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Abstract: Quantitative measures of radiation-induced breast stiffness are required to support clini-

cal studies of novel breast radiotherapy regimens and exploration of personalised therapy, however, 

variation between shear-wave elastography (SWE) machines may limit the usefulness of shear-wave 

speed (cs) for this purpose. Mean cs measured in four healthy volunteers’ breasts and a phantom 

using 2D-SWE machines Acuson S2000 (Siemens Medical Solutions) and Aixplorer (Supersonic Im-

agine) were compared. Shear-wave speed was measured in the skin region, subcutaneous adipose 

tissue and parenchyma. cs estimates were on average 2.3% greater when using the Aixplorer com-

pared to S2000 in vitro. In vivo, cs estimates were on average 43.7%, 36.3% and 49.9% significantly 

greater (p << 0.01) when using the Aixplorer compared to S2000, for skin region, subcutaneous adi-

pose tissue and parenchyma, respectively. In conclusion, despite relatively small differences be-

tween machines observed in vitro, large differences in absolute measures of shear wave speed meas-

ured were observed in vivo, which may prevent pooling of cross-machine data in clinical studies of 

the breast. 

Keywords: shear-wave elastography; shear-wave speed; radiation-induced breast toxicity; tissue 

stiffness; cross-machine comparison 

 

1. Introduction 

Breast-conserving surgical local excision, followed by radiotherapy (RT) to improve 

local control and survival, is a successful treatment for early breast cancer. Approximately 

31,000 women receive adjuvant breast RT in the UK per year with local relapse rates as 

low as ~6% at 10 years [1]. Given that many women are now surviving decades beyond 

their breast cancer treatment, a priority now is to reduce the long-term side effects of ra-

diotherapy to the breast. The overall cosmetic outcome has been shown to be an important 

factor influencing patient psychosocial morbidity after treatment [2]. Evaluation of novel 

RT regimens must weigh the positive outcomes (including local control, disease-free sur-

vival, and overall survival) against treatment-related toxicity and the impact on the pa-

tient’s quality of life. Currently, morbidity-related endpoints are primarily derived from 

subjective measures of function, patient comfort and cosmesis, as evaluated by clinicians 

or patients, which can be subject to variation due to psychological and social factors [3,4]. 

Such variation may preclude the pooling of results from multiple clinical studies of radi-

otherapy [5], required to support studies of genetic predisposition to radiation toxicity 
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[6]. Quantitative, reproducible measures of morbidity could remove these sources of var-

iation allowing more objective assessment of treatment toxicity and facilitating explora-

tion of personalised treatment. 

Shear-wave elastography (SWE) has the potential to quantify tissue stiffness for the 

purpose of disease diagnosis, prognosis or staging, and to monitor the response of tissues 

to treatment [7–12]. SWE is expected to be able to quantify properties related to breast 

tissue stiffness using shear-wave speed cs, which under a number of assumptions is re-

lated to Young’s modulus (E) of the tissue using E = 3  cs2, where   is tissue density [10]. 

Absolute or relative measures of cs or E may be useful. One such relative measure could 

be the spatial distribution of cs, which can be compared with the radiation dose distribu-

tion delivered to the patient, potentially helping to further increase understanding of the 

relationship between dose and radiation-induced morbidity. Two-dimensional SWE (2D-

SWE) which provides the spatial distribution, or map, of cs may be used for this purpose. 

Here, we adopt the convention for describing different forms of elastography outlined in 

Bamber et al. [13]. 

In the context of large multi-centre clinical trials, required to provide the clinical ev-

idence to change practice [1], measures of morbidity must be reproducible between cen-

tres. There is evidence to suggest that cs estimates vary between machines provided by 

different vendors, transducer types and imaging depth [14–16]. This may detrimentally 

affect the application of SWE to the assessment of normal tissue toxicity because it is un-

likely that the same SWE equipment will be available across different clinical centres. 

Investigations that compare cs estimates made with various machines, transducers 

and system settings have been largely limited to in vitro studies [17–19], albeit with some 

in the liver in vivo [20,21]. No study has compared cs estimates between machines in nor-

mal breast tissues. The purpose of the current study was to compare absolute and relative 

measures of breast cs between 2D-SWE machines in vivo to determine if these could be 

used as reliable metrics in planned cross-centre and cross-machine clinical studies of ra-

diation-induced fibrosis. Previous work has shown that the skin thickens post radiother-

apy [22,23] and other work has indicated that women with greater breast size are more 

likely to experience breast hardening [24,25]. Larger breast size is associated with a greater 

proportion of adipose tissue. It may therefore be important to measure hardening in com-

ponent breast tissues, i.e., skin, adipose and breast parenchyma. It is expected that differ-

ent breast tissues will have different cs [26–28] and that these differences are consistent 

between machines. Previous studies of point SWE (pSWE) suggest that cs estimates are 

influenced by transducer orientation with respect to Cooper’s ligaments [28]. If 2D-SWE 

cs estimates are similarly affected, care must be taken to reproduce transducer orientation 

across centres. 

In this study, we investigate the difference in cs measured using two machines that 

provide 2D-SWE, the Aixplorer®  (Supersonic Imagine, Aix-en-Provence, France) and the 

Acuson S2000®  (Siemens Healthcare GmbH, Erlangen, Germany). Both machines generate 

shear waves in tissue using an acoustic radiation force impulse (ARFI), which creates a 

local tissue displacement at the focus of the ARFI beam. This small displacement of tissue 

generates shear waves that emanate from the focus. Although the approach to measuring 

cs is similar there may be technical differences that lead to a variation in the value of cs 

measured. For example, the Acuson builds up a 2D image by focusing the ARFI beam at 

multiple lateral locations at multiple depths. The shear waves are tracked using multiple 

tracking beams [13,29]. The Aixplorer uses a different approach, sweeping the ARFI focus 

over the depth of imaging faster than the speed of the shear waves, generating a cone-

shaped shear wave, known as a Mach cone. This scanner tracks the propagation of the 

shear wave using ultrafast plane wave imaging, allowing the shear waves to be tracked 

in 2D [30]. Furthermore, each machine uses proprietary software to generate values of cs 

using the tracking data. Consequently, differences in how the displayed value of cs is cal-

culated may also exist. 
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Variation between absolute measures of mean cs values was investigated in different 

regions of the breast, specifically, the skin region, subcutaneous adipose tissue and, where 

it could be clearly differentiated, breast parenchyma. Relative measures investigated in-

cluded tissue cs ratio, the ratio of cs, in pairs of the above tissue types and the anisotropy 

ratio, the ratio of cs estimates acquired in transducer orientations that were radial and anti-

radial with respect to the nipple. 

2. Materials and Methods 

2.1. Machines and Machine Settings 

Cross-centre and cross-machine shear-wave speed (cs) measurements were per-

formed on an ultrasound elasticity phantom and four healthy female volunteers at two 

centres, the Royal Marsden National Health Service (NHS) Foundation Trust (RM) and 

Cambridge University Hospitals NHS Foundation Trust (CUH), on the same day. At RM, 

the Aixplorer®  was used with an L10-2 linear probe and at CUH the Acuson S2000®  with 

Virtual Touch Imaging Quantification (VTIQ® ) technology and a 9L4 linear probe was 

used. Both machines produce a 2D elastogram, i.e., a map of cs. The machine settings for 

the Aixplorer for B-Mode imaging were “Gen/Med”, dynamic range = 61 dB, image per-

sistence = medium, speed of sound = 1540 ms−1, transmit frequency = 5 MHz and, for shear-

wave elastography (SWE) mode, Penetration = Med, SWE map persistence level = high, 

Smoothing = 5 and G = 70%. At CUH, the S2000 settings for B-mode imaging were F = 9 

MHz, dynamic range = 65 dB, speed of sound = 1540 m/s, persistence setting = 3. A maxi-

mum elastogram depth of 3.5 cm was used for both machines. 

2.2. In Vitro Measurements 

A tissue-mimicking phantom (Model 049 Elasticity QA Phantom, Computerized Im-

aging Reference Systems Inc. (CIRS), Norfolk, VA, USA) was used to obtain cs estimates. 

The phantom was made of Zerdine polymer and contained two groups of four spherical 

inclusions of four different elastic moduli different to the elastic modulus of the back-

ground material; one group was placed at a depth of 15 mm and the other at a depth of 

35 mm, the former group was used in this study. 

Three independent observers acquired shear-wave elastograms and cs estimates from 

the four shallow inclusions (depth = 1.5 cm, diameter = 1.0 cm) and background material 

with both machines; deeper inclusions were too deep to fully visualise in SWE mode using 

the linear transducers used in the current study, which are designed for breast examina-

tions. To determine Aixplorer cs estimates within the inclusions, circular regions of interest 

(ROIs), called Q-Boxes, with a diameter of 1.0 cm were positioned over each inclusion and 

cs estimates were recorded. The S2000 cs estimates were acquired using nine 1.5 mm × 1.5 

mm square (fixed by the manufacturer) ROIs positioned randomly within each inclusion 

and within the background material and cs estimates were recorded. For both machines, 

all ROIs were positioned using the B-mode image, except for Aixplorer when artefacts 

were excluded and the elastogram was used to indicate the position of the artefacts. The 

artefacts are discussed in more detail in Section 2.4. Observers independently performed 

measurements three times and were blinded to the results of other observers. 

2.3. In Vivo Imaging 

Four healthy female volunteers with no history of breast malignancy were recruited 

for this study. The Surrey and South East Coast National Health Service Research Ethics 

Committee approved the study and informed consent was obtained from all the volun-

teers prior to scanning. Volunteers were aged 60, 38, 28 and 25 years on the date of scan-

ning. A single consultant breast radiologist (RS at CUH, or EO at RM) acquired elasto-

grams of the breast at each centre. Prior to acquiring data for analysis, radiologists prac-

tised acquiring elastograms without precompression, which may produce an overestima-

tion of cs and introduce SWE elastogram artefacts in vivo [31]. To avoid precompression, 
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copious amounts of ultrasonic gel were used to create a stand-off. Volunteers were asked 

to hold their breath to make it easier to maintain this stand-off during each image acqui-

sition and reduce the likelihood of motion artefacts. 

Images were obtained first with the Aixplorer at RM, after which volunteers travelled 

to CUH and the imaging was repeated with the S2000. There was an average of six hours 

between scanning at the two centres. Eight images were acquired from each breast with 

the transducer in radial and anti-radial transducer orientations, as explained by Figure 1. 

The transducer positions employed at RM were marked using a surgical marker pen to 

enable interrogation of the same regions of tissue at CUH. Volunteers were scanned su-

pine with their arm raised behind their head. B-mode images and elastograms were ac-

quired using the technique described above. 

 

Figure 1. Schematic of transducer positions used to obtain shear-wave speed (cs) estimates from the 

breast. Eight B-mode image and elastogram pairs were acquired from each breast. 

2.4. Shear-Wave Speed Estimates 

The S2000 generated a shear-wave speed grayscale elastogram adjacent to the B-

mode image. See Figure 2a. A radiologist (RS) used the B-mode image to identify skin, 

adipose and parenchyma. Six ROIs were placed on each tissue type on the B-mode image. 

The S2000 provided on-screen annotations showing the position of each region of interest 

(ROI) in both the B-mode and the elastograms, and the mean cs within the ROI. 
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Figure 2. Showing: (a) An example B-mode image/elastogram pair acquired using the S2000 with ROIs marked on skin 

and parenchyma tissues (Volunteer 2); (b) an Aixplorer elastogram containing artefacts, overlaid with transparency on a 

B-mode image (Volunteer 2). In this example, cs values were estimated by placing ROIs (Q-boxes) in the regions free from 

artefacts; (c) the same image where the ROIs were positioned without knowledge of the position of the artefacts, achieved 

by reducing the opacity of the displayed elastogram to zero. Note that the Aixplorer only displays the last 4 ROIs selected. 

The Aixplorer provided an elastogram superimposed on the B-mode image where 

red and blue indicated greater and lesser cs, respectively, as shown in Figure 2b. The small-

est available ROI, 2 mm in diameter, was placed at six different locations on the skin, 

adipose and parenchyma, respectively. The anatomical regions of interest and the cs meas-

urement points selected by the radiologist and annotated on S2000 images were used to 

guide the placement of the ROIs on Aixplorer elastograms, which was performed by EH. 

Image artefacts of high cs at regularly spaced intervals were observed in Aixplorer 

elastograms. These are visible as a regular pattern of greater shear wave speed in Figure 

2b and as vertical lines of greater shear wave speed illustrated using an elastogram of a 

homogenous region of the phantom in Figure 3a. To study the effect of this artefact, the 

Aixplorer analysis was performed twice, once by choosing measurement locations that 

avoided the artefacts using both the B-mode image and the elastogram to position the 

ROIs, as in Figure 2b, and once with measurement locations selected using only the B-

mode image by increasing the cs scale and reducing the opacity of the on-screen display 

of the elastogram to zero (see Figure 2c). In some elastograms, it was not possible to avoid 

some overlap of ROIs with regions that appeared to contain artefacts. In some cases, min-

imising the inclusion of artefacts reduced the number of measurement positions available. 

The number of cs estimates obtained using the Aixplorer when avoiding artefacts varied 

between two and six. 
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Figure 3. Showing: (a) Aixplorer image of a homogenous region of the phantom to illustrate the bands of greater shear 

wave speed (artefacts) observed. (b) Example elastograms of the lesions contained within the CIRS 049 phantom using the 

Aixplorer and the S2000. Nominal shear-wave speeds are given below the images. 

2.5. Data Analysis 

When analysing data from the elastography phantom, the agreement between ma-

chines was assessed using the percentage difference between cs estimates measured using 

the Aixplorer and using the S2000. The symmetric percentage difference was defined as 

the difference between estimates divided by the mean of the estimates multiplied by 100 

[32] and are reported relative to Aixplorer values, i.e., a positive value indicates that the 

Aixplorer cs estimate was greater than the S2000 cs estimate. There were three values of 

percentage differences in cs, one per observer. Interobserver variability of the cs estimates 

for each inclusion and the background was quantified using the coefficient of variation 

(CV). 

For each in vivo elastogram, mean cs estimate were determined across all measure-

ment locations (up to 6). Median, interquartile range (IQR), maximum and minimum val-

ues of these mean cs estimates were determined for all breasts, for radial and anti-radial 

transducer orientations and for skin, adipose and parenchyma, and for individual sub-

jects. For the Aixplorer this was done twice, including and excluding artefacts. Agreement 

between machine estimates of cs was assessed using symmetric percentage differences in 

cs estimates for each of the variables described above. The correlation between cs estimates 

measured using S2000 and Aixplorer was determined using Pearson’s correlation coeffi-

cient. In addition, the ability of the two machines to record the same contrast in mean cs 

between the skin, adipose and parenchyma tissues was determined using tissue cs ratios: 

skin to parenchyma, skin to adipose and adipose to parenchyma. Anisotropy of cs was 

assessed per breast quadrant using the ratio of the mean cs estimated from the anti-radial 

elastogram to that estimated from the corresponding radial elastogram. 

Statistical analysis was performed with MatLab software (Version 2017a, The Math-

works Inc., Natick, MA, USA). Kolmogorov–Smirnov tests were used to test for normality. 
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Wilcoxon signed-rank tests were used to perform a pair-wise analysis to test for agree-

ment in median of the mean cs estimates, tissue cs ratios, and anisotropy ratios, between 

the machines. Pair-wise analysis was also performed to test for agreement between mean 

cs estimates obtained using different transducer orientations in the skin, adipose and pa-

renchyma. 

3. Results 

3.1. Difference in cs Estimates between Machines In Vitro 

Representative images of the phantom inclusions acquired using both machines are 

shown in Figure 3b. Table 1 lists the cs estimates in the phantom measured by each ob-

server, symmetric percentage differences cs estimates in between machines, and the nom-

inal values provided by the phantom manufacturer. Aixplorer gave between 0.2% to 

3.06% greater cs estimates than the S2000. The CVs of the cs estimates were <0.1 for all 

regions of the phantom and both machines (see Table 1). Figure 2 shows example images 

of the lesions contained in the phantom acquired using both machines 

Table 1. Individual and mean shear-wave speed (cs) estimates from the Aixplorer and the S2000 and the coefficient of 

variation (CV) of cs estimates across three observers. Individual estimates were the mean of three repeat measurements. 

The means and standard deviations of the symmetric percentage differences are given for each observer in the last column. 

The manufacturer’s nominal cs values for background and inclusions are given. 

 Background Inclusion 1 Inclusion 2 Inclusion 3 Inclusion 4 Mean (SD) 

Nominal cs 2.90 1.60 2.20 3.90 5.20  

Aixplorer: cs estimates (ms−1)  

Observer 1 2.50 2.00 2.60 3.80 4.10  

Observer 2 2.60 1.90 2.50 3.70 4.30  

Observer 3 2.50 1.80 2.50 3.60 4.10  

Mean 2.53 1.90 2.53 3.70 4.17  

CV 0.02 0.05 0.02 0.03 0.03  

S2000: cs estimates (ms−1)  

Observer 1 2.55 1.78 2.50 3.51 4.17  

Observer 2 2.47 1.89 2.40 3.40 4.11  

Observer 3 2.55 1.90 2.49 3.53 4.11  

Mean 2.50 1.90 2.50 3.50 4.10  

CV 0.02 0.04 0.02 0.02 0.01  

Symmetric percentage differences in cs estimates (%)  

Observer 1 −0.99 5.82 1.96 3.97 −0.85 1.98 (2.98) 

Observer 2 2.56 0.26 2.04 4.23 2.26 2.27 (1.41) 

Observer 3 −0.99 −2.70 0.20 0.98 −0.12 −0.53 (1.41) 

Mean 0.20 1.15 1.40 3.06 0.44 1.25 (1.12) 

3.2. Difference in cs Estimates between Machines In Vivo 

A total of 128 elastograms were acquired, 64 for each machine. Ultrasound imaging 

revealed that one volunteer had small dense breasts comprising of mainly parenchymal 

tissue, this volunteer had a maximum imaging depth (skin to pectoral muscles) of approx-

imately 2 cm. The other three volunteers had breasts of various sizes with differing 

amounts of adipose and parenchymal tissues, the maximum imaging depths in these vol-

unteers were greater than 4 cm. Artefacts of ill-defined vertical bands of higher cs than the 

average, appearing at approximately regularly spaced lateral intervals (as in Figure 3a, 

were observed in 100% of Aixplorer elastograms. In two Aixplorer images, artefacts cov-

ered the entire skin and adipose regions, and cs estimates from regions without artefacts 

could not be obtained. In five Aixplorer elastograms, the elastogram-overlay box was in-

correctly positioned below the outermost layer of the skin and cs in the skin could not be 
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obtained. A gel stand-off was clearly visualised on 96% of Aixplorer images and 100% of 

S2000 images. In two volunteers, the B-mode image did not clearly differentiate adipose 

tissue from the parenchyma. In these volunteers, cs estimates were obtained in skin and 

parenchyma only. 

Figure 4a illustrates that shear-wave speed estimates were significantly greater when 

measured using Aixplorer (avoiding artefacts) compared to S2000 in all tissue types (p-

values < 0.001). Symmetric percentage differences in median cs estimates between ma-

chines were 40.0%, 50.0% and 51.4% for skin, adipose and parenchyma tissues, respec-

tively. The variance of Aixplorer mean cs estimates was also statistically significantly 

greater than the variance of S2000 estimates (p-values < 0.001) in all tissues. The median 

and IQR of the mean cs estimates were significantly less when measured excluding arte-

facts in the skin and adipose (p-values < 0.001) and gave better agreement with S2000 cs 

estimates. All subsequent Aixplorer data presented were determined using cs estimates 

measured avoiding artefacts. Pearson correlation coefficients between cs estimates meas-

ured using individual elastograms acquired using S2000 and Aixplorer in the skin, adi-

pose and parenchyma were 0.25, 0.15 and 0.33 and were not statistically significant (p > 

0.05). When cs estimates were averaged over the whole breast (eight elastograms) Pearson 

correlation coefficients were 0.16 (p = 0.5), 0.75 (p = 0.057) and 0.75 (p << 0.01), respectively. 

All data are tabulated in Table 2. 
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Figure 4. Showing: (a) Shear-wave speed (cs) estimates for skin, adipose and parenchyma using Aixplorer (excluding ar-

tefacts) and S2000, and; (b) cs estimates for skin, adipose and parenchyma measured using Aixplorer including and ex-

cluding artefacts. Median is illustrated by the central horizontal bar; the horizontal box edges show the IQR and the whisk-

ers (dashed lines) show the range. Range is defined by adjacent values, which are the 25th or 75th quartile plus or minus 

the IQR multiplied by 1.5. Opposing triangles illustrate the 95% confidence interval on the median cs and ‘+’ indicates an 

outlier (any value outside the adjacent values). *** indicates where machine cs estimates were significantly different with 

p-value < 0.001. 

Table 2. Median, Interquartile range (IQR) max and mean shear-wave speed (cs) estimates from the 

Aixplorer and the S2000 across all elastograms measured in skin adipose and parenchyma. S = skin, 

A = adipose and P = parenchyma. 

 Mean cs estimate per elastogram (ms-1) 

 Aixplorer Aixplorer (with artefacts) S2000 

 S A P S A P S A P 

Median 2.4 2.0 2.2 3.0 2.9 3.0 1.6 1.2 1.3 

IQR 0.9 0.4 0.6 0.9 0.4 0.6 0.3 0.3 0.3 

Max 3.5 2.7 2.8 4.0 4.1 3.2 2.4 1.8 2.1 

Min 1.6 1.5 1.2 1.8 1.9 1.2 1.2 1.0 1.0 

3.3. Comparison of Tissue cs Ratios between Machines 

Figure 5 provides a box and whiskers plot of tissue cs ratios per elastogram for both 

machines. For both machines, all median tissue cs ratios were statistically significantly 

greater than unity, indicating that, on average, the skin had greater cs than parenchyma 

and adipose tissues, and parenchyma had greater cs than adipose tissue. There was no 

statistically significant difference in median tissue cs ratios between machines. 

 

Figure 5. Tissue cs ratios measured in skin, adipose and parenchyma in individual elastograms of 

the breast using Aixplorer and S2000. (See Figure 2 caption for full explanation of box plot). 

Aixplorer data were acquired using ROIs that did not include artefacts. The IQR and range may be 

influenced by variation between volunteers, breast quadrants and transducer orientation. ** or *** 

indicates where median cs estimates for different tissue types were significantly different with p-

value < 0.01 or < 0.001, respectively. 

3.4. Comparison of Anisotropy Ratios between Machines 



Appl. Sci. 2021, 11, 9391 10 of 16 
 

Figure 6 gives the median, IQR and range of anisotropy ratios for individual breast 

quadrants. Mean cs estimates (per elastogram) were statistically significantly greater when 

the transducer was placed in an anti-radial orientation for all tissues and both machines 

except for estimates measured using Aixplorer in skin. When cs estimates were averaged 

over the whole breast for anti-radial and radial positions, only for the S2000 did anti-radial 

cs estimates remained statistically significantly higher than radial cs estimates. 

 

Figure 6. Anisotropy ratios (ratio of mean anti-radial cs to mean radial cs in individual pairs of elas-

tograms obtained at the same location in the same breast quadrant on the same breast in the same 

individual) measured in skin, adipose and parenchyma for Aixplorer and S2000. *, ** or *** indicates 

where median cs estimates for anti-radial and radial transducer orientations were significantly dif-

ferent with p-value < 0.05, < 0.01 or < 0.001, respectively. 

4. Discussion 

4.1. Difference in cs Estimates between Machines In Vitro 

Two studies have compared Siemens S2000 (or S3000) point SWE (pSWE) or 2D-SWE 

and Aixplorer cs estimates in vitro using the same transducers that were used in the current 

study [15,18]. Using a phantom with nominal cs ≈ 2.3 ms−1 Shin et al. [15] found S2000 

pSWE gave statistically significantly lower cs estimates than Aixplorer by 0.1 ms−1 and 0.4 

ms−1 at depths of 3.0 cm and 4.0 cm, respectively. Dillman et al. [18] compared S3000 pSWE 

with S3000 2D-SWE and Aixplorer 2D-SWE, at depths of 1.0, 2.5 and 4.0 cm in soft (cs ≈ 0.9 

ms−1) and hard (cs ≈ 2.1 ms−1) phantoms and found small (<0.2 ms−1) statistically significant 

differences between them, however, no consistent bias between machines was observed. 

Hall [14] compared S2000 pSWE and Aixplorer 2D-SWE using curvilinear transduc-

ers at depths of 3.0, 4.5 and 7.0 cm across multiple machines at multiple sites. The 

Aixplorer gave significantly greater cs estimates than the S2000, by up to ~0.2 ms−1 in a soft 

phantom (cs ≈ 1.0 ms−1). However, the use of a phased array transducer with the S2000 at 

one of the test sites may have biased the results; the S2000 cs estimates at that site were 

significantly lower than the S2000 estimates at the other 4 sites. There was no statistically 

significant difference between the two machines in mean cs estimates in a harder phantom 

(cs ≈ 2.1 ms−1). Similar to the above studies, the phantom data obtained in this study re-

vealed only small differences in cs between the machines, which were on the order of the 

interobserver variation. Estimates were obtained at a depth of 1.5 cm using linear trans-

ducers for both systems and therefore no bias due to depth or transducer geometry was 

expected. 
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4.2. Rationale for the Exclusion of Artefacts from Aixplorer Elastogram Analysis 

All Aixplorer shear-wave elastograms obtained in vivo contained artefacts that ap-

peared to correspond with the position of the acoustic radiation force beams; they moved 

with the lateral translation of the transducer and their number varied with the lateral size 

of the elastogram box. Artefacts were also observed in vitro and were most clearly visual-

ised in the two stiffer inclusions. Across all volunteers, Aixplorer cs estimates (including 

artefacts) in adipose tissues were significantly greater than cs estimates in parenchyma 

(Figure 4b, which was contrary to what has been reported in the literature. When artefacts 

were excluded the findings of the current study agreed with three large (minimum num-

ber of women 89) clinical studies that measured cs in normal breast tissue using S2000 2D-

SWE and found that breast parenchyma had statistically greater cs than adipose tissue [26–

28]. In addition, Athanasiou et al. [33] found similar results using Aixplorer in 46 women. 

On visual examination of the elastograms, artefacts appeared most intense (greater 

cs) below the gel-skin and skin-adipose interfaces. ‘Artefactual vertical bands of stiffness’ 

were observed by Berg et al. [34] in their study of breast lesions using Aixplorer 2D-SWE. 

Berg et al. [34] attributed these artefacts to tissue compression and noted they were diffi-

cult to avoid at superficial depths despite using large amounts of ultrasonic gel and a no-

compression scanning protocol. We concluded that cs estimates obtained in regions with 

artefacts were less reliable and only data from regions that were free from artefacts were 

used for subsequent analysis of anisotropy ratios. 

4.3. Difference in cs Estimates between Machines In Vivo 

This study found that in vivo, S2000 cs estimates were on average less than cs estimates 

obtained using the Aixplorer. The differences between machines were greater in vivo than 

in vitro, with a maximum cross-machine cs-ratio of 1.70 in vivo compared to 1.07 in vitro. 

To the authors’ knowledge, this is the first study comparing cs estimates of different elas-

tography machines in the normal breast in vivo. Furthermore, cs estimates between ma-

chines were uncorrelated except for cs estimates for parenchyma averaged across the 

whole breast. The observed bias and poor correlation between machines exclude the use 

of an absolute measure of breast stiffness such as cs or Young’s Modulus, i.e., a simple 

value of breast stiffness would not be reproducible between centres. Further studies com-

paring these machines are required to determine if these biases can be corrected to provide 

consistent measures of breast tissue between centres. It is important to note that there were 

large differences in the variation between machines observed in vitro and in vivo. It ap-

pears from the data presented here that phantom studies would not be adequate to pro-

vide data for cross-calibrations of machines. 

Several studies have compared liver cs measured using 2D-SWE and pSWE in vivo 

[17,35–37] using a range of different commercially available pSWE and 2D-SWE machines 

and found that 2D-SWE and pSWE could not be used interchangeably to grade the sever-

ity of liver fibrosis in patients with liver disease. Ferraioli et al. [20] also compared two 

2D-SWE machines (Aixplorer and Aplio 500 (Canon/Toshiba, Japan)) in 21 patients with 

liver disease. The mean difference between the two 2D SWE machines was −0.6 ms−1 and 

95% LOA −1.4 ms−1 and 1.2 ms−1; which of the machines gave the greatest cs estimate was 

not reported. 

Differences between cs measured by different machines may, in part, be due to dif-

ferences in the frequency content of the shear-waves. This would be consistent with our 

observation that such differences are greater for measurements in tissue than in phantoms 

since tissue is likely to possess increased shear wave dispersion due to viscoelastic damp-

ing or scattering of the shear wave relative to that in the phantom. Furthermore, it is pos-

sible that the way in which the ARFI pushing beams are executed, as described in the 

introduction, may result in different shear wave frequencies. Even with similar shear-

wave bandwidth, if, to estimate cs, vendors rely on a model of shear-wave propagation 
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that assumes the spatial and temporal characteristics of the acoustic radiation force im-

pulse (ARFI) push and the elastic or viscoelastic properties of the tissue, differences in 

models may result in differences in estimated cs. It is also feasible that differences between 

machines arise due to differences in the ways in which their respective measurements of 

shear-wave speed are affected by the region within the lateral boundaries of the ARFI 

pushing beam, where a direct and immediate displacement from the ARFI push, whose 

magnitude decays with off-axis distance according to the ARFI intensity beam profile, is 

summed with the spatiotemporally varying displacement due to the propagating shear 

wave. 

Further work is required to improve our understanding of the cause of machine bias 

and why it appears to be greater in tissue than in current phantoms. Nevertheless, even if 

standardisation of the frequency content of shear wave pulses used in SWE is not feasible, 

it would be helpful if manufacturers were able to provide the shear-wave frequency spec-

trum generated in typical tissues at a number of imaging depths, as part of the machine 

specification, so that authors could incorporate the information into publications such as 

this, as called for by Dietrich et al. [38]. 

4.4. Comparison of Tissue cs Ratios and Anisotropy Ratios between Machines 

For both machines, tissue cs ratios were greater than unity indicating that skin had 

higher cs estimates than parenchyma, and parenchyma had higher cs estimates than adi-

pose tissue. No significant differences in any tissue cs ratios between machines were de-

tected, suggesting that whilst the machines differed in absolute values of cs estimates, rel-

ative values between tissue types are similar. 

Zhou et al. [28] reported anisotropy ratios (radial to anti-radial) of 1.28 and 1.30 in 

adipose and parenchyma tissue in the normal breasts of 137 patients, respectively, meas-

ured using S2000 pSWE. These findings were consistent with the radial orientation of 

ducts and Cooper’s ligaments and that material properties of the tissue are dependent on 

the orientation of tissue fibres. For example, Kruse et al. [39] and Gennisson et al. [40] in 

observations of muscle, and Coutts et al. [41] and Coutts et al. [42] in observations of skin, 

found that shear modulus and stiffness vary according to the direction of shear wave 

propagation and strain respectively, with respect to the muscle or dermal collagen fibres, 

and that cs and stiffness were greatest when measured parallel to the fibres. 

The current study detected a difference between cs estimates measured in the radial 

and anti-radial orientations. The effect, however, was the reverse of that observed by Zhou 

et al. [28], with greater cs measured with the transducer in the anti-radial orientation. The 

reason for this is unknown, although it may be significant that Zhou et al. [28] measured 

the cs only at a single point with the probe in both orientations. The current study, which 

used a much smaller number of volunteers, compared average cs across many measure-

ment points in each image plane. The exact same volume of tissue was not being interro-

gated in each orientation, nor was the shear wave propagation direction truly anti-radial 

for any points other than at the central beamlines of the anti-radial scan, which may ac-

count for the different findings. For a direct comparison with the findings of Zhou et al., 

[28], a modification of our experimental method would be required, but this would be 

contrary to the objective of our study as discussed below. 

The differences in cs estimates between transducer orientations indicate that one or 

both transducer orientations should be used to acquire cs estimates. Care should be taken 

to acquire data in the correct orientation, and perhaps this can be performed with refer-

ence to anatomical landmarks such as the nipple. The focus of the current study is the 

comparison of the machines for their ability to pool data, and the observed anisotropy in 

cs estimates, although not consistent with the findings of Zhou et al. [28], was consistent 

between machines. This may suggest bias in the measurement technique, for example, a 

change in gel stand-off between the different transducer orientations, however, no sys-

tematic differences in gel stand-off between the images acquired using radial and ant-

radial orientations was observed. 
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In the context of the future measurement of radiation toxicity to the breast and the 

use of the unirradiated breast as a reference measure of cs, large variation in relative cs 

estimates between normal breasts between machines would reduce the sensitivity of 2D-

SWE to detect a change in stiffness in the breast due to radiation-induced fibrosis, i.e., any 

radiation-induced change in cs, whether absolute or relative to the unirradiated breast, 

should be significantly greater than the equivalent natural variation in the population of 

women receiving radiotherapy for breast cancer. The magnitude of the effect of radiation 

on cs in the tissues of the breast is as yet unknown. This cohort of volunteers is too small 

to investigate the underlying natural variation between breasts, however, we have ob-

served large variation in shear wave speeds between samples (Figure 4) and patients. En-

couragement that it may be possible to use cs for this purpose can be gained from the 

observations that semi-quantitative strain elastography using a calibrated stand-off pad 

demonstrated in all three of three patients who had received radiotherapy to the breast 

some years earlier, the irradiated breast had a higher Young’s modulus that the unirradi-

ated breast [43], and even subjective palpation is capable grading the level of breast stiff-

ness changes that are caused by radiation damage and of distinguishing between the ir-

radiated and unirradiated breast [1]. If the effect is smaller than the average variation be-

tween patients, it may be possible to use the contralateral breast as a reference or acquire 

a baseline (pre-treatment image) to measure the change in stiffness. 

4.5. Limitations of This Study 

A limitation of this study is the small number of volunteers. To compare SWE ma-

chines a cross-centre study had to be performed, which limited the number of volunteers 

available. Despite the small number of volunteers, differences in cs estimates between ma-

chines were significant and consistent for all breasts and all tissue types. This study com-

pared cs estimates between machines in the skin. In skin, and othered layer tissue, such as 

the cornea, shear waves may be guided modifying the cs and introducing dispersion [44] 

and the relationship between cs and the elastic modulus can no longer be simply approx-

imated by E = 3cs2. Variation in the skin boundary conditions may also affect cs [40]. Pre-

vious studies of 2D-SWE in skin have controlled for this effect. To investigate the relative 

stiffness of sclerotic and normal skin the relative cs of sclerotic and normal skin was nor-

malised by the ratio of skin thicknesses [45–47]. Similarly, in a study of the corneal colla-

gen cross-linking using the Aixplorer, direct comparison of the stiffness of corneas with 

and without collagen cross-linking was justified by monitoring the central cornea thick-

ness and ensuring there was no difference in cornea thickness between paired measure-

ments [48]. In this work, cross-machine comparisons of cs with the transducer in the same 

position on the breast were made and therefore skin thickness will be the same for both 

measurements. For future studies of radiation-induced breast toxicity using 2D-SWE, rel-

ative measures of radiation-induced skin toxicity that rely on comparison with the con-

tralateral breast should consider variations in skin thickness and boundary conditions 

[45]. Another limitation is the use of a different operator to acquire in vivo data from each 

machine, which may introduce bias in cs estimates. We also expect that interoperator var-

iation may contribute to the poor correlation overserved between the elastograms ac-

quired with different machines but of the same tissue sample. A further source of varia-

tion may be the placement of the probe on the breast, including changes in orientation. 

We used a surgical marker pen to mitigate against this variation, however, we expect that 

the heterogeneous nature of the breasts means that a small variation in probe placement 

could result in a small variation in cs between scans. However, our use of two operators 

was by design, because it mimics the way that data would be acquired in a future multi-

centre study, it was expected that interoperator variation, which includes variations in 

probe placement, to be a small effect. Studies report good agreement between operators 

both in vitro and in vivo [14,19,20,37] and care was taken to give the two radiologists the 

same instructions and to allow them to practice data acquisition using a phantom. 
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5. Conclusions 

Differences in cs estimates between 2D-SWE machines were much greater in vivo than 

in vitro. Aixplorer gave a greater estimate of cs than S2000 in all tissues. Differences in cs 

estimates limit the use of absolute measures of cs as a quantitative biomarker in cross-

centre studies unless this bias can be reliably corrected. Shear-wave speed estimates must 

be acquired using the same transducer orientation across centres and across machines. 
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