, but 7 of 10 patients survived for longer than
24 months. Autologous dendritic cells pulsed with allogeneic
tumour lysate from 5 mesothelioma cell lines might also be
effective [156]. A partial response was observed in 2 of 9 patients,
although OS was unchanged [156]. A phase II/III trial (DENIM)
using an allogeneic tumour-derived dendritic cell lysate vaccine
(MesoPher) is currently recruiting adult subjects with mesothe-
lioma (NCT03610360) [157].

CAR T cell therapies
The immune system can also be engaged by generating chimeric
antigen receptor (CAR) T cells. In this approach, homologous
T cells are collected from the individual, genetically engineered to
express a tumour-specific antigen receptor and, following ex vivo
expansion, re-administered to the patient. The CAR consists of an
antibody single-chain variable fragment (scFvs) fused to a
transmembrane domain, followed by an intracellular co-
stimulatory domain (including CD28, 4-1BB, CD27 and CD134)
and an intracellular T cell receptor CD3ζ chain [158]. Following the
success of this approach in haematological malignancies, the
efficacy of CAR T cell therapy has been assessed in mesothelioma
[159]. Originally, T cells were engineered to transiently express
anti-mesothelin CAR to avoid off-tumour on-target toxicity [160]. A
clinical response was attained in only 2 of 4 patients, and one
patient suffered a cardiac arrest due to an anaphylactic reaction
[161]. Several phase I studies have since attempted to optimise
the safety profile of second-generation anti-mesothelin CAR T cells
[162]. Of note, PD-1 expression in the tumour reduced CAR T cell
effector function, but this effect could be reversed by PD-1
checkpoint blockade with pembrolizumab [163, 164]. CAR T cells
can also be engineered to target peritumoural components such
as fibroblast activation protein (FAP), a transmembrane serine
protease highly expressed in cancer-associated stromal cells.
Preliminary data using intrapleural FAP-targeted CAR T cells in
mesothelioma showed redirected T cell activity in vitro with no
significant toxicity [165]; these data were later supported by a
phase I clinical trial involving three mesothelioma patients [166].
Other potential CAR T cell targets for mesothelioma include
members of the ErbB family [167], oncofetal cell surface
glycoprotein 5T4 and chondroitin sulphate proteoglycan 4
(CSPG4) [162, 168, 169].

Antibody–drug conjugates
Antibody–drug conjugates (ADCs) use recombinant monoclonal
antibodies that recognise tumour antigens to deliver cytotoxic

payloads. Initially, as proof of concept, transferrin was used to
deliver intracellular doxorubicin [170], but a number of ADCs that
show activity in numerous cancers have subsequently been
developed [171, 172]. Given its limited expression on normal
tissues and high abundance on cancer cells, mesothelin is an
attractive target [173]. So far, only one mesothelin-based ADC—
BAY 94-9343 (anetumab ravtansine)—has been tested in
mesothelioma. Anetumab ravtansine comprises a human anti-
mesothelin antibody conjugated via a disulphide-containing linker
to the maytansinoid DM4, which disrupts microtubule function
and thus inhibits mitosis [174]. In vivo, anetumab ravtansine
blocked mesothelioma growth in both subcutaneous and
orthotopic xenograft models and was more effective than
standard of care treatment [174]. Subsequently, three clinical
trials have commenced for mesothelioma: a phase Ib trial of
anetumab ravtansine in combination with pemetrexed and
cisplatin (NCT02639091); a phase II study of anetumab ravtansine
as a second-line treatment (NCT02610140); and a randomised
phase I/II trial of anetumab ravtansine in combination with the
anti-PD-1 mAb pembrolizumab (NCT03126630). However, anetu-
mab ravtansine failed to increase PFS in relapsed mesothelioma in
a phase II clinical trial (NCT02610140) when compared to
vinorelbine, an anti-mitotic drug, [175].
Another ADC with potent anti-mesothelioma activity, αMSLN-

MMAE, is a humanised anti-mesothelin mAb conjugated to the
microtubule-disrupting drug monomethyl auristatin A (MMAE)
with a lysosomal-protease-cleavable valine–citrulline linker [176].
A phase I clinical trial demonstrated that αMSLN–MMAE (also
known as DMOT4039A) is well tolerated and exerts anti-tumour
activity in patients with unresectable pancreatic or platinum-
resistant ovarian cancer [177]; however, no clinical study of
αMSLN-MMAE/DMOT4039A has yet been initiated for
mesothelioma.
In vitro, epithelioid mesothelioma appears sensitive to brentux-

imab vedotin (BV), a recombinant chimeric mAb generated
against CD30 and conjugated to MMAE via a protease-sensitive
linker [178, 179]. Since CD30 is expressed to a greater degree in
epithelioid than sarcomatoid mesotheliomas, studies will need to
address if this agent shows subtype specificity. CD30 is a member
of the tumour necrosis factor receptor (TNFR) superfamily that is
involved in the regulation of apoptotic and inflammatory
signalling pathways, and is a potential therapeutic target for
various malignancies, including mesothelioma [180]. Brentuximab
vedotin was initially tested for the treatment of anaplastic large-
cell lymphomas and Hodgkin disease [181] but, following a
successful safety assessment in solid tumours [182], a phase II trial
is now underway to evaluate its efficacy in patients with
unresectable CD30+ mesothelioma (NCT03007030).
A panel of ADCs that target trophoblast glycoprotein (also

known as 5TA, an antigen expressed in several tumours)
conjugated to a tubulin polymerisation inhibitor, yielded encoura-
ging results in mesothelioma cells cultures expressing high levels
of 5TA [183]. Another ADC was generated against the cell-surface
glycoprotein CD26 [184], overexpressed in epithelioid and
biphasic subtypes [185]. This ADC comprises the humanised
anti-CD26 mAb YS110 and the TR-1 derivative of triptolide, a
bioactive compound of Tripterygium wilfordii that shows a wide
spectrum of anti-tumour activities [186]. It showed prominent
cytotoxicity against mesothelioma and leukaemia cells in vitro and
in vivo by impairing the RNA polymerase II activity through the TR-
1-mediated inhibition of TFIIH, a transcription factor for RNA
polymerase II [184].

Oncolytic viral therapies
Oncolytic viruses offer another promising therapeutic approach
for several malignancies, including mesothelioma [187, 188],
through their dual anti-tumour activity involving the direct killing
by lysis of infected cells (alongside the release of viral progeny to
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propagate the effect in neighbouring cells) and indirect induction
of immune responses. The interaction between pathogen and
host surface receptors triggers the production of type I IFNs, which
leads to viral clearance and the release of tumour-associated
antigens, as well as danger signals of cellular and viral origin.
These factors all stimulate the expression of major histocompat-
ibility complex (MHC) class I proteins and the recruitment of
lymphoid cells, such as dendritic cells, CD4+ and CD8+ T cells, as
well as NK cells [189]. Oncolytic viruses show an intrinsic selectivity
towards tumour cells, which is mostly due to malignant
characteristics such as altered metabolism, defects in anti-viral
responses, the loss of p53 or p16 tumour suppressors and the
activation of aberrant oncogenic signalling pathways, including
RAS–MEK–ERK/MAPK and Wnt [188, 190, 191].
Thanks to its localised nature, relative lack of metastasis and

its physical accessibility, mesothelioma is an attractive candi-
date for viral therapy. The intrapleural or intraperitoneal
administration of double-stranded RNA was reported in 1976
to prevent tumour growth [192] and the successful targeted
delivery of a viral construct was later confirmed in vitro and
in vivo [193]. To date, several viruses, including adenoviruses
[194], herpes simplex virus type 1 (HSV-1) [195], measles virus
[196], vaccinia virus [197], Newcastle disease virus [198],
retrovirus [199] and reovirus [200], have been tested in
mesothelioma. A number of genetic modifications have been
introduced to enhance the anti-tumour specificity and ther-
apeutic efficacy. For instance, a VEGF-promoter-based adeno-
virus was shown to selectively replicate in mesothelioma cell
lines; in xenograft mouse models, this construct suppressed
tumour growth and prolonged animal survival [201]. The intra-
tumoural delivery of retrovirus expressing the yeast cytosine
deaminase prodrug activator gene was demonstrated to kill
mesothelioma cells in vitro and to abolish tumour growth
in vivo upon administration of the prodrug 5-fluorocytosine
[199]. Furthermore, oncolytic adenovirus armed with a CD46-
binding sequence and a promoter of heparin-binding growth
factor midkine (both are highly expressed in mesothelioma cell
lines) has been reported to confer enhanced infectivity and
mesothelioma-specific cytotoxicity [202].

Another promising oncolytic virus for mesothelioma therapy is a
replication-competent HSV in which the viral genes encoding ICP6
and ICP34.5 have been deleted. The lack of ICP6 confers virus
selectivity towards mitotic cells or cells with a p16INK4a deletion
[203], suggesting a potential benefit in the treatment of
mesothelioma with a loss of function of CDKN2A. Deletion of
ICP34.5, a viral homologue of GADD34, markedly reduces the
neurovirulence of the construct but inhibits viral protein synthesis
[204], which consequently blunts viral replication and therapeutic
efficacy. However, the homology of ICP34.5 to the DNA-damage-
inducible GADD34 might enable viral replication to be comple-
mented by the synergistic use of this construct with chemo- or
radiotherapy [205, 206]; alternatively, defective viral replication
could be overcome by introducing the GADD34 gene into the HSV
genome [207]. The latter approach might be particularly relevant
for more aggressive histological subtypes of mesothelioma, which
are characterised by a loss of GADD34 [8].

Current clinical trials
Clinical trials investigating oncolytic viral therapy for mesothe-
lioma are summarised in [Table 2]. The results from completed
studies indicate that the adenovirus-mediated delivery of IFNα2b
induced an anti-tumour immune response [208], which, when
combined with chemotherapy as second-line treatment, signifi-
cantly increased the OS [209]. When the clinical utility of vaccinia
virus GL-ONC1 was assessed in patients with peritoneal cancers,
including mesothelioma, tumour cell infection, virus replication
and oncolysis were limited to the first cycle of treatment, possibly
due to component-mediated virus inactivation as a result of the
development of neutralising activities against GL-ONC1 [210]. The
outcome of a phase II clinical trial investigating the effect of
nivolumab in combination with MTG201, a replication-
incompetent adenovirus containing the gene encoding REIC/
Dkk-3, which confers anti-tumour activity, for mesothelioma is yet
to be unveiled (NCT04013334).

Conclusions and future perspectives
Although studies of mesothelioma biology have revolutionised
our understanding of this cancer, the prognosis for newly

Table 2. Summary of completed and ongoing clinical trials of oncolytic viral therapies in mesothelioma.

Identifier Type of virus Treatment mode Integrated transgene/deletion Status

NCT03710876 Adenovirus rAd-IFN+ celecoxib + gemcitabine Human IFNα-2b Recruiting

NCT04013334 Adenovirus MTG201+ nivolumab Immortalised cells (REIC)/Dikkopf (Dkk)-3 Recruiting

NCT01766739 Vaccinia virus Monotherapy β-galactosidase, β-glucuronidase, Ruc-GFP Active, non-
recruiting

NCT02714374 Vaccinia virus GL-ONC1−/+ eculizumab β-galactosidase, β-glucuronidase, Ruc-GFP Active, non-
recruiting

NCT01997190 Adenovirus AdV-tk + valacyclovir +
chemotherapy

Herpes simplex virus thymidine kinase (HSV-
TK)

Active, non-
recruiting

NCT01503177 Measles virus Monotherapy Thyroidal sodium iodide symporter (NIS) Active, non-
recruiting

NCT02879669 Adenovirus ONCOS-102 + pemetrexed/
carboplatin

GM-CSF Active, non-
recruiting

NCT01569919 Vaccinia virus TropVax + pemetrexed/cisplatin TAA 5TA Unknown

NCT01119664 Adenovirus Ad.hIFNα2b+ celecoxib +
pemetrexed

IFNα2b Completed

NCT00299962 Adenovirus Monotherapy IFNβ Completed

NCT01212367 Adenovirus Monotherapy IFNα-2b Completed

NCT01721018 HSV-I Monotherapy RL1 gene deletion encoding ICP34.5 protein Completed

GFP green fluorescent protein, GM-CSF granulocyte-macrophage colony-stimulating factor, HSV Herpes simplex virus, IFN interferon, REIC reduced expression in
immortalised cells, TAA tumour-associated antigen.
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diagnosed patients nevertheless remains poor. The current
epidemic of mesothelioma that is affecting industrialised countries
will soon peak, but the number of cases is predicted to tail well
into this century [211]. Unfortunately, the global consumption of
asbestos remains undiminished owing to its growing use in
middle-income nations, notably India and China [212]. Modern
materials might also pose a future risk for mesothelioma: carbon
nanotubes, for example, induce a mesothelioma-like pathology in
preclinical models [213]. It is therefore important that clinical
research focuses on mesothelioma.
Targeted therapies and immunotherapies that show promise in

early trials frequently later fail in phase III trials. This might
plausibly reflect a failure to pre-select those patients most likely to

benefit from a particular treatment. Improved personalisation of
therapies, through stratification of individuals by tumour type,
antigen expression, or even genotype, might help overcome this
[214]. There is cause for optimism in the treatment of
mesothelioma. Innovative therapeutic approaches are now being
directed towards mesothelioma [Fig. 3], while increased invest-
ment is enabling the development of better in vitro and in vivo
model systems that should help to increase our chances of
identifying effective therapies in the coming decade . It is crucial
that this goal is achieved before the next wave of mesothelioma
hits those countries that are currently repeating the mistakes of
the West by consuming tonnes of asbestos to grow their
economies.
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Fig. 3 Therapeutic strategies in mesothelioma classified according to their mode of action. Immune checkpoint inhibitors block signalling
that suppresses immune-cell activity, such as PD-1–PD-L1 and B7-1/2–CTLA-4 interactions, which is upregulated by tumour cells. Tumour-
associated antigens (TAAs) can be targeted using monoclonal antibodies against proteins such as mesothelin, by vaccine therapy to stimulate
the immune response and by using antibody–drug conjugates (ADCs) that target proteins such as mesothelin, 5TA, CD26 and CD30.
Autologous dendritic cells pulsed with autologous or allogeneic tumour cell lysate act to prime host immunity, while chimeric antigen
receptor CAR T cells contain chimaeric receptors that have been generated to specifically bind to TAAs on the cell surface. Other therapeutic
approaches include oncolytic viruses that directly kill cancer cells by lysis or indirectly by stimulating immune response. They have been
engineered to increase viral specificity (by introducing TAAs), cytotoxicity (by introducing e.g. pro-apoptotic or immunostimulatory genes),
and monitoring (by introducing reporter genes).
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