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Abstract: 10 

The Föppl-von Karman equations describe the highly non-linear post-buckling behaviour of elastic 11 

plates, but are notorious for their unwieldiness. Owing to the lack of a sufficiently general solution, 12 

the practical design of plates against local buckling is instead based on the empirical Winter equation. 13 

This paper aims to connect both concepts by analytically deriving a Winter-type equation, taking the 14 

Föppl-von Karman equations as a starting point. The latter are first simplified in a way which 15 

preserves the main mechanics of the post-buckling behaviour of plates and are combined with a 16 

failure criterion based on von Karman’s effective width concept. The resulting equation is solved by 17 

means of a truncated Fourier series. This yields excellent predictions of the plate behaviour over an 18 

ever more extended range of post-buckling behaviour as the number of Fourier terms increases, 19 

both for geometrically perfect and imperfect plates. As a crowning result, a closed-form expression 20 

is presented as an equivalent to the empirical Winter equation. This new expression agrees closely 21 

with the Winter curve and allows an analysis of the various factors affecting the local buckling 22 

capacity of plates. 23 
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 29 

Introduction 30 

 31 

The von Karman equations (sometimes referred to as the Föppl-von Karman equations) comprise a 32 

system of two coupled non-linear partial differential equations which describe the post-buckling 33 

behaviour of thin elastic plates (Föppl 1907, von Karman 1910): 34 
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 39 
 40 

In these equations, w is the plate deflection, w0 is the initial geometric imperfection,  is the Airy 41 

stress function, E is the elastic modulus, t is the (constant) plate thickness, pz is the lateral pressure 42 

on the plate and D is the flexural rigidity of the plate, given by: 43 
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 45 

In the above equation,  is the Poisson’s ratio of the material. The x-y coordinate system is 46 

contained within the undeformed midplane of the plate. It is noted that the addition of the 47 

imperfection terms in Eqs. (1-2) should actually be credited to Marguerre (1939). 48 

The von Karman equations can be seen as an extension of the work by Saint-Venant (1883), who was 49 

first to derive a differential equation describing the stability of elastic plates: 50 
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 53 

In the above equation, x, y and xy are the membrane normal stresses in the x- and y-directions 54 

and the membrane shear stress, respectively. As opposed to Eqs. (1-2), Eq. (4) has the advantage of 55 

being a single differential equation which is linear. However, it does not account for the change in 56 

the membrane stresses resulting from the plate deflections. It can therefore be used to determine 57 

the buckling stress of a plate under a given loading, but not to determine the behaviour of the plate 58 

in the post-buckling range. 59 
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The von Karman equations account for the possible presence of geometric imperfections, but 60 

assume a linear elastic material behaviour, which inherently limits their practical relevance. However, 61 

the biggest impediment to their practical application is that, while solutions exist for a few specific 62 

cases, a general solution appears to be beyond reach. Levy (1942) succeeded in obtaining a solution 63 

expressed as a Fourier series for the case of a rectangular plate subjected to a combination of 64 

uniaxial in-plane compressive loading and a lateral pressure pz. However, implementing the solution 65 

for a particular configuration is rather computationally demanding. Approximate solutions to the 66 

von Karman equations can be obtained using energy methods and this approach was used by, 67 

among others, Cox (1933), Marguerre (1937), Marguerre and Trefftz (1937), Yamaki (1959), 68 

Timoshenko and Gere (1961), Graves Smith (1969), Rhodes and Harvey (1971), Okada et al. (1979), 69 

Ueda et al. (1987) and Nedelcu (2020).  70 

The first investigation of the post-buckling behaviour of plates displaying inelastic stress-strain 71 

behaviour can be attributed to Mayers and Budiansky (1955), who also used an energy method. The 72 

investigators assumed that the plate initially buckled elastically, but that plasticity emerged in the 73 

post-buckling range, which they modelled using deformation theory.  74 

As an alternative to energy methods, other researchers, most notably Walker (1969) and Shen 75 

(1989), used a perturbation method to obtain approximate solutions to the von Karman equations, 76 

valid in the neighbourhood of the buckling load. A discussion on the mathematical subtleties of 77 

deriving an initial post-buckling stiffness from the von Karman equations was provided by 78 

Guarracino (2007). 79 

A comprehensive overview of plate analysis methods, discussing the evolution of earlier stage 80 

techniques, is found in Aalami and Williams (1979) and Chia (1980). 81 

Rather than developing semi-analytical solutions, which typically requires intensive hand calculations, 82 

numerical (computer-based) methods based on domain discretization have become very popular 83 

since the 1960s. Finite differences schemes for elastic plates have been developed by Basu and 84 

Chapman (1966), Brown and Harvey (1969), Reddy and Gera (1979), Satyamurthy et al. (1980), 85 

Turvey and Der Avanassian (1986) and Assadi-Lamouki and Krauthammer (1989). A finite difference 86 

method accounting for flow theory based plasticity, able to predict the ultimate inelastic capacity of 87 

plates, was presented by Becque (2014). However, the most versatile and commonly employed 88 

numerical method is no doubt the Finite Element (FE) method; 2D shell elements are typically used 89 

to model plated structures, and commercial FE packages offer a multitude of shell element 90 

formulations suited for various applications. Additionally, within the scientific research community 91 

focused on thin-walled structures the Finite Strip Method (FSM) is a popular alternative to FE 92 

analysis. In its original form, developed by Przemieniecki (1973), Planck and Wittrick (1974) and 93 
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Cheung (1976), the FSM is able to carry out an elastic stability analysis of a plate assembly, assuming 94 

harmonic displacement functions in the longitudinal direction, inspired by the analytical solutions, 95 

and using polynomial approximations in the transverse direction. The FSM was extended by Graves 96 

Smith and Sridharan (1978) to model the elastic post-buckling range of thin-walled members, 97 

followed by further work by Key and Hancock (1993) to also account for inelastic material behaviour, 98 

imperfections and residual stresses. A variation of the FSM, the spline finite strip method, originally 99 

developed by Fan (1982), has also been used by Lau and Hancock (1986) and Kwon and Hancock 100 

(1991) to investigate the elastic and inelastic post-buckling behaviour of thin-walled cross-sections 101 

under various loading. 102 

Generalized Beam Theory (GBT) also deserves mention as a potential tool to investigate the post-103 

buckling behaviour of thin-walled cross-sections and this option was pursued by, among others, 104 

Silvestre and Camotim (2003), Basaglia et al. (2011) and Ruggerini et al. (2019). 105 

Given the large amount of effort which has been invested in the theoretical study of the post-106 

buckling behaviour of plates and plate assemblies, it is to some extent regretful that this extensive 107 

body of work becomes largely irrelevant in the practical design against local buckling. Indeed, all 108 

major design standards around the world instead rely on the purely empirically derived Winter 109 

equation (Winter 1940, Winter 1970) to obtain ultimate capacities for local buckling:  110 
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 113 

where Pu is the ultimate capacity of the plate in compression, Py is the yield load and  is the 114 

slenderness, given by: 115 

 116 

cr
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=             (6) 117 

 118 

In the above equation fy is the yield strength and cr is the elastic critical local buckling stress. 119 
 120 

The aims of this paper are to deduce approximate equations describing the post-buckling behaviour 121 

of plates and, of equal importance, to develop Winter-type design equations from these solutions to 122 

calculate the ultimate capacity of plates displaying imperfections and plasticity. This establishes, for 123 

the first time, a link between the theoretical framework of the von Karman equations and the 124 

practical design of plates. Contrary to previous approaches the von Karman equations are not solved 125 

in their complete form (Eqs. 1-2) using semi-analytical or numerical techniques. Rather, Eqs. (1-2) are 126 

first simplified into a single equation, using rational assumptions which agree well with observed 127 
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plate behaviour. Crucially, this is done in such a way that the resulting model still captures the 128 

essence of the post-buckling mechanics of plates, in particular the mechanisms which drive the 129 

further development of the mid-plane membrane stresses. Although approximate, this approach 130 

allows in many cases to derive closed form expressions for the plate deformations as a function of 131 

the loading.  The scope of this paper is limited to rectangular plates under uniaxial compressive in-132 

plane loading. Two cases of boundary conditions are considered, as illustrated in Fig. 1. In both cases 133 

the loaded edges (x=0 and x=L) remain straight in the post-buckling range. This corresponds to the 134 

practical case of a plate element in a long column, where straight ‘nodal lines’ develop in between 135 

buckled cells. For the longitudinal edges (parallel to the loading) two cases are considered: case A, 136 

where the edges are free to pull in during the post-buckling stage (Fig. 1a), and case B, where the 137 

edges can move in while remaining straight (Fig. 1b). Case A is most representative of a plate (e.g. a 138 

web) in an actual column, since the bending stiffness of the adjacent plates (e.g. the flanges) about a 139 

transverse axis in their plane is typically fairly limited and certainly insufficient to create a situation 140 

akin to case B.  141 

 142 

Simplifying the von Karman equations 143 

 144 

In order to simplify Eqs. (1-2), it is clear that some additional assumptions are necessary. The 145 

inspiration for these is provided by the effective width concept, which is also credited to von Karman 146 

(von Karman et al. 1932). This concept is based on the observation that in the post-local buckling 147 

range the longitudinal stresses shift towards the longitudinal edges of the plate and can thus be 148 

idealized as being carried by two strips adjacent to those edges. The widths of these effective strips 149 

are obtained by equating the integral sums of the actual and idealized stress distributions over the 150 

width of the plate (Fig. 1). Failure is assumed to occur when the effective strips yield. While this 151 

failure criterion will be employed later in the derivation, a major implication of this idealized stress 152 

distribution which proves useful for our objectives at this stage (although easily overlooked and 153 

seldom questioned) is that the longitudinal membrane stress x is only a function of the transverse 154 

co-ordinate y and is constant along a ‘fibre’ in the longitudinal x-direction: 155 
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Integrating Eq. (7) twice with respect to the y-coordinate yields the following form for Airy’s stress 159 

function: 160 
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 163 
However, because of the symmetry of the problem, the mixed term in x and y has to vanish. Indeed, 164 

the stress function  cannot have an anti-symmetric component in the y-direction. Consequently, 165 

the membrane shear stresses in the plate have to be zero: 166 

 167 
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 169 
This can be seen as an extension of Vlasov’s assumption into the post-buckling range. Eq. (9) is 170 

consistent with the view presented by Eq. (7) that each longitudinal mid-plane fibre acts 171 

independently, carrying a constant stress x along its length, while not partaking in any direct load 172 

sharing with its neighbours through shear stresses. The additional implication of Eq. (8) (with c(x)=0) 173 

is that the transverse membrane stress y is equally independent of y: 174 
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  177 

The straining of a longitudinal fibre can then be determined from its deflected shape as follows (Fig. 178 

3): 179 
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 182 
where U0 is the uniform end shortening, as shown in Fig. 1a, and s is the distance measured along 183 

the mid-plane fibre. L is the initial length of the plate. The shortening U0 can be related to the total 184 

applied load P as follows:  185 
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where b is the width of the plate and: 188 
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The minus sign in Eq. (12) was added arbitrarily so that compressive loads can be plotted as positive 191 

values in the remainder of this paper.    192 

In case A, where the longitudinal edges are free to move inwards horizontally, no significant tensile 193 

membrane stresses are expected to develop in the transverse direction and y is assumed to remain 194 

zero. Using this assumption, as well as Eqs. (13), (7), (9) and (10), Eq. (1) becomes:  195 
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with: 199 
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 201 

Eq. (14) only features the plate deflections w as an unknown function, while Airy’s stress function no 202 

longer appears. 203 

 204 

In the case of a plate containing an initial imperfection, expression (Eq.11) for the longitudinal 205 

membrane strain x should be modified into (see Fig. 4): 206 
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where L0 is the length measured along the imperfect shape before loading. Consequently: 210 
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The governing differential equation for an imperfect plate (replacing Eq. 14) then becomes: 212 
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When the boundary conditions are determined by case B, the transverse membrane stresses y are 215 

no longer negligible. Owing to the assumed absence of shear stresses, however, the transverse 216 

membrane stress can be related to the elongation of a transverse fibre employing a rationale 217 

completely analogous to Eq. (11), leading to the following equation:   218 
 219 
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 221 
In the above equation U1 is the uniform shortening of the plate in the transverse direction (Fig. 1b), 222 

which can be determined from the condition that, while transverse stresses are necessarily present 223 

along the edges to keep them straight, their resultant is zero since there is no load applied in this 224 

direction:   225 
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and thus, substituting Eq. (19) into Eq. (20): 228 

 229 

  











=

L

0

b

0

2

1 dxdy
y

w

L2

1
U              (21) 230 

 231 

Using Eqs. (13), (19) and (9), Eq. (1) takes on the form: 232 
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Eq. (22) is again independent of the Airy stress function. 235 

When an initial imperfection w0 is accounted for, this equation becomes: 236 
 237 
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 239 

To evaluate whether the simplifying assumptions employed in this section to arrive at the 240 

differential equations (14), (18), (22) and (23) are realistic, a geometrically non-linear finite element 241 

(FE) analysis was carried out of a slender square plate (L = b = 200 mm; t = 1 mm) with elastic 242 

properties (E = 200 GPa;  = 0.3) using Abaqus (2017). Boundary conditions were applied which were 243 

commensurate with Case A and the results are presented in Fig. 5 in the form of stress contours for 244 
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the longitudinal membrane stresses x, the shear membrane stresses xy and the transverse 245 

membrane stresses y. The stress state was captured at the moment when the maximum 246 

longitudinal membrane stress reached 350 MPa. According to the effective width concept, this 247 

represents the state of failure of a steel plate with yield stress fy = 350 MPa and, given the 248 

slenderness of the plate, corresponds to a state well into the post-buckling range. The leftmost 249 

diagram in Fig. 5 shows that the x contours form approximately vertical lines, thus confirming the 250 

assumption embedded in Eq. (7). The xy plot (centre), as expected, shows some localized shear 251 

stress concentrations near the corners of the plate, which reach up to 34 MPa. However, over most 252 

of the plate xy remains limited to 5 MPa in absolute value (indicated by the pale green colours). 253 

Since this constitutes less than 2% of the maximum longitudinal membrane stress, the xy  stresses 254 

can indeed reasonably be neglected. The plot of the transverse membrane stresses y (rightmost 255 

diagram in Fig. 5) shows some stress concentrations near the transverse edges. However, in the 256 

central area of the plate stresses do not exceed 19 MPa (= 5.5% of 350 MPa). This instils confidence 257 

that the assumption of zero transverse membrane stress is a reasonable approximation for a plate 258 

with Case A boundary conditions. 259 

  260 

Geometrically perfect plate with boundary conditions A 261 

 262 
We consider the case of a square plate (b = L) without imperfections (w0 = 0) with case A boundary 263 

conditions and we propose the following approximate solution to Eq. (14):  264 
 265 
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 267 
Eq. (24) is the solution to the classical Saint-Venant plate equation. In the context of Eq. (14), Eq. (24) 268 

can be seen as the first term of a Fourier series, which, by virtue of being the solution to the Saint-269 

Venant equation, is dominant in the initial post-buckling range over the remaining terms. 270 

Substituting Eq. (24) into Eq. (14) leads to: 271 

 272 








 







 







 
−=







 







 



















 
−







 


L

y
sin

L

x
sin

L2

L
A

L

y
sin

L

x
sin

L
U2

L
4 3

4

2

11

2

0

4

    (25) 273 

 274 
This equation can be re-arranged into: 275 
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 278 
It is now clear that Eq. (24) cannot be an exact solution to Eq. (14), since higher order Fourier terms 279 

are necessary in Eq. (24) in order for the terms in sin(x/L)sin(3y/L) in Eq. (26) to vanish. However, 280 

employing the orthogonality property of the Fourier terms, the total coefficient of sin(x/L)sin(y/L) 281 

in Eq. (26) can be set equal to zero, leading to: 282 
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 285 
On the other hand, Eq. (12) results in: 286 
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 289 
Substituting Eq. (27) into Eq. (28) yields the load-shortening relationship in the post-buckling range: 290 
 291 
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 293 
In the initial pre-buckled state: P = EtU0. Thus, Eq. (29) shows that the predicted initial post-buckling 294 

stiffness equals 1/3 of the pre-buckling stiffness. Marguerre (1937) reported a more exact value for 295 

this ratio, which depends on the Poisson’s ratio , but ranges from 0.34 (for  = 0.5) to 0.41 (for  = 296 

0). For steel plates ( = 0.3) the value is 0.38, which differs by 12% from our estimate. Koiter and 297 

Pignataro (1976) equally found an approximate value of 1/3 based on a minimum potential energy 298 

approach (see also: Thompson and Hunt 1984). Figure 6 compares the (linear) load-shortening 299 

behaviour predicted by Eq. (29) with the results of the FE model of a steel plate with L = b = 200 mm 300 

and t = 1 mm (previously introduced in Fig. 5). It should thereby be noted that a minute imperfection 301 

of 0.004 mm was introduced into the FE model. This was necessary in order to avoid Abaqus 302 

continuing the analysis on the (unstable) unbuckled equilibrium path past the critical stress. Owing 303 

to the very small magnitude of the imperfection (which was chosen as small as possible by trial-and-304 

error), its effect on the results is thought to be very limited. Figure 6a shows that the initial post-305 

buckling stiffness of the plate is well matched by Eq. (29). This stiffness was predicted by the FE 306 

model to be 0.32×E and, despite the transition around the bifurcation point being the most 307 

imperfection-sensitive region, this result agrees well with both Marguerre’s theoretical prediction 308 

and the prediction of Eq. (29). It is also seen that Eq. (29) provides a good representation of the post-309 
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buckling behaviour up to a shortening of about 0.1 mm, corresponding to a strain of approximately 310 

5×10-4 or 5.5 times the strain at buckling. 311 

 312 

A relationship between the load P and the deflection A11 at the centre of the plate in the post-313 

buckling range can be derived by eliminating U0 from Eqs. (27) and (29): 314 
 315 
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 317 

A comparison of Eq. (30) with the results of the FE analysis in Fig. 6b reveals good agreement up to 318 

plate deflections of 5-6 times the plate thickness. 319 

The plate first buckles when A11 = 0, which according to Eq. (27) happens when: 320 
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Substituting this value into Eq. (29) yields the expected result: 324 
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 327 
 328 
where A is the cross-sectional area of the plate in the transverse direction. Using Eq. (32) to 329 

eliminate , and defining the average longitudinal strain in the plate as  = U0/L and the average 330 

longitudinal stress as  = P/A,  the load-shortening equation (29) can also be written in a more 331 

general form as: 332 
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where the strain at buckling cr = cr/E. 336 

The profile of the longitudinal membrane stresses is given by Eq. (13): 337 
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 340 
According to the effective width concept failure occurs when the maximum longitudinal membrane 341 

stress (occurring at y = 0 and y = L according to the above equation) reaches the yield stress:  342 
 343 
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 345 

Translating the above Eq. (35) into E = fy, where  is the previously defined average strain, Eq. (33) 346 

now becomes: 347 
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 350 

where Pu is the ultimate load of the plate, Py = Afy is the yield load and  is the slenderness 351 

previously defined in Eq. (6). Eq. (36) is reminiscent of the Winter equation and both equations are 352 

compared in Figure 7 (blue and black lines). It is seen that, while both equations exhibit a similar 353 

trend, Eq. (36) results in significantly higher predictions of the plate capacity. It will be demonstrated 354 

in the following sections of this paper that for lower slenderness values  this discrepancy is mainly 355 

due to the fact that imperfections have not yet been accounted for, while for higher slenderness 356 

values the approximate character of the solution proposed in Eq. (24) is principally at fault.  357 

 358 

Geometrically perfect plate with boundary conditions B 359 

Eq. (24) can also be substituted in Eq. (22) describing the post-buckling behaviour of a plate with 360 

four straight edges. It is again assumed that the plate is square (b = L) and geometrically perfect (w0 361 

= 0). Applying the same methodology as employed in the previous section results in the load-362 

shortening relationship:  363 
 364 
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 366 
Eq. (37) shows that, for these boundary conditions, the initial stiffness in the post-buckling range is 367 

half of the pre-buckling stiffness, thus exactly confirming the results found by Marguerre (1937) and 368 

Koiter and Pignataro (1976).  369 

Using the failure criterion presented in Eq. (35) can be shown to result in the following equation for 370 

the ultimate capacity of the plate: 371 

 372 
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 374 
Eq. (38) is also plotted in Figure 7 in dashed green line, although it should not be directly compared 375 

with the Winter equation, as longitudinal edges were not kept straight in Winter’s tests. 376 
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In most practical applications, the boundary conditions can be approximated by case A, and few 377 

instances can be found of case B boundary conditions. The remainder of the paper will therefore 378 

focus on case A. 379 

Geometrically imperfect plate with boundary conditions A 380 

 381 

We consider a square plate with boundary conditions A, which is assumed to have an imperfection 382 

w0 described by the following equation: 383 
 384 
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 386 

Substituting the proposed solution Eq. (24), as well as the above expression Eq. (39), into Eq. (18) 387 

leads to the following result: 388 
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 391 
On the other hand, substituting Eqs. (24) and (39) into Eq. (17), followed by application of Eq. (12) 392 

leads to: 393 
 394 
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Eliminating A11 from Eqs. (40) and (41) results in the following implicit load-shortening relationship: 397 
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 400 

Eq. (42) can also be expressed in terms of the variables e = /cr and s = /cr: 401 
 402 
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with: 405 
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 408 

Eq. (43) was solved numerically for various values of e and the results were compared to the FE 409 

results obtained for the previously introduced square steel plate (L = 200 mm; t = 1 mm) (Figure 8). 410 
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Both Eq. (43) and the FE model incorporated an initial imperfection A0 = 1 mm. Good agreement was 411 

obtained up to strains of about 5 times the buckling strain cr. 412 

 413 

It also follows from Eqs. (40) and (41) that: 414 
 415 
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 417 

This result shows that Eq. (42) asymptotically approaches the behaviour of a perfect plate as 418 

deflections increase. 419 

 420 
Taking Eq. (42) as a starting point and making use of the failure criterion in Eq. (35) to eliminate U0, 421 

the following analogue for the Winter equation is obtained: 422 
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 425 

In the above equation  is an imperfection factor, which is given by: 426 
 427 
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=           (47) 428 

 429 
According to Eurocode 3: EN1993-1-5 (CEN 2006) the local imperfection of a plate supported along 430 

all four edges may be taken as A0 = b/200 (where b is the width of the plate, in this case equal to the 431 

length L). This ‘equivalent’ imperfection takes into account geometric imperfections, as well as 432 

residual stresses. With E = 200 GPa and fy = 350 MPa, Eq. (47) yields:  = 1/57. Figure 7 shows Eq. 433 

(46), plotted for this value of  in solid red line. Very good agreement with the Winter curve is 434 

obtained up to a slenderness value of about 1.5-2. For higher slenderness values the predictions 435 

diverge from the Winter curve. This can be attributed to the limiting assumptions in our model, in 436 

particular the proposition that the deflected shape is represented by Eq. (24). This assumption 437 

results in a constant post-buckling stiffness for a perfect plate, as indicated by Eqs. (29) and (37), or 438 

an asymptotically constant post-buckling stiffness for an imperfect plate, as indicated by Eq. (45). In 439 

reality this stiffness will further deteriorate as the load rises in the post-buckling range, as seen from 440 

the FE results in Fig. 6a and Fig. 8. This effect is, of course, more important for more slender plates, 441 

which go through a more extended post-buckling range before yielding sets in. This suggests that the 442 

predictions of both the plate post-buckling deformations and the plate capacity can be improved in 443 
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the high slenderness range by including higher-order Fourier terms in Eq. (24). This is the topic of the 444 

following sections of this paper. 445 

Higher order solution for a perfect plate (Case A) 446 

 447 
A more accurate solution for the post-buckling behaviour of a perfect plate with Case A boundary 448 

conditions can be obtained by including not one, but four Fourier terms in the proposed solution for 449 

the plate deflections w: 450 
 451 








 







 
+







 







 
+







 







 
+







 







 
=

L

y3
sin

L

x3
sinA

L

y
sin

L

x3
sinA

L

y3
sin

L

x
sinA

L

y
sin

L

x
sinAw 33311311

 452 

            (48) 453 

and substituting this expression in Eq. (14). It is noted that the Fourier terms in 2x and 2y need not 454 

be considered because of the symmetry of the problem. The resulting calculations are rather lengthy 455 

but quite straightforward and are not reported here. By equating the corresponding coefficients of 456 

each Fourier term on the left- and right-hand side of Eq. (14) (noting that these are necessary 457 

conditions because of the orthogonality of the Fourier terms) it is discovered that: 458 
 459 
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 461 
and that the two non-zero coefficients A11 and A13 are determined by the following non-linear 462 

system of equations: 463 
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 468 
Eq. (49) indicates that the longitudinal shape of the buckling pattern does not change in the post-469 

buckling range and remains a single sinusoidal half-wave. This is, of course, a result of the simplifying 470 

assumptions we have initially made, in particular the assumptions that (1) each longitudinal fibre of 471 

the plate behaves independently, mimicking in this sense the behaviour of a column, and (2) the 472 

transverse membrane stresses always remain at zero, independently of the longitudinal 473 

displacement profile. On the other hand, a change in the transverse displacement profile does have 474 

the ability to significantly affect the longitudinal stress distribution, as evidenced by Eq. (13).    475 

 476 
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Substituting Eq. (48) into Eq. (13) yields the longitudinal stresses in the plate: 477 
 478 
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 480 
which, through Eq. (12), gives the axial compressive load as: 481 
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 484 
The above equation describes the relationship between the axial shortening U0 of the plate and the 485 

load P in the post-buckling range, albeit that A11 and A13 are functions of U0 through Eqs. (50-51). 486 

These equations can be solved exactly for A11 and A13 (e.g. using Solver in Excel (Microsoft, 2017)) for 487 

any given value of U0, upon which Eq. (53) provides the corresponding load. This procedure was 488 

applied to the earlier example of a square plate with E = 200 GPa, L = 200 mm and t = 1 mm, 489 

resulting in the dark green curve in Fig. 9. This curve agrees very well with the results of the FE 490 

analysis, also shown (in black) in the same diagram, up to an axial strain of about 20 times the 491 

buckling strain. If it is assumed that the plate reaches this strain when yielding of the most 492 

compressed fibre occurs (effectively failing the plate according to the effective width concept), then 493 

the corresponding plate slenderness  is  √20 ≈ 4.5. This slenderness significantly exceeds that of 494 

typically encountered plates and plate assemblies in structural applications and it can thus be 495 

concluded that this solution is sufficient for almost all practical situations. 496 

 497 

Interestingly, an approximate closed form solution can also be obtained. Indeed, Eqs. (50-51) can be 498 

further simplified by using the knowledge that the first term in Eq. (48) is (initially) dominant over 499 

the second one and that thus A11 >> A13. Consequently, the terms in 2

13A  and 3

13A  can in very good 500 

approximation be neglected in comparison with the others: 501 
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 505 
By eliminating A13 from Eqs. (54-55) the following expression is obtained: 506 
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The load P can be obtained by substituting Eq. (56) in Eq. (53) and again ignoring 2

13A  in comparison 510 

to 2

11A  : 511 

 512 
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 514 
or: 515 
 516 
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 518 
Eq. (58) is also shown in Fig. 9 (in pale green line). It is seen that Eq. (58) is initially indistinguishable 519 

from the ‘exact’ solution, up to an average strain of about 10 times the buckling strain. Beyond this 520 

range, both solutions diverge slightly, although Eq. (58) always stays within reasonably close range of 521 

the FE results up to a strain of at least 30 times the buckling strain (the difference with the FE results 522 

at this strain is 6.8 %).  523 

 524 

In order to again derive a Winter-type design equation, it is first concluded from inspection of Eq. (52) 525 

that the failure criterion represented by Eq. (35) still holds. Thus, substituting: 526 
 527 

E

f y
=              (59) 528 

 529 

into Eq. (58) and using the definition of the slenderness  (Eq. 6) results in: 530 
 531 
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 533 
This equation is plotted in Figure 10 (pale green curve) and compared to the actual Winter curve. It 534 

is seen that Eq. (60) agrees much better with the Winter curve than Eq. (36), derived using only a 535 

single Fourier term, particularly in the high slenderness range ( > 2) where plates typically have a 536 

much more extended post-buckling range. While following the same trend, Eq. (60) slightly ‘hovers’ 537 

above the Winter equation over the whole slenderness range, which is mainly due to the absence of 538 

any imperfections in our model. 539 

A more ‘exact’ curve can be produced numerically by choosing a range of U0 values and calculating, 540 

for each U0, A11 and A13 using Eqs. (50-51), followed by P using Eq. (53). Eq. (59) then yields fy for a 541 

given  = U0/L and Eq. (6) reveals the corresponding slenderness. Plotting all (, P) pairs results in the 542 

dark green curve in Figure 10. This curve is near indistinguishable from the closed form solution 543 
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given by Eq. (60) up to a slenderness of about 3.5 (i.e. within the practical slenderness range) and 544 

predicts slightly higher values thereafter. 545 

 546 

Higher order solution for an imperfect plate (Case A) 547 

 548 

We now consider a plate containing an initial imperfection described by Eq. (39). Inspired by the 549 

conclusions of the preceding section, we assume the displacement profile w to be accurately 550 

represented by: 551 
 552 
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 554 
Substitution of Eqs. (39) and (61) in Eq. (18) and separating the Fourier terms eventually leads to the 555 

following non-linear system of equations in A11 and A13: 556 

 557 

( ) 1311013

2

11

2

110

3

11

2

001111 AAA6AA3AA9A3
L

UAA2A4
L

8
++−−=






















+−








 558 

                                                                                
2

13013

2

011

2

0

2

1311 AA6AA2AA6AA6 −+−−       (62) 559 

3

1313

2

011

2

01311013

2

11

2

110

3

11

2

013 A3AA4AA2AAA12AA6AA3A
L

U2100
L

8
A −−+−−+=






















−








560 

             (63) 561 

 562 

This system of equations can again be solved numerically (e.g. using Solver in Excel (Microsoft, 2007)) 563 

for any chosen U0 value. The resulting A11 and A13 values then determine the load P through Eq. (64), 564 

which was obtained by substituting Eq. (61) into Eqs. (12-13): 565 
 566 
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This procedure can be carried out for a range of U0 values to obtain a load-shortening curve. An 568 

example is shown in Fig. 11 (brown line), where the 200×200 mm2 plate geometry previously 569 

considered was revisited with A0 = L/200 = 1 mm. This curve is compared to the corresponding graph 570 

obtained from FE analysis (black line). A very good agreement is observed for strains up to about 20 571 

times the buckling strain (corresponding to loads of up to 5 times the buckling load). For higher 572 

strains, the solution starts to diverge from the FE results due the approximate nature of both the 573 

proposed solution Eq. (61) and the newly developed Eq. (18).  574 
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In order to establish a corresponding design curve, the value of U0 in the above Eqs. (62-63) can be 575 

held constant and linked to a chosen yield stress through Eq. (35). The equations can then be solved 576 

for different values of , which determines cr through Eq. (32) and thus, for a given yield stress, the 577 

slenderness . The resulting load-slenderness curve is the sought equivalent of the Winter curve. 578 

This procedure was carried out for A0 = L/200 and fy = 350 MPa, and the resulting curve is compared 579 

to the Winter curve in Fig. 12 (brown line). The agreement is very good over the whole slenderness 580 

range up to  = 4.5 (Fig. 11 suggests the predictions should be treated with caution for  > √20  ≈ 581 

4.5), although the theoretical approach predicts slightly higher capacities at high slenderness values. 582 

The Winter equation is known to become somewhat conservative in this higher slenderness range, 583 

although only a future extensive comparison with experimental data can indicate which curve is 584 

more accurate.  585 

 586 

A closed form expression for the plate capacity can also be derived by again neglecting the terms in 587 

3

13A  and 2

13A  in Eqs. (62-64). Eliminating A11 and A13 from these equations and using the failure 588 

criterion in Eq. (35) eventually results in the following relationship between the plate slenderness 589 

 and the plate capacity Pu: 590 
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(65) 592 

In the above equation the imperfection factor  is given by Eq. (47), while the coefficients c0-c3 and 593 

d0-d2 are listed in Table 1. 594 

 595 

Eq. (65) is plotted in Fig. 12 (orange line) and is seen to agree almost exactly with the numerical 596 

approach (brown line) up to a slenderness of about 3.5, while leading to slightly lower predictions 597 

after that. Unlike the Winter curve, Eq. (65) captures the gradual transition into full yielding. 598 

However, Eq. (65) is obviously more cumbersome in its application and specifies the slenderness as a 599 

function of the ultimate load, rather than vice versa. 600 

Parametric studies 601 

Eq. (65) reveals that the plate capacity is a function of only two parameters: the plate slenderness  602 

and the imperfection parameter . According to Eq. (47),  is a function of the yield stress fy of the 603 
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material, the relative imperfection amplitude A0/L and the elastic modulus E. This suggests that for 604 

steel plates (for which E is constant independently of the alloy) different Winter-type design curves 605 

are needed for different steel grades, as well as for different magnitudes of imperfections. This is at 606 

odds with current design standards around the world, which only specify ‘the’ Winter curve for 607 

universal application. A limited parametric study was therefore conducted to study the effects of the 608 

yield stress and the imperfection magnitude on the predicted plate capacity. 609 

Fig. 13 plots Eq. (65) for the most common grades of construction steel, ranging from 235 MPa to 610 

960 MPa. It is seen that the curves are closely clustered together. A noticeable difference can only 611 

be observed in the transition zone towards full yielding, where the design curve for 960 MPa steel 612 

predicts approximately 10% higher values of Pu/Py than the one for 235 MPa steel. The Winter curve 613 

appears to form a lower bound to the bundle of curves, closely agreeing with the curve for fy = 235 614 

MPa over most of its range. This indicates that the Winter equation is an appropriate and safe tool 615 

across all steel grades. It is noted that an imperfection amplitude A0 = L/200 was assumed for all 616 

curves. 617 

Fig. 14 plots Eq. (65) for various imperfection amplitudes A0, ranging from L/1000 to L/50. The 618 

diagram also shows the predicted capacity of a perfect plate (Eq. 60) and the Winter curve, for 619 

comparison. Comparing this graph to Fig. 13, it is seen that the imperfection amplitude has a much 620 

more significant effect on the plate capacity, due to the range over which it can realistically be 621 

expected to vary, as well as due to its appearance in Eq. (47) as a squared variable. As previously 622 

established, the curve with A0 = L/200 agrees well with the Winter curve. However, the Winter curve 623 

should not be used for stocky plates with expected imperfections exceeding this value. Fig. 14 624 

confirms again that the imperfection sensitivity is most pronounced around  = 1 and is quite 625 

moderate for very slender plates ( > 2.5). 626 

Discussion and application 627 

A number of important and quite general conclusions follow from the above presented theory. A 628 

first observation is that the dimensionless capacity Pu/Py of a geometrically perfect plate is only a 629 

function of its slenderness , defined by Eq. (6). This fact is demonstrated by Eqs. (36) and (38) - for 630 

plates with different boundary conditions - for the case where a single Fourier term is used in the 631 

proposed solution.  While using two Fourier terms leads to the more complex Eq. (60), it leaves this 632 

fundamental conclusion unchanged, which can thus be expected to hold true also for higher order 633 

solutions and to be universally valid. It is impossible not to acknowledge the extraordinary 634 

contribution of Winter in this regard, who presented his experimental result in the form of a Pu/Py vs. 635 

 diagram, inspired perhaps by previous work by von Karman et al. (1932) and the theory of columns, 636 
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but without a solid theoretical basis at the time indicating this way forward. Eighty-one years after 637 

the first publication of Winter’s results this theoretical proof has now been provided. 638 

Similarly, in the case of a plate containing an initial geometric imperfection, Eqs. (46) and (65) 639 

indicate that the (dimensionless) plate capacity is a function of only two parameters: the plate 640 

slenderness  and an imperfection factor , given by Eq. (47). This imperfection factor is a function 641 

not only of the amplitude of the geometric imperfection (relative to the width of the plate), but also 642 

of the yield stress and the elastic modulus. Eq. (65) makes it possible to quantitatively study the 643 

influence of these parameters on the ultimate capacity of the plate, as demonstrated in the previous 644 

section.  645 

Reflecting on the above paragraph it is impossible to forego a comparison with the theory of Perry 646 

and Robertson (Robertson, 1935; Ayrton and Perry, 1886) for (imperfect) columns. Indeed, their 647 

theory leads to the same exclusive dependence of the (dimensionless) column capacity on the 648 

column slenderness (defined in an analogous way based on the yield stress of the material and the 649 

elastic buckling stress) and an imperfection factor. In the Perry-Robertson theory, this imperfection 650 

factor is similarly a function of the amplitude of the geometric imperfection (relative to the column 651 

length), the yield stress, the elastic modulus and the cross-section geometry (the latter, logically, 652 

does not feature in Eq. 47). Incidentally, the Perry-Robertson theory employs the same failure 653 

criterion as the one used in this study, namely that the capacity is limited by first yield of the 654 

material. As a result, a rather beautiful symmetry is established between the theory of columns and 655 

the new theory of plates here presented. 656 

It is nearly impossible to overstate the importance of the Perry-Robertson equation, not only for 657 

providing theoretical insights into the behaviour of imperfect columns, but also because Eurocode 3 658 

(EN 1993-1-1, CEN 2005) has adopted it as the basis for column design. In the resulting system, the 659 

imperfection factor  is generalized to also account for residual stresses, a type of imperfection 660 

absent in the theoretical derivation.  A group of ‘standard’ column curves are defined based on a 661 

number of discrete values of the imperfection factor, and with the aid of experimental and 662 

numerical investigations it was determined which column curve should be used for the design of 663 

which type of column. The ‘type’ of column thereby refers to its cross-sectional shape, yield stress, 664 

plate thicknesses and fabrication method (welded or rolled). Based on the theory presented in this 665 

paper an entirely analogous approach is now conceivable for the design of plates.  The imperfection 666 

factor  in Eq. (65) can be generalized to account for ‘imperfections’ in the general sense, including 667 

residual stresses. A number of design ‘strength curves’, corresponding to different -values, can 668 

then be proposed, accompanied by design guidance to be developed in further research. An 669 

example is provided in Fig. 15. The data pertain to square hollow sections, in which all plates 670 
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simultaneously buckle locally without exerting any restraint onto each other, thus mimicking single 671 

plates with hinged longitudinal edges. The cross-sections were fabricated by welding individual 672 

plates together at their junctions. This leads to the introduction of additional residual stresses, as 673 

well as increased imperfections (welding distortions), resulting from the heating and cooling process, 674 

and it is well known that the Winter curve is not applicable in this case (e.g. Uy, 2001). The data 675 

were gathered from research by Bridge and O’Shea (1998), Uy (2001), Huang et al. (2019) and Li et al. 676 

(2019) and are summarized in Table 2. The data include specimens with quite a wide range of yield 677 

stresses, and while it is appreciated that these differences might to some extent be reflected in the 678 

relative magnitude of the residual stresses, Fig. 15 shows quite a clear overall trend. A single design 679 

curve was therefore deemed appropriate, similar to the conclusions previously drawn from Fig. 13. It 680 

is seen that Eq. (65) with an imperfection factor  = 0.14 provides a good match to the data. This 681 

example illustrates the potential of the new approach.  682 

 683 

Concluding remarks 684 

This research set as its primary objective to establish a link between the von Karman equations, 685 

describing the nonlinear post-buckling behaviour of elastic plates, and the practical design of metal 686 

plates, governed by a Winter-type equation connecting the plate slenderness to its capacity. To 687 

achieve this, the von Karman equations were first simplified into a single equation, while being 688 

mindful of preserving the inclusion of the main mechanics which govern the post-buckling behaviour 689 

of plates. In particular, the development of superimposed longitudinal membrane tension as a result 690 

of plate deflections while the nodal lines of the buckling pattern necessarily remain straight as result 691 

of (anti-)symmetry between consecutive buckles was identified as the main mechanism determining 692 

the transverse stress distribution in the post-buckling range. The resulting equation was solved using 693 

a truncated Fourier series and the results compared to the output of an elastic geometrically non-694 

linear finite element analysis either with or without the inclusion of an initial imperfection. Using a 695 

single Fourier term yielded good agreement for strains up to six times the buckling strain, while this 696 

range could be considerably extended to about twenty times the buckling strain when two Fourier 697 

terms were included. The latter is believed to be amply sufficient for virtually all practical 698 

applications.  699 

In order to arrive at capacity predictions, the theory was wed to von Karman’s failure criterion, 700 

corresponding to yielding of the effective strips. This allowed a closed form strength equation to be 701 

derived, which showed a remarkable agreement with the experimental Winter curve when 702 

accounting for typical (equivalent) imperfections. This equation revealed the capacity of an 703 
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imperfect compressed plate to be a sole function of its slenderness and an imperfection factor, 704 

spurring comparison with the Perry-Robertson equation for columns, and allowing: 1. a theoretical 705 

study of the various factors affecting the plate capacity through the imperfection factor, and 2. the 706 

development of practical design curves for various applications. The latter was illustrated for the 707 

case of welded box sections.   708 

 709 
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Table 1. Coefficients in Eq. (65) 868 

c3 -0.506/  d2 0.053 

c2 0.518 + 0.858/ d1 -0.028 − 0.019 

c1 0.016 − 0.330 − 0.428/ d0 0.7872 − 0.013 − 0.014 

c0 -0.0142 − 0.014 + 0.022 + 0.076/ 

 869 

 870 

 871 

Table 2. Data gathered related to local buckling of welded box sections 872 

Source 
Number of data 

points 

Nominal 

thickness (mm) 

Yield stress 

(MPa) 
b/t range* 

Bridge and O’Shea 6 2 282 37-131 

Uy 4 3 265 120-180 

Huang et al. 4 5 740 18-48 

Li et al. 4 5 980 18-48 

*b = width of the plate; t = thickness  873 
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Figure 1: Plate boundary conditions for: (a) Case A, and (b) Case B 
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Figure 2: Effective width concept 
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Figure 3: Deformed longitudinal fibre 
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Figure 5: Stress contours of xxy and y obtained from FE analysis 

 for a plate with Case A boundary conditions 

  



 
 

 

 

 

Figure 6: a. Load vs. axial shortening; b. Load vs. deflection at the centre of the plate 
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Figure 7. Comparison of theoretical predictions with Winter curve 
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Figure 8. Comparison of theoretical load-shortening behaviour of an imperfect plate with FE results 
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Figure 9. Comparison of solution including higher Fourier terms with FE results (perfect plate) 
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Figure 10. Comparison of theoretical design curves with Winter curve 
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Figure 11: Comparison of solution including higher order Fourier terms with FE results (imperfect 

plate) 
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Figure 12: Comparison of theoretical capacity predictions with Winter curve 
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Figure 13: Strength curves for various steel grades 
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Figure 14: Strength curves for various imperfection amplitudes A0 
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Figure 15: Proposed local buckling strength curve for welded box section 
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