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A SURPRISING OBSERVATION IN THE QUARTER-PLANE
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Abstract. In this paper, we revisit Radlow’s highly original attempt at a double Wiener–Hopf
solution to the canonical problem of wave diffraction by a quarter-plane. Using a constructive ap-
proach, we reduce the problem to two equations, one containing his somewhat controversial ansatz,
and an additional compatibility equation. We then show that despite Radlow’s ansatz being erro-
neous, it gives surprisingly accurate results in the far-field, particularly for the spherical diffraction
coefficient. This unexpectedly good result is established by comparing it to results obtained by the
recently established modified Smyshlyaev formulae.
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1. Introduction. Since the middle of the twentieth century, the intrinsically
three-dimensional canonical problem of wave diffraction by a quarter-plane has
attracted a great deal of attention, with many different mathematical techniques
employed in seeking useful solutions.

This diffraction problem, a natural extension to Sommerfeld’s famous half-plane
problem [34, 35], represents one of the building blocks of the geometrical theory of
diffraction (GTD) [18]. Its far-field behavior is very rich, including a set of primary
and secondary edge-diffracted waves as well as a spherical wave emanating from the
corner of the quarter-plane. The primary and secondary edge waves can be described
analytically using the GTD; see, for example, [7]. Other techniques, such as ray
asymptotic theory on a surface of a sphere [31] or a Sommerfeld–Malyuzhinets integral
approach [21, 22], also lead to the same results. However, the spherical wave is more
problematic. In particular, one of the remaining challenges is to obtain a simple (easy
to evaluate) closed-form expression for its diffraction coefficient.

By considering the quarter-plane as a degenerated elliptic cone, the field can be
expressed as a spherical wave multipole series involving Lamé functions [19, 28, 17].
However, these series are poorly convergent in the far-field and as such cannot lead
to the sought-after diffraction coefficient. A review of this approach and attempts to
accelerate the series convergence are described in [13].

A different and more recent way of considering this problem, based on the use
of spherical Green’s functions, was introduced in [32, 33, 10] and led to an integral
formula for the spherical diffraction coefficient. However, this solution is not valid
for all incidence/observation directions and requires a numerical treatment and some
regularization of Abel–Poisson type in order for it to be evaluated [11].
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Building on this type of approach, a hybrid numerical-analytical method, which
partially solves the acoustic quarter-plane problem in the Dirichlet case, was intro-
duced in [30, 29]. The main advantage of this method compared to the one mentioned
above is that in this case, the formulae giving the diffraction coefficient, known as the
modified Smyshlyaev formulae (MSF), are “naturally convergent” in the sense that
they do not require any special treatment to regularize or accelerate convergence. The
method is based on planar and spherical edge Green’s functions and on the theory
of embedding formulae, introduced in [38] and further developed in [16], for exam-
ple. This method has been extensively described, adapted to the Neumann case, and
implemented in [6]. We will use this method as a benchmark in the present paper;
its implementation relies on an a priori knowledge of the eigenvalues of the Laplace–
Beltrami operator on a sphere with a slit. A detailed spectral analysis of this operator
is given in [8]. In particular, it gives a rapid way of evaluating the diffraction coef-
ficient for a wide range of incident wave and observer directions, but it is not valid
for all such directions. As discussed in [7], one reason behind the limits of the MSF
validity is the existence of secondary edge-diffracted waves.

Another attempt, crucial to the present work, was published by Radlow in two
successive papers [26, 27]. The method is based on a Wiener–Hopf [25, 20] approach in
two complex variables, and the author obtains a closed-form solution in Fourier space.
In the latter paper, an ansatz for the solution is proposed, and a nonconstructive
intricate proof of its validity is given. This ansatz has long been known to be erroneous
(see, e.g., [24]), since it is shown to give the wrong tip behavior. The correct tip
behavior should include an eigenvalue of the Laplace–Beltrami operator (see [15], for
example). The technical reason as to why Radlow’s proof is incorrect has been given
fairly recently in [3]; in particular, the field corresponding to his ansatz does not
satisfy the correct boundary condition. For a more extensive literature review on the
use of functions of two complex variables in diffraction theory, the reader is referred
to the introduction of [9].

In the present work, we revisit Radlow’s approach and offer a formally exact
solution from which we show that his ansatz appears constructively in a natural way.
However, there is an extra term, which proves that Radlow’s ansatz cannot be the
true solution. The extra term is complicated and contains integrals of yet unknown
functions. The calculation/approximation of this term will be the subject of future
work. However, while preparing the present paper, we came across what we can refer
to as a surprising observation. Serendipity made us compare the spherical diffraction
coefficient calculated with Radlow’s ansatz, i.e., setting the additional term to zero,
to the one calculated using the MSF approach. It turns out, as we will show, that
the two are very close (at least in the Dirichlet case). Some hints can be found in
the literature regarding the accuracy of Radlow’s ansatz compared to full numerical
computations [4, 36], but the diffraction coefficients have never been compared side
by side.

In section 2, the problem is formulated, and symmetries are exploited. In section
3, the machinery required for working in Fourier space for two complex variables is in-
troduced, the Wiener–Hopf functional equation is derived, and the solution is written
down as an inverse Fourier transform. Starting with this section, throughout this work
we will use the phase portrait technique (see [37]) to visualize functions of a complex
variable. This visualization technique will play an important role in our reasoning.
In section 4, we present a way of factorizing the Wiener–Hopf kernel into four factors
with known analyticity properties. We write each factor as a modified Cauchy inte-
gral in a form that allows easy implementation and fast evaluation. In section 5, two
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successive Wiener–Hopf procedures are performed, leading to the theoretical core of
the present work, i.e., the two equations (5.12) and (5.13) linking the main unknowns
of the problem. The first equation involves Radlow’s ansatz and an additional term,
while the second equation, which we call the compatibility equation, may provide a
way to find the unknown additional term. The diffraction coefficient is related to the
solution of the Wiener–Hopf problem. Finally, in section 6 we compare the diffraction
coefficient obtained by the MSF technique to that obtained under the assumption
that Radlow’s ansatz is correct. As we shall show, the two are, surprisingly, in very
close agreement.

2. Formulation.

2.1. Geometry, governing equation, and incident wave. Let us consider
the three-dimensional (x1, x2, x3) space and the quarter-plane QP defined by

QP =
{
x = (x1, x2, x3) ∈ R3, such that x1 > 0, x2 > 0 and x3 = 0

}
(2.1)

and illustrated in Figure 1. We aim to solve the three-dimensional wave equation

∂2utot

∂t2
= c2∆utot and

∂2u

∂t2
= c2∆u(2.2)

in R3\QP for the total velocity potential utot and the scattered velocity potential u
when the quarter-plane is subject to an incident plane wave uin = ei(k·x−Ωt), so that
we can write utot = uin + u. Ω represents the radian frequency of the incident wave,
c is the speed of sound, and k is the incident wavevector, such that the wavenumber
k = |k| is given by k = Ω/c. To be consistent with Radlow, we take the total
field to satisfy the Dirichlet (soft) boundary condition utot = 0 on QP. As is usual
in scattering problems, we use the hypothesis of time-harmonicity, assuming that
all time-dependent quantities involved have a time-dependency consisting solely of
a multiplicative factor e−iΩt. We can then introduce the quantities utot(x), uin(x),
and u(x) defined by utot(x, t) = Re(utot(x)e−iΩt), uin(x, t) = Re(uin(x)e−iΩt), and
u(x, t) = Re(u(x)e−iΩt), respectively. As a consequence, the total field utot(x) and
the scattered field u should satisfy the Helmholtz equation

∆u+ k2u = 0 on R3\QP,(2.3)

and utot should satisfy the Dirichlet boundary condition

utot = 0 on QP.(2.4)

The wavevector k is oriented in the incident direction toward the vertex of the quarter-
plane (also the origin of our three-dimensional space), and we can write k = −kω0,
where ω0 represents the point of the unit sphere determining the incident direc-
tion. Using the spherical coordinates (r, θ, ϕ), as illustrated in Figure 1, we can
introduce θ0 and ϕ0, such that ω0 corresponds to the point with spherical coor-
dinates (1, θ0, ϕ0), and hence ω0 can be represented in Cartesian coordinates by
(sin(θ0) cos(ϕ0), sin(θ0) sin(ϕ0), cos(θ0)).

The incident wave can hence be rewritten as

uin(x) = eik·x = e−ikω0·x = e−i(a1x1+a2x2+a3x3),(2.5)

where a1 = k sin(θ0) cos(ϕ0), a2 = k sin(θ0) sin(ϕ0), and a3 = k cos(θ0).
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Fig. 1. Spherical coordinates definition, quarter-plane illustration, and geometric restriction of
incidence.

2.2. Edge, vertex, and radiation conditions. In order for the problem to
be well-posed, some other conditions need to be satisfied. These have been dealt
with in detail in [8], for example, and so we will be brief. We impose the edge and
vertex conditions: the energy of the field should remain bounded as we approach the
edges and the vertex (i.e., no sources should be located on these); we also impose the
radiation condition: the scattered field u should be outgoing in the far-field (i.e., no
sources other than the incident wave at infinity).

2.3. Symmetry of the problem. Let us now exploit the symmetry of the
problem in order to reduce the range of the incident wave. First, due to the obvious
“vertical symmetry” of the quarter-plane, it is enough to restrict the problem to
incident waves coming from above the quarter-plane; this means that θ0 lies within
[0, π/2]. Moreover, in the (x1, x2)-plane, our domain is symmetric with respect to
the bisector separating the quarter-plane into two plane sectors with internal angle
π/4; i.e., it is possible to restrict ϕ0 to belong to [−3π/4, π/4], corresponding to the
restricted zone of incidence depicted in Figure 1.

Finally, it is well known that the scattered field u is symmetric (this can be seen
by decomposing the field into its symmetric and antisymmetric parts), i.e., we have
u(x1, x2, x3) = u(x1, x2,−x3). Note that this automatically implies that ∂u/∂x3 is an
antisymmetric function. Therefore we can also restrict the observer region to x3 > 0,
i.e., θ ∈ [0, π/2].

2.4. Jump in normal derivative across the quarter-plane. Let us consider
the quantity

f(x1, x2) =

[
∂u

∂x3

]x3=0+

x3=0−
=

∂u

∂x3
(x1, x2, 0

+)− ∂u

∂x3
(x1, x2, 0

−).

It is clear that in the part of the (x3 = 0)-plane that does not contain QP, this
quantity should be zero, since u and its normal derivative are continuous. So we have
that f(x1 < 0, x2) = f(x1, x2 < 0) = 0.

On QP, the far-field will be of the form u = ure + udiff on the (top) illuminated
face, while it will be of the form u = −uin + udiff on the bottom face. Here ure

represents the reflected wave and is given by ure(x1, x2, x3) = −e−i(a1x1+a2x2−a3x3),
and udiff encompasses all the different diffracted fields (primary and secondary edge
diffraction plus corner diffraction), which decay at least like 1/

√
kρ, where ρ is the

distance to the closest edge. Hence as both x1 and x2 tend to +∞, we will have
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u ∼ ure on the illuminated face and u ∼ −uin on the bottom face. Hence we have

f(x1, x2) ∼
x1,x2→+∞

∂ure

∂x3
(x1, x2, 0

+) +
∂uin

∂x3
(x1, x2, 0

−) =
x1,x2→+∞

O(e−i(a1x1+a2x2)).

2.5. Formulation summary. In summary, the scattering problem we wish to
solve is the following:

utot(x) = uin(x) + u(x), uin(x) = e−i(a1x1+a2x2+a3x3),

∆u+ k2u = 0 on R3\QP, utot(x) = 0 on QP,

f(x1, x2) =
x1,2→∞

O(e−i(a1x1+a2x2)),(2.6)

f(x1, x2) = 0 for (x1, x2) ∈ Q2 ∪Q3 ∪Q4(2.7)

subject to the vertex, edge, and radiation conditions. The Qi are the different quad-
rants of the equatorial (x1, x2)-plane illustrated in Figure 2 and defined by

Q1 = {(x1, x2), x1 > 0 and x2 > 0} , Q2 = {(x1, x2), x1 6 0 and x2 > 0} ,
Q3 = {(x1, x2), x1 6 0 and x2 6 0} , Q4 = {(x1, x2), x1 > 0 and x2 6 0} .

It is convenient at this point to defer the solution of this boundary value problem
to sections 5 and 6. In the following sections 3 and 4, it will be helpful to the general
reader to first introduce the mathematical machinery that will be employed later. This
will, of necessity, be rather tedious; hence, a more experienced reader may choose to
start with section 5 and refer back to the earlier sections as required.

3. Transformation in Fourier space.

3.1. Some useful functions. In order to be able to precisely define quantities
of interest in the following section, we need to introduce a few intermediate functions
as well as some useful notation. Let log(z) and

√
z be the default complex logarithm

and square root used by most mathematical software (e.g., Mathematica, MATLAB,
etc.). They correspond to the usual principal value of the logarithm and square root
on the positive real axis and have a branch cut on the negative real axis. Let us now

define a slightly different version of the logarithm, namely the function
↙
log, which will

be used first in section 4.2.2 and is defined by
↙
log(z) = log(e−

iπ
4 z) + iπ

4 , so that it is a

logarithm in the sense that exp(
↙
log(z)) = z, it coincides with the usual real logarithm

on the positive real axis, and it has a branch cut extending diagonally down from the
branch point z = 0, as illustrated in Figure 2.

Let us now define the function ↓
√
z, which will be used extensively throughout this

work, by ↓
√
z = ei

π
4

√
−iz so that it is a square root in the sense that ( ↓

√
z)

2
= z, it

coincides with the usual real square root on the positive real axis, and it has a branch
cut on the negative imaginary axis, as shown in Figure 3. Building on this, we can
define the function κ(K, z) for any K such that Im(K) > 0 and Re(K) > 0 by

κ(K, z) =
↓
√
K− z ↓

√
K + z.(3.1)

The function κ satisfies (κ(K, z))2 = K2− z2 with the principal Riemann sheet chosen
such that κ(K, 0) = K. It has two branch cuts in the complex z-plane, one starting
at the branch point z = K and extending vertically upward, and the other starting at
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Fig. 2. The quadrants Qi and phase portraits of the functions log(z) and
↙
log(z).

Fig. 3. Phase portraits of the three functions
√
z, ↓
√
z, and κ(K, z) for K = 3 + 3i.

the branch point z = −K and extending vertically downward,1 as can be visualized
in Figure 3.

In the rest of the paper, we will sometimes use the bold notation α to represent
the two variables (α1, α2). Let us now define the function K(α) as

K(α1, α2) =
1

κ(κ(k, α2), α1)
,(3.2)

such that we have

(K(α))2 =
1

(κ(κ(k, α2), α1))2
=

1

(κ(k, α2))2 − α2
1

=
1

k2 − α2
2 − α2

1

,

and define the function γ(α) as

γ(α) = −i/K(α) such that (γ(α))2 = α2
1 + α2

2 − k2.(3.3)

Note that by definition of κ, we have 1/K(0, 0) = k and γ(0, 0) = −ik.

3.2. Double Fourier transform representation. Let us now apply the dou-
ble Fourier transform (denoted by the operator F) in the (x1, x2) directions. Let us
call U(α1, α2, x3) the double Fourier transform of u(x1, x2, x3), such that we have

U(α1, α2, x3) = F[u] =

∫ ∞
−∞

∫ ∞
−∞

u(x1, x2, x3)ei(α1x1+α2x2) dx2dx1,

u(x1, x2, x3) = F−1[U ] =
1

(2π)2

∫
A1

∫
A2

U(α1, α2, x3)e−i(α1x1+α2x2) dα2dα1.

1The arrow notation used throughout this paper has the main objective of giving the reader an
easy way to implement this work on a computer. One should also note that even if κ is defined with
two down-arrow functions, one of its branches extends vertically upward. This is due to the fact that
the argument within one of the down-arrow functions is −z.
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The contours of integration A1 and A2 in the inverse transform will not in general
completely lie on the real line but will start at −∞ and end at +∞. An exact
description will be given in section 3.3.1. Under this double Fourier transformation,

the Helmholtz equation is changed into (−α2
1 −α2

2)U + ∂2U
∂x2

3
+ k2U = 0, which can be

rewritten as

∂2U

∂x2
3

− γ2(α)U = 0, where, as already stated, γ2(α) = α2
1 + α2

2 − k2.(3.4)

The contours A1 and A2 will be chosen later such that Re(γ(α)) > 0 when α ∈
A1 ×A2. Hence in order to not have exponential growth as x3 tends to infinity, and
because x3 > 0, we must have

U(α, x3) = G(α)e−γ(α)x3 .(3.5)

Hence, we can write u(x) using the inverse Fourier representation

u(x) =
1

(2π)2

∫
A1

∫
A2

G(α1, α2)e−i(α1x1+α2x2)e−γ(α1,α2)x3 dα2dα1.(3.6)

We can write f(x1, x2) in a similar fashion, using the symmetry of the solution (see
section 2.3):

f(x1, x2) = 2
∂u

∂x3
(x1, x2, 0

+) =
−2

(2π)2

∫
A1

∫
A2

γ(α)G(α)e−i(α1x1+α2x2)dα2dα1.

(3.7)

Hence, upon introducing F (α) defined by

F (α) = −2γ(α)G(α),(3.8)

(3.7) becomes

f(x1, x2) =
1

(2π)2

∫
A1

∫
A2

F (α)e−i(α1x1+α2x2) dα2dα1,

which means that the function F introduced in (3.8) is, in fact, the double Fourier
transform of f , i.e.,

F (α1, α2) =

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2)ei(α1x1+α2x2) dx2dx1.(3.9)

In what follows, it will be convenient to use K instead of γ and rewrite (3.8) as

G(α) = 1
2iF (α)K(α),(3.10)

which is the most important functional equation2 of the problem. It relates the Fourier
transform of u and ∂u

∂x3
at x3 = 0+ and will be exploited to obtain the main result

of the paper, equations (5.12) and (5.13). Using (3.10) in (3.8), we see that the wave
field u is given by

u(x) =
1

(2π)2

∫
A1

∫
A2

F (α)K(α)

2i
e−i(α1x1+α2x2)ei

x3
K(α) dα2dα1.(3.11)

2An alternative derivation, based on Green’s identity, is given in [9].
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3.3. A small departure from the usual approach. As is usually the case
when using the Wiener–Hopf technique, we could start by assuming that k has a
small positive imaginary part. Following this approach, it is possible to show that
there exist four real numbers b1, δ1, b2, and δ2, with b1 < δ1 and b2 < δ2, such that the
function of interest F (α)K(α) is analytic on the tubular domain D? ⊂ C2 defined by
D?(b1, b2, δ1, δ2) = S(b1, δ1) × S(b2, δ2), where for two real numbers b < δ, the strip
S(b, δ) ⊂ C is defined by S(b, δ) = {z ∈ C, b < Im(z) < δ}. In fact, it is possible to
get the following explicit expression for δ1,2 and b1,2:

δ1 = Im(k)| cos(ϕ0)|, δ2 = Im(k)| sin(ϕ0)|, b1,2 = max(−δ1,2, Im(a1,2)).(3.12)

However, if we want the solution for real k, the strips shrink to the real axes, and
indented contours are needed in order to evaluate the inverse Fourier transforms.
Our approach here, in the spirit of [1], will be to start directly from such indented
contours and avoid the limiting procedure discussion that would be required with the
usual approach. We want to choose two contours A1 and A2 in the α1 and α2 complex
planes such that the following hold:
(i) For any α?1 ∈ A1, the functions F (α?1, ·) and K(α?1, ·) are analytic on A2.

(ii) For any α?2 ∈ A2, the functions F (·, α?2) and K(·, α?2) are analytic on A1.
(iii) A1 and A2 are smooth contours starting at −∞ and finishing at +∞.
(iv) For simplicity we prefer that A1 be independent of α2 and A2 be independent of

α1.
(v) For any α ∈ A1 ×A2, Re(γ(α)) = Im(1/K(α)) > 0.

3.3.1. On fulfilling the requirements (i)–(v) for K(α). In this subsection,
we will show that there exist contours A1 and A2 that fulfill all the previous re-
quirements (i)–(v) relative to the function K(α). Remember that K(α) is defined by
1/κ(κ(k, α2), α1), and that by this definition (which breaks the symmetry between α1

and α2), K does not behave the same way in the α1-plane and the α2-plane. In other
words, even if by definition we have K2(α1, α2) ≡ K2(α2, α1), we do not necessarily
have K(α1, α2) = K(α2, α1) for every (α1, α2) ∈ C2.

More precisely, for a fixed α?2 such that Im(κ(k, α?2)) > 0, we expect the function
K(α1, α

?
2) to simply have two branch points at ±κ(k, α?2), with branch cuts extending

vertically up and down, respectively, in the α1 complex plane; see Figure 4 (left).
Hence, a suitable contour A1 would lie on the real line indented above −κ(k, α?2) and
below κ(k, α?2) for any α?2 ∈ A2.

If we now fix an α?1 and consider the function K(α?1, α2), we expect the analyticity
structure to be a bit more complicated in the α2-plane. In particular, we expect to
have potential problems at α2 = ±k due to the term κ(k, α2), which perhaps lead to
a branch cut extending vertically upward from ±k. However, we also expect to have
branch points where κ(k, α2) = ±α?1, i.e., points where α2 = ±κ(k, α?1); see Figure 4
(right). Hence, a suitable contour A2 would pass above −k and −κ(k, α?1) and below
k and κ(k, α?1) for any α?1 ∈ A1.

If, as mentioned previously, it is possible to prove rigorously that some contours
are valid in the case when k has a small positive imaginary part, it is much harder
to do so for real k. Instead, we will provide a visual proof that a given choice of A1

and A2 is suitable. Let us then consider the contours A1 and A2 to be smoothly
passing above −k and below k and also passing through the origins of their respective
complex planes. A practical realization of such contours can be obtained by the
parametrizations A1(s1) = s1 + s1

a(s41+c)
and A2(s2) = s2 + s2

a(s42+c)
for s1,2 ∈ R and

some complex constants a and c. As such, A1 and A2 satisfy (iii)–(iv).
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Given such a choice, it is possible to plot the loci of points ±κ(k,A2) in the
α1-plane and the loci ±κ(k,A1) in the α2-plane. As long as our contours do not
intersect these curves and do not intersect any resultant branch cuts, they should be
valid. In fact, this can be seen in Figure 4, where the phase plots of K(α1, α

?
2) and

K(α?1, α2) are shown for different values of α?1 ∈ A1 and α?2 ∈ A2, together with the
loci mentioned above.

Fig. 4. Visual proof of analyticity. Visualization of K in the α1-plane (left: α?2 = A2(5)(top)
and α?2 = A2(0) (bottom)) and in the α2-plane (right: α?2 = A1(10) (top) and α?1 = A1(0) (bottom)).
Here and in Figure 5 we chose k = 3, a = 0.0012 + 0.0006i, and c = 1000i.

As one can infer from Figure 4, the contours A1 and A2, chosen suitably, avoid
the singularities of K. In other words, for any α?2 ∈ A2, the function K(α1, α

?
2) is

analytic on A1, while for any α?1 ∈ A1, the function K(α?1, α2) is analytic on A2.
Hence, as far as K is concerned, this choice satisfies conditions (i)–(iv). We still need
to check that condition (v) is satisfied. Again, here we will use a visual approach.
The phase portraits of Im(1/K(α1, α

?
2)) and Im(1/K(α?1, α2)) for different values of

α?1 ∈ A1 and α?2 ∈ A2 are displayed in Figure 5. The regions where Im(1/K) > 0
appear in red, while those where Im(1/K) < 0 appear in blue. (See online version for
color.)

As one can infer from Figure 5, for any α ∈ A1 ×A2, we have Im(1/K(α)) > 0,
as required in order for (v) to be satisfied. Note also that it only becomes zero when
both α1 and α2 are zero. It also shows that if A1 is chosen as above, A2 is forced to
pass through the origin and vice versa.

3.3.2. On fulfilling requirements (i) and (ii) for F (α). Remember that F
is defined in (3.9), and so using the condition (2.7), it reduces to

F (α1, α2) =

∫ ∞
0

∫ ∞
0

f(x1, x2)ei(α1x1+α2x2) dx2dx1.(3.13)
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Fig. 5. Visual proof of sign compatibility. Visualization of Im(1/K) in the α1-plane (left:
α?2 = A2(5) (top) and α?2 = A2(0) (bottom)) and in the α2-plane (right: α?1 = A1(10) (top) and
α?1 = A1(0) (bottom)). The region where Im(1/K) > 0 appears in red on the plots.

In order to understand the analyticity property of F , we need to use the following
lemma.

Lemma 3.1. Let φ(x1, x2) be a function of the two real variables x1 and x2, and
let γ1, γ2 ∈ R be such that |φ(x1, x2)| 6 A1 exp(γ1x1 + γ2x2) as |x1| → ∞, |x2| → ∞,
and (x1, x2) ∈ Q1. Then the function Φ(α1, α2) defined by

Φ(α1, α2) =

∫ ∞
0

∫ ∞
0

φ(x1, x2)ei(α1x1+α2x2) dx2dx1

can be interpreted as a function of the complex variable α ∈ C2, and as such, it is
analytic in UHP(γ1)×UHP(γ2) considered an open subset of C2, where the upper-half
plane UHP(γ1,2) is the region in the α1,2 complex plane lying above the horizontal line
Im(α1,2) = γ1,2.

In our case, because of the estimate (2.6), we can show that there exists M > 0,
such that |f(x1, x2)| 6M exp(Im(a1)x1 + Im(a2)x2) as x1, x2 →∞ within Q1, where
a1,2 are related to the incident wave direction as defined below (2.5). Moreover, since
k is considered real, Im(a1,2) = 0. Hence, in the notation of Lemma 3.1, we have
γ1,2 = 0, and we can conclude that F is analytic on UHP(0) × UHP(0), i.e., for
Im(α1,2) > 0.

However, this does not mean that F cannot be analytically continued onto a
bigger domain. This realization is important since the contours A1 and A2 defined in
section 3.3.1 do not lie within UHP(0)×UHP(0) since both of them drop under their
respective real axes.

Hence, let us try to infer a priori3 a bit more about the behavior of F outside
UHP(0) × UHP(0). First, the estimate (2.6), giving the behavior of f(x1, x2) at

3Note that this particular aspect is studied more rigorously in [9].
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infinity gives us some information about the behavior of F (α) within a finite part of
the complex planes. Namely, we can expect F (α1, α2) to have a simple pole in the
α1-plane at α1 = a1 and a simple pole in the α2-plane at α2 = a2. It also seems
reasonable to expect that other possible singular behaviors occur in the lower-half
planes, e.g., branch points at −k and maybe on −κ(k,A1,2) and at −κ(k, a1,2), once
A1,2 have been specified.

Therefore, if a1 and a2 are negative, the contours A1 and A2 will be appropriate,
since they are passing above the poles and the possible singular parts of F .

Remark 3.2. The situation is different if a1,2 is positive, as then the contours
A1,2 shown in Figure 4 will pass below the pole. A simple way to overcome what is
a technical difficulty is to allow a1,2 to have a small imaginary part ε < 0 say, when
Re(a1,2) > 0. Then one can choose the contour A1,2 to lie sufficiently close to the
real line that it passes above the pole, and the pole itself is located so that its residue
will yield the correct behavior for (3.5). Once the solution has been obtained, by
continuity it should remain valid as ε→ 0.

In what follows, particularly in explanatory diagrams, unless stated otherwise we
will assume that both a1 and a2 are negative. We will make sure to provide accurate
ways of dealing with the case a1,2 > 0 when necessary.

3.4. Set notation. Let us start by introducing notation to describe useful sets
in the α1- and α2-planes. We define the lower-half planes LHP1 and LHP2 and upper-
half planes UHP1 and UHP2 as follows:

LHP1 = {α1 ∈ C s.t. α1 lies below A1} , LHP2 = {α2 ∈ C s.t. α2 lies below A2} ,
UHP1 = {α1 ∈ C s.t. α1 lies above A1} , UHP2 = {α2 ∈ C s.t. α2 lies above A2} .

Note that these sets are defined to be inclusive of the contours A1 and A2 in the sense
that A1 = LHP1 ∩UHP1 and A2 = LHP2 ∩UHP2. The four types of sets introduced
so far are illustrated in Figure 6.

Fig. 6. Diagrammatic description of the lower- and upper-half planes used throughout this study.

Let us now define a few different C2 sets derived from various products of the
C spaces described above. We start with the set D = A1 × A2, where all of the
functions we will deal with are well behaved. It is also useful to define the C2 sets
D++ = UHP1×UHP2, D−+ = LHP1×UHP2, D−− = LHP1×LHP2, and D+− =
UHP1×LHP2. Finally, let us introduce the sets D+◦ = D++ ∩ D+− = UHP1×A2

and D−◦ = D−− ∩ D−+ = LHP1×A2.
With the above points regarding analyticity now clarified, we can return to F (α)

given in (3.13) at the beginning of this subsection. It is clear that F is analytic on
D++, and hence we can rewrite it as

F (α1, α2) = 2iF++(α1, α2).(3.14)
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4. On the four-part factorization of K. Let us consider again the function
K(α) defined by (3.2). We have shown in section 3.3.1 that K(α) is analytic on the
product of contours D = A1×A2. In this section, our aim is to show that there exist
four functions K++(α), K+−(α), K−+(α), and K−−(α), analytic on D++, D+−,
D−+, and D−−, respectively, such that for α ∈ D, we have

K(α) = K++(α)K+−(α)K−+(α)K−−(α).

4.1. Factorization in the α1-plane. Because of the definitions (3.1) and (3.2)
of κ and K, we have

K(α) = 1/κ(κ(k, α2), α1) = 1/
(
↓
√
κ(k, α2)− α1

↓
√
κ(k, α2) + α1

)
,(4.1)

and one can see that for any α ∈ D, it is possible to write

K(α) = K−◦(α)K+◦(α),

such that for a given α2 ∈ A2, K−◦(α1, α2) is analytic (as a function of α1) in LHP1,
and K+◦(α1, α2) is analytic (as a function of α1) in UHP1. Exact expressions for K−◦
and K+◦ follow from (4.1):

K−◦(α) = 1/ ↓
√
κ(k, α2)− α1 and K+◦(α) = 1/ ↓

√
κ(k, α2) + α1.(4.2)

Indeed, for a given α2 ∈ A2, the only branch point of K−◦(α) is at α1 = κ(k, α2),
which is strictly within UHP1 so that K−◦(α) is a minus function when considered
as a function of α1, i.e., it is analytic in LHP1. Similarly, the only branch point of
K+◦(α) is at α1 = −κ(k, α2), which is strictly within LHP1 so that K+◦(α) is a
plus function when considered as a function of α1, i.e., it is analytic in UHP1. This
factorization is illustrated in Figure 7.

= ×

= ×

Fig. 7. Plots of the functions K(α1, α?2), K−◦(α1, α?2), and K+◦(α1, α?2) in the α1 complex
plane for α?2 = A2(5) (top) and α?2 = A2(0) (bottom).
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= ×

= ×

Fig. 8. Plots of the functions K(α?1, α2), K−◦(α?1, α2), and K+◦(α?1, α2) in the α2 complex
plane for α?1 = A1(10) (top) and α?1 = A1(5) (bottom).

It must be stressed that these functions do not have any useful analyticity prop-
erties when viewed as functions of α2, with branch cuts passing through both UHP2

and LHP2 as α1 moves along A1. This can be seen in Figure 8.
It is also possible to introduce the functions K◦− and K◦+ defined as follows:

K◦−(α1, α2) = 1/ ↓
√
κ(k, α1)− α2 and K◦+(α1, α2) = 1/ ↓

√
κ(k, α1) + α2,(4.3)

which will prove useful in section 4.2.2.

4.2. Factorization in the α2-plane.

4.2.1. Cauchy’s formula and its application to factorization problems.
Let us state two useful results in complex analysis that we will need in this section.
The results are classic, and hence the proofs are omitted. Please refer to, e.g., [25] for
more details. Note that these are valid for a generic complex plane, and since in our
work so far A1 and A2 are the same, we will just denote them by A in what follows.
Similarly, we will use UHP and LHP without subscripts.

Lemma 4.1 (Cauchy’s formula and sum-split). Let Φ be a function analytic on
a (potentially curved) strip S ⊂ C containing A, such that we have Φ(α) = Φ+(α) +
Φ−(α) on A with Φ+ analytic on UHP and Φ− analytic on LHP. Consider Abε and Aaε
to be the contours oriented from left to right defined by Abε = A− iε and Aaε = A+ iε,
where ε > 0 is any number such that these contours lie within S and the superscripts
a and b stand for “above” and “below,” respectively, as illustrated in Figure 9. Let
α ∈ A; then, provided that Φ(z) = O(1/|z|λ) for some λ > 0 as |z| → ∞ within S,
the following formulae hold,

Φ+(α) =
1

2iπ

∫
Abε

Φ(z)

z − α
dz and Φ−(α) =

−1

2iπ

∫
Aaε

Φ(z)

z − α
dz,

and can be used to analytically continue Φ+ (Φ−) from A onto UHP (LHP).
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Various contours in the α plane
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±κ(k,A)
±k

pole

Fig. 9. Diagrammatic illustrations of the contours introduced in Lemma 4.1.

Corollary 4.2 (Cauchy’s formula and factorization). Let Ψ be a function
analytic on a (potentially curved) strip S ⊂ C containing A, such that we have
Ψ(α) = Ψ+(α)Ψ−(α) on A with Ψ+ analytic on UHP and Ψ− analytic on LHP.
Let α ∈ A; then, provided that Ψ(z)→ 1 as |z| → ∞ within S, the following formulae
hold,

Ψ+(α) = exp

{
1

2iπ

∫
Abε

log(Ψ(z))

z − α
dz

}
and Ψ−(α) = exp

{
−1

2iπ

∫
Aaε

log(Ψ(z))

z − α
dz

}
,

where Aa,bε are defined as in Lemma 4.1 and can be used to analytically continue Ψ+

from A onto UHP and Ψ− from A onto LHP.

4.2.2. Factorization of K−◦ and K+◦. It does not seem possible to find
an explicit factorization of these functions. Nevertheless, a direct application of
Cauchy’s formulae does lead to a formal factorization of K−◦ and K+◦ in the α2-
plane. However, the resulting expressions can be quite slow to evaluate numeri-
cally. In Appendix A, we perform some manipulations of the integrals in order
to obtain forms that can be rapidly computed; these are employed in (4.4)–(4.7).
K−◦ can be factorized as K−◦(α) = K−+(α)K−−(α), and K+◦ can be factorized as
K+◦(α) = K++(α)K+−(α), where we have

K−+(α) =
1

↓
√
↓
√
k + α2

exp

−1

4iπ

∫
Abε

↙
log
(

1− α1

κ(k,z)

)
z − α2

dz

 for α ∈ D−+,(4.4)

K−−(α) =
1

↓
√
↓
√
k − α2

exp

 1

4iπ

∫
Aaε

↙
log
(

1− α1

κ(k,z)

)
z − α2

dz

 for α ∈ D−−,(4.5)

K++(α) =
1

↓
√
↓
√
k + α2

exp

−1

4iπ

∫
Abε

↙
log
(

1 + α1

κ(k,z)

)
z − α2

dz

 for α ∈ D++,(4.6)

K+−(α) =
1

↓
√
↓
√
k − α2

exp

 1

4iπ

∫
Aaε

↙
log
(

1 + α1

κ(k,z)

)
z − α2

dz

 for α ∈ D+−.(4.7)

D
ow

nl
oa

de
d 

10
/1

1/
21

 to
 9

4.
6.

16
7.

45
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

74 RAPHAEL ASSIER AND I. DAVID ABRAHAMS

These formulae allow for a fast evaluation of the four components of the factorization
of K, allowing us to gain a good visual understanding of the singularity structure of
K−+, K−−, K++, and K+−, as illustrated in Figures 10 and 11. To give an idea of
the speed, for each plot, we need to evaluate the functions 160,000 times, and this
takes about 14 seconds to run on a standard laptop.

Another method (see, e.g., [4]), involving the Dilog function, has also been used
to evaluate these factors. Both methods can be rapidly evaluated, though, upon
implementing both in MATLAB, we see that ours leads to a faster evaluation of K++

say. Moreover, our formula (4.6) giving K++ is more compact than that involving the
Dilog function.

= ×

Fig. 10. Plots of the functions K−◦(α?1, α2), K−+(α?1, α2), and K−−(α?1, α2) in the α2 complex
plane for α?1 = A1(10). In its region of analyticity, UHP2, K−+ has been obtained via (4.4), while in
LHP2, it has been obtained by analytical continuation using K−+ = K−◦/K−−. A similar strategy
has been used to plot K−−.

= ×

Fig. 11. Plots of the functions K+◦(α?1, α2), K++(α?1, α2), and K+−(α?1, α2) in the α2 complex
plane for α?1 = A1(10). In its region of analyticity, UHP2, K++ has been obtained via (4.6), while in
LHP2, it has been obtained by analytical continuation using K++ = K+◦/K+−. A similar strategy
has been used to plot K+−.

In Figures 10 and 11, α?1 has been chosen on A1 for illustration, but it could have
been chosen anywhere in LHP1 for Figure 10 and anywhere in UHP1 for Figure 11. We
chose to visualize this factorization in the α2-plane, but it is also possible to visualize
it in the α1-plane for a given α?2 on A2. In this case, in order to analytically continue
the factors past their natural domain of analyticity, one should use the functions K◦±
introduced in (4.3).

5. The (generic) Wiener–Hopf system in C2.

5.1. Quadruple sum-split. Using the function F++ defined in (3.14), the func-
tional equation (3.10) can be rewritten as G(α) = F++(α)K(α), and, as seen in sec-
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tion 3, G is analytic on D = A1×A2. Hence, we can4 write its additive decomposition
as

F++(α)K(α) = G(α) = G++(α) +G−+(α) +G−−(α) +G+−(α),(5.1)

where G++(α), G−+(α), G−−(α), and G+−(α) are analytic on D++, D−+, D−−,
and D+−, respectively. Note that by definition of G(α)(see (3.5)), we have G(α) =
F[u(x1, x2, 0)](α), where F is the double Fourier transform operator as defined in
section 3.2. Therefore, upon defining the functions uj , j = 1, . . . , 4, by

uj(x1, x2) = u(x1, x2, 0)Hj(x1, x2), where Hj(x1, x2) =

{
1 if (x1, x2) ∈ Qj ,
0 otherwise,

it is then possible to define the additive terms as quarter-range Fourier transforms,

G++(α) = F[u1(x1, x2)](α), G−+(α) = F[u2(x1, x2)](α),

G−−(α) = F[u3(x1, x2)](α), G+−(α) = F[u4(x1, x2)](α).(5.2)

We can also define the auxiliary functions G+◦ = G++ +G+− and G−◦ = G−+ +G−−
that are analytic on D+◦ and D−◦, respectively.

5.2. On the function G++. Because we impose the Dirichlet condition (2.4),
it follows that we have

u1(x1, x2) = −uin(x1, x2, 0)H1(x1, x2) = −e−i(a1x1+a2x2)H1(x1, x2),

and so, since G++ is defined on D++ by G++(α) = F[u1(x1, x2)](α), we obtain

G++(α) =
1

(α1 − a1)(α2 − a2)
.(5.3)

Note that each pole must lie in its respective lower-half plane regardless of whether
a1,2 is positive or negative in order to ensure that G++ is analytic in D++. As
discussed in Remark 3.2, when a1,2 is positive, we allow it to have a small imaginary
part, ε < 0, which places it below A1,2, and then later allow ε→ 0.

Hence, at the moment, we have four unknown functions, namely F++, G+−, G−+,
and G−−. In the following two subsections, we will show how (5.1) can be reduced to
four equations involving our four unknowns.

5.3. A first split in the α1-plane. Let us start by rewriting5 (5.1) as follows:

F++K+◦K−◦ = G++ +G−◦ +G+− .

Upon dividing by K−◦, we obtain

F++K+◦ = G++/K−◦ +G−◦/K−◦ +G+−/K−◦.(5.4)

Now formally using, for example, Lemma 4.1, it is possible to perform a sum-split in
the α1-plane of the terms G++/K−◦ and G+−/K−◦ by writing

G++

K−◦
=

[
G++

K−◦

]
+◦

+

[
G++

K−◦

]
−◦

and
G+−

K−◦
=

[
G+−

K−◦

]
+◦

+

[
G+−

K−◦

]
−◦
,

4A more rigorous approach for obtaining this would be to refer to Bochner’s theorem [14].
5For the sake of brevity we will only specify the argument of the functions involved if it is not α.
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where the operators [ ]−◦ and [ ]+◦ represent, respectively, the α1-minus part and
α1-plus part of a given function that is analytic on A1 when considered a function of
α1. With this split, (5.4) may be rearranged as

F++K+◦ −
[
G++

K−◦

]
+◦
−
[
G+−

K−◦

]
+◦

=
G−◦
K−◦

+

[
G++

K−◦

]
−◦

+

[
G+−

K−◦

]
−◦
.(5.5)

Because of the simplicity of G++ (see (5.3)), the sum-split of G++/K−◦ can be
achieved explicitly via the pole removal technique:[

G++

K−◦

]
+◦

=
G++

K−◦(a1, α2)
and

[
G++

K−◦

]
−◦

= G++

(
1

K−◦
− 1

K−◦(a1, α2)

)
.

Now, by construction, the left-hand side (LHS) of (5.5) is analytic in D+◦, while the
right-hand side (RHS) of (5.5) is analytic in D−◦. Hence it is possible to use (5.5) to
construct a function E1◦ that is analytic on C×A2 and defined by

E1◦ =


F++K+◦ − G++

K−◦(a1,α2) −
[
G+−
K−◦

]
+◦

if α ∈ D+◦,

G−◦
K−◦

+G++

(
1

K−◦
− 1

K−◦(a1,α2)

)
+
[
G+−
K−◦

]
−◦

if α ∈ D−◦.
(5.6)

Moreover, it can be shown that E1◦ tends to zero as |α1| → ∞ (see section B.2), and
so we can apply Liouville’s theorem in the α1-plane to get E1◦ ≡ 0; hence,

F++K+◦ −
G++

K−◦(a1, α2)
−
[
G+−

K−◦

]
+◦

= 0,(5.7)

G−◦
K−◦

+G++

(
1

K−◦
− 1

K−◦(a1, α2)

)
+

[
G+−

K−◦

]
−◦

= 0.(5.8)

5.4. A second split in the α2-plane. Upon multiplying (5.7) byK−+(a1, α2)/K+−,
it becomes

F++K++K−+(a1, α2) =
G++

K−−(a1, α2)K+−
+
K−+(a1, α2)

K+−

[
G+−

K−◦

]
+◦
.(5.9)

The LHS is a ++ function, and, once again formally using Lemma 4.1, each of the
two terms on the RHS of (5.9) has a sum-split decomposition in the α2-plane (the
associated operators being denoted [ ]◦− and [ ]◦+), such that we can rewrite (5.9) as

F++K++K−+(a1, α2)−
[

G++

K−−(a1, α2)K+−

]
◦+
−

[
K−+(a1, α2)

K+−

[
G+−

K−◦

]
+◦

]
◦+

(5.10)

=

[
G++

K−−(a1, α2)K+−

]
◦−

+

[
K−+(a1, α2)

K+−

[
G+−

K−◦

]
+◦

]
◦−

.

Again, because of the form of G++, the related split can be performed explicitly by
pole removal to get[

G++

K−−(a1, α2)K+−

]
◦−

= G++

(
1

K−−(a1, α2)K+−
− 1

K−−(a1, a2)K+−(α1, a2)

)
,[

G++

K−−(a1, α2)K+−

]
◦+

=
G++

K−−(a1, a2)K+−(α1, a2)
.
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Now, by inspection, it is clear that the LHS of (5.10) is analytic on D++, while its
RHS is analytic on D+−. Hence, it is possible to construct a function E+2 that is
analytic on UHP1×C and defined by

E+2 =


F++K++K−+(a1, α2)− G++

K−−(a1,a2)K+−(α1,a2)
−
[
K−+(a1,α2)

K+−

[
G+−
K−◦

]
+◦

]
◦+

if α ∈ D++,

G++

(
1

K−−(a1,α2)K+−
− 1
K−−(a1,a2)K+−(α1,a2)

)
+

[
K−+(a1,α2)

K+−

[
G+−
K−◦

]
+◦

]
◦−

if α ∈ D+−.

(5.11)

One of the aims of this work is to provide a constructive path toward Radlow’s ansatz.
In order to do so, we wish to apply Liouville’s theorem in the α2-plane and, for this,
we need to examine the right-hand sides of (5.11) as |α2| → ∞ in their respective
half-planes of analyticity. Using the proof given in section B.3, we can show that
E+2 ≡ 0 and hence obtain the following two main equations of the paper:

F++ =
G++

K++K−+(a1, α2)K−−(a1, a2)K+−(α1, a2)
(5.12)

+
1

K++K−+(a1, α2)

[
K−+(a1, α2)

K+−

[
G+−

K−◦

]
+◦

]
◦+

,

0 = G++

(
1

K−−(a1, α2)K+−
− 1

K−−(a1, a2)K+−(α1, a2)

)
(5.13)

+

[
K−+(a1, α2)

K+−

[
G+−

K−◦

]
+◦

]
◦−

.

Remember that in order to recover the physical field everywhere via (3.11), the
unknown of interest is the function F++(α). At this stage we can make two important
remarks regarding (5.12). First, if we know the function G+−, then F++ can in theory
be recovered. Second, it is important to note that the first term on the RHS of (5.12) is
exactly Radlow’s ansatz published in [27]. The main issue with Radlow’s solution was
that the resulting physical field did not behave as expected near the tip of the quarter-
plane (Radlow’s ansatz predicts a behavior of O(r1/4), while the correct behavior
is O(rν1−1/2), where ν1 is related to the first eigenvalue of the Laplace–Beltrami
operator). As such, the benefit of this equation is dual. On the one hand, it is clear
that (5.12) indicates the error in Radlow’s analysis, since a term is missing from his
ansatz. On the other hand, we provide here a constructive procedure showing how this
ansatz is obtained, which can be enlightening in view of the fact that no derivation
was provided in Radlow’s original work. Indeed, the fact that Radlow merely stated a
solution in [27] partially contributed toward difficulties in establishing and quantifying
the error up to now.

In addition, we also know that the correct physical behavior of the solution should
be enforced by the term involving G+−. Equation (5.13), which we will refer to as a
compatibility equation, is very interesting in that respect. First, it does not appear in
Radlow’s work nor any subsequent work to our knowledge. Second, if it can somehow
be inverted (which in practice is a very difficult thing to do), it will provide a way to
obtain G+−. Even though this is not possible to do exactly (as the authors believe is
the case), it provides a way of testing any approximation to G+−. Hence, we believe
that the compatibility equation (5.13) is key to solving the problem at hand. We will
not go through this route in this paper, but it will be the basis of a future article.

Before going further, we note also that (5.8) has not been used so far. It is
possible to employ it to obtain two more equations involving G−−, G+−, and G−+ by
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introducing similarly a function E−2 entire in the α2 complex plane (which is again
zero by application of Liouville’s theorem). However, we do not believe that these will
provide further information on the solution, and so they are extraneous. Moreover,
nowhere in this section did we use the definition of A1,2 explicitly; hence the results
obtained remain valid when a1 and/or a2 are positive.

In summary, in order to solve our problem and find F++, we need to gain some
information about G+− and find an approximation that will be compatible with both
the physics of the problem and the compatibility equation (5.13). A possible approx-
imation scheme for G+−, involving an explicit canonical integral, is suggested in [5].
However, for the purpose of this paper, let us assume that we know F++, and let us
try to find out what can be inferred about the diffraction coefficient.

5.5. Link with diffraction coefficient. Classically (see, e.g., [6, 7]), the Dirich-
let corner diffraction coefficient fd(θ, ϕ, θ0, ϕ0) is defined by

usph ≈
kr→∞

2π
eikr

kr
fd(θ, ϕ; θ0, ϕ0),(5.14)

where usph represents the spherical wave emanating from the tip. Assuming that F++

is known, using complexified spherical coordinates, one can apply a double steepest-
descent analysis as kr → ∞ [12, 2] to obtain the following relationship between the
diffraction coefficient and F++:

fd(θ, ϕ; θ0, ϕ0) =
kF++(−k cos(ϕ) sin(θ),−k sin(ϕ) sin(θ))

4π2i
·(5.15)

We believe that this formula should remain valid everywhere. We may of course get
other far-field contributions (edge-diffracted waves, reflected wave, etc.) that will
result from crossing poles when deforming the various contours to their steepest-
descent paths. However, the 1/kr component can only be the one given in (5.15).
In particular, it should have the same singular regions as those obtained (explic-
itly) with the embedding procedure, but most importantly, this formula should be
valid in the regions that the embedding formulae cannot (yet) reach. We can eas-
ily observe that the polar singularity structure is similar. In fact, we have seen in
[6] that if we write ξ = cos(ϕ) sin(θ), ξ0 = cos(ϕ0) sin(θ0), η = sin(ϕ) sin(θ), and
η0 = sin(ϕ0) sin(θ0), the diffraction coefficient has simple poles when ξ = −ξ0 and
η = −η0. Upon noting that in (5.15) we evaluate F++ at (α1, α2) = (−kξ,−kη), real-
izing that (a1, a2) = (kξ0, kη0), and remembering that F++ has poles at α1,2 = a1,2,
we recover the expected polar singularities.

Note6 that (5.15) implies that the diffraction coefficient does not depend on k.
To see this, let v(x) be the scattered field of the Dirichlet quarter-plane problem
for k = 1. One can show directly that, for k > 0, the solution u of our problem
summarized in section 2.5 is given by u(x) = v(kx). Using the basic definition of the
double Fourier transform and the fact that ∂u

∂x3
(x1, x2, 0

+) = 0 on Q2 ∪Q3 ∪Q4, we

can show that ikF++(kα) = F[ ∂v∂x3
(x1, x2, 0

+)](α), which is clearly independent of k.
Another interesting feature to consider is that we know [6] the diffraction coeffi-

cient should, in fact, be purely imaginary (at least where the MSF are valid). However,
it is not obvious that the RHS of (5.15) is indeed purely imaginary.

One issue with the formula (5.15) is that the function F++ is evaluated on the real
interval (−k, k) in both complex planes. However, it is clear from the above analysis

6The authors are most grateful to the anonymous reviewer for this and many other suggestions,
which have significantly improved the clarity and focus of the article.
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that the segment (−k, 0) does not lie in UHP1 or UHP2. Hence, we are forced to
evaluate a ++ function outside D++. This problem can be dealt with by analytically
continuing F++ within that region.

6. Comparison between Radlow’s ansatz and MSF. In this section, we
compare the diffraction coefficient obtained by the MSF to that obtained by using
Radlow’s erroneous ansatz. The MSF is now an established method known to be
correct within a certain domain of the observer space. The idea of comparing both
methods is mainly due to serendipity. While testing a method for evaluating the
effect of G+− on the diffraction coefficient, we once accidentally set G+− = 0, which
is equivalent to using Radlow’s ansatz exactly. To our surprise, this led to a very
good agreement with the MSF results, where these formulae were valid. We decided
to explore the incidence space, and so far we could not find any incident angle leading
to an obvious disagreement between the two methods. Here we present four distinct
incidences (we keep θ0 = π/4 and choose four different ϕ0) corresponding to different
signs for a1,2. The chosen incidences are summarized in Figure 12.

Fig. 12. Left: Illustration of the incident angles used in the presentation of the results. We have
ensured that each region corresponding to a different sign combination of a1 and a2 was considered.
Right: Illustration of the eight arcs of observation used in the presentation of the results.

For each incidence, we pick eight arcs surrounding the quarter-plane on which we
evaluate the diffraction coefficient. That is, we pick eight values of ϕ between 0 and
2π, and for each value of ϕ, we evaluate the coefficient for θ ∈ [0, π/2]. The results are
presented in Figures 13–16, showing very good agreement between the two methods.
When the diffraction coefficient does not have any singularities, as in Figures 13(e)–
(g), 14(e)–(g), 15(a),(g),(h), and 16(b), it means that the only far-field component
in the observation region is the spherical wave emanating from the tip; this is the
so-called oasis zone. The diffraction coefficient becomes singular at the boundaries
of existence of the edge-diffracted fields. Another important point to mention is
the validity of this ansatz in the region where the MSF are not valid (see [6] for a
discussion) due to double diffraction of the field (Figures 15(c) and 16(a),(c)). Passing
the limit of validity, we notice that the diffraction coefficient given by Radlow’s ansatz,
which is purely imaginary everywhere else, becomes purely real. Mathematically this
corresponds to saddle points going through a branch point during the steepest-descent
procedure. Having no data to compare to in this region, it remains to be seen if this
yields the correct physical solution.

The fact that Radlow’s ansatz produces extremely accurate results for the dif-
fraction coefficient is indeed surprising, but such a possibility was not ruled out
in Albani’s work [3]. Indeed, Albani’s approach to showing that Radlow’s ansatz
(let us call it FRa

++(α)) was incorrect was to demonstrate that the resulting physical
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Figure 13. Diffraction coefficient for incidence (θ0, ϕ0) =
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Fig. 13. Diffraction coefficient for incidence (θ0, ϕ0) =
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π
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, −3π
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a2 < 0, with polar observation angle θ ∈
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Figure 14. Diffraction coefficient for incidence (θ0, ϕ0) =
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field, uRa(x1, x2, x3), did not satisfy the boundary condition, i.e., was not equal to
−e−i(a1x1+a2x2) on the quarter-plane x1,2 > 0. An interesting point, however, was
that as both x1 and x2 tend to infinity simultaneously, we have

uRa(x1 > 0, x2 > 0, 0)− (−e−i(a1x1+a2x2)) = O((x2
1 + x2

2)−3/2),(6.1)

implying that in a way, the boundary conditions are asymptotically satisfied away
from the vertex and the edges. The rapidity of the decay (one over the cube of the
distance to the vertex) being much higher than the decay of the spherical wave (one
over this distance) may be the beginning of an explanation as to why Radlow’s ansatz
performs so well in that case. It has to be said, however, that the agreement between
the two methods cannot be perfect. Indeed, if it were, then F++ and FRa++ would
have to be exactly the same on a nonisolated region, and hence, due to the theory
of analytic functions, they have to be the same everywhere, which, as we showed,
violates the compatibility condition. Hence, there must exist a numerical discrepancy
between the two methods. In order to find it, we made sure that the MSF and the
Radlow’s ansatz were accurately evaluated up to a relative error of the order O(10−5)
and looked at the pointwise difference between the two methods for the particular
test case of Figure 13(g). The results are displayed in Figure 17, and one can see that
the relative error is of the order O(10−3), two orders of magnitude higher than the
precision with which both methods were computed. Hence, we can conclude that this
is an actual discrepancy between the two methods and is not a numerical artefact.

0 π
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4
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θ

2.5

3

3.5

4

4.5

5

5.5
×10−3 Testcase of Fig. 13 (g)

Relative error between Radlow’s Ansatz and the MSF

Fig. 17. Pointwise relative error between the diffraction coefficients obtained by the MSF and
by Radlow’s ansatz for the test case of Figure 13(g).

7. Conclusion. In this paper, we revisited Radlow’s double Wiener–Hopf ap-
proach for the Dirichlet quarter-plane problem. We have tried to add more clarity and
precision to his innovative approach, with the aim of obtaining a constructive method
of solution of this canonical boundary value problem. The inverse Fourier transform
(3.11) gives the solution in terms of an unknown function F++ that depends on two
complex variables. We reduced the problem to two equations; one, (5.12), expresses
F++ as the sum of two terms, one containing the unknown function G+− and the
other being Radlow’s ansatz. This, on the one hand, gives a constructive way of ob-
taining the ansatz and, on the other hand, offers yet another reason why this ansatz
cannot be the true solution. The second equation, (5.13), called the compatibility
equation, involves solely the unknown function G+− and could be key to determining
this crucial unknown function.
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Finally, following a steepest-descent analysis, we have related F++ to the diffrac-
tion coefficient fd. Numerical results show that when choosing F++ as per Radlow’s
ansatz, we obtain surprisingly accurate results for the diffraction coefficient. In fact,
the results seem to agree very well with those obtained by the established modified
Smyshlyaev formulae (MSF), where this method is valid. Theoretically, it is, however,
impossible for this agreement to be perfect, and we have shown that there exists a
small discrepancy between the two methods, with a relative error of order O(10−3).
It should be noted that the MSF offer a very quick way of evaluating the diffrac-
tion coefficient; however, Radlow’s ansatz, and the factorization formulae provided
herein, is even faster (computing the Radlow result for each graph of section 6 takes
about 1s on a standard laptop). This observation naturally opens up some interesting
questions:
• Is the diffraction coefficient arising from Radlow’s ansatz a very good far-field

approximation, even in the region inaccessible by the MSF?
• Why does the near-field have seemingly no influence on the far-field behavior?
• Can we find a constructive method for determining the function G+−, and hence

a unique formulation reconciling near-field and far-field?
• Can we take a similar approach in the Neumann case?

We hope to address these points in future work; several could have profound conse-
quences on how we approach diffraction problems in general.

Appendix A. Factorization of K−◦ and K+◦. Let us show how the
factorization of K−◦ is obtained. The factorization of K+◦ is obtained in a very
similar way. Introduce the auxiliary function K−◦ as

K−◦(α) = κ(k, α2)K2
−◦(α) =

κ(k, α2)

κ(k, α2)− α1
=

1

1− α1

κ(k,α2)

·

Naturally, for a given α2 in A2, K−◦(α) remains a minus function when seen as a
function of α1. Plots of the auxiliary function K−◦(α) are provided in Figure 18.

Fig. 18. Left: Phase plot of the function K−◦(α1, α?2) for α?2 = A2(5) in the α1 complex plane.
Right: Phase plot of the function K−◦(α?1, α2) for α?1 = A1(10) in the α2 complex plane.

Note that for K−◦(α1, α
?
2) (Figure 18, left) the point α1 = κ(k, α?2) is not a branch

point anymore but just a simple pole. For K−◦(α
?
1, α2) (Figure 18, right), as expected,

α2 = ±k are branch points, while α2 = ±κ(k, α?1) now correspond to two simple poles.
Let us now set α1 ∈ LHP1. Now for a given α2 in A2 (where K−◦(α) is analytic

when considered as a function of α2), we can make use of Corollary 4.2 to write

D
ow

nl
oa

de
d 

10
/1

1/
21

 to
 9

4.
6.

16
7.

45
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

86 RAPHAEL ASSIER AND I. DAVID ABRAHAMS

K−◦(α) = K−−(α)K−+(α), the equality being valid on D−◦, where K−−(α) is analytic
in LHP2 and K−+(α) is analytic in UHP2 when both are considered as functions of
α2. Also, these are given by

K−+(α1, α2) = e
1

2iπ

∫
Abε

↙
log(K−◦(α1,z))

z−α2
dz

and K−−(α1, α2) = e
−1
2iπ

∫
Aaε

↙
log(K−◦(α1,z))

z−α2
dz
,

where
↙
log is defined as in section 3.1. The choice of this particular logarithm is, in

fact, extremely important in order to avoid crossings between branch cuts and the
contour of integration. Using the exact expression of K−◦(α), this can be simplified
to

K−+(α1, α2) = e
−1
2iπ

∫
Abε

↙
log(1− α1

κ(k,z) )
z−α2

dz
and K−−(α1, α2) = e

1
2iπ

∫
Aaε

↙
log(1− α1

κ(k,z) )
z−α2

dz
.

Going back to K−◦(α), we have

K2
−◦(α) =

K−◦(α)

κ(k, α2)
=

K−+(α1, α2)
↓
√
k + α2

K−−(α1, α2)
↓
√
k − α2

·

Note that ↓
√
k + α2 is a plus function in the α2-plane (branch point at α2 = −k), and

↓
√
k − α2 is a minus function in the α2-plane (branch point at α2 = +k). Hence the

function K−+/
↓
√
k + α2 is a plus function, and the function K−−/

↓
√
k − α2 is a minus

function. We can then write K−◦(α) = K−−(α)K−+(α), where K−−(α) is analytic
in LHP1×LHP2, and K−+(α) is analytic in LHP1×UHP2 when both are considered
as functions of α2 and given by

K−+(α) =

(
K−+(α1, α2)
↓
√
k + α2

)1/2

=
1

↓
√
↓
√
k + α2

exp

−1

4iπ

∫
Abε

↙
log
(

1− α1

κ(k,z)

)
z − α2

dz


(A.1)

and

K−−(α) =

(
K−−(α1, α2)
↓
√
k − α2

)1/2

=
1

↓
√
↓
√
k − α2

exp

 1

4iπ

∫
Aaε

↙
log
(

1− α1

κ(k,z)

)
z − α2

dz

 ,

(A.2)

recovering (4.4) and (4.5). This choice of realizing the square root of the numerator
by solely halving the inside of the exponential ensures that no spurious branch cuts
occur. This would have been the case if, instead, we chose to take

√
or even ↓

√

of the numerator. The second square root of the denominator does not affect its
branch cut structure. These functions are very fast to evaluate since the integrand
now decays like x−2 along Aaε(x) as x→ ±∞.
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Appendix B. On the application of Liouville’s theorem.

B.1. A useful result. The following lemma establishes a link between the decay
of a function Φ(α) and the decay of its respective plus and minus sum-split parts
Φ+(α) and Φ−(α).

Lemma B.1. Let Φ(α) be a function analytic on some strip, and consider its sum-
split Φ(α) = Φ+(α) + Φ−(α), where Φ+ and Φ− are analytic in the UHP and LHP,
respectively.

(a) If Φ(α) = O(1/|α|λ) as |α| → ∞ within the strip, with λ > 1, then Φ±(α)
are decaying at least like 1/|α| as |α| → ∞ within their respective half-planes.

(b) If Φ(α) = O(1/|α|) as |α| → ∞ within the strip, then Φ±(α) are decaying at
least like ln |α|/|α| as |α| → ∞ within their respective half-planes.

(c) If Φ(α) = O(1/|α|λ) as |α| → ∞ within the strip, with 0 < λ < 1, then Φ±(α)
are decaying at least like 1/|α|λas |α| → ∞ within their respective half-planes.

These results are classic. The leading order results (as presented here) can be
found for example in [40], while full asymptotic expansions are given in [23, 39].

B.2. For the α1-plane factorization. Let us show that the top (resp., bottom)
line of (5.6) tends to zero as |α1| → ∞ within UHP1 (resp., LHP1), while α2 ∈ A2 is
fixed. First, due to (5.3), it is clear that

G++(α1, α2)/K−◦(a1, α2)
α2 fixed

=
|α1|→∞

O(1/|α1|) .

The condition on the (x1 = 0, x2 > 0) edge implies that for a fixed x2 > 0, for

x3 = 0+, we have ∂u
∂x3

= O(x
−1/2
1 ) as x1 → 0+, while u = O((−x1)1/2) as x1 → 0−.

Because F++ ∝ F[ ∂u∂x3
] and G−+ = F[u2] (see (5.2)), the Abelian theorems [25] and

the principles of analytic continuation imply that

F++
α2 fixed

=
|α1|

UHP→ ∞
O(1/|α1|1/2) and G−+

α2 fixed
=

|α1| →
LHP
∞
O(1/|α1|3/2).(B.1)

For a fixed x2 < 0 and x3 = 0+, the field is well behaved as x1 → 0, and hence
u = O(1). Since G−− = F[u3] and G+− = F[u4], the Abelian theorems imply that

G+−
α2 fixed

=
|α1|

UHP→ ∞
O(1/|α1|) and G−−

α2 fixed
=

|α1| →
LHP
∞
O(1/|α1|).(B.2)

Moreover, we have

K+◦(α1, α2)
α2 fixed

=
|α1|→∞

O(1/|α1|1/2) and K−◦(α1, α2)
α2 fixed

=
|α1|→∞

O(1/|α1|1/2) .(B.3)

Hence, using (B.1), (B.2), and (B.3), we know that

F++K+◦
α2 fixed

=
|α1|

UHP→ ∞
O
(

1
|α1|

)
,
G+−

K−◦

α2 fixed
=

|α1|
UHP→ ∞

O
(

1
|α1|1/2

)
,
G−◦
K−◦

α2 fixed
=

|α1| →
LHP
∞
O
(

1
|α1|1/2

)
.

Finally, using Lemma B.1(c) in the α1-plane, we conclude that we have (at least)[
G+−

K−◦

]
+◦

α2 fixed
=

|α1|
UHP→ ∞

O
(

1

|α1|1/2

)
and

[
G+−

K−◦

]
−◦

α2 fixed
=

|α1| →
LHP
∞
O
(

1

|α1|1/2

)
.

This shows that the terms of the top (resp., bottom) line of (5.6) go to zero as
|α1| → ∞ within UHP1 (resp., LHP1). Hence, Liouville’s theorem can be safely
applied.
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B.3. For the α2-plane factorization. Here we wish to show that E+2 tends
to zero when α1 is fixed in UHP1 and |α2| → ∞.

B.3.1. The terms without brackets. Let us show that the terms without
brackets in the top line7 of (5.11) tend to zero as α1 is fixed in UHP1 and |α2| → ∞
within UHP2. First, using the expression (5.3) for G++, it is straightforward to see
that

G++(α)

K−−(a1, a2)K+−(α1, a2)

α1 fixed
=

|α2|→∞
O(1/|α2|).(B.4)

Moreover, using the definitions of K++ and K−+, we can see that

K++(α1, α2)
α1 fixed

=
|α2|→∞

O(1/|α2|1/4) and K−+(a1, α2) =
|α2|→∞

O(1/|α2|1/4).

The (x1 > 0, x2 = 0) edge condition implies that for x3 = 0+ and a fixed x1 >

0, ∂u
∂x3

= O(x
−1/2
2 ) as x2 → 0+, which, by the Abelian theorems, requires that

F++(α1, α2) = O(1/|α2|1/2) for α1 ∈ UHP1 as |α2| → ∞ within UHP2. This leads to

F++(α)K++(α)K−+(a1, α2)
α1 fixed

=
|α2|→∞

O(1/|α2|).(B.5)

B.3.2. The terms with brackets. Because of Lemma B.1, in order to prove
that the last term on the top (resp., bottom) line of (5.11) tends to zero as |α2| → ∞
within UHP2 (resp., LHP2), it is sufficient to show that K−+(a1,α2)

K+−
[G+−
K−◦

]+◦ tends to

zero as a power of |α2| as |α2| → ∞ while on A2. In order to show this,8 rewrite (5.9),
which is valid for α2 ∈ A2, as

K−+(a1, α2)

K+−

[
G+−

K−◦

]
+◦

= F++K++K−+(a1, α2)︸ ︷︷ ︸
α1 fixed

=
|α2|→∞

O(1/|α2|)

− G++

K−−(a1, α2)K+−︸ ︷︷ ︸
α1 fixed

=
|α2|→∞

O(1/|α2|1/2)

·

The first estimate on the RHS is already given in (B.5) above, while the second comes
naturally from the asymptotic behaviors

G++
α1 fixed

=
|α2|→∞

O(1/|α2|), K−−
α1 fixed

=
|α2|→∞

O(1/|α2|1/4), K+−
α1 fixed

=
|α2|→∞

O(1/|α2|1/4).

The first of these results is obvious given the exact expression (5.3) for G++, while
the second and third come directly from the integral representations (4.5) and (4.7).
Hence, we have proved that the sufficient condition is satisfied and that, consequently,
Liouville’s theorem can be safely applied to obtain E+2 ≡ 0.

7We can show in a very similar fashion (omitted for brevity) that the terms without brackets in
the bottom line of (5.11) do also tend to zero for fixed α1 ∈ UHP1 and |α2| → ∞ within LHP2.

8We thank the anonymous reviewer for this suggestion.
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